SlideShare una empresa de Scribd logo
b). DESCRIPCIÓN DEL PROCESO
b.1. Criterios para escoger el Proceso
A nivel mundial el camino más usado para la producción de olefinas ligeras es el
Steam Cracking cuyo proceso permite obtener etileno y propileno con una sola
planta, requiriendo como alimentación la nafta petroquímica o los líquidos del Gas
Natural (etano, propano, butano). La Tabla N°B-1 presenta otros procesos de
petroquímica diferentes al Steam Cracking para producir olefinas.
MATERIA PRIMA DISPONIBILIDAD
STEAM CRACKING Etano, propano, butano y
Nafta.
Líquidos del gas natural.
Camisea.
DESHIDROGENACIÓN
CATALÍTICA
Propano e isobutano Sólo propano de Camisea
CRACKING CATALÍTICO Nafta Camisea ofrece poca
nafta.
DESHIDRATACIÓN DE
ALCOHOLES
Etanol No
Tabla N°B-1
Se deduce que por disponibilidad de materia prima los procesos favorecidos son el
Steam Cracking y la Deshidrogenación Catalítica. En nuestro caso, elegimos el
Steam Cracking por ser el proceso más usado comercialmente en el mundo.
Otro aspecto que se debe observar son los porcentajes como carga de etano y
propano que a continuación se describen en la TablaN°B-2
CARGA % DE CARGA DENOMINACIÓN
1 ETANO 100 ---
2 PROPANO 100 ---
3 ETANO 50 CRACKING MIXTO
PROPANO 50
4 ETANO 50 CRAKING
SEPARADOPROPANO 50
Tabla N°B-2
La diferencia entra las denominaciones están en la conversión que logran
alcanzar. En el cracking mixto se logra conversiones de 65 y 94% y en el cracking
separado de unos 65 y 80% respectivamente en etano y propano.
Luego, en resumen, teniendo como referencia a las tablas anteriores podríamos
diagramar las producciones de olefinas y poliolefinas según Gráfico N°B-1:
Gráfico N°B-1
A continuación, se procederá a describir en términos generales del proceso de
Steam Cracking y los procesos de polimerización.
b.2. Descripción Genérica del Proceso de Steam Cracking
Las olefinas son hidrocarburos acíclicos insaturados. Los de mayor interés en
cuanto a sus aplicaciones son aquellos que poseen de dos a cinco átomos de
carbono; es decir, el etileno, propileno, n-buteno, butadieno e isopreno.
El etileno y el propileno se pueden obtener por medio del proceso llamado Steam
Cracking, usando como carga el propano y butano contenidos en el gas natural.
Este proceso tiene lugar por la rotura de los enlace C-C con producción de
radicales libres y formación de olefinas.
Este proceso consta de zonas bien diferenciadas, la Zona Caliente, en donde se
tiene lugar las reacciones de Cracking que conducen a la formación de un gran
número de compuestos, y la Zona Fría, en donde se separa los productos
formados.
b.2.1 Reacciones de Cracking – Zona Caliente
La carga de hidrocarburos junto con el vapor de dilución se precalienta en la zona
de convección del horno de Cracking, ver Gráfico N°B-2. Juntos pasan a la zona
de radiación del horno donde tiene lugar las reacciones principales.
Para evitar que se desarrollen reacciones secundarias que conducen a la
formación de productos no deseados se procede a enfriar rápidamente los
efluentes que salen del horno. Este enfriamiento violento se hace por medio de un
intercambiador, con el cual se aprovecha además el calor para generar vapor de
agua de alta presión. Una vez enfriado el producto se procede a un
fraccionamiento primario para separar el producto pesado (fuel oil) del resto de los
productos (gases+gasolina). De estos últimos, se separan los gases los cuales
son licuados (menos de –73°C) y comprimidos hasta la presión necesaria y
enviados a la Zona Fría.
Gráfico N°B-2: Esquema de la zona caliente.
Aspectos importantes:
a) Vapor de Agua, siendo inerte proporciona una disminución en la presión parcial
de los hidrocarburos disminuyendo la tendencia a la formación de coke. Favorece
a la transmisión de calor gracias a su alta conductividad térmica. Tiene un efecto
oxidante sobre las paredes de los tubos, suficiente para disminuir el efecto
catalítico del hierro y el níquel, que de no ser así promovería, en exceso, la
formación de coke.
Dentro de las desventajas esta el calentarlo (aumenta el costo) y luego volver a
separarlo de los productos craqueados refrigerándolo y condensándolo.
b) El Horno de Cracking, la diferencia fundamental está en la zona de radiación
donde los serpentines son en realidad reactores. Los tiempos de residencia están
en el rango de 0.5 a 1.2 segundos para maximizar la producción de olefinas y
minimizar BTX y líquidos pesados.
c) Es necesaria la separación de gases ácidos y agua, de los gases que van a
la Zona Fría ya que contienen azufre (en forma de H2S y mercaptanos ligeros),
dióxido de carbono (CO2 formado en las reacciones de vapor con coke) y agua
(para evitar la formación de cristales de hielo cuando se licúe el gas de interés).
Para los gases ácidos el lavado con monoetanolamina (MEA). Para extraer el
agua se usa glicol y/o desecantes sólidos como la alúmina, la fluorita.
d) Sucesivas etapas de compresión, presiones altas para aprovechar el efecto
Joule-Thompson y generar frío en la etapa de la zona fría.
5.1.2 Separación de Olefinas – Zona Fría
Se hace físicamente, sometiendo los gases que salen del proceso de la Zona
Caliente a una serie de separaciones por medio de columnas de destilación para
obtener corrientes ricas en los productos deseados.
Los hidrocarburos son compuestos no polares y en general al elevar la presión
para el fraccionamiento se puede observar que:
 Los productos de cabeza se pueden condensar a temperaturas más
elevadas, por lo que no se necesita niveles térmicos tan fríos como en el
caso en que la presión fuera más reducida.
 Se necesitan más etapas teóricas de fraccionamiento para conseguir una
separación determinada.
Posteriormente por medio del efecto Joule-Thompson, que consiste en elevar la
presión y seguidamente efectuar una expansión isoentrópica, se genera los
niveles de frío adecuado para separar los hidrocarburos.
Aquí se deben tener en cuenta las temperaturas de ebullición a 1 atm., del metano
– 161°C, etano –88.9°C, etileno –103°C, propileno –47.5°C y butadieno –4.3°C.
En general el proceso es como el Gráfico N°B-3, pero las tecnologías han
cambiado sus esquemas en forma independiente.
En esta figura, vemos cómo la alimentación se introduce a la primera columna de
destilación llamada demetanizadora, en donde se extrae el hidrógeno y el metano
por el tope o parte superior de la columna. Opera con un perfil de presiones entre
33.5 y 8 bar y un perfil de temperaturas desde –98 y –130°C.
Los productos que salen del fondo se hacen pasar por una segunda columna
llamada deetanizadora, en donde se separa el etano y el etileno por el tope para
separarlos entre sí en una tercera columna. Por lo regular, la alimentación a esta
columna es a condiciones de 31 Kg/cm2
y –35°C.
El etileno obtenido en esta última tiene una pureza de 98-99% que es suficiente
para la fabricación de óxido de etileno. Pero si se desea usar el etileno para hacer
polietileno de alta densidad lineal que requiere una pureza de 99.9%, entonces es
necesario someter el etileno a una mayor purificación en la columna fraccionadora
para etilenos, lo que aumenta su costo operativo pero también su valor como
producto.
Regresando a la deetanizadora, lo que se saca del fondo de la misma se envía a
una columna de separación llamada depropanizadora, en donde se separa por el
tope una mezcla de propano- propileno.
Existen procesos petroquímicos en donde se puede aprovechar el propileno junto
con el propano, como en el caso de la fabricación del tetrámero de propileno
usado en los detergentes sintéticos. Pero en otros casos, como el de la fabricación
de polipropileno es necesario someter la mezcla a purificaciones posteriores.
Por el fondo de la depropanizadora se extrae la fracción que contiene las olefinas
con cuatro átomos de carbono en adelante. Esta fracción se somete a otras
separaciones para eliminar de la fracción los productos más pesados que vienen
desde el horno reactor, tales como pentanos, pentenos, benceno, tolueno etc.
(todos ellos líquidos).
Posteriormente, por medio de otros equipos de separación, se obtienen los
butenos, isobutenos, butano, isobutano, butadieno e isopreno, siendo el más
importante para la petroquímica el butadieno.
Gráfico N°B-3: Esquema de la zona fría.
Ahora podemos observar el diagrama completo de ambas zonas.
Gráfico N°B-3: Esquema del proceso de obtención de etileno y propileno para ser
llevados como carga a una planta de Polimerización.

Más contenido relacionado

La actualidad más candente

Proceso de Alquilación
Proceso de Alquilación Proceso de Alquilación
Proceso de Alquilación
Rmo_MiGuel
 
Guia resuelta de destilación fraccionada
Guia resuelta de destilación fraccionadaGuia resuelta de destilación fraccionada
Guia resuelta de destilación fraccionada
Stephanie Melo Cruz
 
Craqueo catalitico
Craqueo cataliticoCraqueo catalitico
Craqueo catalitico
KaurinaMorales
 
Evaporador de tubos horizontales con circulacion natural.pptx
Evaporador de tubos horizontales con circulacion natural.pptxEvaporador de tubos horizontales con circulacion natural.pptx
Evaporador de tubos horizontales con circulacion natural.pptx
MANUELAPATIODUQUE
 
1028094 clases-de-hysys-3-equipos-de-transferencia-de-masa
1028094 clases-de-hysys-3-equipos-de-transferencia-de-masa1028094 clases-de-hysys-3-equipos-de-transferencia-de-masa
1028094 clases-de-hysys-3-equipos-de-transferencia-de-masa
Carlos Diaz
 
Tema 1 parte 6. tipos de cracking- craqueo termico
Tema 1 parte 6. tipos de cracking- craqueo termicoTema 1 parte 6. tipos de cracking- craqueo termico
Tema 1 parte 6. tipos de cracking- craqueo termico
yulennylavayenbaldiv
 
Tesis2 destilacion
Tesis2 destilacionTesis2 destilacion
Tesis2 destilacion
debiaxback
 
Simulador de reactores químicos - COCO Simulator - Free
Simulador de reactores químicos - COCO Simulator - FreeSimulador de reactores químicos - COCO Simulator - Free
Simulador de reactores químicos - COCO Simulator - Free
CAChemE
 
Intercambiadores de-calor-tipos-generales-y-aplicaciones
Intercambiadores de-calor-tipos-generales-y-aplicacionesIntercambiadores de-calor-tipos-generales-y-aplicaciones
Intercambiadores de-calor-tipos-generales-y-aplicaciones
yumardiaz
 
Paper 1 saponificacion
Paper 1 saponificacionPaper 1 saponificacion
Paper 1 saponificacion
miguelon333
 
EVAPORADOR DE DOBLE EFECTO
EVAPORADOR DE DOBLE EFECTOEVAPORADOR DE DOBLE EFECTO
EVAPORADOR DE DOBLE EFECTO
JAlfredoVargas
 
Humidificacion
HumidificacionHumidificacion
Humidificacion
Rainier Maldonado Blanco
 
Capacidad calorifica de gases
Capacidad calorifica de gasesCapacidad calorifica de gases
Capacidad calorifica de gases
daszemog
 
Craqueo catalítico
Craqueo catalíticoCraqueo catalítico
Craqueo catalítico
Lezkathe Zapata
 
Torre absorcion pag 15
Torre absorcion pag 15Torre absorcion pag 15
Torre absorcion pag 15
omardavid01
 
Torres de enfriamiento.unlocked
Torres de enfriamiento.unlockedTorres de enfriamiento.unlocked
Torres de enfriamiento.unlocked
Andrés Navarro
 
Operaciones columna empacada
Operaciones columna empacadaOperaciones columna empacada
Operaciones columna empacada
Nellianny Ramirez
 
Secado
SecadoSecado
Secado
Carlos0601
 
Programación de un ciclo de refrigeración de gas propano usando ecuación de e...
Programación de un ciclo de refrigeración de gas propano usando ecuación de e...Programación de un ciclo de refrigeración de gas propano usando ecuación de e...
Programación de un ciclo de refrigeración de gas propano usando ecuación de e...
Jaime Marulanda
 
Eficiencia para hornos
Eficiencia para hornosEficiencia para hornos
Eficiencia para hornos
Nahir Antezana
 

La actualidad más candente (20)

Proceso de Alquilación
Proceso de Alquilación Proceso de Alquilación
Proceso de Alquilación
 
Guia resuelta de destilación fraccionada
Guia resuelta de destilación fraccionadaGuia resuelta de destilación fraccionada
Guia resuelta de destilación fraccionada
 
Craqueo catalitico
Craqueo cataliticoCraqueo catalitico
Craqueo catalitico
 
Evaporador de tubos horizontales con circulacion natural.pptx
Evaporador de tubos horizontales con circulacion natural.pptxEvaporador de tubos horizontales con circulacion natural.pptx
Evaporador de tubos horizontales con circulacion natural.pptx
 
1028094 clases-de-hysys-3-equipos-de-transferencia-de-masa
1028094 clases-de-hysys-3-equipos-de-transferencia-de-masa1028094 clases-de-hysys-3-equipos-de-transferencia-de-masa
1028094 clases-de-hysys-3-equipos-de-transferencia-de-masa
 
Tema 1 parte 6. tipos de cracking- craqueo termico
Tema 1 parte 6. tipos de cracking- craqueo termicoTema 1 parte 6. tipos de cracking- craqueo termico
Tema 1 parte 6. tipos de cracking- craqueo termico
 
Tesis2 destilacion
Tesis2 destilacionTesis2 destilacion
Tesis2 destilacion
 
Simulador de reactores químicos - COCO Simulator - Free
Simulador de reactores químicos - COCO Simulator - FreeSimulador de reactores químicos - COCO Simulator - Free
Simulador de reactores químicos - COCO Simulator - Free
 
Intercambiadores de-calor-tipos-generales-y-aplicaciones
Intercambiadores de-calor-tipos-generales-y-aplicacionesIntercambiadores de-calor-tipos-generales-y-aplicaciones
Intercambiadores de-calor-tipos-generales-y-aplicaciones
 
Paper 1 saponificacion
Paper 1 saponificacionPaper 1 saponificacion
Paper 1 saponificacion
 
EVAPORADOR DE DOBLE EFECTO
EVAPORADOR DE DOBLE EFECTOEVAPORADOR DE DOBLE EFECTO
EVAPORADOR DE DOBLE EFECTO
 
Humidificacion
HumidificacionHumidificacion
Humidificacion
 
Capacidad calorifica de gases
Capacidad calorifica de gasesCapacidad calorifica de gases
Capacidad calorifica de gases
 
Craqueo catalítico
Craqueo catalíticoCraqueo catalítico
Craqueo catalítico
 
Torre absorcion pag 15
Torre absorcion pag 15Torre absorcion pag 15
Torre absorcion pag 15
 
Torres de enfriamiento.unlocked
Torres de enfriamiento.unlockedTorres de enfriamiento.unlocked
Torres de enfriamiento.unlocked
 
Operaciones columna empacada
Operaciones columna empacadaOperaciones columna empacada
Operaciones columna empacada
 
Secado
SecadoSecado
Secado
 
Programación de un ciclo de refrigeración de gas propano usando ecuación de e...
Programación de un ciclo de refrigeración de gas propano usando ecuación de e...Programación de un ciclo de refrigeración de gas propano usando ecuación de e...
Programación de un ciclo de refrigeración de gas propano usando ecuación de e...
 
Eficiencia para hornos
Eficiencia para hornosEficiencia para hornos
Eficiencia para hornos
 

Similar a Refino

PRODUCCIÓN DE ACETILENO
PRODUCCIÓN DE ACETILENOPRODUCCIÓN DE ACETILENO
PRODUCCIÓN DE ACETILENO
Universidad de Pamplona - Colombia
 
Pirolisis....g.5.
Pirolisis....g.5.Pirolisis....g.5.
Pirolisis....g.5.
LuisErnesto49
 
Unidad de destilación
Unidad de destilaciónUnidad de destilación
Unidad de destilación
Sabrina Cangemi
 
Fraccionamiento de HC`s
Fraccionamiento de HC`sFraccionamiento de HC`s
Fraccionamiento de HC`s
Augusto Rohling Coltro
 
Scarlet hurtado torrez fraccionamiento 2017
Scarlet hurtado torrez fraccionamiento 2017Scarlet hurtado torrez fraccionamiento 2017
Scarlet hurtado torrez fraccionamiento 2017
Scarlet Hurtado Torrez
 
Craqueo Catalitico AAA.PPT
Craqueo Catalitico AAA.PPTCraqueo Catalitico AAA.PPT
Craqueo Catalitico AAA.PPT
SARAYCHACON3
 
PetróLeo Y Gasolina
PetróLeo Y GasolinaPetróLeo Y Gasolina
PetróLeo Y Gasolina
Yolimar Juarez
 
Examen_Parcial_Petroquimica_VFHN.pdf
Examen_Parcial_Petroquimica_VFHN.pdfExamen_Parcial_Petroquimica_VFHN.pdf
Examen_Parcial_Petroquimica_VFHN.pdf
LuisFernandoRivera14
 
Examen_Parcial_Petroquimica_VFHN.docx
Examen_Parcial_Petroquimica_VFHN.docxExamen_Parcial_Petroquimica_VFHN.docx
Examen_Parcial_Petroquimica_VFHN.docx
LuisFernandoRivera14
 
Coquizacion
CoquizacionCoquizacion
Etileno
EtilenoEtileno
Etileno
Raul Bilbao
 
Polipropileno y derivados
Polipropileno y derivadosPolipropileno y derivados
Polipropileno y derivados
Ariela Espinoza
 
Producción de Olefinas y sus Derivados.pptx
Producción de Olefinas y sus Derivados.pptxProducción de Olefinas y sus Derivados.pptx
Producción de Olefinas y sus Derivados.pptx
alexanderpetit4
 
continuacion clase cadena petroquimica del metano
continuacion clase cadena petroquimica del metanocontinuacion clase cadena petroquimica del metano
continuacion clase cadena petroquimica del metano
robinsonmancilla5
 
Reformadocatalitico
ReformadocataliticoReformadocatalitico
Reformadocatalitico
fernando chauque
 
Amoníaco
AmoníacoAmoníaco
Amoníaco
Sabrina Cangemi
 
Destilación en la refinación del crudo
Destilación en la refinación del crudoDestilación en la refinación del crudo
Destilación en la refinación del crudo
SistemadeEstudiosMed
 
203602280 produccion-de-polipropileno-final
203602280 produccion-de-polipropileno-final203602280 produccion-de-polipropileno-final
203602280 produccion-de-polipropileno-final
ryober cruz
 
Tema 6 DERIVADOS DEL PETROLEO.pdf
Tema 6 DERIVADOS DEL PETROLEO.pdfTema 6 DERIVADOS DEL PETROLEO.pdf
Tema 6 DERIVADOS DEL PETROLEO.pdf
silvia831540
 
evelia zzz.pptx
evelia zzz.pptxevelia zzz.pptx
evelia zzz.pptx
patricianieto33
 

Similar a Refino (20)

PRODUCCIÓN DE ACETILENO
PRODUCCIÓN DE ACETILENOPRODUCCIÓN DE ACETILENO
PRODUCCIÓN DE ACETILENO
 
Pirolisis....g.5.
Pirolisis....g.5.Pirolisis....g.5.
Pirolisis....g.5.
 
Unidad de destilación
Unidad de destilaciónUnidad de destilación
Unidad de destilación
 
Fraccionamiento de HC`s
Fraccionamiento de HC`sFraccionamiento de HC`s
Fraccionamiento de HC`s
 
Scarlet hurtado torrez fraccionamiento 2017
Scarlet hurtado torrez fraccionamiento 2017Scarlet hurtado torrez fraccionamiento 2017
Scarlet hurtado torrez fraccionamiento 2017
 
Craqueo Catalitico AAA.PPT
Craqueo Catalitico AAA.PPTCraqueo Catalitico AAA.PPT
Craqueo Catalitico AAA.PPT
 
PetróLeo Y Gasolina
PetróLeo Y GasolinaPetróLeo Y Gasolina
PetróLeo Y Gasolina
 
Examen_Parcial_Petroquimica_VFHN.pdf
Examen_Parcial_Petroquimica_VFHN.pdfExamen_Parcial_Petroquimica_VFHN.pdf
Examen_Parcial_Petroquimica_VFHN.pdf
 
Examen_Parcial_Petroquimica_VFHN.docx
Examen_Parcial_Petroquimica_VFHN.docxExamen_Parcial_Petroquimica_VFHN.docx
Examen_Parcial_Petroquimica_VFHN.docx
 
Coquizacion
CoquizacionCoquizacion
Coquizacion
 
Etileno
EtilenoEtileno
Etileno
 
Polipropileno y derivados
Polipropileno y derivadosPolipropileno y derivados
Polipropileno y derivados
 
Producción de Olefinas y sus Derivados.pptx
Producción de Olefinas y sus Derivados.pptxProducción de Olefinas y sus Derivados.pptx
Producción de Olefinas y sus Derivados.pptx
 
continuacion clase cadena petroquimica del metano
continuacion clase cadena petroquimica del metanocontinuacion clase cadena petroquimica del metano
continuacion clase cadena petroquimica del metano
 
Reformadocatalitico
ReformadocataliticoReformadocatalitico
Reformadocatalitico
 
Amoníaco
AmoníacoAmoníaco
Amoníaco
 
Destilación en la refinación del crudo
Destilación en la refinación del crudoDestilación en la refinación del crudo
Destilación en la refinación del crudo
 
203602280 produccion-de-polipropileno-final
203602280 produccion-de-polipropileno-final203602280 produccion-de-polipropileno-final
203602280 produccion-de-polipropileno-final
 
Tema 6 DERIVADOS DEL PETROLEO.pdf
Tema 6 DERIVADOS DEL PETROLEO.pdfTema 6 DERIVADOS DEL PETROLEO.pdf
Tema 6 DERIVADOS DEL PETROLEO.pdf
 
evelia zzz.pptx
evelia zzz.pptxevelia zzz.pptx
evelia zzz.pptx
 

Último

1-AAP-RENAV-PyM Capacitación del Reglamento Nacional de Vehiculos.pdf
1-AAP-RENAV-PyM Capacitación del Reglamento Nacional de Vehiculos.pdf1-AAP-RENAV-PyM Capacitación del Reglamento Nacional de Vehiculos.pdf
1-AAP-RENAV-PyM Capacitación del Reglamento Nacional de Vehiculos.pdf
jlupo2024
 
aplicacion de la termodinamica en la reacciones quimicas.pdf
aplicacion de la termodinamica en la reacciones quimicas.pdfaplicacion de la termodinamica en la reacciones quimicas.pdf
aplicacion de la termodinamica en la reacciones quimicas.pdf
MiguelZapata93
 
Estructura de un buque, tema de estudios generales de navegación
Estructura de un buque, tema de estudios generales de navegaciónEstructura de un buque, tema de estudios generales de navegación
Estructura de un buque, tema de estudios generales de navegación
AlvaroEduardoConsola1
 
Proceso de obtenciòn de nitrogeno por el metodo Haber-Bosh
Proceso de obtenciòn de nitrogeno por el metodo Haber-BoshProceso de obtenciòn de nitrogeno por el metodo Haber-Bosh
Proceso de obtenciòn de nitrogeno por el metodo Haber-Bosh
shirllyleytonm
 
TIA portal Bloques PLC Siemens______.pdf
TIA portal Bloques PLC Siemens______.pdfTIA portal Bloques PLC Siemens______.pdf
TIA portal Bloques PLC Siemens______.pdf
ArmandoSarco
 
DIAGRAMA ELECTRICOS y circuito electrónicos
DIAGRAMA ELECTRICOS y circuito electrónicosDIAGRAMA ELECTRICOS y circuito electrónicos
DIAGRAMA ELECTRICOS y circuito electrónicos
LuisAngelGuarnizoBet
 
1°AIRE ACONDICIONADO-EQUIPOS & SISTEMAS.pdf
1°AIRE ACONDICIONADO-EQUIPOS & SISTEMAS.pdf1°AIRE ACONDICIONADO-EQUIPOS & SISTEMAS.pdf
1°AIRE ACONDICIONADO-EQUIPOS & SISTEMAS.pdf
luliolivera62
 
Propiedades Electricas de los Materiales
Propiedades Electricas de los MaterialesPropiedades Electricas de los Materiales
Propiedades Electricas de los Materiales
rogeliorodriguezt
 
OPERACIONES BÁSICAS (INFOGRAFIA) DOCUMENTO
OPERACIONES BÁSICAS (INFOGRAFIA) DOCUMENTOOPERACIONES BÁSICAS (INFOGRAFIA) DOCUMENTO
OPERACIONES BÁSICAS (INFOGRAFIA) DOCUMENTO
GERARDO GONZALEZ
 
Infografia - Hugo Hidalgo - Construcción
Infografia - Hugo Hidalgo - ConstrucciónInfografia - Hugo Hidalgo - Construcción
Infografia - Hugo Hidalgo - Construcción
MaraManuelaUrribarri
 
PRESENTACION TRANSFERENCIA FABIAN ALVAREZ.pdf
PRESENTACION TRANSFERENCIA FABIAN ALVAREZ.pdfPRESENTACION TRANSFERENCIA FABIAN ALVAREZ.pdf
PRESENTACION TRANSFERENCIA FABIAN ALVAREZ.pdf
fabian28735081
 
Rinitis alérgica-1.pdfuhycrbibxgvyvyjimomom
Rinitis alérgica-1.pdfuhycrbibxgvyvyjimomomRinitis alérgica-1.pdfuhycrbibxgvyvyjimomom
Rinitis alérgica-1.pdfuhycrbibxgvyvyjimomom
DanielaLoaeza5
 
Ducto Barras para instalaciones electricas
Ducto Barras para instalaciones electricasDucto Barras para instalaciones electricas
Ducto Barras para instalaciones electricas
Edgar Najera
 
PRINCIPALES CARACTERISTICAS DE EL PH.pptx
PRINCIPALES CARACTERISTICAS DE EL PH.pptxPRINCIPALES CARACTERISTICAS DE EL PH.pptx
PRINCIPALES CARACTERISTICAS DE EL PH.pptx
MONICADELROCIOMUNZON1
 
chancadoras.............................
chancadoras.............................chancadoras.............................
chancadoras.............................
ssuser8827cb1
 
Aletas de transferencia de calor o superficies extendidas dylan.pdf
Aletas de transferencia de calor o superficies extendidas dylan.pdfAletas de transferencia de calor o superficies extendidas dylan.pdf
Aletas de transferencia de calor o superficies extendidas dylan.pdf
elsanti003
 
Libro Epanet, guía explicativa de los pasos a seguir para analizar redes hidr...
Libro Epanet, guía explicativa de los pasos a seguir para analizar redes hidr...Libro Epanet, guía explicativa de los pasos a seguir para analizar redes hidr...
Libro Epanet, guía explicativa de los pasos a seguir para analizar redes hidr...
andressalas92
 
Infografía de operaciones básicas....pdf
Infografía de operaciones básicas....pdfInfografía de operaciones básicas....pdf
Infografía de operaciones básicas....pdf
jahirrtorresa
 
Aletas de Transferencia de Calor Jefferson Colina.pptx
Aletas de Transferencia de Calor Jefferson Colina.pptxAletas de Transferencia de Calor Jefferson Colina.pptx
Aletas de Transferencia de Calor Jefferson Colina.pptx
jeffersoncolina427
 
Informe Municipal provincial de la ciudad de Tacna
Informe Municipal provincial de la ciudad de TacnaInforme Municipal provincial de la ciudad de Tacna
Informe Municipal provincial de la ciudad de Tacna
BrusCiriloPintoApaza
 

Último (20)

1-AAP-RENAV-PyM Capacitación del Reglamento Nacional de Vehiculos.pdf
1-AAP-RENAV-PyM Capacitación del Reglamento Nacional de Vehiculos.pdf1-AAP-RENAV-PyM Capacitación del Reglamento Nacional de Vehiculos.pdf
1-AAP-RENAV-PyM Capacitación del Reglamento Nacional de Vehiculos.pdf
 
aplicacion de la termodinamica en la reacciones quimicas.pdf
aplicacion de la termodinamica en la reacciones quimicas.pdfaplicacion de la termodinamica en la reacciones quimicas.pdf
aplicacion de la termodinamica en la reacciones quimicas.pdf
 
Estructura de un buque, tema de estudios generales de navegación
Estructura de un buque, tema de estudios generales de navegaciónEstructura de un buque, tema de estudios generales de navegación
Estructura de un buque, tema de estudios generales de navegación
 
Proceso de obtenciòn de nitrogeno por el metodo Haber-Bosh
Proceso de obtenciòn de nitrogeno por el metodo Haber-BoshProceso de obtenciòn de nitrogeno por el metodo Haber-Bosh
Proceso de obtenciòn de nitrogeno por el metodo Haber-Bosh
 
TIA portal Bloques PLC Siemens______.pdf
TIA portal Bloques PLC Siemens______.pdfTIA portal Bloques PLC Siemens______.pdf
TIA portal Bloques PLC Siemens______.pdf
 
DIAGRAMA ELECTRICOS y circuito electrónicos
DIAGRAMA ELECTRICOS y circuito electrónicosDIAGRAMA ELECTRICOS y circuito electrónicos
DIAGRAMA ELECTRICOS y circuito electrónicos
 
1°AIRE ACONDICIONADO-EQUIPOS & SISTEMAS.pdf
1°AIRE ACONDICIONADO-EQUIPOS & SISTEMAS.pdf1°AIRE ACONDICIONADO-EQUIPOS & SISTEMAS.pdf
1°AIRE ACONDICIONADO-EQUIPOS & SISTEMAS.pdf
 
Propiedades Electricas de los Materiales
Propiedades Electricas de los MaterialesPropiedades Electricas de los Materiales
Propiedades Electricas de los Materiales
 
OPERACIONES BÁSICAS (INFOGRAFIA) DOCUMENTO
OPERACIONES BÁSICAS (INFOGRAFIA) DOCUMENTOOPERACIONES BÁSICAS (INFOGRAFIA) DOCUMENTO
OPERACIONES BÁSICAS (INFOGRAFIA) DOCUMENTO
 
Infografia - Hugo Hidalgo - Construcción
Infografia - Hugo Hidalgo - ConstrucciónInfografia - Hugo Hidalgo - Construcción
Infografia - Hugo Hidalgo - Construcción
 
PRESENTACION TRANSFERENCIA FABIAN ALVAREZ.pdf
PRESENTACION TRANSFERENCIA FABIAN ALVAREZ.pdfPRESENTACION TRANSFERENCIA FABIAN ALVAREZ.pdf
PRESENTACION TRANSFERENCIA FABIAN ALVAREZ.pdf
 
Rinitis alérgica-1.pdfuhycrbibxgvyvyjimomom
Rinitis alérgica-1.pdfuhycrbibxgvyvyjimomomRinitis alérgica-1.pdfuhycrbibxgvyvyjimomom
Rinitis alérgica-1.pdfuhycrbibxgvyvyjimomom
 
Ducto Barras para instalaciones electricas
Ducto Barras para instalaciones electricasDucto Barras para instalaciones electricas
Ducto Barras para instalaciones electricas
 
PRINCIPALES CARACTERISTICAS DE EL PH.pptx
PRINCIPALES CARACTERISTICAS DE EL PH.pptxPRINCIPALES CARACTERISTICAS DE EL PH.pptx
PRINCIPALES CARACTERISTICAS DE EL PH.pptx
 
chancadoras.............................
chancadoras.............................chancadoras.............................
chancadoras.............................
 
Aletas de transferencia de calor o superficies extendidas dylan.pdf
Aletas de transferencia de calor o superficies extendidas dylan.pdfAletas de transferencia de calor o superficies extendidas dylan.pdf
Aletas de transferencia de calor o superficies extendidas dylan.pdf
 
Libro Epanet, guía explicativa de los pasos a seguir para analizar redes hidr...
Libro Epanet, guía explicativa de los pasos a seguir para analizar redes hidr...Libro Epanet, guía explicativa de los pasos a seguir para analizar redes hidr...
Libro Epanet, guía explicativa de los pasos a seguir para analizar redes hidr...
 
Infografía de operaciones básicas....pdf
Infografía de operaciones básicas....pdfInfografía de operaciones básicas....pdf
Infografía de operaciones básicas....pdf
 
Aletas de Transferencia de Calor Jefferson Colina.pptx
Aletas de Transferencia de Calor Jefferson Colina.pptxAletas de Transferencia de Calor Jefferson Colina.pptx
Aletas de Transferencia de Calor Jefferson Colina.pptx
 
Informe Municipal provincial de la ciudad de Tacna
Informe Municipal provincial de la ciudad de TacnaInforme Municipal provincial de la ciudad de Tacna
Informe Municipal provincial de la ciudad de Tacna
 

Refino

  • 1. b). DESCRIPCIÓN DEL PROCESO b.1. Criterios para escoger el Proceso A nivel mundial el camino más usado para la producción de olefinas ligeras es el Steam Cracking cuyo proceso permite obtener etileno y propileno con una sola planta, requiriendo como alimentación la nafta petroquímica o los líquidos del Gas Natural (etano, propano, butano). La Tabla N°B-1 presenta otros procesos de petroquímica diferentes al Steam Cracking para producir olefinas. MATERIA PRIMA DISPONIBILIDAD STEAM CRACKING Etano, propano, butano y Nafta. Líquidos del gas natural. Camisea. DESHIDROGENACIÓN CATALÍTICA Propano e isobutano Sólo propano de Camisea CRACKING CATALÍTICO Nafta Camisea ofrece poca nafta. DESHIDRATACIÓN DE ALCOHOLES Etanol No Tabla N°B-1 Se deduce que por disponibilidad de materia prima los procesos favorecidos son el Steam Cracking y la Deshidrogenación Catalítica. En nuestro caso, elegimos el Steam Cracking por ser el proceso más usado comercialmente en el mundo. Otro aspecto que se debe observar son los porcentajes como carga de etano y propano que a continuación se describen en la TablaN°B-2 CARGA % DE CARGA DENOMINACIÓN 1 ETANO 100 --- 2 PROPANO 100 --- 3 ETANO 50 CRACKING MIXTO PROPANO 50 4 ETANO 50 CRAKING SEPARADOPROPANO 50 Tabla N°B-2 La diferencia entra las denominaciones están en la conversión que logran alcanzar. En el cracking mixto se logra conversiones de 65 y 94% y en el cracking separado de unos 65 y 80% respectivamente en etano y propano.
  • 2. Luego, en resumen, teniendo como referencia a las tablas anteriores podríamos diagramar las producciones de olefinas y poliolefinas según Gráfico N°B-1: Gráfico N°B-1 A continuación, se procederá a describir en términos generales del proceso de Steam Cracking y los procesos de polimerización. b.2. Descripción Genérica del Proceso de Steam Cracking Las olefinas son hidrocarburos acíclicos insaturados. Los de mayor interés en cuanto a sus aplicaciones son aquellos que poseen de dos a cinco átomos de carbono; es decir, el etileno, propileno, n-buteno, butadieno e isopreno. El etileno y el propileno se pueden obtener por medio del proceso llamado Steam Cracking, usando como carga el propano y butano contenidos en el gas natural. Este proceso tiene lugar por la rotura de los enlace C-C con producción de radicales libres y formación de olefinas. Este proceso consta de zonas bien diferenciadas, la Zona Caliente, en donde se tiene lugar las reacciones de Cracking que conducen a la formación de un gran número de compuestos, y la Zona Fría, en donde se separa los productos formados. b.2.1 Reacciones de Cracking – Zona Caliente La carga de hidrocarburos junto con el vapor de dilución se precalienta en la zona de convección del horno de Cracking, ver Gráfico N°B-2. Juntos pasan a la zona de radiación del horno donde tiene lugar las reacciones principales.
  • 3. Para evitar que se desarrollen reacciones secundarias que conducen a la formación de productos no deseados se procede a enfriar rápidamente los efluentes que salen del horno. Este enfriamiento violento se hace por medio de un intercambiador, con el cual se aprovecha además el calor para generar vapor de agua de alta presión. Una vez enfriado el producto se procede a un fraccionamiento primario para separar el producto pesado (fuel oil) del resto de los productos (gases+gasolina). De estos últimos, se separan los gases los cuales son licuados (menos de –73°C) y comprimidos hasta la presión necesaria y enviados a la Zona Fría. Gráfico N°B-2: Esquema de la zona caliente. Aspectos importantes: a) Vapor de Agua, siendo inerte proporciona una disminución en la presión parcial de los hidrocarburos disminuyendo la tendencia a la formación de coke. Favorece a la transmisión de calor gracias a su alta conductividad térmica. Tiene un efecto oxidante sobre las paredes de los tubos, suficiente para disminuir el efecto catalítico del hierro y el níquel, que de no ser así promovería, en exceso, la formación de coke. Dentro de las desventajas esta el calentarlo (aumenta el costo) y luego volver a separarlo de los productos craqueados refrigerándolo y condensándolo.
  • 4. b) El Horno de Cracking, la diferencia fundamental está en la zona de radiación donde los serpentines son en realidad reactores. Los tiempos de residencia están en el rango de 0.5 a 1.2 segundos para maximizar la producción de olefinas y minimizar BTX y líquidos pesados. c) Es necesaria la separación de gases ácidos y agua, de los gases que van a la Zona Fría ya que contienen azufre (en forma de H2S y mercaptanos ligeros), dióxido de carbono (CO2 formado en las reacciones de vapor con coke) y agua (para evitar la formación de cristales de hielo cuando se licúe el gas de interés). Para los gases ácidos el lavado con monoetanolamina (MEA). Para extraer el agua se usa glicol y/o desecantes sólidos como la alúmina, la fluorita. d) Sucesivas etapas de compresión, presiones altas para aprovechar el efecto Joule-Thompson y generar frío en la etapa de la zona fría. 5.1.2 Separación de Olefinas – Zona Fría Se hace físicamente, sometiendo los gases que salen del proceso de la Zona Caliente a una serie de separaciones por medio de columnas de destilación para obtener corrientes ricas en los productos deseados. Los hidrocarburos son compuestos no polares y en general al elevar la presión para el fraccionamiento se puede observar que:  Los productos de cabeza se pueden condensar a temperaturas más elevadas, por lo que no se necesita niveles térmicos tan fríos como en el caso en que la presión fuera más reducida.  Se necesitan más etapas teóricas de fraccionamiento para conseguir una separación determinada. Posteriormente por medio del efecto Joule-Thompson, que consiste en elevar la presión y seguidamente efectuar una expansión isoentrópica, se genera los niveles de frío adecuado para separar los hidrocarburos. Aquí se deben tener en cuenta las temperaturas de ebullición a 1 atm., del metano – 161°C, etano –88.9°C, etileno –103°C, propileno –47.5°C y butadieno –4.3°C. En general el proceso es como el Gráfico N°B-3, pero las tecnologías han cambiado sus esquemas en forma independiente. En esta figura, vemos cómo la alimentación se introduce a la primera columna de destilación llamada demetanizadora, en donde se extrae el hidrógeno y el metano por el tope o parte superior de la columna. Opera con un perfil de presiones entre 33.5 y 8 bar y un perfil de temperaturas desde –98 y –130°C. Los productos que salen del fondo se hacen pasar por una segunda columna llamada deetanizadora, en donde se separa el etano y el etileno por el tope para separarlos entre sí en una tercera columna. Por lo regular, la alimentación a esta columna es a condiciones de 31 Kg/cm2 y –35°C.
  • 5. El etileno obtenido en esta última tiene una pureza de 98-99% que es suficiente para la fabricación de óxido de etileno. Pero si se desea usar el etileno para hacer polietileno de alta densidad lineal que requiere una pureza de 99.9%, entonces es necesario someter el etileno a una mayor purificación en la columna fraccionadora para etilenos, lo que aumenta su costo operativo pero también su valor como producto. Regresando a la deetanizadora, lo que se saca del fondo de la misma se envía a una columna de separación llamada depropanizadora, en donde se separa por el tope una mezcla de propano- propileno. Existen procesos petroquímicos en donde se puede aprovechar el propileno junto con el propano, como en el caso de la fabricación del tetrámero de propileno usado en los detergentes sintéticos. Pero en otros casos, como el de la fabricación de polipropileno es necesario someter la mezcla a purificaciones posteriores. Por el fondo de la depropanizadora se extrae la fracción que contiene las olefinas con cuatro átomos de carbono en adelante. Esta fracción se somete a otras separaciones para eliminar de la fracción los productos más pesados que vienen desde el horno reactor, tales como pentanos, pentenos, benceno, tolueno etc. (todos ellos líquidos). Posteriormente, por medio de otros equipos de separación, se obtienen los butenos, isobutenos, butano, isobutano, butadieno e isopreno, siendo el más importante para la petroquímica el butadieno. Gráfico N°B-3: Esquema de la zona fría.
  • 6. Ahora podemos observar el diagrama completo de ambas zonas. Gráfico N°B-3: Esquema del proceso de obtención de etileno y propileno para ser llevados como carga a una planta de Polimerización.