UNIVERSIDAD TECNOLÓGICA DE TORREÓN

                     IRIS RUMUALDA CARREÓN RANGEL

                            LIC. GERARDO EDGAR MATA

                                  MATERIA: ESTADÍSTICA

           INVESTIGACIÓN DE INTERVALOS DE CONFIANZA

                                                      2 ¨B¨

             PROCESOS INDUSTRIALES EN EL ÁREA DE
                        MANUFACTURA

                                            18/ABRIL/2012




                                  Intervalo de confianza




Las líneas verticales representan 50 construcciones diferentes de intervalos de confianza para la estimación del
valor μ.
En estadística, se llama intervalo de confianza a un par de números entre los cuales se estima que
estará cierto valor desconocido con una determinada probabilidad de acierto. Formalmente, estos
números determinan un intervalo, que se calcula a partir de datos de una muestra, y el valor
desconocido es un parámetro poblacional. La probabilidad de éxito en la estimación se representa con 1
- α y se denomina nivel de confianza. En estas circunstancias, α es el llamado error aleatorio o nivel de
significación, esto es, una medida de las posibilidades de fallar en la estimación mediante tal intervalo.

El nivel de confianza y la amplitud del intervalo varían conjuntamente, de forma que un intervalo más
amplio tendrá más posibilidades de acierto (mayor nivel de confianza), mientras que para un intervalo
más pequeño, que ofrece una estimación más precisa, aumentan sus posibilidades de error.

Para la construcción de un determinado intervalo de confianza es necesario conocer
la distribución teórica que sigue el parámetro a estimar, θ. Es habitual que el parámetro presente
una distribución normal. También pueden construirse intervalos de confianza con la desigualdad de
Chebyshov.

En definitiva, un intervalo de confianza al 1 - α por ciento para la estimación de un parámetro
poblacional θ que sigue una determinada distribución de probabilidad, es una expresión del tipo [θ1, θ2]
tal que P[θ1 ≤ θ ≤ θ2] = 1 - α, donde P es la función de distribución de probabilidad de θ.




Intervalo de confianza para la media de una población
De una población de media     y desviación típica  se pueden tomar muestras de elementos.
Cada una de estas muestras tiene a su vez una media ( ). Se puede demostrar que la media de
todas las medias muéstrales coincide con la media poblacional:
                                                                                3
Pero además, si el tamaño de las muestras es lo suficientemente grande, la distribución de
medias muéstrales es, prácticamente, una distribución normal (o gaussiana) con media μ y una


desviación típica dada por la siguiente expresión:                   .Esto se representa como



sigue:                          Si estandarizamos, se sigue que:

En una distribución Z ~ N(0, 1) puede calcularse fácilmente un intervalo dentro del cual caigan un
determinado porcentaje de las observaciones, esto es, es sencillo hallar z1 y z2 tales que P[z1 ≤ z
≤ z2] = 1 - α, donde (1 - α)·100 es el porcentaje deseado (véase el uso de las tablas en una
distribución normal).

Se desea obtener una expresión tal que

En esta distribución normal de medias se puede calcular el intervalo de confianza donde se
encontrará la media poblacional si sólo se conoce una media muestral ( ), con una confianza
determinada. Habitualmente se manejan valores de confianza del 95 y del 99 por ciento. A este
valor se le llamará      (debido a que    es el error que se cometerá, un término opuesto).

Para ello se necesita calcular el punto        —o, mejor dicho, su versión estandarizada
o valor crítico junto con su "opuesto en la distribución".       . Estos puntos delimitan la
probabilidad para el intervalo, como se muestra en la siguiente imagen:




Dicho punto es el número tal que:



Y en la versión estandarizada se cumple que:



Así:




Haciendo operaciones es posible despejar       para obtener el intervalo:




De lo cual se obtendrá el intervalo de confianza:




Obsérvese que el intervalo de confianza viene dado por la media muestral        ± el producto


del valor crítico      por el error estándar        .
Si no se conoce    y n es grande (habitualmente se toma n ≥ 30):



                                     , donde s es la desviación típica de una muestra.

Aproximaciones para el valor      para los niveles de confianza estándar son 1,96
para                   y 2,576 para                   .



FORMULAS PARA ESTIMAR LOS INTERVALOS DE CONFIANZA:




                     Descripción                                 Intervalo de confianza

Estimación de  con sigma conocida, muestra                X  Z / 2 / n
grande n>30

Estimación de  con sigma desconocida,                     X  Z / 2 s / n
muestra grande n>30, se toma la desv. Est. de la
muestra S

Estimación de  con muestras pequeñas, n < 30              X  t / 2 s / n
y sigma desconocida

Estimación de la                                        (n  1) s 2                  (n  1) s 2
                                                                              2 
                                                                                         
                                                                 , n 1                   1 , n 1
                                                             2                              2



Estimación de la proporción                                          p (1  p )
                                                         sp 
                                                                          n

                                                           p  Z / 2 s p

                                                                   Tamaño de muestra

Para estimar n en base a un error máximo                 n  Z / 2  2 /( X   ) 2
                                                                          2


( X  )
Para estimar n en base a un error máximo                 n  Z / 2  (1   ) /( p   ) 2
                                                                   2



Si se especifica un intervalo total de error, el error
                                                         Utilizar   0.5 que es peor caso
( p   ) máximo es la mitad del intervalo




Intervalo de confianza para una proporción
El intervalo de confianza para estimar una proporción p, conocida una proporción muestral pn de
una muestra de tamaño n, a un nivel de confianza del (1-α)·100% es:




En la demostración de estas fórmulas están involucrados el Teorema Central del Límite y la
aproximación de una binomial por una normal.

Consulta de intervalos de confianza

  • 1.
    UNIVERSIDAD TECNOLÓGICA DETORREÓN IRIS RUMUALDA CARREÓN RANGEL LIC. GERARDO EDGAR MATA MATERIA: ESTADÍSTICA INVESTIGACIÓN DE INTERVALOS DE CONFIANZA 2 ¨B¨ PROCESOS INDUSTRIALES EN EL ÁREA DE MANUFACTURA 18/ABRIL/2012 Intervalo de confianza Las líneas verticales representan 50 construcciones diferentes de intervalos de confianza para la estimación del valor μ.
  • 2.
    En estadística, sellama intervalo de confianza a un par de números entre los cuales se estima que estará cierto valor desconocido con una determinada probabilidad de acierto. Formalmente, estos números determinan un intervalo, que se calcula a partir de datos de una muestra, y el valor desconocido es un parámetro poblacional. La probabilidad de éxito en la estimación se representa con 1 - α y se denomina nivel de confianza. En estas circunstancias, α es el llamado error aleatorio o nivel de significación, esto es, una medida de las posibilidades de fallar en la estimación mediante tal intervalo. El nivel de confianza y la amplitud del intervalo varían conjuntamente, de forma que un intervalo más amplio tendrá más posibilidades de acierto (mayor nivel de confianza), mientras que para un intervalo más pequeño, que ofrece una estimación más precisa, aumentan sus posibilidades de error. Para la construcción de un determinado intervalo de confianza es necesario conocer la distribución teórica que sigue el parámetro a estimar, θ. Es habitual que el parámetro presente una distribución normal. También pueden construirse intervalos de confianza con la desigualdad de Chebyshov. En definitiva, un intervalo de confianza al 1 - α por ciento para la estimación de un parámetro poblacional θ que sigue una determinada distribución de probabilidad, es una expresión del tipo [θ1, θ2] tal que P[θ1 ≤ θ ≤ θ2] = 1 - α, donde P es la función de distribución de probabilidad de θ. Intervalo de confianza para la media de una población De una población de media y desviación típica se pueden tomar muestras de elementos. Cada una de estas muestras tiene a su vez una media ( ). Se puede demostrar que la media de todas las medias muéstrales coincide con la media poblacional: 3 Pero además, si el tamaño de las muestras es lo suficientemente grande, la distribución de medias muéstrales es, prácticamente, una distribución normal (o gaussiana) con media μ y una desviación típica dada por la siguiente expresión: .Esto se representa como sigue: Si estandarizamos, se sigue que: En una distribución Z ~ N(0, 1) puede calcularse fácilmente un intervalo dentro del cual caigan un determinado porcentaje de las observaciones, esto es, es sencillo hallar z1 y z2 tales que P[z1 ≤ z ≤ z2] = 1 - α, donde (1 - α)·100 es el porcentaje deseado (véase el uso de las tablas en una distribución normal). Se desea obtener una expresión tal que En esta distribución normal de medias se puede calcular el intervalo de confianza donde se encontrará la media poblacional si sólo se conoce una media muestral ( ), con una confianza
  • 3.
    determinada. Habitualmente semanejan valores de confianza del 95 y del 99 por ciento. A este valor se le llamará (debido a que es el error que se cometerá, un término opuesto). Para ello se necesita calcular el punto —o, mejor dicho, su versión estandarizada o valor crítico junto con su "opuesto en la distribución". . Estos puntos delimitan la probabilidad para el intervalo, como se muestra en la siguiente imagen: Dicho punto es el número tal que: Y en la versión estandarizada se cumple que: Así: Haciendo operaciones es posible despejar para obtener el intervalo: De lo cual se obtendrá el intervalo de confianza: Obsérvese que el intervalo de confianza viene dado por la media muestral ± el producto del valor crítico por el error estándar .
  • 4.
    Si no seconoce y n es grande (habitualmente se toma n ≥ 30): , donde s es la desviación típica de una muestra. Aproximaciones para el valor para los niveles de confianza estándar son 1,96 para y 2,576 para . FORMULAS PARA ESTIMAR LOS INTERVALOS DE CONFIANZA: Descripción Intervalo de confianza Estimación de  con sigma conocida, muestra   X  Z / 2 / n grande n>30 Estimación de  con sigma desconocida,   X  Z / 2 s / n muestra grande n>30, se toma la desv. Est. de la muestra S Estimación de  con muestras pequeñas, n < 30   X  t / 2 s / n y sigma desconocida Estimación de la  (n  1) s 2 (n  1) s 2 2     , n 1 1 , n 1 2 2 Estimación de la proporción  p (1  p ) sp  n   p  Z / 2 s p Tamaño de muestra Para estimar n en base a un error máximo n  Z / 2  2 /( X   ) 2 2 ( X  )
  • 5.
    Para estimar nen base a un error máximo n  Z / 2  (1   ) /( p   ) 2 2 Si se especifica un intervalo total de error, el error Utilizar   0.5 que es peor caso ( p   ) máximo es la mitad del intervalo Intervalo de confianza para una proporción El intervalo de confianza para estimar una proporción p, conocida una proporción muestral pn de una muestra de tamaño n, a un nivel de confianza del (1-α)·100% es: En la demostración de estas fórmulas están involucrados el Teorema Central del Límite y la aproximación de una binomial por una normal.