SlideShare una empresa de Scribd logo
1 de 18
MODELO DE RESONANCIA ADAPTATIVA (ART)
[object Object],[object Object],Esta teoría se aplica a sistemas competitivos (redes de aprendizaje competitivo). DILEMAS DE S. GROSSBERG
La teoría de la resonancia adaptativa se basa en la idea de hacer resonar la información de entrada con los representantes o prototipos de las categorías que reconoce la red. Si entra en resonancia con algunos, y es suficientemente similar, la red considera que pertenece a dicha categoría y únicamente realiza una pequeña adaptación del prototipo almacenado incorporandole algunas características del dato presentado en la entrada. Cuando no resuena con ninguno, esto es, cuando no se parece a ningún representante de alguna categoría (recordados por la red hasta ese momento), la red se encarga de crear una nueva categoría con el dato de entrada como prototipo.
REPRESENTACIÓN FUNCIONAL DE LA RED ART
ARQUITECTURA DE LA RED ART
FUNCIONAMIENTO 1) Se presenta un vector de entrada. 2) Cada neurona de la capa de entrada recibe el valor del componente del vector de entrada y lo envía a todas las neuronas de la capa de salida. 3) Cada neurona de la capa de salida compite con las demás de esta capa hasta que sólo una permanece activa. Las conexiones laterales son las que permiten realizar esta competición, y tienen un peso con un valor fijo -  que debe ser menor que 1/M, donde M es
el número de neuronas de la capa de salida, para que  la competición funcione correctamente: siendo f la función de transferencia de tipo escalón de las neuronas de salida. Después de cierto número de iteraciones, se llega a un punto de estabilidad en la que una neurona resulta vencedora, generando una salida de valor 1, mientras que en las demás neuronas la salida es 0.
El valor de salida al final de la competición se pueden obtener más fácilmente  mediante la siguiente expresión: 4) La neurona vencedora envía su salida a través de las conexiones hacia atrás.
Cada neurona i-ésima de la capa de entrada recibe el valor: porque Por tanto, al no influir el resto de las neuronas de salida por estar inactivas(0), en la capa de entrada se reciben los valores de los pesos de las conexiones correspondientes. 5) Se compara la información de entrada con la categoría. Si la neurona de salida se ha activado. Esta comparación se hace valorando la siguiente
relación de semejanza: Al trabajar con valores binarios, el producto aritmético equivale a la operación AND,
6) Se compara la relación de semejanza entre ambas informaciones con un parámetro de vigilancia (  ), el cual influirá en el número de clases que establecerá la red. Si no se cumple dicho parámetro entonces la neurona vencedora se resetea, y se repite desde el paso número 2. 7) Si la semejanza es igual o mayor que el parámetro de vigilancia, entonces se asume que la neurona que se ha activado a la salida es la que representa al vector de entrada, para después proceder a ajustar los pesos de la red
Gracias por su atención
Bobliografia ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
APRENDIZAJE El aprendizaje en el modelo ART es de tipo ON LINE, por lo que no se distingue entre etapa de entrenamiento y de funcionamiento.  La red ART utiliza un aprendizaje no supervisado de tipo competitivo.  En este tipo de redes se pueden dar dos tipos de aprendizaje: * Aprendizaje lento:ocurre cuando una información de entrada es asociada a una de las categorías existentes. * Aprendizaje rápido:se da cuando se establece una nueva categoría.
Inicialmente, cuando la red no ha aprendido nada se le asignan los siguientes pesos: Después, cada vez que se presente un vector de entrada, se realiza el ajuste de los pesos de las conexiones V de la neurona vencedora con cada una de las neuronas de entrada,en función de la diferencia entre este vector y del representante, la variación de los pesos V se realiza según la siguiente ecuación diferencial:
Si la neurona de salida no es la vencedora, el valor de su salida es cero, con lo que no debe producir variación en el peso correspondiente. En caso contrario, si la neurona es la vencedora, su salida es 1, con lo que la variación del peso de V sería de :
Los pesos de Wji se obtienen normalizando los anteriores. Donde: suele tener el valor de 0.5
Gracias por su atención

Más contenido relacionado

La actualidad más candente

Diseño de Redes Neuronales Multicapa y Entrenamiento
Diseño de Redes Neuronales Multicapa y EntrenamientoDiseño de Redes Neuronales Multicapa y Entrenamiento
Diseño de Redes Neuronales Multicapa y EntrenamientoESCOM
 
Perceptrón simple y multicapa
Perceptrón simple y multicapaPerceptrón simple y multicapa
Perceptrón simple y multicapaJefferson Guillen
 
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALESINTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALESESCOM
 
redes neuronales Kohonen
redes neuronales Kohonenredes neuronales Kohonen
redes neuronales KohonenESCOM
 
REDES NEURONALES Mapas con Características Autoorganizativas Som
REDES NEURONALES Mapas   con Características Autoorganizativas  SomREDES NEURONALES Mapas   con Características Autoorganizativas  Som
REDES NEURONALES Mapas con Características Autoorganizativas SomESCOM
 
redes neuronales Som
redes neuronales Somredes neuronales Som
redes neuronales SomESCOM
 
Regla de aprendizaje del perceptrón simple
Regla de aprendizaje del perceptrón simpleRegla de aprendizaje del perceptrón simple
Regla de aprendizaje del perceptrón simpleAndrea Lezcano
 
Redes neuronales-funciones-activacion-hardlim- hardlims-matlab
Redes neuronales-funciones-activacion-hardlim- hardlims-matlabRedes neuronales-funciones-activacion-hardlim- hardlims-matlab
Redes neuronales-funciones-activacion-hardlim- hardlims-matlabAna Mora
 
Redes Neuronales
Redes NeuronalesRedes Neuronales
Redes Neuronalesgueste7b261
 
Mapas autoorganizados
Mapas autoorganizadosMapas autoorganizados
Mapas autoorganizadosJesus Rojas
 
REDES NEURONALES Algoritmos de Aprendizaje
REDES NEURONALES Algoritmos  de AprendizajeREDES NEURONALES Algoritmos  de Aprendizaje
REDES NEURONALES Algoritmos de AprendizajeESCOM
 
REDES NEURONALES COMPETITIVAS HAMMING
REDES NEURONALES COMPETITIVAS HAMMINGREDES NEURONALES COMPETITIVAS HAMMING
REDES NEURONALES COMPETITIVAS HAMMINGESCOM
 
Red NEURONAL de Hamming
Red   NEURONAL    de HammingRed   NEURONAL    de Hamming
Red NEURONAL de HammingESCOM
 
Función Logsig y tansig
Función Logsig y tansigFunción Logsig y tansig
Función Logsig y tansigVane Erraez
 
El Perceptrón Multicapa
El Perceptrón  MulticapaEl Perceptrón  Multicapa
El Perceptrón MulticapaESCOM
 
RED NEURONAL Backpropagation
RED NEURONAL BackpropagationRED NEURONAL Backpropagation
RED NEURONAL BackpropagationESCOM
 

La actualidad más candente (20)

Diseño de Redes Neuronales Multicapa y Entrenamiento
Diseño de Redes Neuronales Multicapa y EntrenamientoDiseño de Redes Neuronales Multicapa y Entrenamiento
Diseño de Redes Neuronales Multicapa y Entrenamiento
 
Perceptrón simple y multicapa
Perceptrón simple y multicapaPerceptrón simple y multicapa
Perceptrón simple y multicapa
 
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALESINTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
 
redes neuronales Kohonen
redes neuronales Kohonenredes neuronales Kohonen
redes neuronales Kohonen
 
REDES NEURONALES Mapas con Características Autoorganizativas Som
REDES NEURONALES Mapas   con Características Autoorganizativas  SomREDES NEURONALES Mapas   con Características Autoorganizativas  Som
REDES NEURONALES Mapas con Características Autoorganizativas Som
 
redes neuronales Som
redes neuronales Somredes neuronales Som
redes neuronales Som
 
Regla de aprendizaje del perceptrón simple
Regla de aprendizaje del perceptrón simpleRegla de aprendizaje del perceptrón simple
Regla de aprendizaje del perceptrón simple
 
Redes neuronales-funciones-activacion-hardlim- hardlims-matlab
Redes neuronales-funciones-activacion-hardlim- hardlims-matlabRedes neuronales-funciones-activacion-hardlim- hardlims-matlab
Redes neuronales-funciones-activacion-hardlim- hardlims-matlab
 
Redes Neuronales
Redes NeuronalesRedes Neuronales
Redes Neuronales
 
Perceptrón
PerceptrónPerceptrón
Perceptrón
 
Mapas autoorganizados
Mapas autoorganizadosMapas autoorganizados
Mapas autoorganizados
 
REDES NEURONALES Algoritmos de Aprendizaje
REDES NEURONALES Algoritmos  de AprendizajeREDES NEURONALES Algoritmos  de Aprendizaje
REDES NEURONALES Algoritmos de Aprendizaje
 
REDES NEURONALES COMPETITIVAS HAMMING
REDES NEURONALES COMPETITIVAS HAMMINGREDES NEURONALES COMPETITIVAS HAMMING
REDES NEURONALES COMPETITIVAS HAMMING
 
Red NEURONAL de Hamming
Red   NEURONAL    de HammingRed   NEURONAL    de Hamming
Red NEURONAL de Hamming
 
redes kohonen
redes kohonenredes kohonen
redes kohonen
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronales
 
Redes neuronales artificiales
Redes neuronales artificialesRedes neuronales artificiales
Redes neuronales artificiales
 
Función Logsig y tansig
Función Logsig y tansigFunción Logsig y tansig
Función Logsig y tansig
 
El Perceptrón Multicapa
El Perceptrón  MulticapaEl Perceptrón  Multicapa
El Perceptrón Multicapa
 
RED NEURONAL Backpropagation
RED NEURONAL BackpropagationRED NEURONAL Backpropagation
RED NEURONAL Backpropagation
 

Destacado

Aprendizaje Asociativo Hebbiano
Aprendizaje Asociativo HebbianoAprendizaje Asociativo Hebbiano
Aprendizaje Asociativo HebbianoESCOM
 
CUANTIZACIÓN DEL VECTOR DE APRENDIZAJE
CUANTIZACIÓN DEL VECTOR DE APRENDIZAJECUANTIZACIÓN DEL VECTOR DE APRENDIZAJE
CUANTIZACIÓN DEL VECTOR DE APRENDIZAJEESCOM
 
Redes de propagación hacia delante y aprendizaje supervisado
Redes de propagación hacia delante   y aprendizaje supervisadoRedes de propagación hacia delante   y aprendizaje supervisado
Redes de propagación hacia delante y aprendizaje supervisadoESCOM
 
Neuronas Difusas
Neuronas DifusasNeuronas Difusas
Neuronas DifusasESCOM
 
Presentacion Art Gal
Presentacion Art GalPresentacion Art Gal
Presentacion Art GalESCOM
 
PANORAMA GENERAL DE LOS SISTEMAS INTELIGENTES
PANORAMA GENERAL DE LOS SISTEMAS INTELIGENTESPANORAMA GENERAL DE LOS SISTEMAS INTELIGENTES
PANORAMA GENERAL DE LOS SISTEMAS INTELIGENTESESCOM
 
SIMULADORES REDES NEURONALES
SIMULADORES REDES NEURONALESSIMULADORES REDES NEURONALES
SIMULADORES REDES NEURONALESESCOM
 
Generalidades De Las Redes Neuronales Artificiales (RNA)
Generalidades De Las  Redes Neuronales Artificiales  (RNA)Generalidades De Las  Redes Neuronales Artificiales  (RNA)
Generalidades De Las Redes Neuronales Artificiales (RNA)ESCOM
 
RED De Retro-propagación Neuronal
RED De Retro-propagación NeuronalRED De Retro-propagación Neuronal
RED De Retro-propagación NeuronalESCOM
 
Introduccion redes neuronales artificiales
Introduccion redes neuronales artificialesIntroduccion redes neuronales artificiales
Introduccion redes neuronales artificialesESCOM
 
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBBREDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBBESCOM
 
Mapas de características auto-organizativas MAO´s de Kohonen
Mapas de características auto-organizativas MAO´s de KohonenMapas de características auto-organizativas MAO´s de Kohonen
Mapas de características auto-organizativas MAO´s de KohonenESCOM
 
INTRODUCCIÓN A LOS SISTEMAS NEURODIFUSOS
INTRODUCCIÓN  A  LOS  SISTEMAS  NEURODIFUSOSINTRODUCCIÓN  A  LOS  SISTEMAS  NEURODIFUSOS
INTRODUCCIÓN A LOS SISTEMAS NEURODIFUSOSESCOM
 

Destacado (13)

Aprendizaje Asociativo Hebbiano
Aprendizaje Asociativo HebbianoAprendizaje Asociativo Hebbiano
Aprendizaje Asociativo Hebbiano
 
CUANTIZACIÓN DEL VECTOR DE APRENDIZAJE
CUANTIZACIÓN DEL VECTOR DE APRENDIZAJECUANTIZACIÓN DEL VECTOR DE APRENDIZAJE
CUANTIZACIÓN DEL VECTOR DE APRENDIZAJE
 
Redes de propagación hacia delante y aprendizaje supervisado
Redes de propagación hacia delante   y aprendizaje supervisadoRedes de propagación hacia delante   y aprendizaje supervisado
Redes de propagación hacia delante y aprendizaje supervisado
 
Neuronas Difusas
Neuronas DifusasNeuronas Difusas
Neuronas Difusas
 
Presentacion Art Gal
Presentacion Art GalPresentacion Art Gal
Presentacion Art Gal
 
PANORAMA GENERAL DE LOS SISTEMAS INTELIGENTES
PANORAMA GENERAL DE LOS SISTEMAS INTELIGENTESPANORAMA GENERAL DE LOS SISTEMAS INTELIGENTES
PANORAMA GENERAL DE LOS SISTEMAS INTELIGENTES
 
SIMULADORES REDES NEURONALES
SIMULADORES REDES NEURONALESSIMULADORES REDES NEURONALES
SIMULADORES REDES NEURONALES
 
Generalidades De Las Redes Neuronales Artificiales (RNA)
Generalidades De Las  Redes Neuronales Artificiales  (RNA)Generalidades De Las  Redes Neuronales Artificiales  (RNA)
Generalidades De Las Redes Neuronales Artificiales (RNA)
 
RED De Retro-propagación Neuronal
RED De Retro-propagación NeuronalRED De Retro-propagación Neuronal
RED De Retro-propagación Neuronal
 
Introduccion redes neuronales artificiales
Introduccion redes neuronales artificialesIntroduccion redes neuronales artificiales
Introduccion redes neuronales artificiales
 
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBBREDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
 
Mapas de características auto-organizativas MAO´s de Kohonen
Mapas de características auto-organizativas MAO´s de KohonenMapas de características auto-organizativas MAO´s de Kohonen
Mapas de características auto-organizativas MAO´s de Kohonen
 
INTRODUCCIÓN A LOS SISTEMAS NEURODIFUSOS
INTRODUCCIÓN  A  LOS  SISTEMAS  NEURODIFUSOSINTRODUCCIÓN  A  LOS  SISTEMAS  NEURODIFUSOS
INTRODUCCIÓN A LOS SISTEMAS NEURODIFUSOS
 

Similar a Introduccion MODELO DE RESONANCIA ADAPTATIVA

Red Neuronal Difusa
Red Neuronal DifusaRed Neuronal Difusa
Red Neuronal DifusaESCOM
 
Características de las redes neuronales ethan
Características de las redes neuronales ethanCaracterísticas de las redes neuronales ethan
Características de las redes neuronales ethanElik Castillo
 
Características de las redes neuronales ethan
Características de las redes neuronales ethanCaracterísticas de las redes neuronales ethan
Características de las redes neuronales ethanElik Castillo
 
Utp 2015-2_sirn_s4_red perceptron
 Utp 2015-2_sirn_s4_red perceptron Utp 2015-2_sirn_s4_red perceptron
Utp 2015-2_sirn_s4_red perceptronjcbp_peru
 
Función de transferencia compet
Función de transferencia competFunción de transferencia compet
Función de transferencia competRichar León
 
Utp 2015-2_ia_s4_red perceptron
 Utp 2015-2_ia_s4_red perceptron Utp 2015-2_ia_s4_red perceptron
Utp 2015-2_ia_s4_red perceptronjcbp_peru
 
Utp ia_s4_red perceptron
 Utp ia_s4_red perceptron Utp ia_s4_red perceptron
Utp ia_s4_red perceptronjcbp_peru
 
Características de las Redes Neuronales
Características de las Redes NeuronalesCaracterísticas de las Redes Neuronales
Características de las Redes NeuronalesESCOM
 
Utp sirn_s4_red perceptron
 Utp sirn_s4_red perceptron Utp sirn_s4_red perceptron
Utp sirn_s4_red perceptronjcbp_peru
 
Utp sirn_s3_red perceptron
 Utp sirn_s3_red perceptron Utp sirn_s3_red perceptron
Utp sirn_s3_red perceptronc09271
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronalesLiz3113
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronaleseyyc
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronalesLiz3113
 
Utp ia_2014-2_s4_red perceptron
 Utp ia_2014-2_s4_red perceptron Utp ia_2014-2_s4_red perceptron
Utp ia_2014-2_s4_red perceptronhiperu2005
 
Función de activación de Logsig y tansig
Función  de activación de Logsig y tansigFunción  de activación de Logsig y tansig
Función de activación de Logsig y tansigVanee2014
 
Redes neuronales artificiales
Redes neuronales artificialesRedes neuronales artificiales
Redes neuronales artificialesSpacetoshare
 

Similar a Introduccion MODELO DE RESONANCIA ADAPTATIVA (20)

redes competitivas
redes competitivasredes competitivas
redes competitivas
 
Red Neuronal Difusa
Red Neuronal DifusaRed Neuronal Difusa
Red Neuronal Difusa
 
Características de las redes neuronales ethan
Características de las redes neuronales ethanCaracterísticas de las redes neuronales ethan
Características de las redes neuronales ethan
 
Características de las redes neuronales ethan
Características de las redes neuronales ethanCaracterísticas de las redes neuronales ethan
Características de las redes neuronales ethan
 
Utp 2015-2_sirn_s4_red perceptron
 Utp 2015-2_sirn_s4_red perceptron Utp 2015-2_sirn_s4_red perceptron
Utp 2015-2_sirn_s4_red perceptron
 
Función de transferencia compet
Función de transferencia competFunción de transferencia compet
Función de transferencia compet
 
Utp 2015-2_ia_s4_red perceptron
 Utp 2015-2_ia_s4_red perceptron Utp 2015-2_ia_s4_red perceptron
Utp 2015-2_ia_s4_red perceptron
 
Utp ia_s4_red perceptron
 Utp ia_s4_red perceptron Utp ia_s4_red perceptron
Utp ia_s4_red perceptron
 
Características de las Redes Neuronales
Características de las Redes NeuronalesCaracterísticas de las Redes Neuronales
Características de las Redes Neuronales
 
Utp sirn_s4_red perceptron
 Utp sirn_s4_red perceptron Utp sirn_s4_red perceptron
Utp sirn_s4_red perceptron
 
Utp sirn_s3_red perceptron
 Utp sirn_s3_red perceptron Utp sirn_s3_red perceptron
Utp sirn_s3_red perceptron
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronales
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronales
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronales
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronales
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronales
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronales
 
Utp ia_2014-2_s4_red perceptron
 Utp ia_2014-2_s4_red perceptron Utp ia_2014-2_s4_red perceptron
Utp ia_2014-2_s4_red perceptron
 
Función de activación de Logsig y tansig
Función  de activación de Logsig y tansigFunción  de activación de Logsig y tansig
Función de activación de Logsig y tansig
 
Redes neuronales artificiales
Redes neuronales artificialesRedes neuronales artificiales
Redes neuronales artificiales
 

Más de ESCOM

redes neuronales tipo Som
redes neuronales tipo Somredes neuronales tipo Som
redes neuronales tipo SomESCOM
 
redes neuronales Som Slides
redes neuronales Som Slidesredes neuronales Som Slides
redes neuronales Som SlidesESCOM
 
red neuronal Som Net
red neuronal Som Netred neuronal Som Net
red neuronal Som NetESCOM
 
Self Organinising neural networks
Self Organinising  neural networksSelf Organinising  neural networks
Self Organinising neural networksESCOM
 
ejemplo red neuronal Art1
ejemplo red neuronal Art1ejemplo red neuronal Art1
ejemplo red neuronal Art1ESCOM
 
Art2
Art2Art2
Art2ESCOM
 
Neocognitron
NeocognitronNeocognitron
NeocognitronESCOM
 
Neocognitron
NeocognitronNeocognitron
NeocognitronESCOM
 
Neocognitron
NeocognitronNeocognitron
NeocognitronESCOM
 
Fukushima Cognitron
Fukushima CognitronFukushima Cognitron
Fukushima CognitronESCOM
 
Counterpropagation NETWORK
Counterpropagation NETWORKCounterpropagation NETWORK
Counterpropagation NETWORKESCOM
 
Counterpropagation NETWORK
Counterpropagation NETWORKCounterpropagation NETWORK
Counterpropagation NETWORKESCOM
 
Counterpropagation
CounterpropagationCounterpropagation
CounterpropagationESCOM
 
Teoría de Resonancia Adaptativa ART1
Teoría de Resonancia Adaptativa ART1Teoría de Resonancia Adaptativa ART1
Teoría de Resonancia Adaptativa ART1ESCOM
 
learning Vector Quantization LVQ2 LVQ3
learning Vector Quantization LVQ2 LVQ3learning Vector Quantization LVQ2 LVQ3
learning Vector Quantization LVQ2 LVQ3ESCOM
 
Learning Vector Quantization LVQ
Learning Vector Quantization LVQLearning Vector Quantization LVQ
Learning Vector Quantization LVQESCOM
 
Learning Vector Quantization LVQ
Learning Vector Quantization LVQLearning Vector Quantization LVQ
Learning Vector Quantization LVQESCOM
 
Unsupervised Slides
Unsupervised SlidesUnsupervised Slides
Unsupervised SlidesESCOM
 
REDES NEURONALES APRENDIZAJE Supervised Vs Unsupervised
REDES NEURONALES APRENDIZAJE Supervised Vs UnsupervisedREDES NEURONALES APRENDIZAJE Supervised Vs Unsupervised
REDES NEURONALES APRENDIZAJE Supervised Vs UnsupervisedESCOM
 
REDES NEURONALES APRENDIZAJE Supervised Vs No Supervised
REDES NEURONALES APRENDIZAJE Supervised Vs No SupervisedREDES NEURONALES APRENDIZAJE Supervised Vs No Supervised
REDES NEURONALES APRENDIZAJE Supervised Vs No SupervisedESCOM
 

Más de ESCOM (20)

redes neuronales tipo Som
redes neuronales tipo Somredes neuronales tipo Som
redes neuronales tipo Som
 
redes neuronales Som Slides
redes neuronales Som Slidesredes neuronales Som Slides
redes neuronales Som Slides
 
red neuronal Som Net
red neuronal Som Netred neuronal Som Net
red neuronal Som Net
 
Self Organinising neural networks
Self Organinising  neural networksSelf Organinising  neural networks
Self Organinising neural networks
 
ejemplo red neuronal Art1
ejemplo red neuronal Art1ejemplo red neuronal Art1
ejemplo red neuronal Art1
 
Art2
Art2Art2
Art2
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
 
Fukushima Cognitron
Fukushima CognitronFukushima Cognitron
Fukushima Cognitron
 
Counterpropagation NETWORK
Counterpropagation NETWORKCounterpropagation NETWORK
Counterpropagation NETWORK
 
Counterpropagation NETWORK
Counterpropagation NETWORKCounterpropagation NETWORK
Counterpropagation NETWORK
 
Counterpropagation
CounterpropagationCounterpropagation
Counterpropagation
 
Teoría de Resonancia Adaptativa ART1
Teoría de Resonancia Adaptativa ART1Teoría de Resonancia Adaptativa ART1
Teoría de Resonancia Adaptativa ART1
 
learning Vector Quantization LVQ2 LVQ3
learning Vector Quantization LVQ2 LVQ3learning Vector Quantization LVQ2 LVQ3
learning Vector Quantization LVQ2 LVQ3
 
Learning Vector Quantization LVQ
Learning Vector Quantization LVQLearning Vector Quantization LVQ
Learning Vector Quantization LVQ
 
Learning Vector Quantization LVQ
Learning Vector Quantization LVQLearning Vector Quantization LVQ
Learning Vector Quantization LVQ
 
Unsupervised Slides
Unsupervised SlidesUnsupervised Slides
Unsupervised Slides
 
REDES NEURONALES APRENDIZAJE Supervised Vs Unsupervised
REDES NEURONALES APRENDIZAJE Supervised Vs UnsupervisedREDES NEURONALES APRENDIZAJE Supervised Vs Unsupervised
REDES NEURONALES APRENDIZAJE Supervised Vs Unsupervised
 
REDES NEURONALES APRENDIZAJE Supervised Vs No Supervised
REDES NEURONALES APRENDIZAJE Supervised Vs No SupervisedREDES NEURONALES APRENDIZAJE Supervised Vs No Supervised
REDES NEURONALES APRENDIZAJE Supervised Vs No Supervised
 

Último

Presentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxPresentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxRosabel UA
 
PRIMER GRADO SOY LECTOR PART1- MD EDUCATIVO.pdf
PRIMER GRADO SOY LECTOR PART1- MD  EDUCATIVO.pdfPRIMER GRADO SOY LECTOR PART1- MD  EDUCATIVO.pdf
PRIMER GRADO SOY LECTOR PART1- MD EDUCATIVO.pdfGabrieldeJesusLopezG
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024gharce
 
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdf
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdfFichas de MatemáticA QUINTO DE SECUNDARIA).pdf
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdfssuser50d1252
 
TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)
TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)
TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)jlorentemartos
 
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfFichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfssuser50d1252
 
los cinco reinos biologicos 0 de los seres vivos
los cinco reinos biologicos 0 de los seres vivoslos cinco reinos biologicos 0 de los seres vivos
los cinco reinos biologicos 0 de los seres vivosOrdinolaSernaquIrene
 
Presentación de cita directa según el Manual de APA
Presentación de cita directa según el Manual de APAPresentación de cita directa según el Manual de APA
Presentación de cita directa según el Manual de APAlcolon
 
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...YobanaZevallosSantil1
 
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...Carol Andrea Eraso Guerrero
 
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsxJuanpm27
 
describimos como son afectados las regiones naturales del peru por la ola de ...
describimos como son afectados las regiones naturales del peru por la ola de ...describimos como son afectados las regiones naturales del peru por la ola de ...
describimos como son afectados las regiones naturales del peru por la ola de ...DavidBautistaFlores1
 
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docxEJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docxFabianValenciaJabo
 
DIGNITAS INFINITA - DIGNIDAD HUMANA; Declaración del dicasterio para la doctr...
DIGNITAS INFINITA - DIGNIDAD HUMANA; Declaración del dicasterio para la doctr...DIGNITAS INFINITA - DIGNIDAD HUMANA; Declaración del dicasterio para la doctr...
DIGNITAS INFINITA - DIGNIDAD HUMANA; Declaración del dicasterio para la doctr...Martin M Flynn
 
4º SOY LECTOR PART2- MD EDUCATIVO.p df PARTE
4º SOY LECTOR PART2- MD  EDUCATIVO.p df PARTE4º SOY LECTOR PART2- MD  EDUCATIVO.p df PARTE
4º SOY LECTOR PART2- MD EDUCATIVO.p df PARTESaraNolasco4
 
ENSEÑAR ACUIDAR EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
ENSEÑAR ACUIDAR  EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.ENSEÑAR ACUIDAR  EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
ENSEÑAR ACUIDAR EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.karlazoegarciagarcia
 
Amor o egoísmo, esa es la cuestión por definir.pdf
Amor o egoísmo, esa es la cuestión por definir.pdfAmor o egoísmo, esa es la cuestión por definir.pdf
Amor o egoísmo, esa es la cuestión por definir.pdfAlejandrino Halire Ccahuana
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Angélica Soledad Vega Ramírez
 
SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...
SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...
SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...GIANCARLOORDINOLAORD
 
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2Eliseo Delgado
 

Último (20)

Presentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxPresentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptx
 
PRIMER GRADO SOY LECTOR PART1- MD EDUCATIVO.pdf
PRIMER GRADO SOY LECTOR PART1- MD  EDUCATIVO.pdfPRIMER GRADO SOY LECTOR PART1- MD  EDUCATIVO.pdf
PRIMER GRADO SOY LECTOR PART1- MD EDUCATIVO.pdf
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
 
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdf
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdfFichas de MatemáticA QUINTO DE SECUNDARIA).pdf
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdf
 
TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)
TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)
TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)
 
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfFichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
 
los cinco reinos biologicos 0 de los seres vivos
los cinco reinos biologicos 0 de los seres vivoslos cinco reinos biologicos 0 de los seres vivos
los cinco reinos biologicos 0 de los seres vivos
 
Presentación de cita directa según el Manual de APA
Presentación de cita directa según el Manual de APAPresentación de cita directa según el Manual de APA
Presentación de cita directa según el Manual de APA
 
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...
 
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
 
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
 
describimos como son afectados las regiones naturales del peru por la ola de ...
describimos como son afectados las regiones naturales del peru por la ola de ...describimos como son afectados las regiones naturales del peru por la ola de ...
describimos como son afectados las regiones naturales del peru por la ola de ...
 
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docxEJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
 
DIGNITAS INFINITA - DIGNIDAD HUMANA; Declaración del dicasterio para la doctr...
DIGNITAS INFINITA - DIGNIDAD HUMANA; Declaración del dicasterio para la doctr...DIGNITAS INFINITA - DIGNIDAD HUMANA; Declaración del dicasterio para la doctr...
DIGNITAS INFINITA - DIGNIDAD HUMANA; Declaración del dicasterio para la doctr...
 
4º SOY LECTOR PART2- MD EDUCATIVO.p df PARTE
4º SOY LECTOR PART2- MD  EDUCATIVO.p df PARTE4º SOY LECTOR PART2- MD  EDUCATIVO.p df PARTE
4º SOY LECTOR PART2- MD EDUCATIVO.p df PARTE
 
ENSEÑAR ACUIDAR EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
ENSEÑAR ACUIDAR  EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.ENSEÑAR ACUIDAR  EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
ENSEÑAR ACUIDAR EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
 
Amor o egoísmo, esa es la cuestión por definir.pdf
Amor o egoísmo, esa es la cuestión por definir.pdfAmor o egoísmo, esa es la cuestión por definir.pdf
Amor o egoísmo, esa es la cuestión por definir.pdf
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...
 
SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...
SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...
SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...
 
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
PÉNSUM ENFERMERIA 2024 - ECUGENIUS S.A. V2
 

Introduccion MODELO DE RESONANCIA ADAPTATIVA

  • 1. MODELO DE RESONANCIA ADAPTATIVA (ART)
  • 2.
  • 3. La teoría de la resonancia adaptativa se basa en la idea de hacer resonar la información de entrada con los representantes o prototipos de las categorías que reconoce la red. Si entra en resonancia con algunos, y es suficientemente similar, la red considera que pertenece a dicha categoría y únicamente realiza una pequeña adaptación del prototipo almacenado incorporandole algunas características del dato presentado en la entrada. Cuando no resuena con ninguno, esto es, cuando no se parece a ningún representante de alguna categoría (recordados por la red hasta ese momento), la red se encarga de crear una nueva categoría con el dato de entrada como prototipo.
  • 6. FUNCIONAMIENTO 1) Se presenta un vector de entrada. 2) Cada neurona de la capa de entrada recibe el valor del componente del vector de entrada y lo envía a todas las neuronas de la capa de salida. 3) Cada neurona de la capa de salida compite con las demás de esta capa hasta que sólo una permanece activa. Las conexiones laterales son las que permiten realizar esta competición, y tienen un peso con un valor fijo - que debe ser menor que 1/M, donde M es
  • 7. el número de neuronas de la capa de salida, para que la competición funcione correctamente: siendo f la función de transferencia de tipo escalón de las neuronas de salida. Después de cierto número de iteraciones, se llega a un punto de estabilidad en la que una neurona resulta vencedora, generando una salida de valor 1, mientras que en las demás neuronas la salida es 0.
  • 8. El valor de salida al final de la competición se pueden obtener más fácilmente mediante la siguiente expresión: 4) La neurona vencedora envía su salida a través de las conexiones hacia atrás.
  • 9. Cada neurona i-ésima de la capa de entrada recibe el valor: porque Por tanto, al no influir el resto de las neuronas de salida por estar inactivas(0), en la capa de entrada se reciben los valores de los pesos de las conexiones correspondientes. 5) Se compara la información de entrada con la categoría. Si la neurona de salida se ha activado. Esta comparación se hace valorando la siguiente
  • 10. relación de semejanza: Al trabajar con valores binarios, el producto aritmético equivale a la operación AND,
  • 11. 6) Se compara la relación de semejanza entre ambas informaciones con un parámetro de vigilancia ( ), el cual influirá en el número de clases que establecerá la red. Si no se cumple dicho parámetro entonces la neurona vencedora se resetea, y se repite desde el paso número 2. 7) Si la semejanza es igual o mayor que el parámetro de vigilancia, entonces se asume que la neurona que se ha activado a la salida es la que representa al vector de entrada, para después proceder a ajustar los pesos de la red
  • 12. Gracias por su atención
  • 13.
  • 14. APRENDIZAJE El aprendizaje en el modelo ART es de tipo ON LINE, por lo que no se distingue entre etapa de entrenamiento y de funcionamiento. La red ART utiliza un aprendizaje no supervisado de tipo competitivo. En este tipo de redes se pueden dar dos tipos de aprendizaje: * Aprendizaje lento:ocurre cuando una información de entrada es asociada a una de las categorías existentes. * Aprendizaje rápido:se da cuando se establece una nueva categoría.
  • 15. Inicialmente, cuando la red no ha aprendido nada se le asignan los siguientes pesos: Después, cada vez que se presente un vector de entrada, se realiza el ajuste de los pesos de las conexiones V de la neurona vencedora con cada una de las neuronas de entrada,en función de la diferencia entre este vector y del representante, la variación de los pesos V se realiza según la siguiente ecuación diferencial:
  • 16. Si la neurona de salida no es la vencedora, el valor de su salida es cero, con lo que no debe producir variación en el peso correspondiente. En caso contrario, si la neurona es la vencedora, su salida es 1, con lo que la variación del peso de V sería de :
  • 17. Los pesos de Wji se obtienen normalizando los anteriores. Donde: suele tener el valor de 0.5
  • 18. Gracias por su atención