SlideShare una empresa de Scribd logo
1 de 32
MAQUINAS TERMICAS
UT N°9
Mantenimiento de plantas de
emergencia
Facultad Regional Reconquista
Universidad Tecnológica Nacional
Esp. Ing. David Ruiz
Ing. Walter Capeletti
Ciclo Lectivo 2020
Plantas de
Emergencia
Partes de una Planta de Emergencia
Plantas eléctricas de emergencia
 Son máquinas que hacen mover a un generador con
una fuerza mecánica, éstos motores trabajan con
gas oil. Comúnmente las plantas eléctricas de
emergencia son utilizadas en lugares donde es muy
importante la electricidad y así ellos pueden
generar su propia electricidad y asistir sus
necesidades algunos lugares donde es escencial no
perder la energía aunque sea unos minutos, como:
hospitales, centros medico de salud, hoteles,
centros comerciales, entre otros.
OPERACIÓN AUTOMATICA

a) Los selectores del control maestro (TTA) deben estar ubicados en la posición de
automático. El control maestro es una tarjeta electrónica que se encarga de
controlar y proteger el motor de la planta eléctrica.
b) En caso de fallar la energía normal suministrada por la compañía de servicios
eléctricos, la planta arrancará con un retardo de 3 a 5 segundos después del
corte del energia eléctrica. Luego la energía eléctrica generada por la planta es
conducida a los diferentes circuitos del sistema de emergencia a través del
panel de transferencia, a esta operación se le conoce como transferencia
automática de energía.
c) Después de 25 segundos de normalizado el servicio de energía eléctrica de la
compañía suministradora, automáticamente se realiza la retransferencia (la
carga es alimentada nuevamente por la energía eléctrica del servicio normal)
quedando aproximadamente 5 minutos encendida la planta para el
enfriamiento del motor. El apagado del equipo es automático.
OPERACIÓN MANUAL
 En esta modalidad, se verifica el buen funcionamiento de la planta sin
interrumpir la alimentación normal de la energía eléctrica.
 El selector de control maestro debe colocarse en la posición de “Manual”.
 Como medida de seguridad para que la planta eléctrica trabaje sin carga (en
vacío), se debe colocar el interruptor principal “Main” del generador en
posición de apagado off.
Clasificación de las plantas de emergencia.
 a) De acuerdo al tipo de
combustible:
– Con motor a gas (LP) ó natural.
– Con motor a gasolina.
– Con motor a diesel.
– Sistema Bifuel (diesel/gas)
 b) De acuerdo a su instalación.
– Estacionarias.
– Móviles.
 c) Por su operación.
– Manual.
– Semiautomática
– Automática
d) Por su aplicación.
– Emergencia.
– Continua.
Tipos de plantas eléctricas
 Planta eléctrica solar: Es la interconexión de diversos dispositivos que transforman la
energía solar en electricidad, también llamados sistemas fotovoltáicos. La planta eléctrica
solar permite cubrir la necesidad de electrificación en regiones montañosas, aisladas o de
difícil acceso.
 Planta eléctrica portátil: La planta portátil funciona a gasolina, genera 12 voltios. Incluye
un contador de horas de uso y se le puede adaptar ruedas para moverla. Son
recomendables para hogares pequeños que tengan pocos aparatos eléctricos.
 Planta eléctrica diesel: Funciona con la quema de combustibles de la misma forma que lo
hace un motor de cualquier vehículo. Se utiliza también en los hospitales o en bases
militares.
 Plantas eléctricas industriales: Pueden ser utilizadas en trabajo continuo o emergencia
("Stand By"). Las plantas industriales tienen capacidades desde 14 KW hasta 2MW en
diferentes voltajes y frecuencias.
Una planta eléctrica está
constituida fundamentalmente por
seis elementos básicos que son los
siguientes:
 1) Motor
 2) Alternador
 3) Cuadro eléctrico de mando y
control
 4) Una bancada de apoyo
 5) Sistema de combustible
 6) Un sistema de gases de escape
 EL MOTOR es una de las dos piezas más
importantes de la planta eléctrica, es el
encargado de producir la potencia
necesaria para mover el alternador que
generará la energía eléctrica.
Su dimensión deberá ajustarse a las
necesidades especificas de cada una de
las aplicaciones que tendrá la planta
eléctrica, siendo de gran importancia el
determinar la potencia necesaria, ya que
una planta tiene potencia limitada, está
potencia vendrá dada por el motor.
Los más utilizados son los motores diésel y
los de gasolina, según sea su potencia. Si
la potencia necesaria es elevada, sobre
todo en lo que respecta a plantas de
cogeneración, los motores utilizados
suelen ser de gas, biogás o diésel.
Motor de exposición con seccionamiento
Motor MTU a gas
EL ALTERNADOR
 Es el componente más
importante de la planta
eléctrica, se encarga de
transformar la energía mecánica
del motor en energía eléctrica.
Va unido al volate del motor a
través de unos discos de fijación
o a través de un acoplamiento
flexible que transmite el
movimiento del volante del
motor al rotor del alternador. El alternador también deberá ajustarse a las necesidades específicas de
cada aplicación
CUADRO ELECTRICO
DE CONTROL
 Es el elemento que nos permite controlar el
equipo y su funcionamiento, a través del
mismo podemos poner la planta en marcha,
apagarla y controlar los parametros de su
funcionamiento.
 Este componente de la planta varía según
las exigencias de cada aplicación, así
podemos diferencias cuadro de control
automático y eléctrico. Siendo un equipo
de arranque automático aquél que para su
funcionamiento no necesita de la
intervención de personas, este arrancara la
planta eléctrica de manera autónoma.
Bancada de apoyo
 Este elemento sirve de base de sujeción al conjunto de motor
y alternador, su forma y construcción es variable según sea la
función o características específicas la planta eléctrica.
 La norma general es que dicha bancada se realice en chapa
metálica o perfiles metálicos a fin de dotar al conjunto de la
robusted necesaria.
 La unión a la planta eléctrica se puede realizar de diversas
formas, siendo lo más habitual el realizar dicha unión
mediante unos apoyos anti vibratorios, que amortiguan las
vibraciones producidas en su funcionamiento, o también
directamente sobre la bancada colocándose los tacos anti
vibratorios en la parte inferior de la misma, a fin de evitar
que las vibraciones entre la parte rígida y la parte vibratoria,
sometan a esfuerzos mecánicos excesivos a los elementos de
unión.
EL MOTOR A GASOLINA
Los motores de gasolina pueden ser de 2 y 4
tiempos. Contrariamente a los motores
diésel, los motores de gasolina presentan otro
tipo de encendido, en el tiempo de la
compresión se inicia la combustión de la
mezcla comprimida de combustible y aire,
mediante una chispa eléctrica que genera la
bujía v
SISTEMA DE COMBUSTIBLE
EL MOTOR DIESEL
El motor diésel funciona de forma semejante
al motor de gasolina. La principal diferencia
que hay entre ellos consiste, en que el motor
diésel, se emplea un grado de comprensión
bastante más elevado
Un sistema de gases de escape
La instalación de una planta eléctrica no esta completa hasta que se instala un adecuado
sistema de escape . El buen diseño de un sistema de escape procurara siempre canalizar los
gases de escape del motor a una zona donde no represente peligro para los seres humanos
(asfixia por monóxido de carbono).
El punto crucial en el diseño, desde el punto de vista mecánico es la limitación de la contra-
presión en el escape. Si la longitud del tubo de escape con relación a su diámetro no es la
adecuada, se produce una restricción al flujo de los gases, por efecto de la viscosidad
dinámica del fluido (gases).
Plan Maestro de
Mantenimiento a una
Planta de Emergencia
1. Antes de encender la planta eléctrica revisar:
a) Nivel de agua en el radiador
b) Nivel de aceite en el cárter
c) Nivel de agua en celdas de batería
d) Nivel de combustible en tanque diario
e) Verificar limpieza en terminales de batería.
2. Colocar el interruptor principal del generador “MAIN
“en OFF
3. Colocar los selectores de operación en el modo
manual para arrancar la planta eléctrica.
4. Se pone a funcionar de esta manera por unos 10 minutos y se
revisa lo siguiente:
a) Frecuencia del generador (60 a 61Hz).
b) De ser necesario se ajusta el voltaje al valor correcto por medio
del potenciómetro de ajuste.
c) Durante todo el tiempo que tarde la planta trabajando se debe
estar revisando la temperatura del agua (180ºF) presión de aceite
(70 PSI)
Si todo está correcto se acciona el interruptor en la posición de
apagado "off” para que el motor se apague.
 5. Luego de la revisión preliminar y si todo está correcto simular
falla de energia eléctrica y revisar lo siguiente:

a) Corriente, voltaje y frecuencia del generador según los
parámetros de operación (que pueden variar de un sistema a
otro).

b) Si alguno de estos valores está fuera de su rango de
operación, notifique de inmediato al Departamento de
Mantenimiento.

c) Si la temperatura del agua es muy alta, con mucha precaución
quitar el tapón al radiador, revisar el nivel del agua y reponerla
en caso de necesidad (sin parar el motor) si el nivel del agua se
encuentra bien, buscar la manera de ventilar el motor por otros
medios. También conviene verificar si el generador está muy
cargado, ya que esa puede ser la causa, y si ese es el caso, se
deberá disminuir la carga eléctrica hasta llegar a la corriente
nominal de placa del generador. En caso de obstrucción de las
celdas del radiador lavarlo a vapor para retirar la suciedad.
 d) Si la presión del aceite es muy baja para el motor, esperar que se enfríe, luego revisar el
nivel de aceite y reponerlo en caso de ser necesario (con el motor apagado). Después volver a
encender el motor. Si la presión no estabiliza, llamar al personal de Mantenimiento.

e) Si el amperímetro que señala la carga del alternador al acumulador proporciona una señal
negativa, significa que el alternador no está cargando.
 e) Si el amperímetro que señala la carga del alternador al acumulador proporciona una señal
negativa, significa que el alternador no está cargando. En este caso se debe verificar el
estado del alternador, regulador de voltaje y conexiones.

f) Si la frecuencia del generador baja a un punto peligroso, personal autorizado debe calibrar
al generador del motor a fin de compensar la caída de frecuencia, es normal que el generador
trabajando a plena carga baje un poco su frecuencia.

g) Si el voltaje del generador baja su valor, es posible recuperarlo girando el potenciómetro
del regulador de voltaje.
 6. Si en el trabajo de la planta llegaran a actuar las
protecciones, debe verificar la temperatura del agua y
presión del aceite. Si actúa la protección por alta
temperatura de agua dejar que el motor enfríe y después
reponer el faltante.

7. Para detener el motor, desconecte la carga
manualmente y deje trabajar el motor durante tres
minutos al vacío.
8. Conviene arrancar el motor por lo menos una vez a la
semana por un lapso de 30 minutos, para mantener bien
cargado el acumulador, cuando no existe cargador de
baterías conectado a la planta; y para mantener el
magnetismo remanente del generador en buen rango.
También para corregir posibles fallas.
9. Cualquier duda o anomalía observada reportarla al
personal de mantenimiento.
PUNTOS IMPORTANTES DEL MANTENIMIENTO
 1. Verificar diariamente:

a) Nivel del agua en el radiador.
b) Nivel de aceite en el cárter
c) Nivel de combustible en el tanque.
d) Válvulas de combustible abiertas.
e) Nivel de agua destilada en las baterías y
limpieza de los bornes.
f) Limpieza y buen estado del filtro de aire.
g) Que no haya fugas de agua, aceite y/o
combustible.
h) Observar si hay tornillos flojos, elementos
caídos, sucios o faltantes en el motor y
tableros.
 2. Semanalmente, además de lo anterior:

a) Operar la planta en vacío y si se puede con carga para comprobar que todos sus elementos
operan satisfactoriamente, durante unos treinta minutos por lo menos.
b) Limpiar el polvo que se haya acumulado sobre la planta o en los pasos de aire de
enfriamiento, asimismo los tableros.
3. Mensualmente: Comprobar todos los puntos anteriores, además:
a) Comprobar la tensión correcta y el buen estado de las fajas del ventilador, alternador, etc.
b) Limpiar los tableros y contactos de relevadores si es necesario.
c) Observe cuidadosamente todos los elementos de la planta y tableros para corregir posibles
fallas.
 4. Cada 150 horas de trabajo, además de lo anterior:
a) Cambiar filtro de aceite.
b) Si el motor está equipado con filtro de aire o tipo húmedo cambiarle el aceite.
 5. Cada 300 horas de trabajo, además de lo anterior:
a) Cambiar el elemento anticorrosivo del agua.
b) Cambiar los filtros de combustible.
6. Cada año:
a) Si el filtro de aire es tipo seco, cambiarlo.
7. Para tiempos mayores, consultar el manual de operación y mantenimiento
del motor en particular.
 MANTENIMIENTO PREVENTIVO EN PLANTAS DE EMERGENCIA

La vida útil de los equipos se prolonga con un buen mantenimiento preventivo, que puede ser por horas de
trabajo o por tiempo. Se recomienda por lo menos cada 200 horas de operación o 6 meses, lo que ocurra
primero.
Este mantenimiento preventivo consiste en:
Cambio de aceite y filtros
Cambio de anticongelante
Revisión y medición de densidad en electrolito de baterías
Revisión y/o cambio de mangueras y bandas
Reapriete de conexiones mecánicas y eléctricas
Ajuste de voltaje y frecuencia así como prueba de protecciones
Ajuste y reapriete de conexiones eléctricas al tablero de transferencia
Limpieza en general (lavado con hidrolavadora)
Pruebas en vació, con carga, en manual y automático
MANTENIMIENTO CORRECTIVO
Cuando un equipo falla es necesario tener un stock de refacciones y/o personal capacitado para resolver
cualquier contingencia a cualquier hora, cualquier día, en cualquier lugar.
Normalmente se presenta que la planta:
no arranca
no genera
no transfiere, etc.
Sin mantenimiento o Con mantenimiento

Costos
 Planta De Emergencia Motor Cummins, Generador Marathon 30 Kw
 $ 64,000
 MOTOR: CUMMINS
 MODELO 4B
 GENERADOR: MARATHON
 ARRANQUE MANUAL
 GARANTIZADA
 POCAS HORAS DE TRABAJO
 Características

-Marca -IGSA
 -Modelo -1200 Kw
 -Año -2001
 -Descripcion -Planta de luz/generador de 1200 Kw
 -Motor -General Motors 16 cil.
 -Combustible -Diesel
 -Horas de uso -
 -Sistema electrico -24 Volts
 -Otros -
 Precio $ 350,000.00 m.n.
VENTAJAS DE PLANTAS DE GAS VS PLANTAS DIESEL Y DE
GASOLINA
 Bajo mantenimiento: Al no tener bomba de inyección, inyectores o componentes en el
carburador, se reduce al mínimo ya que no requiere mano de obra calificada.
 Eficiencia al arranque: Al no tener componentes sofisticados en su sistema de carburación,
nos permite el paso directo de gas a la cámara de compresión haciendo 100% seguro el
suministro de combustible.
 Costo de instalación: La caseta del tipo intemperie permite reducir considerablemente este
costo al no requerir cuarto de máquinas, cimentación y blindajes especiales para evitar
vandalismo.
 Contaminantes: Al ser carburación a gas, la emisión es muy baja haciéndola ecológica y baja
en ruido.
 Ruido: La carburación a gas por ser más suave proporciona menores decibeles de ruido.
 Suministro de combustible: Al tener tanque estacionario, no hay compromisos con operarios y
riesgos de derrame de diesel o gasolina, ya que la empresa gasera suministra por medio de un
contrato.
 Programador semanal: Permite mantener en óptimas condiciones todos los componentes del
motor. Esto se programa para que arranque una vez a la semana el día y la hora que usted lo
requiera.
Beneficios de las plantas de emergencia
Las plantas de emergencia sirven
como respaldo en casa, comercio o
empresa, pero también como
protector de equipos eléctricos,
mantiene en operación procesos
que dependen de la corriente
eléctrica. Entre los beneficios que
ofrecen las plantas de emergencia
de CEDISEM están:
Respuesta al instante tras un
apagón
El generador restituye la energía
eléctrica en menos de 10 segundos
Protección contra la intemperie
gracias a su cabina acústica
diseñada para uso exterior
Operación silenciosa Instalación sencilla y de bajo costo
Mantenimiento mínimo, costos
operativos incomparables
Todos los equipos de CEDISEM son
probados en plantas a plena carga
antes de embarcarse

Más contenido relacionado

Similar a Plantas_de_Emergencia. Fotografía y arte

Saiia es
Saiia esSaiia es
Saiia esaure01
 
capitulo 4 EXPOSICION.pptx
capitulo 4 EXPOSICION.pptxcapitulo 4 EXPOSICION.pptx
capitulo 4 EXPOSICION.pptxvladimircoello1
 
Motor de excitación independiente
Motor de  excitación independienteMotor de  excitación independiente
Motor de excitación independienteandyv16
 
Variadores de velocidad
Variadores de velocidadVariadores de velocidad
Variadores de velocidadGabo Ruiz Lugo
 
Motor trifasico
Motor trifasico Motor trifasico
Motor trifasico domasm
 
Sistema de encendido
Sistema de encendidoSistema de encendido
Sistema de encendidoadriancalvo
 
Circuito derivado de un motor
Circuito derivado de un motorCircuito derivado de un motor
Circuito derivado de un motorCesar Torres
 
PLC y Electroneumática: Automatismo industrial por juan Carlos Martin y María...
PLC y Electroneumática: Automatismo industrial por juan Carlos Martin y María...PLC y Electroneumática: Automatismo industrial por juan Carlos Martin y María...
PLC y Electroneumática: Automatismo industrial por juan Carlos Martin y María...SANTIAGO PABLO ALBERTO
 
Informe de conexión estrella triángulo
Informe de conexión estrella triánguloInforme de conexión estrella triángulo
Informe de conexión estrella triánguloFred Quispe
 
Controles electricos
Controles electricosControles electricos
Controles electricososcarelg2330
 
TEMA III - INSTRUMENTACIÓN (1).pdf
TEMA III - INSTRUMENTACIÓN (1).pdfTEMA III - INSTRUMENTACIÓN (1).pdf
TEMA III - INSTRUMENTACIÓN (1).pdfEnrique143581
 
vinculacion-2015.ppt
vinculacion-2015.pptvinculacion-2015.ppt
vinculacion-2015.pptBrettTorres1
 
CUADERNILLO 1-3-AUTOMATISMO-MOTORES DC-2023.docx
CUADERNILLO  1-3-AUTOMATISMO-MOTORES DC-2023.docxCUADERNILLO  1-3-AUTOMATISMO-MOTORES DC-2023.docx
CUADERNILLO 1-3-AUTOMATISMO-MOTORES DC-2023.docxEspecialidad Indus
 

Similar a Plantas_de_Emergencia. Fotografía y arte (20)

Electrotecnia
ElectrotecniaElectrotecnia
Electrotecnia
 
Saiia es
Saiia esSaiia es
Saiia es
 
PRESENTASION_PRODUCCION_I.pptx
PRESENTASION_PRODUCCION_I.pptxPRESENTASION_PRODUCCION_I.pptx
PRESENTASION_PRODUCCION_I.pptx
 
capitulo 4 EXPOSICION.pptx
capitulo 4 EXPOSICION.pptxcapitulo 4 EXPOSICION.pptx
capitulo 4 EXPOSICION.pptx
 
Motor de excitación independiente
Motor de  excitación independienteMotor de  excitación independiente
Motor de excitación independiente
 
M esquemas cap8_entorno_al_motor
M esquemas cap8_entorno_al_motorM esquemas cap8_entorno_al_motor
M esquemas cap8_entorno_al_motor
 
Conexion de motores
Conexion de motoresConexion de motores
Conexion de motores
 
Alternador
AlternadorAlternador
Alternador
 
Arrancadores-de-Estado-Solido.pptx
Arrancadores-de-Estado-Solido.pptxArrancadores-de-Estado-Solido.pptx
Arrancadores-de-Estado-Solido.pptx
 
Variadores de velocidad
Variadores de velocidadVariadores de velocidad
Variadores de velocidad
 
Motor trifasico
Motor trifasico Motor trifasico
Motor trifasico
 
Sistema de encendido
Sistema de encendidoSistema de encendido
Sistema de encendido
 
Circuito derivado de un motor
Circuito derivado de un motorCircuito derivado de un motor
Circuito derivado de un motor
 
PLC y Electroneumática: Automatismo industrial por juan Carlos Martin y María...
PLC y Electroneumática: Automatismo industrial por juan Carlos Martin y María...PLC y Electroneumática: Automatismo industrial por juan Carlos Martin y María...
PLC y Electroneumática: Automatismo industrial por juan Carlos Martin y María...
 
Informe de conexión estrella triángulo
Informe de conexión estrella triánguloInforme de conexión estrella triángulo
Informe de conexión estrella triángulo
 
Controles electricos
Controles electricosControles electricos
Controles electricos
 
TEMA III - INSTRUMENTACIÓN (1).pdf
TEMA III - INSTRUMENTACIÓN (1).pdfTEMA III - INSTRUMENTACIÓN (1).pdf
TEMA III - INSTRUMENTACIÓN (1).pdf
 
vinculacion-2015.ppt
vinculacion-2015.pptvinculacion-2015.ppt
vinculacion-2015.ppt
 
Motores asincronos
Motores asincronosMotores asincronos
Motores asincronos
 
CUADERNILLO 1-3-AUTOMATISMO-MOTORES DC-2023.docx
CUADERNILLO  1-3-AUTOMATISMO-MOTORES DC-2023.docxCUADERNILLO  1-3-AUTOMATISMO-MOTORES DC-2023.docx
CUADERNILLO 1-3-AUTOMATISMO-MOTORES DC-2023.docx
 

Último

CERTIFICADO para NIÑOS, presentacion de niños en la iglesia .pptx
CERTIFICADO para NIÑOS, presentacion de niños en la iglesia .pptxCERTIFICADO para NIÑOS, presentacion de niños en la iglesia .pptx
CERTIFICADO para NIÑOS, presentacion de niños en la iglesia .pptxMaikelPereira1
 
Artes/ObrasMaestras del siglo XVI - tiempos BY: CLAUDIA GINGLIONA RAMÍREZ DIF...
Artes/ObrasMaestras del siglo XVI - tiempos BY: CLAUDIA GINGLIONA RAMÍREZ DIF...Artes/ObrasMaestras del siglo XVI - tiempos BY: CLAUDIA GINGLIONA RAMÍREZ DIF...
Artes/ObrasMaestras del siglo XVI - tiempos BY: CLAUDIA GINGLIONA RAMÍREZ DIF...CLAUDIA GINGLIONA RAMÍREZ DIFILIPPI
 
Origen del Hombre- cuadro comparativo 5to Sec
Origen del Hombre- cuadro comparativo 5to SecOrigen del Hombre- cuadro comparativo 5to Sec
Origen del Hombre- cuadro comparativo 5to Secssuser50da781
 
MAPA MENTAL sobre los tipos de lectura existentes
MAPA MENTAL sobre los tipos de lectura existentesMAPA MENTAL sobre los tipos de lectura existentes
MAPA MENTAL sobre los tipos de lectura existentesDiandraRivera
 
Relato Bélico sobre la Guerra entre los paises sudamericanos Bolivia y Paragu...
Relato Bélico sobre la Guerra entre los paises sudamericanos Bolivia y Paragu...Relato Bélico sobre la Guerra entre los paises sudamericanos Bolivia y Paragu...
Relato Bélico sobre la Guerra entre los paises sudamericanos Bolivia y Paragu...CarlosMelgarejo25
 
271706433-Horacio-Baliero-Casa-en-Punta-Piedras.pptx
271706433-Horacio-Baliero-Casa-en-Punta-Piedras.pptx271706433-Horacio-Baliero-Casa-en-Punta-Piedras.pptx
271706433-Horacio-Baliero-Casa-en-Punta-Piedras.pptxjezuz1231
 
diagrama sinóptico dcerfghjsxdcfvgbhnjdcf
diagrama sinóptico dcerfghjsxdcfvgbhnjdcfdiagrama sinóptico dcerfghjsxdcfvgbhnjdcf
diagrama sinóptico dcerfghjsxdcfvgbhnjdcfDreydyAvila
 
Concepto de Estética, aproximación,Elena Olvieras
Concepto de Estética, aproximación,Elena OlvierasConcepto de Estética, aproximación,Elena Olvieras
Concepto de Estética, aproximación,Elena OlvierasAnkara2
 
Unitario - Serie Fotográfica - Emmanuel Toloza Pineda
Unitario - Serie Fotográfica - Emmanuel Toloza PinedaUnitario - Serie Fotográfica - Emmanuel Toloza Pineda
Unitario - Serie Fotográfica - Emmanuel Toloza PinedaEmmanuel Toloza
 
Trabajo historia sobre el Renacimiento en la arquitectura
Trabajo historia sobre el Renacimiento en la arquitecturaTrabajo historia sobre el Renacimiento en la arquitectura
Trabajo historia sobre el Renacimiento en la arquitecturaccastilloojeda12
 
Mapa-conceptual-de-la-Primera-Guerra-Mundial.pptx
Mapa-conceptual-de-la-Primera-Guerra-Mundial.pptxMapa-conceptual-de-la-Primera-Guerra-Mundial.pptx
Mapa-conceptual-de-la-Primera-Guerra-Mundial.pptxMaraMilagrosBarrosMa
 
La Importancia de la Universidad como Institución Social.pdf
La Importancia de la Universidad como Institución Social.pdfLa Importancia de la Universidad como Institución Social.pdf
La Importancia de la Universidad como Institución Social.pdfloquendo1901
 
presentacion-auditoria-administrativa-i-encuentro (1).ppt
presentacion-auditoria-administrativa-i-encuentro (1).pptpresentacion-auditoria-administrativa-i-encuentro (1).ppt
presentacion-auditoria-administrativa-i-encuentro (1).pptDerekLiberatoMartine
 
Arquitectura renacentista - Adriánn Díaz 30.118.599.pptx
Arquitectura renacentista - Adriánn Díaz 30.118.599.pptxArquitectura renacentista - Adriánn Díaz 30.118.599.pptx
Arquitectura renacentista - Adriánn Díaz 30.118.599.pptxAdriannDiaz
 
LA DANZA PROCESO DE LA VIDA Y EL CUERPO.pptx
LA DANZA PROCESO DE LA VIDA Y EL CUERPO.pptxLA DANZA PROCESO DE LA VIDA Y EL CUERPO.pptx
LA DANZA PROCESO DE LA VIDA Y EL CUERPO.pptxJuankLerma
 
PA2_BITACORA _Taipe_Turpo_Teves_Sumire_Suma.pptx
PA2_BITACORA _Taipe_Turpo_Teves_Sumire_Suma.pptxPA2_BITACORA _Taipe_Turpo_Teves_Sumire_Suma.pptx
PA2_BITACORA _Taipe_Turpo_Teves_Sumire_Suma.pptxJOELORELLANA15
 
Europa y la Exploración del continente americano.pptx
Europa y la Exploración del continente americano.pptxEuropa y la Exploración del continente americano.pptx
Europa y la Exploración del continente americano.pptxismaelchandi2010
 
Habitos atomicos libro completooooooooooo
Habitos atomicos libro completoooooooooooHabitos atomicos libro completooooooooooo
Habitos atomicos libro completoooooooooooTomas914396
 
la configuyracion del territorio peruano
la configuyracion del territorio peruanola configuyracion del territorio peruano
la configuyracion del territorio peruanoEFRAINSALAZARLOYOLA1
 
ACUERDOS PARA PINTAR EDUCACION INICIAL.docx
ACUERDOS PARA PINTAR EDUCACION INICIAL.docxACUERDOS PARA PINTAR EDUCACION INICIAL.docx
ACUERDOS PARA PINTAR EDUCACION INICIAL.docxlizeth753950
 

Último (20)

CERTIFICADO para NIÑOS, presentacion de niños en la iglesia .pptx
CERTIFICADO para NIÑOS, presentacion de niños en la iglesia .pptxCERTIFICADO para NIÑOS, presentacion de niños en la iglesia .pptx
CERTIFICADO para NIÑOS, presentacion de niños en la iglesia .pptx
 
Artes/ObrasMaestras del siglo XVI - tiempos BY: CLAUDIA GINGLIONA RAMÍREZ DIF...
Artes/ObrasMaestras del siglo XVI - tiempos BY: CLAUDIA GINGLIONA RAMÍREZ DIF...Artes/ObrasMaestras del siglo XVI - tiempos BY: CLAUDIA GINGLIONA RAMÍREZ DIF...
Artes/ObrasMaestras del siglo XVI - tiempos BY: CLAUDIA GINGLIONA RAMÍREZ DIF...
 
Origen del Hombre- cuadro comparativo 5to Sec
Origen del Hombre- cuadro comparativo 5to SecOrigen del Hombre- cuadro comparativo 5to Sec
Origen del Hombre- cuadro comparativo 5to Sec
 
MAPA MENTAL sobre los tipos de lectura existentes
MAPA MENTAL sobre los tipos de lectura existentesMAPA MENTAL sobre los tipos de lectura existentes
MAPA MENTAL sobre los tipos de lectura existentes
 
Relato Bélico sobre la Guerra entre los paises sudamericanos Bolivia y Paragu...
Relato Bélico sobre la Guerra entre los paises sudamericanos Bolivia y Paragu...Relato Bélico sobre la Guerra entre los paises sudamericanos Bolivia y Paragu...
Relato Bélico sobre la Guerra entre los paises sudamericanos Bolivia y Paragu...
 
271706433-Horacio-Baliero-Casa-en-Punta-Piedras.pptx
271706433-Horacio-Baliero-Casa-en-Punta-Piedras.pptx271706433-Horacio-Baliero-Casa-en-Punta-Piedras.pptx
271706433-Horacio-Baliero-Casa-en-Punta-Piedras.pptx
 
diagrama sinóptico dcerfghjsxdcfvgbhnjdcf
diagrama sinóptico dcerfghjsxdcfvgbhnjdcfdiagrama sinóptico dcerfghjsxdcfvgbhnjdcf
diagrama sinóptico dcerfghjsxdcfvgbhnjdcf
 
Concepto de Estética, aproximación,Elena Olvieras
Concepto de Estética, aproximación,Elena OlvierasConcepto de Estética, aproximación,Elena Olvieras
Concepto de Estética, aproximación,Elena Olvieras
 
Unitario - Serie Fotográfica - Emmanuel Toloza Pineda
Unitario - Serie Fotográfica - Emmanuel Toloza PinedaUnitario - Serie Fotográfica - Emmanuel Toloza Pineda
Unitario - Serie Fotográfica - Emmanuel Toloza Pineda
 
Trabajo historia sobre el Renacimiento en la arquitectura
Trabajo historia sobre el Renacimiento en la arquitecturaTrabajo historia sobre el Renacimiento en la arquitectura
Trabajo historia sobre el Renacimiento en la arquitectura
 
Mapa-conceptual-de-la-Primera-Guerra-Mundial.pptx
Mapa-conceptual-de-la-Primera-Guerra-Mundial.pptxMapa-conceptual-de-la-Primera-Guerra-Mundial.pptx
Mapa-conceptual-de-la-Primera-Guerra-Mundial.pptx
 
La Importancia de la Universidad como Institución Social.pdf
La Importancia de la Universidad como Institución Social.pdfLa Importancia de la Universidad como Institución Social.pdf
La Importancia de la Universidad como Institución Social.pdf
 
presentacion-auditoria-administrativa-i-encuentro (1).ppt
presentacion-auditoria-administrativa-i-encuentro (1).pptpresentacion-auditoria-administrativa-i-encuentro (1).ppt
presentacion-auditoria-administrativa-i-encuentro (1).ppt
 
Arquitectura renacentista - Adriánn Díaz 30.118.599.pptx
Arquitectura renacentista - Adriánn Díaz 30.118.599.pptxArquitectura renacentista - Adriánn Díaz 30.118.599.pptx
Arquitectura renacentista - Adriánn Díaz 30.118.599.pptx
 
LA DANZA PROCESO DE LA VIDA Y EL CUERPO.pptx
LA DANZA PROCESO DE LA VIDA Y EL CUERPO.pptxLA DANZA PROCESO DE LA VIDA Y EL CUERPO.pptx
LA DANZA PROCESO DE LA VIDA Y EL CUERPO.pptx
 
PA2_BITACORA _Taipe_Turpo_Teves_Sumire_Suma.pptx
PA2_BITACORA _Taipe_Turpo_Teves_Sumire_Suma.pptxPA2_BITACORA _Taipe_Turpo_Teves_Sumire_Suma.pptx
PA2_BITACORA _Taipe_Turpo_Teves_Sumire_Suma.pptx
 
Europa y la Exploración del continente americano.pptx
Europa y la Exploración del continente americano.pptxEuropa y la Exploración del continente americano.pptx
Europa y la Exploración del continente americano.pptx
 
Habitos atomicos libro completooooooooooo
Habitos atomicos libro completoooooooooooHabitos atomicos libro completooooooooooo
Habitos atomicos libro completooooooooooo
 
la configuyracion del territorio peruano
la configuyracion del territorio peruanola configuyracion del territorio peruano
la configuyracion del territorio peruano
 
ACUERDOS PARA PINTAR EDUCACION INICIAL.docx
ACUERDOS PARA PINTAR EDUCACION INICIAL.docxACUERDOS PARA PINTAR EDUCACION INICIAL.docx
ACUERDOS PARA PINTAR EDUCACION INICIAL.docx
 

Plantas_de_Emergencia. Fotografía y arte

  • 1. MAQUINAS TERMICAS UT N°9 Mantenimiento de plantas de emergencia Facultad Regional Reconquista Universidad Tecnológica Nacional Esp. Ing. David Ruiz Ing. Walter Capeletti Ciclo Lectivo 2020
  • 3. Partes de una Planta de Emergencia
  • 4. Plantas eléctricas de emergencia  Son máquinas que hacen mover a un generador con una fuerza mecánica, éstos motores trabajan con gas oil. Comúnmente las plantas eléctricas de emergencia son utilizadas en lugares donde es muy importante la electricidad y así ellos pueden generar su propia electricidad y asistir sus necesidades algunos lugares donde es escencial no perder la energía aunque sea unos minutos, como: hospitales, centros medico de salud, hoteles, centros comerciales, entre otros.
  • 5. OPERACIÓN AUTOMATICA  a) Los selectores del control maestro (TTA) deben estar ubicados en la posición de automático. El control maestro es una tarjeta electrónica que se encarga de controlar y proteger el motor de la planta eléctrica. b) En caso de fallar la energía normal suministrada por la compañía de servicios eléctricos, la planta arrancará con un retardo de 3 a 5 segundos después del corte del energia eléctrica. Luego la energía eléctrica generada por la planta es conducida a los diferentes circuitos del sistema de emergencia a través del panel de transferencia, a esta operación se le conoce como transferencia automática de energía. c) Después de 25 segundos de normalizado el servicio de energía eléctrica de la compañía suministradora, automáticamente se realiza la retransferencia (la carga es alimentada nuevamente por la energía eléctrica del servicio normal) quedando aproximadamente 5 minutos encendida la planta para el enfriamiento del motor. El apagado del equipo es automático.
  • 6. OPERACIÓN MANUAL  En esta modalidad, se verifica el buen funcionamiento de la planta sin interrumpir la alimentación normal de la energía eléctrica.  El selector de control maestro debe colocarse en la posición de “Manual”.  Como medida de seguridad para que la planta eléctrica trabaje sin carga (en vacío), se debe colocar el interruptor principal “Main” del generador en posición de apagado off.
  • 7. Clasificación de las plantas de emergencia.  a) De acuerdo al tipo de combustible: – Con motor a gas (LP) ó natural. – Con motor a gasolina. – Con motor a diesel. – Sistema Bifuel (diesel/gas)  b) De acuerdo a su instalación. – Estacionarias. – Móviles.  c) Por su operación. – Manual. – Semiautomática – Automática d) Por su aplicación. – Emergencia. – Continua.
  • 8. Tipos de plantas eléctricas  Planta eléctrica solar: Es la interconexión de diversos dispositivos que transforman la energía solar en electricidad, también llamados sistemas fotovoltáicos. La planta eléctrica solar permite cubrir la necesidad de electrificación en regiones montañosas, aisladas o de difícil acceso.  Planta eléctrica portátil: La planta portátil funciona a gasolina, genera 12 voltios. Incluye un contador de horas de uso y se le puede adaptar ruedas para moverla. Son recomendables para hogares pequeños que tengan pocos aparatos eléctricos.  Planta eléctrica diesel: Funciona con la quema de combustibles de la misma forma que lo hace un motor de cualquier vehículo. Se utiliza también en los hospitales o en bases militares.  Plantas eléctricas industriales: Pueden ser utilizadas en trabajo continuo o emergencia ("Stand By"). Las plantas industriales tienen capacidades desde 14 KW hasta 2MW en diferentes voltajes y frecuencias.
  • 9. Una planta eléctrica está constituida fundamentalmente por seis elementos básicos que son los siguientes:  1) Motor  2) Alternador  3) Cuadro eléctrico de mando y control  4) Una bancada de apoyo  5) Sistema de combustible  6) Un sistema de gases de escape
  • 10.  EL MOTOR es una de las dos piezas más importantes de la planta eléctrica, es el encargado de producir la potencia necesaria para mover el alternador que generará la energía eléctrica. Su dimensión deberá ajustarse a las necesidades especificas de cada una de las aplicaciones que tendrá la planta eléctrica, siendo de gran importancia el determinar la potencia necesaria, ya que una planta tiene potencia limitada, está potencia vendrá dada por el motor. Los más utilizados son los motores diésel y los de gasolina, según sea su potencia. Si la potencia necesaria es elevada, sobre todo en lo que respecta a plantas de cogeneración, los motores utilizados suelen ser de gas, biogás o diésel. Motor de exposición con seccionamiento Motor MTU a gas
  • 11. EL ALTERNADOR  Es el componente más importante de la planta eléctrica, se encarga de transformar la energía mecánica del motor en energía eléctrica. Va unido al volate del motor a través de unos discos de fijación o a través de un acoplamiento flexible que transmite el movimiento del volante del motor al rotor del alternador. El alternador también deberá ajustarse a las necesidades específicas de cada aplicación
  • 12. CUADRO ELECTRICO DE CONTROL  Es el elemento que nos permite controlar el equipo y su funcionamiento, a través del mismo podemos poner la planta en marcha, apagarla y controlar los parametros de su funcionamiento.  Este componente de la planta varía según las exigencias de cada aplicación, así podemos diferencias cuadro de control automático y eléctrico. Siendo un equipo de arranque automático aquél que para su funcionamiento no necesita de la intervención de personas, este arrancara la planta eléctrica de manera autónoma.
  • 13. Bancada de apoyo  Este elemento sirve de base de sujeción al conjunto de motor y alternador, su forma y construcción es variable según sea la función o características específicas la planta eléctrica.  La norma general es que dicha bancada se realice en chapa metálica o perfiles metálicos a fin de dotar al conjunto de la robusted necesaria.  La unión a la planta eléctrica se puede realizar de diversas formas, siendo lo más habitual el realizar dicha unión mediante unos apoyos anti vibratorios, que amortiguan las vibraciones producidas en su funcionamiento, o también directamente sobre la bancada colocándose los tacos anti vibratorios en la parte inferior de la misma, a fin de evitar que las vibraciones entre la parte rígida y la parte vibratoria, sometan a esfuerzos mecánicos excesivos a los elementos de unión.
  • 14. EL MOTOR A GASOLINA Los motores de gasolina pueden ser de 2 y 4 tiempos. Contrariamente a los motores diésel, los motores de gasolina presentan otro tipo de encendido, en el tiempo de la compresión se inicia la combustión de la mezcla comprimida de combustible y aire, mediante una chispa eléctrica que genera la bujía v SISTEMA DE COMBUSTIBLE EL MOTOR DIESEL El motor diésel funciona de forma semejante al motor de gasolina. La principal diferencia que hay entre ellos consiste, en que el motor diésel, se emplea un grado de comprensión bastante más elevado
  • 15. Un sistema de gases de escape La instalación de una planta eléctrica no esta completa hasta que se instala un adecuado sistema de escape . El buen diseño de un sistema de escape procurara siempre canalizar los gases de escape del motor a una zona donde no represente peligro para los seres humanos (asfixia por monóxido de carbono). El punto crucial en el diseño, desde el punto de vista mecánico es la limitación de la contra- presión en el escape. Si la longitud del tubo de escape con relación a su diámetro no es la adecuada, se produce una restricción al flujo de los gases, por efecto de la viscosidad dinámica del fluido (gases).
  • 16. Plan Maestro de Mantenimiento a una Planta de Emergencia 1. Antes de encender la planta eléctrica revisar: a) Nivel de agua en el radiador b) Nivel de aceite en el cárter c) Nivel de agua en celdas de batería d) Nivel de combustible en tanque diario e) Verificar limpieza en terminales de batería. 2. Colocar el interruptor principal del generador “MAIN “en OFF 3. Colocar los selectores de operación en el modo manual para arrancar la planta eléctrica.
  • 17. 4. Se pone a funcionar de esta manera por unos 10 minutos y se revisa lo siguiente: a) Frecuencia del generador (60 a 61Hz). b) De ser necesario se ajusta el voltaje al valor correcto por medio del potenciómetro de ajuste. c) Durante todo el tiempo que tarde la planta trabajando se debe estar revisando la temperatura del agua (180ºF) presión de aceite (70 PSI) Si todo está correcto se acciona el interruptor en la posición de apagado "off” para que el motor se apague.
  • 18.  5. Luego de la revisión preliminar y si todo está correcto simular falla de energia eléctrica y revisar lo siguiente:  a) Corriente, voltaje y frecuencia del generador según los parámetros de operación (que pueden variar de un sistema a otro).  b) Si alguno de estos valores está fuera de su rango de operación, notifique de inmediato al Departamento de Mantenimiento.  c) Si la temperatura del agua es muy alta, con mucha precaución quitar el tapón al radiador, revisar el nivel del agua y reponerla en caso de necesidad (sin parar el motor) si el nivel del agua se encuentra bien, buscar la manera de ventilar el motor por otros medios. También conviene verificar si el generador está muy cargado, ya que esa puede ser la causa, y si ese es el caso, se deberá disminuir la carga eléctrica hasta llegar a la corriente nominal de placa del generador. En caso de obstrucción de las celdas del radiador lavarlo a vapor para retirar la suciedad.
  • 19.  d) Si la presión del aceite es muy baja para el motor, esperar que se enfríe, luego revisar el nivel de aceite y reponerlo en caso de ser necesario (con el motor apagado). Después volver a encender el motor. Si la presión no estabiliza, llamar al personal de Mantenimiento.  e) Si el amperímetro que señala la carga del alternador al acumulador proporciona una señal negativa, significa que el alternador no está cargando.  e) Si el amperímetro que señala la carga del alternador al acumulador proporciona una señal negativa, significa que el alternador no está cargando. En este caso se debe verificar el estado del alternador, regulador de voltaje y conexiones.  f) Si la frecuencia del generador baja a un punto peligroso, personal autorizado debe calibrar al generador del motor a fin de compensar la caída de frecuencia, es normal que el generador trabajando a plena carga baje un poco su frecuencia.  g) Si el voltaje del generador baja su valor, es posible recuperarlo girando el potenciómetro del regulador de voltaje.
  • 20.  6. Si en el trabajo de la planta llegaran a actuar las protecciones, debe verificar la temperatura del agua y presión del aceite. Si actúa la protección por alta temperatura de agua dejar que el motor enfríe y después reponer el faltante.  7. Para detener el motor, desconecte la carga manualmente y deje trabajar el motor durante tres minutos al vacío. 8. Conviene arrancar el motor por lo menos una vez a la semana por un lapso de 30 minutos, para mantener bien cargado el acumulador, cuando no existe cargador de baterías conectado a la planta; y para mantener el magnetismo remanente del generador en buen rango. También para corregir posibles fallas. 9. Cualquier duda o anomalía observada reportarla al personal de mantenimiento.
  • 21. PUNTOS IMPORTANTES DEL MANTENIMIENTO  1. Verificar diariamente:  a) Nivel del agua en el radiador. b) Nivel de aceite en el cárter c) Nivel de combustible en el tanque. d) Válvulas de combustible abiertas. e) Nivel de agua destilada en las baterías y limpieza de los bornes. f) Limpieza y buen estado del filtro de aire. g) Que no haya fugas de agua, aceite y/o combustible. h) Observar si hay tornillos flojos, elementos caídos, sucios o faltantes en el motor y tableros.
  • 22.  2. Semanalmente, además de lo anterior:  a) Operar la planta en vacío y si se puede con carga para comprobar que todos sus elementos operan satisfactoriamente, durante unos treinta minutos por lo menos. b) Limpiar el polvo que se haya acumulado sobre la planta o en los pasos de aire de enfriamiento, asimismo los tableros. 3. Mensualmente: Comprobar todos los puntos anteriores, además: a) Comprobar la tensión correcta y el buen estado de las fajas del ventilador, alternador, etc. b) Limpiar los tableros y contactos de relevadores si es necesario. c) Observe cuidadosamente todos los elementos de la planta y tableros para corregir posibles fallas.  4. Cada 150 horas de trabajo, además de lo anterior: a) Cambiar filtro de aceite. b) Si el motor está equipado con filtro de aire o tipo húmedo cambiarle el aceite.
  • 23.  5. Cada 300 horas de trabajo, además de lo anterior: a) Cambiar el elemento anticorrosivo del agua. b) Cambiar los filtros de combustible. 6. Cada año: a) Si el filtro de aire es tipo seco, cambiarlo. 7. Para tiempos mayores, consultar el manual de operación y mantenimiento del motor en particular.
  • 24.  MANTENIMIENTO PREVENTIVO EN PLANTAS DE EMERGENCIA  La vida útil de los equipos se prolonga con un buen mantenimiento preventivo, que puede ser por horas de trabajo o por tiempo. Se recomienda por lo menos cada 200 horas de operación o 6 meses, lo que ocurra primero. Este mantenimiento preventivo consiste en: Cambio de aceite y filtros Cambio de anticongelante Revisión y medición de densidad en electrolito de baterías Revisión y/o cambio de mangueras y bandas Reapriete de conexiones mecánicas y eléctricas Ajuste de voltaje y frecuencia así como prueba de protecciones Ajuste y reapriete de conexiones eléctricas al tablero de transferencia Limpieza en general (lavado con hidrolavadora) Pruebas en vació, con carga, en manual y automático MANTENIMIENTO CORRECTIVO Cuando un equipo falla es necesario tener un stock de refacciones y/o personal capacitado para resolver cualquier contingencia a cualquier hora, cualquier día, en cualquier lugar. Normalmente se presenta que la planta: no arranca no genera no transfiere, etc. Sin mantenimiento o Con mantenimiento 
  • 25. Costos  Planta De Emergencia Motor Cummins, Generador Marathon 30 Kw  $ 64,000  MOTOR: CUMMINS  MODELO 4B  GENERADOR: MARATHON  ARRANQUE MANUAL  GARANTIZADA  POCAS HORAS DE TRABAJO
  • 26.  Características  -Marca -IGSA  -Modelo -1200 Kw  -Año -2001  -Descripcion -Planta de luz/generador de 1200 Kw  -Motor -General Motors 16 cil.  -Combustible -Diesel  -Horas de uso -  -Sistema electrico -24 Volts  -Otros -  Precio $ 350,000.00 m.n.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31. VENTAJAS DE PLANTAS DE GAS VS PLANTAS DIESEL Y DE GASOLINA  Bajo mantenimiento: Al no tener bomba de inyección, inyectores o componentes en el carburador, se reduce al mínimo ya que no requiere mano de obra calificada.  Eficiencia al arranque: Al no tener componentes sofisticados en su sistema de carburación, nos permite el paso directo de gas a la cámara de compresión haciendo 100% seguro el suministro de combustible.  Costo de instalación: La caseta del tipo intemperie permite reducir considerablemente este costo al no requerir cuarto de máquinas, cimentación y blindajes especiales para evitar vandalismo.  Contaminantes: Al ser carburación a gas, la emisión es muy baja haciéndola ecológica y baja en ruido.  Ruido: La carburación a gas por ser más suave proporciona menores decibeles de ruido.  Suministro de combustible: Al tener tanque estacionario, no hay compromisos con operarios y riesgos de derrame de diesel o gasolina, ya que la empresa gasera suministra por medio de un contrato.  Programador semanal: Permite mantener en óptimas condiciones todos los componentes del motor. Esto se programa para que arranque una vez a la semana el día y la hora que usted lo requiera.
  • 32. Beneficios de las plantas de emergencia Las plantas de emergencia sirven como respaldo en casa, comercio o empresa, pero también como protector de equipos eléctricos, mantiene en operación procesos que dependen de la corriente eléctrica. Entre los beneficios que ofrecen las plantas de emergencia de CEDISEM están: Respuesta al instante tras un apagón El generador restituye la energía eléctrica en menos de 10 segundos Protección contra la intemperie gracias a su cabina acústica diseñada para uso exterior Operación silenciosa Instalación sencilla y de bajo costo Mantenimiento mínimo, costos operativos incomparables Todos los equipos de CEDISEM son probados en plantas a plena carga antes de embarcarse