SlideShare una empresa de Scribd logo
1 de 9
Descargar para leer sin conexión
Geometría 
La geometría del griego geo (tierra) y métrica (medida).Es una rama de la matemática que se ocupa de las propiedades de las figuras geométricas en el plano o el espacio, como son: puntos, rectas, planos, polígonos, poliedros, curvas, superficies, etc. Sus orígenes se remontan a la solución de problemas concretos relativos a medidas y es la justificación teórica de muchos instrumentos, por ejemplo el compás, el teodolito y el pantógrafo. 
Tiene su aplicación práctica en física, mecánica, cartografía, astronomía, náutica, topografía, balística, etc. 
También da fundamento teórico a inventos como el sistema de posicionamiento global (en especial cuando se la considera en combinación con el análisis matemático y sobre todo con las ecuaciones diferenciales) y es útil en la preparación de diseños (justificación teórica de la geometría descriptiva, del dibujo técnico e incluso en la fabricación de artesanías). 
Historia de la Geometría 
La geometría es una de las más antiguas ciencias. Inicialmente, constituía un cuerpo de conocimientos prácticos en relación con las longitudes, áreas y volúmenes. En el Antiguo Egipto estaba muy desarrollada, según los textos de Heródoto, Estrabón y Diodoro Sículo. Euclides, en el siglo III a. C. configuró la geometría en forma axiomática, tratamiento que estableció una norma a seguir durante muchos siglos: la geometría euclidiana descrita en «Los Elementos». 
El estudio de la astronomía, y la cartografía, tratando de determinar las posiciones de estrellas y planetas en la esfera celeste, sirvió como una importante fuente de resolución de problemas geométricos durante más de un milenio. René Descartes, desarrolló simultáneamente el álgebra y la geometría, marcando una nueva etapa, donde las figuras geométricas, tales como las curvas planas, podrían ser representadas analíticamente, es decir, con funciones y ecuaciones. La geometría se enriquece con el estudio de la estructura intrínseca de los entes geométricos que analizan Euler y Gauss, que condujo a la creación de la topología y la geometría diferencial.
La geometría se propone ir más allá de lo alcanzado por la intuición. Por ello, es necesario un método riguroso, sin errores; para conseguirlo se han utilizado históricamente los sistemas axiomáticos. El primer sistema axiomático lo establece Euclides, aunque era incompleto. David Hilbert propuso a principios del siglo XX otro sistema axiomático, éste ya completo. 
Como en todo sistema formal, las definiciones, axiomas y teoremas no sólo pretenden describir las propiedades de los objetos, o sus relaciones. Cuando se axiomatiza algo, los objetos se convierten en entes abstractos ideales y sus relaciones se denominan modelos. 
Esto significa que las palabras "punto", "recta" y "plano" deben de perder todo significado material. Cualquier conjunto de objetos que verifique las definiciones y los axiomas cumplirá también todos los teoremas de la geometría en cuestión, y sus relaciones serán virtualmente idénticas al del modelo tradicional. 
PROYECCION ORTOGONAL OBTENCIÓN DE LAS VISTAS DE UN OBJETO GENERALIDADES Se denominan vistas principales de un objeto, a las proyecciones ortogonales del mismo sobre 6 planos, dispuestos en forma de cubo. También se podría definir las vistas como, las proyecciones ortogonales de un objeto, según las distintas direcciones desde donde se mire. Las reglas a seguir para la representación de las vistas de un objeto, se recogen en la norma UNE 1-032-82, "Dibujos técnicos: Principios generales de representación", equivalente a la norma ISO 128-82. DENOMINACIÓN DE LAS VISTAS Si situamos un observador según las seis direcciones indicadas por las flechas, obtendríamos las seis vistas posibles de un objeto. Estas vistas reciben las siguientes denominaciones:
Vista A: Vista de frente o alzado Vista B: Vista superior o planta Vista C: Vista derecha o lateral derecha Vista D: Vista izquierda o lateral izquierda Vista E: Vista inferior Vista F: Vista posterior POSICIONES RELATIVAS DE LAS VISTAS Para la disposición de las diferentes vistas sobre el papel, se pueden utilizar dos variantes de proyección ortogonal de la misma importancia: - El método de proyección del primer diedro, también denominado Europeo (antiguamente, método E) - El método de proyección del tercer diedro, también denominado Americano (antiguamente, método A) En ambos métodos, el objeto se supone dispuesto dentro de un cubo, sobre cuyas seis caras, se realizarán las correspondientes proyecciones ortogonales del mismo. La diferencia estriba en que, mientras en el sistema Europeo, el objeto se encuentra entre el observador y el plano de proyección, en el sistema Americano, es el plano de proyección el que se encuentra entre el observador y el objeto. SISTEMA EUROPEO
SISTEMA AMERICANO Una vez realizadas las seis proyecciones ortogonales sobre las caras del cubo, y manteniendo fija, la cara de la proyección del alzado (A), se procede a obtener el desarrollo del cubo, que como puede apreciarse en las figuras, es diferente según el sistema utilizado. SISTEMA EUR0PEO
SISTEMA AMERICANO El desarrollo del cubo de proyección, nos proporciona sobre un único plano de dibujo, las seis vistas principales de un objeto, en sus posiciones relativas. Con el objeto de identificar, en que sistema se ha representado el objeto, se debe añadir el símbolo que se puede apreciar en las figuras, y que representa el alzado y vista lateral izquierda, de un cono truncado, en cada uno de los sistemas.
CORRESPONDENCIA ENTRE LAS VISTAS Como se puede observar en las figuras anteriores, existe una correspondencia obligada entre las diferentes vistas. Así estarán relacionadas: a) El alzado, la planta, la vista inferior y la vista posterior, coincidiendo en anchuras. b) El alzado, la vista lateral derecha, la vista lateral izquierda y la vista posterior, coincidiendo en alturas. c) La planta, la vista lateral izquierda, la vista lateral derecha y la vista inferior, coincidiendo en profundidad. Habitualmente con tan solo tres vistas, el alzado, la planta y una vista lateral, queda perfectamente definida una pieza. Teniendo en cuenta las correspondencias anteriores, implicarían que dadas dos cualquiera de las vistas, se podría obtener la tercera, como puede apreciarse en la figura:
También, de todo lo anterior, se deduce que las diferentes vistas no pueden situarse de forma arbitraria. Aunque las vistas aisladamente sean correctas, si no están correctamente situadas, no definirán la pieza. ELECCIÓN DE LAS VISTAS DE UN OBJETO, Y VISTAS ESPECIALES ELECCIÓN DEL ALZADO En la norma UNE 1-032-82 se especifica claramente que "La vista más característica del objeto debe elegirse como vista de frente o vista principal". Esta vista representará al objeto en su posición de trabajo, y en caso de que pueda ser utilizable en cualquier posición, se representará en la posición de mecanizado o montaje. En ocasiones, el concepto anterior puede no ser suficiente para elegir el alzado de una pieza, en estos casos se tendrá en cuenta los principios siguientes: 1) Conseguir el mejor aprovechamiento de la superficie del dibujo.
2) Que el alzado elegido, presente el menor número posible de aristas ocultas. 3) Y que nos permita la obtención del resto de vistas, planta y perfiles, lo más simplificadas posibles. Siguiendo las especificaciones anteriores, en la pieza de la figura 1, adoptaremos como alzado la vista A, ya que nos permitirá apreciar la inclinación del tabique a y la forma en L del elemento b, que son los elementos más significativos de la pieza. En ocasiones, una incorrecta elección del alzado, nos conducirá a aumentar el número de vistas necesarias; es el caso de la pieza de la figura 2, donde el alzado correcto sería la vista A, ya que sería suficiente con esta vista y la representación de la planta, para que la pieza quedase correctamente definida; de elegir la vista B, además de la planta necesitaríamos representar una vista lateral. ELECCIÓN DE LAS VISTAS NECESARIAS Para la elección de las vistas de un objeto, seguiremos el criterio de que estas deben ser, las mínimas, suficientes y adecuadas, para que la pieza quede total y correctamente definida. Seguiremos igualmente criterios de simplicidad y claridad, eligiendo vistas en las que se eviten la representación de aristas ocultas. En general, y salvo en piezas muy complejas, bastará con la representación del alzado planta y una vista lateral. En piezas simples bastará con una o dos vistas. Cuando sea indiferente la elección de la vista de perfil, se optará por la vista lateral izquierda, que como es sabido se representa a la derecha del alzado. Cuando una pieza pueda ser representada por su alzado y la planta o por el alzado y una vista de perfil, se optará por aquella solución que facilite la interpretación de la pieza, y de ser indiferente aquella que conlleve el menor número de aristas ocultas. En los casos de piezas representadas por una sola vista, esta suele estar complementada con indicaciones especiales que permiten la total y correcta definición de la pieza: 1) En piezas de revolución se incluye el símbolo del diámetro (figura 1). 2) En piezas prismáticas o tronco piramidales, se incluye el símbolo del cuadrado y/o la
"cruz de San Andrés" (figura 2). 3) En piezas de espesor uniforme, basta con hacer dicha especificación en lugar bien visible (figura 3). Primer diedro: (antiguamente denominado ISO- E ) Vista principal : Es la vista del cuerpo que presenta la mayor cálida de detalles. Vista superior: Corresponde a la proyección de la cara superior de cuerpo (vista de arriba), se dibuja bajo la vista principal. Vista lateral izquierda: Corresponde a la proyección de la cara ubicada a la izquierda de la vista principal y que se dibuja a la derecha de ésta. Vista lateral derecha: Corresponde a la proyección de la cara ubicada a la derecha de la vista principal y que se dibuja a la izquierda de ésta. Vista inferior: Corresponde a la proyección de la cara inferior del cuerpo ( vista desde abajo ) y se dibuja sobre la vista principal. Vista posterior: Corresponde a la proyección de la cara ubicad detrás de la vista principal, y se dibuja a la derecha o seguido de la vista lateral izquierda. Tercer diedro: (antiguamente denominado ISO – A) En la utilización de este sistema de proyección, se aplica un criterio totalmente opuesto al primer diedro, es decir la vista lateral derecha, se dibuja al lado derecho de la vista principal, la vista lateral izquierda al lado izquierdo de la vista principal, la vista superior, sobre la vista principal, y la vista inferior, bajo la vista principal. Importante: Para representar las vistas de un cuerpo, son necesarias como mínimo tres vistas. El sistema de proyección utilizado comúnmente y normalizado para todas las representaciones técnicas, es el primer diedro. Es indispensable indicar en el rótulo el sistema de proyección utilizado, mediante la siguiente simbología:

Más contenido relacionado

La actualidad más candente

Sisteme dim y sistema asa
Sisteme dim y sistema asaSisteme dim y sistema asa
Sisteme dim y sistema asaBoris Cabrera
 
Representacion de solidos
Representacion de solidosRepresentacion de solidos
Representacion de solidosmartaroh
 
T11 B Sistemas De Representacion (Cad)
T11  B  Sistemas De Representacion (Cad)T11  B  Sistemas De Representacion (Cad)
T11 B Sistemas De Representacion (Cad)jlsaorin
 
geometria descriptiva_proyecciones
geometria descriptiva_proyeccionesgeometria descriptiva_proyecciones
geometria descriptiva_proyeccionesDaniel Herrera
 
Proyecciones y vistas de un objeto
Proyecciones y vistas de un objetoProyecciones y vistas de un objeto
Proyecciones y vistas de un objetoaguino38
 
Clase 4 dibujo tecnico Mod02. Sistema de representación Ortogonal
Clase 4 dibujo tecnico Mod02. Sistema de representación OrtogonalClase 4 dibujo tecnico Mod02. Sistema de representación Ortogonal
Clase 4 dibujo tecnico Mod02. Sistema de representación OrtogonalZerojustice
 
Proyecciones ortogonales, vistas auxiliares y secciones.
Proyecciones ortogonales, vistas auxiliares y secciones.Proyecciones ortogonales, vistas auxiliares y secciones.
Proyecciones ortogonales, vistas auxiliares y secciones.Jorge Luis Huaman
 
Icfe sahuayo clase dibujo tecnico 2 primera sesión
Icfe sahuayo clase dibujo tecnico 2 primera sesiónIcfe sahuayo clase dibujo tecnico 2 primera sesión
Icfe sahuayo clase dibujo tecnico 2 primera sesiónYuseff Bladeshark
 
Representación de objetos y vistas
Representación de objetos y vistasRepresentación de objetos y vistas
Representación de objetos y vistasdroiartzun
 
Unidad nº2 vistas multiples
Unidad nº2  vistas multiplesUnidad nº2  vistas multiples
Unidad nº2 vistas multiplesmaria
 
Dibujo tecnico II
Dibujo tecnico IIDibujo tecnico II
Dibujo tecnico IIRomer Díaz
 
Dibujo proyecciones vista parcial, auxiliar, local detalles
Dibujo proyecciones vista parcial, auxiliar, local detallesDibujo proyecciones vista parcial, auxiliar, local detalles
Dibujo proyecciones vista parcial, auxiliar, local detallesArturo Iglesias Castro
 
Sistemas de representación espacial
Sistemas de representación espacialSistemas de representación espacial
Sistemas de representación espacialJulia Testa
 
Informe escrito unidad 2 dibujo proyectivo
Informe escrito unidad 2 dibujo proyectivoInforme escrito unidad 2 dibujo proyectivo
Informe escrito unidad 2 dibujo proyectivokaren collazos gamboa
 

La actualidad más candente (20)

Sisteme dim y sistema asa
Sisteme dim y sistema asaSisteme dim y sistema asa
Sisteme dim y sistema asa
 
Representacion de solidos
Representacion de solidosRepresentacion de solidos
Representacion de solidos
 
Geometria
GeometriaGeometria
Geometria
 
T11 B Sistemas De Representacion (Cad)
T11  B  Sistemas De Representacion (Cad)T11  B  Sistemas De Representacion (Cad)
T11 B Sistemas De Representacion (Cad)
 
Unidad 5 presentacion Proyecciones ortogonales
Unidad 5 presentacion Proyecciones ortogonalesUnidad 5 presentacion Proyecciones ortogonales
Unidad 5 presentacion Proyecciones ortogonales
 
Sistemas de Representación
Sistemas de RepresentaciónSistemas de Representación
Sistemas de Representación
 
Vistas de un Sólido
Vistas de un SólidoVistas de un Sólido
Vistas de un Sólido
 
geometria descriptiva_proyecciones
geometria descriptiva_proyeccionesgeometria descriptiva_proyecciones
geometria descriptiva_proyecciones
 
Proyecciones y vistas de un objeto
Proyecciones y vistas de un objetoProyecciones y vistas de un objeto
Proyecciones y vistas de un objeto
 
Clase 4 dibujo tecnico Mod02. Sistema de representación Ortogonal
Clase 4 dibujo tecnico Mod02. Sistema de representación OrtogonalClase 4 dibujo tecnico Mod02. Sistema de representación Ortogonal
Clase 4 dibujo tecnico Mod02. Sistema de representación Ortogonal
 
Proyecciones ortogonales, vistas auxiliares y secciones.
Proyecciones ortogonales, vistas auxiliares y secciones.Proyecciones ortogonales, vistas auxiliares y secciones.
Proyecciones ortogonales, vistas auxiliares y secciones.
 
Icfe sahuayo clase dibujo tecnico 2 primera sesión
Icfe sahuayo clase dibujo tecnico 2 primera sesiónIcfe sahuayo clase dibujo tecnico 2 primera sesión
Icfe sahuayo clase dibujo tecnico 2 primera sesión
 
GEOMETRIA DESCRIPTIVA PROYECCIONES ORTOGONALES
GEOMETRIA DESCRIPTIVA PROYECCIONES ORTOGONALESGEOMETRIA DESCRIPTIVA PROYECCIONES ORTOGONALES
GEOMETRIA DESCRIPTIVA PROYECCIONES ORTOGONALES
 
Representación de objetos y vistas
Representación de objetos y vistasRepresentación de objetos y vistas
Representación de objetos y vistas
 
Unidad nº2 vistas multiples
Unidad nº2  vistas multiplesUnidad nº2  vistas multiples
Unidad nº2 vistas multiples
 
Dibujo tecnico II
Dibujo tecnico IIDibujo tecnico II
Dibujo tecnico II
 
Dibujo proyecciones vista parcial, auxiliar, local detalles
Dibujo proyecciones vista parcial, auxiliar, local detallesDibujo proyecciones vista parcial, auxiliar, local detalles
Dibujo proyecciones vista parcial, auxiliar, local detalles
 
Proyecciones
ProyeccionesProyecciones
Proyecciones
 
Sistemas de representación espacial
Sistemas de representación espacialSistemas de representación espacial
Sistemas de representación espacial
 
Informe escrito unidad 2 dibujo proyectivo
Informe escrito unidad 2 dibujo proyectivoInforme escrito unidad 2 dibujo proyectivo
Informe escrito unidad 2 dibujo proyectivo
 

Destacado

วารสารกฎหมายขนส่งและพาณิชยนาวี ปี 9 ฉบับที่ 9 เดือนพฤศจิกายน 2557 1
วารสารกฎหมายขนส่งและพาณิชยนาวี ปี 9 ฉบับที่ 9 เดือนพฤศจิกายน  2557 1 วารสารกฎหมายขนส่งและพาณิชยนาวี ปี 9 ฉบับที่ 9 เดือนพฤศจิกายน  2557 1
วารสารกฎหมายขนส่งและพาณิชยนาวี ปี 9 ฉบับที่ 9 เดือนพฤศจิกายน 2557 1 Nanthapong Sornkaew
 
Diseño y construcción de un software para una tienda
Diseño y construcción de un software para una tiendaDiseño y construcción de un software para una tienda
Diseño y construcción de un software para una tiendaOscar Hernando Sanchez Roa
 
Measurement and model validation of specific heat of xanthan gum using joules...
Measurement and model validation of specific heat of xanthan gum using joules...Measurement and model validation of specific heat of xanthan gum using joules...
Measurement and model validation of specific heat of xanthan gum using joules...eSAT Journals
 
Thermodynamics of refrigeration spanish
Thermodynamics of refrigeration spanishThermodynamics of refrigeration spanish
Thermodynamics of refrigeration spanishivan javier kock salas
 
s+b-Best Business Books 2012
s+b-Best Business Books 2012s+b-Best Business Books 2012
s+b-Best Business Books 2012Theodore Kinni
 
Programa escuelas de calidad.pdf
Programa escuelas de calidad.pdfPrograma escuelas de calidad.pdf
Programa escuelas de calidad.pdfCinthia Vera
 
Como exponer adecuadamente un tema
Como exponer adecuadamente un temaComo exponer adecuadamente un tema
Como exponer adecuadamente un temaVianey Ruiz
 

Destacado (14)

วารสารกฎหมายขนส่งและพาณิชยนาวี ปี 9 ฉบับที่ 9 เดือนพฤศจิกายน 2557 1
วารสารกฎหมายขนส่งและพาณิชยนาวี ปี 9 ฉบับที่ 9 เดือนพฤศจิกายน  2557 1 วารสารกฎหมายขนส่งและพาณิชยนาวี ปี 9 ฉบับที่ 9 เดือนพฤศจิกายน  2557 1
วารสารกฎหมายขนส่งและพาณิชยนาวี ปี 9 ฉบับที่ 9 เดือนพฤศจิกายน 2557 1
 
Netter
NetterNetter
Netter
 
Logo botellas modificado
Logo botellas modificadoLogo botellas modificado
Logo botellas modificado
 
Diseño y construcción de un software para una tienda
Diseño y construcción de un software para una tiendaDiseño y construcción de un software para una tienda
Diseño y construcción de un software para una tienda
 
Molecules witchcraft
Molecules  witchcraftMolecules  witchcraft
Molecules witchcraft
 
Measurement and model validation of specific heat of xanthan gum using joules...
Measurement and model validation of specific heat of xanthan gum using joules...Measurement and model validation of specific heat of xanthan gum using joules...
Measurement and model validation of specific heat of xanthan gum using joules...
 
Thermodynamics of refrigeration spanish
Thermodynamics of refrigeration spanishThermodynamics of refrigeration spanish
Thermodynamics of refrigeration spanish
 
s+b-Best Business Books 2012
s+b-Best Business Books 2012s+b-Best Business Books 2012
s+b-Best Business Books 2012
 
Historia de la programacion
Historia de la programacionHistoria de la programacion
Historia de la programacion
 
Programa escuelas de calidad.pdf
Programa escuelas de calidad.pdfPrograma escuelas de calidad.pdf
Programa escuelas de calidad.pdf
 
Proteinas do leite
Proteinas do leiteProteinas do leite
Proteinas do leite
 
Como exponer adecuadamente un tema
Como exponer adecuadamente un temaComo exponer adecuadamente un tema
Como exponer adecuadamente un tema
 
Histologia
HistologiaHistologia
Histologia
 
Ap aimp
Ap aimpAp aimp
Ap aimp
 

Similar a Notas sobre geometria

Dibujo tecnico iii_-_eis
Dibujo tecnico iii_-_eisDibujo tecnico iii_-_eis
Dibujo tecnico iii_-_eisRodney Moreno
 
Dibujo tecnico vistas
Dibujo tecnico vistasDibujo tecnico vistas
Dibujo tecnico vistasyeison triana
 
Vistas de un objeto
Vistas de un objetoVistas de un objeto
Vistas de un objetompazmv
 
Obtención de las vistas de un objeto
Obtención de las vistas de un objetoObtención de las vistas de un objeto
Obtención de las vistas de un objetoDiego Yumisaca
 
Los Sistemas De Representacion
Los Sistemas De RepresentacionLos Sistemas De Representacion
Los Sistemas De RepresentacionAMPAROGM
 
1. Fundamentos de la proyeccion diedrica.pptx
1. Fundamentos de la proyeccion diedrica.pptx1. Fundamentos de la proyeccion diedrica.pptx
1. Fundamentos de la proyeccion diedrica.pptxPedroLuisValenciaOba
 
1. Fundamentos de la proyeccion diedrica.pptx
1. Fundamentos de la proyeccion diedrica.pptx1. Fundamentos de la proyeccion diedrica.pptx
1. Fundamentos de la proyeccion diedrica.pptxcarloscirineoureta
 
8.a. sistema axonométrico. fundamentos.
8.a. sistema axonométrico. fundamentos.8.a. sistema axonométrico. fundamentos.
8.a. sistema axonométrico. fundamentos.3Raquel
 
7.a.diédrico; vistas.
7.a.diédrico; vistas.7.a.diédrico; vistas.
7.a.diédrico; vistas.3Raquel
 
Geometria y sistema de proyeccion
Geometria y sistema de proyeccionGeometria y sistema de proyeccion
Geometria y sistema de proyeccionFiorellaSimoniello
 
Clase Dibujo Industrial, Clase de dibujo industral
Clase Dibujo Industrial, Clase de dibujo industralClase Dibujo Industrial, Clase de dibujo industral
Clase Dibujo Industrial, Clase de dibujo industralJosDavidMoratayaPrez
 

Similar a Notas sobre geometria (20)

Dibujo tecnico iii_-_eis
Dibujo tecnico iii_-_eisDibujo tecnico iii_-_eis
Dibujo tecnico iii_-_eis
 
Dibujo tecnico vistas
Dibujo tecnico vistasDibujo tecnico vistas
Dibujo tecnico vistas
 
Vistas de un objeto
Vistas de un objetoVistas de un objeto
Vistas de un objeto
 
Dibujo
DibujoDibujo
Dibujo
 
Bloque: proyecciones BGU
 Bloque:  proyecciones BGU Bloque:  proyecciones BGU
Bloque: proyecciones BGU
 
Obtención de las vistas de un objeto
Obtención de las vistas de un objetoObtención de las vistas de un objeto
Obtención de las vistas de un objeto
 
Dibujo tecnico
Dibujo tecnicoDibujo tecnico
Dibujo tecnico
 
PROYECCIÓN OCTOGONAL.pdf
PROYECCIÓN OCTOGONAL.pdfPROYECCIÓN OCTOGONAL.pdf
PROYECCIÓN OCTOGONAL.pdf
 
Los Sistemas De Representacion
Los Sistemas De RepresentacionLos Sistemas De Representacion
Los Sistemas De Representacion
 
1. Fundamentos de la proyeccion diedrica.pptx
1. Fundamentos de la proyeccion diedrica.pptx1. Fundamentos de la proyeccion diedrica.pptx
1. Fundamentos de la proyeccion diedrica.pptx
 
1. Fundamentos de la proyeccion diedrica.pptx
1. Fundamentos de la proyeccion diedrica.pptx1. Fundamentos de la proyeccion diedrica.pptx
1. Fundamentos de la proyeccion diedrica.pptx
 
Obtención de vistas
Obtención de vistasObtención de vistas
Obtención de vistas
 
Dibujos Isométricos II
Dibujos Isométricos IIDibujos Isométricos II
Dibujos Isométricos II
 
Tema 2 vistas
Tema 2 vistasTema 2 vistas
Tema 2 vistas
 
vistas dibujo tecnico
vistas dibujo tecnicovistas dibujo tecnico
vistas dibujo tecnico
 
8.a. sistema axonométrico. fundamentos.
8.a. sistema axonométrico. fundamentos.8.a. sistema axonométrico. fundamentos.
8.a. sistema axonométrico. fundamentos.
 
7.a.diédrico; vistas.
7.a.diédrico; vistas.7.a.diédrico; vistas.
7.a.diédrico; vistas.
 
Geometria analitica.pptx
Geometria analitica.pptxGeometria analitica.pptx
Geometria analitica.pptx
 
Geometria y sistema de proyeccion
Geometria y sistema de proyeccionGeometria y sistema de proyeccion
Geometria y sistema de proyeccion
 
Clase Dibujo Industrial, Clase de dibujo industral
Clase Dibujo Industrial, Clase de dibujo industralClase Dibujo Industrial, Clase de dibujo industral
Clase Dibujo Industrial, Clase de dibujo industral
 

Último

Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Baker Publishing Company
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdfOswaldoGonzalezCruz
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialpatriciaines1993
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxMapyMerma1
 
CULTURA NAZCA, presentación en aula para compartir
CULTURA NAZCA, presentación en aula para compartirCULTURA NAZCA, presentación en aula para compartir
CULTURA NAZCA, presentación en aula para compartirPaddySydney1
 
codigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinacodigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinavergarakarina022
 
Factores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFactores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFlor Idalia Espinoza Ortega
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
Marketing y servicios 2ºBTP Cocina DGETP
Marketing y servicios 2ºBTP Cocina DGETPMarketing y servicios 2ºBTP Cocina DGETP
Marketing y servicios 2ºBTP Cocina DGETPANEP - DETP
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024IES Vicent Andres Estelles
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Carlos Muñoz
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptELENA GALLARDO PAÚLS
 
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtweBROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwealekzHuri
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 

Último (20)

Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
 
Power Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptxPower Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptx
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundial
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptx
 
CULTURA NAZCA, presentación en aula para compartir
CULTURA NAZCA, presentación en aula para compartirCULTURA NAZCA, presentación en aula para compartir
CULTURA NAZCA, presentación en aula para compartir
 
codigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinacodigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karina
 
La Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdfLa Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdf
 
Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 
Factores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFactores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamica
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
Marketing y servicios 2ºBTP Cocina DGETP
Marketing y servicios 2ºBTP Cocina DGETPMarketing y servicios 2ºBTP Cocina DGETP
Marketing y servicios 2ºBTP Cocina DGETP
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
 
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtweBROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
BROCHURE EXCEL 2024 FII.pdfwrfertetwetewtewtwtwtwtwtwtwtewtewtewtwtwtwtwe
 
Earth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversaryEarth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversary
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdfTema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
 

Notas sobre geometria

  • 1. Geometría La geometría del griego geo (tierra) y métrica (medida).Es una rama de la matemática que se ocupa de las propiedades de las figuras geométricas en el plano o el espacio, como son: puntos, rectas, planos, polígonos, poliedros, curvas, superficies, etc. Sus orígenes se remontan a la solución de problemas concretos relativos a medidas y es la justificación teórica de muchos instrumentos, por ejemplo el compás, el teodolito y el pantógrafo. Tiene su aplicación práctica en física, mecánica, cartografía, astronomía, náutica, topografía, balística, etc. También da fundamento teórico a inventos como el sistema de posicionamiento global (en especial cuando se la considera en combinación con el análisis matemático y sobre todo con las ecuaciones diferenciales) y es útil en la preparación de diseños (justificación teórica de la geometría descriptiva, del dibujo técnico e incluso en la fabricación de artesanías). Historia de la Geometría La geometría es una de las más antiguas ciencias. Inicialmente, constituía un cuerpo de conocimientos prácticos en relación con las longitudes, áreas y volúmenes. En el Antiguo Egipto estaba muy desarrollada, según los textos de Heródoto, Estrabón y Diodoro Sículo. Euclides, en el siglo III a. C. configuró la geometría en forma axiomática, tratamiento que estableció una norma a seguir durante muchos siglos: la geometría euclidiana descrita en «Los Elementos». El estudio de la astronomía, y la cartografía, tratando de determinar las posiciones de estrellas y planetas en la esfera celeste, sirvió como una importante fuente de resolución de problemas geométricos durante más de un milenio. René Descartes, desarrolló simultáneamente el álgebra y la geometría, marcando una nueva etapa, donde las figuras geométricas, tales como las curvas planas, podrían ser representadas analíticamente, es decir, con funciones y ecuaciones. La geometría se enriquece con el estudio de la estructura intrínseca de los entes geométricos que analizan Euler y Gauss, que condujo a la creación de la topología y la geometría diferencial.
  • 2. La geometría se propone ir más allá de lo alcanzado por la intuición. Por ello, es necesario un método riguroso, sin errores; para conseguirlo se han utilizado históricamente los sistemas axiomáticos. El primer sistema axiomático lo establece Euclides, aunque era incompleto. David Hilbert propuso a principios del siglo XX otro sistema axiomático, éste ya completo. Como en todo sistema formal, las definiciones, axiomas y teoremas no sólo pretenden describir las propiedades de los objetos, o sus relaciones. Cuando se axiomatiza algo, los objetos se convierten en entes abstractos ideales y sus relaciones se denominan modelos. Esto significa que las palabras "punto", "recta" y "plano" deben de perder todo significado material. Cualquier conjunto de objetos que verifique las definiciones y los axiomas cumplirá también todos los teoremas de la geometría en cuestión, y sus relaciones serán virtualmente idénticas al del modelo tradicional. PROYECCION ORTOGONAL OBTENCIÓN DE LAS VISTAS DE UN OBJETO GENERALIDADES Se denominan vistas principales de un objeto, a las proyecciones ortogonales del mismo sobre 6 planos, dispuestos en forma de cubo. También se podría definir las vistas como, las proyecciones ortogonales de un objeto, según las distintas direcciones desde donde se mire. Las reglas a seguir para la representación de las vistas de un objeto, se recogen en la norma UNE 1-032-82, "Dibujos técnicos: Principios generales de representación", equivalente a la norma ISO 128-82. DENOMINACIÓN DE LAS VISTAS Si situamos un observador según las seis direcciones indicadas por las flechas, obtendríamos las seis vistas posibles de un objeto. Estas vistas reciben las siguientes denominaciones:
  • 3. Vista A: Vista de frente o alzado Vista B: Vista superior o planta Vista C: Vista derecha o lateral derecha Vista D: Vista izquierda o lateral izquierda Vista E: Vista inferior Vista F: Vista posterior POSICIONES RELATIVAS DE LAS VISTAS Para la disposición de las diferentes vistas sobre el papel, se pueden utilizar dos variantes de proyección ortogonal de la misma importancia: - El método de proyección del primer diedro, también denominado Europeo (antiguamente, método E) - El método de proyección del tercer diedro, también denominado Americano (antiguamente, método A) En ambos métodos, el objeto se supone dispuesto dentro de un cubo, sobre cuyas seis caras, se realizarán las correspondientes proyecciones ortogonales del mismo. La diferencia estriba en que, mientras en el sistema Europeo, el objeto se encuentra entre el observador y el plano de proyección, en el sistema Americano, es el plano de proyección el que se encuentra entre el observador y el objeto. SISTEMA EUROPEO
  • 4. SISTEMA AMERICANO Una vez realizadas las seis proyecciones ortogonales sobre las caras del cubo, y manteniendo fija, la cara de la proyección del alzado (A), se procede a obtener el desarrollo del cubo, que como puede apreciarse en las figuras, es diferente según el sistema utilizado. SISTEMA EUR0PEO
  • 5. SISTEMA AMERICANO El desarrollo del cubo de proyección, nos proporciona sobre un único plano de dibujo, las seis vistas principales de un objeto, en sus posiciones relativas. Con el objeto de identificar, en que sistema se ha representado el objeto, se debe añadir el símbolo que se puede apreciar en las figuras, y que representa el alzado y vista lateral izquierda, de un cono truncado, en cada uno de los sistemas.
  • 6. CORRESPONDENCIA ENTRE LAS VISTAS Como se puede observar en las figuras anteriores, existe una correspondencia obligada entre las diferentes vistas. Así estarán relacionadas: a) El alzado, la planta, la vista inferior y la vista posterior, coincidiendo en anchuras. b) El alzado, la vista lateral derecha, la vista lateral izquierda y la vista posterior, coincidiendo en alturas. c) La planta, la vista lateral izquierda, la vista lateral derecha y la vista inferior, coincidiendo en profundidad. Habitualmente con tan solo tres vistas, el alzado, la planta y una vista lateral, queda perfectamente definida una pieza. Teniendo en cuenta las correspondencias anteriores, implicarían que dadas dos cualquiera de las vistas, se podría obtener la tercera, como puede apreciarse en la figura:
  • 7. También, de todo lo anterior, se deduce que las diferentes vistas no pueden situarse de forma arbitraria. Aunque las vistas aisladamente sean correctas, si no están correctamente situadas, no definirán la pieza. ELECCIÓN DE LAS VISTAS DE UN OBJETO, Y VISTAS ESPECIALES ELECCIÓN DEL ALZADO En la norma UNE 1-032-82 se especifica claramente que "La vista más característica del objeto debe elegirse como vista de frente o vista principal". Esta vista representará al objeto en su posición de trabajo, y en caso de que pueda ser utilizable en cualquier posición, se representará en la posición de mecanizado o montaje. En ocasiones, el concepto anterior puede no ser suficiente para elegir el alzado de una pieza, en estos casos se tendrá en cuenta los principios siguientes: 1) Conseguir el mejor aprovechamiento de la superficie del dibujo.
  • 8. 2) Que el alzado elegido, presente el menor número posible de aristas ocultas. 3) Y que nos permita la obtención del resto de vistas, planta y perfiles, lo más simplificadas posibles. Siguiendo las especificaciones anteriores, en la pieza de la figura 1, adoptaremos como alzado la vista A, ya que nos permitirá apreciar la inclinación del tabique a y la forma en L del elemento b, que son los elementos más significativos de la pieza. En ocasiones, una incorrecta elección del alzado, nos conducirá a aumentar el número de vistas necesarias; es el caso de la pieza de la figura 2, donde el alzado correcto sería la vista A, ya que sería suficiente con esta vista y la representación de la planta, para que la pieza quedase correctamente definida; de elegir la vista B, además de la planta necesitaríamos representar una vista lateral. ELECCIÓN DE LAS VISTAS NECESARIAS Para la elección de las vistas de un objeto, seguiremos el criterio de que estas deben ser, las mínimas, suficientes y adecuadas, para que la pieza quede total y correctamente definida. Seguiremos igualmente criterios de simplicidad y claridad, eligiendo vistas en las que se eviten la representación de aristas ocultas. En general, y salvo en piezas muy complejas, bastará con la representación del alzado planta y una vista lateral. En piezas simples bastará con una o dos vistas. Cuando sea indiferente la elección de la vista de perfil, se optará por la vista lateral izquierda, que como es sabido se representa a la derecha del alzado. Cuando una pieza pueda ser representada por su alzado y la planta o por el alzado y una vista de perfil, se optará por aquella solución que facilite la interpretación de la pieza, y de ser indiferente aquella que conlleve el menor número de aristas ocultas. En los casos de piezas representadas por una sola vista, esta suele estar complementada con indicaciones especiales que permiten la total y correcta definición de la pieza: 1) En piezas de revolución se incluye el símbolo del diámetro (figura 1). 2) En piezas prismáticas o tronco piramidales, se incluye el símbolo del cuadrado y/o la
  • 9. "cruz de San Andrés" (figura 2). 3) En piezas de espesor uniforme, basta con hacer dicha especificación en lugar bien visible (figura 3). Primer diedro: (antiguamente denominado ISO- E ) Vista principal : Es la vista del cuerpo que presenta la mayor cálida de detalles. Vista superior: Corresponde a la proyección de la cara superior de cuerpo (vista de arriba), se dibuja bajo la vista principal. Vista lateral izquierda: Corresponde a la proyección de la cara ubicada a la izquierda de la vista principal y que se dibuja a la derecha de ésta. Vista lateral derecha: Corresponde a la proyección de la cara ubicada a la derecha de la vista principal y que se dibuja a la izquierda de ésta. Vista inferior: Corresponde a la proyección de la cara inferior del cuerpo ( vista desde abajo ) y se dibuja sobre la vista principal. Vista posterior: Corresponde a la proyección de la cara ubicad detrás de la vista principal, y se dibuja a la derecha o seguido de la vista lateral izquierda. Tercer diedro: (antiguamente denominado ISO – A) En la utilización de este sistema de proyección, se aplica un criterio totalmente opuesto al primer diedro, es decir la vista lateral derecha, se dibuja al lado derecho de la vista principal, la vista lateral izquierda al lado izquierdo de la vista principal, la vista superior, sobre la vista principal, y la vista inferior, bajo la vista principal. Importante: Para representar las vistas de un cuerpo, son necesarias como mínimo tres vistas. El sistema de proyección utilizado comúnmente y normalizado para todas las representaciones técnicas, es el primer diedro. Es indispensable indicar en el rótulo el sistema de proyección utilizado, mediante la siguiente simbología: