SlideShare una empresa de Scribd logo
 
Redes Neuronales Artificiales Las entradas Xi representan las señales que provienen de otras neuronas Los pesos Wi son la intensidad con que están conectadas dos neuronas; tanto Xi como Wi son valores reales.  neta =   XiWi
[object Object],[object Object]
El aprendizaje es el proceso por el cual una red neuronal modifica sus pesos en respuesta a una informacíon de entrada. Los cambios que se producen durante el proceso de aprendizaje son la destrucción, modificación y creación de conexiones entre las neuronas.  W = 0 Destrucción; W › 0 Creación Aprendizaje  Hay dos vías: - No adaptativo : Se determina de antemano cual será el valor de los pesos - Adaptativo : No existe una forma para determinar de antemano los pesos, por lo que se necesita un proceso iterativo:   Wi(t) = Wi(t-1) +   Δ Wi
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
•  Aprendizaje Supervisado A la red se le proporciona un conjunto de ejemplos del comportamiento propio de la red (inputs/targets) •  Aprendizaje por Reforzamiento A la red se proporciona un grado de desempeño de la misma. •  Aprendizaje No supervisado Las entradas son las unicas disponibles para el aprendizaje, el algoritmo de la red aprende a categorizar las entradas (clustering)
 
[object Object]
[object Object],[object Object],[object Object],[object Object]
Consiste en ajustar los pesos de las conexiones de la red en función de la diferencia entre los valores deseados y los obtenidos en la salida de la red; es decir en función del error cometido en la salida
[object Object],[object Object],[object Object],[object Object]
PERCEPTRÓN Características -Entradas reales -Aprendizaje supervisado -El espacio debe ser linealmente separable
PERCEPTRÓN - Antecedentes -La primera red neuronal conocida, fue desarrollada en 1943 por Warren McCulloch y Walter Pitts -Suma de las señales de entrada, multiplicadas por unos valores de pesos escogidos aleatoriamente. - La entrada es comparada con un patrón preestablecido para determinar la salida de la red.  -Si en la comparación, la suma de las entradas multiplicadas por los pesos es mayor o igual que el patrón preestablecido la salida de la red es uno (1), en caso contrario la salida es cero (0).
PERCEPTRÓN - Antecedentes -La red tipo Perceptrón fue inventada por el sicólogo Frank Rosenblatt en el año 1957 -El primer modelo de Perceptrón fue desarrollado en un ambiente biológico imitando el funcionamiento del ojo humano. El fotoperceptrón: era un dispositivo que respondía a señales ópticas.
PERCEPTRÓN  Esquema general de un Perceptrón sencillo:
PERCEPTRÓN  -Era inicialmente un dispositivo de aprendizaje -En su configuración inicial no estaba en capacidad de distinguir patrones de entrada muy complejos -Sin embargo mediante  un proceso de aprendizaje  era capaz de adquirir esta capacidad -En esencia, el entrenamiento implicaba un proceso de refuerzo mediante el cual la salida de las unidades A se incrementaba o se decrementaba dependiendo de si las unidades A contribuían o no a las  respuestas correctas  del Perceptrón para una entrada dada.
PERCEPTRÓN  -En 1969 Marvin Minsky y Seymour Papert publicaron su libro: “Perceptrons: An introduction to Computational Geometry” -Análisis detallado del Perceptrón, en términos de sus capacidades y limitaciones
PERCEPTRÓN  -La función de salida de la red es llamada función umbral o función de transferencia (tipo hardlim):   1  si (neta+bias) >= 0 f(neta+bias) =      0 si (neta+bias) < 0 -También puede utilizarse una función de transferencia tipo hardlims (salidas 1 ó -1)
Estructura de la Red (Perceptrón) La neurona de salida realiza la suma ponderada de las entradas, suma el bias y pasa el resultado a una función de transferencia de tipo hardlim(s). La regla e decisión es responder +1 si el patrón presentado pertenece a la clase A, o 0(–1) si el patrón pertenece a la clase B.
Regla de Aprendizaje (Perceptrón) El Perceptrón es un tipo de red de  aprendizaje supervisado , es decir necesita conocer los valores esperados para cada una de las entradas presentadas; su comportamiento está definido por pares de esta forma:  Cuando p j  es aplicado a la red, la  salida  de la red es comparada con el valor esperado t j Recordemos que la  salida  de la red esta determinada por: a = f(   XiWi + bias) = hardlim(  XiWi + bias)
[object Object],[object Object],[object Object],[object Object],[object Object]
En general: El valor a correspondiente a la aplicación del objeto p a la red constituye la clasificación (o salida) de la red para p. Este valor puede ser igual a t (la clasificación real de p) ó diferente. Si son iguales significa que la red a brindado el valor correcto para p, de lo contrario la red de ha “equivocado” Los posibles casos son los siguientes: 1) a = t La salida de la Red es igual a la clasificación de p por tanto funcionó correctamente y no hay que hacer cambios en los pesos 2) t = 1 y a = 0 3) t = 0 y a = 1 En los dos últimos casos la red se ha equivocado por tanto sería necesario modificar los pesos (aprender)
Las acciones para el aprendizaje, en cada caso serían: 1. t = a  W N  = W A 2. t=1, a=0  W N  = W A  + p 3. t=0, a=1  W N  = W A  – p Simplificaremos los casos haciendo:  e = t-a 1. e = 0  W N  = W A 2. e = 1  W N  = W A  + p 3. e = -1  W N  = W A  – p En general:   W N  = W A  + e * p   Bias N  = Bias A  + e
Ejemplo:
Ejemplo: Utilizaremos cuatro puntos para el aprendizaje de la RNA P1 = ( 2,  1) T1 = 1  (clase A) P2 = ( 0, -1) T2 = 1  (clase A) P3 = (-2,  1) T3 = -1 (clase B) P4 = ( 0,  2) T4 = -1 (clase B) Partimos de cualquier valor (aleatorios) para los pesos y el bias: W = ( -0.7, 0.2 )  bias = 0.5
Procedimiento general: El procedimiento de aprendizaje de la red (ajuste de los pesos) se resume en  aplicar cada objeto de la muestra a la red  y  ajustar los pesos  en caso de que la  salida de la red no sea correcta , de acuerdo a las fórmulas ya explicadas:   W N  = W A  + e * p   Bias N  = Bias A  + e Donde  e = t-a t = valor real del objeto a = valor calculado por la Red
Paso 1 . Objeto P1 = (2,1) T1 = 1   W = ( -0.7, 0.2 ) bias = 0.5 Aplicamos la Red para P1 neta+bias = -0.7*2 + 0.2*1 + 0.5 = -0.7 a = hardlims(-0.7) = -1 T1 = 1  K  a = -1 Por tanto es necesario ajustar los pesos: e = T1 – a = 1 – (-1) = 2 W N  = W + e*P1 = (-0.7,0.2) + 2*(2,1) W N  = (3.3, 2.2) bias N  = bias + e = 0.5 + e =  2.5
Paso 2 . Objeto P2 = (0,-1) T2 = 1   W = ( 3.3, 2.2 ) bias = 2.5 Aplicamos la Red para P2 neta+bias = 3.3*0 + 2.2*-1 + 2.5 = 0.3 a = hardlims(0.3) = 1 T2 = 1  =  a = 1 Por tanto NO es necesario ajustar los pesos
Paso 3 . Objeto P3 = (-2,1) T3 = -1   W = ( 3.3, 2.2 ) bias = 2.5 Aplicamos la Red para P3 neta+bias = 3.3*-2 + 2.2*1 + 2.5 = -1.9 a = hardlims(-1.9) = -1 T3 = -1  =   a = -1 Por tanto NO es necesario ajustar los pesos
Paso 4 . Objeto P4 = (0,2) T4 = -1   W = ( 3.3, 2.2 ) bias = 2.5 Aplicamos la Red para P4 neta+bias = 3.3*0 + 2.2*2 + 2.5 = 6.9 a = hardlims(6.9) = 1 T4 = -1  K  a = 1 Por tanto es necesario ajustar los pesos: e = T1 – a = -1 – (1) = -2 W N  = W + e*P4 = (3.3,2.2) + -2*(0,2) W N  = (3.3, -1.8) bias N  = bias + e = 0.5 + e =  0.5
Hemos concluido con todos los objetos de la muestra, por tanto los pesos calculados para la red son: W = (3.3, -1.8) bias 0.5 Podemos verificar la Red para los cuatro objetos: RNA(P1) = 1  ( neta+bias = 5.3  ) RNA(P2) = 1  ( neta+bias)= 2.3  ) RNA(P3) = -1 ( neta+bias = -7.9 ) RNA(P4) = -1 ( neta+bias = -3.1 )
Limitación Este tipo de red puede resolver solamente problemas cuyas salidas estén clasificadas en  dos categorías  diferentes y que permitan que su espacio de entrada sea dividido en regiones  linealmente separables El proceso para determinar si un problema es linealmente separable o no, se realiza gráficamente sin problema, cuando los patrones de entrada generan un espacio de  dos dimensiones , como en el caso del ejemplo; sin embargo, esta visualización se dificulta cuando el conjunto de patrones de entrada es de tres dimensiones, y resulta imposible de observar gráficamente cuando los patrones de entrada son de dimensiones superiores; en este caso se requiere plantear condiciones de desigualdad que permitan comprobar la separabilidad lineal de los patrones, esto se realiza con base en la ecuación de salida del Perceptrón: W*P+Bias >= 0  para los Objetos P, clasificados como  1 W*P+Bias < 0  para los Objetos P, clasificados como  0 (-1)
La solución al problema de clasificación de patrones de la función XOR se encontraría fácilmente si se descompone el espacio en tres regiones: una región pertenecería a una de las clases de salida y las otras dos pertenecen a la segunda clase, así que si en lugar de utilizar únicamente una neurona de salida se utilizaran dos, se obtendrían dos rectas por lo que podrían delimitarse tres zonas; para poder elegir entre una zona u otra de las tres, es necesario utilizar otra capa con una neurona cuyas entradas serán las salidas de las neuronas anteriores; las dos zonas o regiones que contienen los puntos (0,0) y (1,1) se asocian a una salida nula de la red y la zona central se asocia a la salida con valor 1, de esta forma es posible encontrar una solución al problema de la función XOR, por tanto se ha de utilizar una red de tres neuronas, distribuidas en dos capas para solucionar este problema, pero esto seria ya una red Perceptrón multicapa y esa parte no abarcaremos en esta presentación.
Muchas Gracias…

Más contenido relacionado

La actualidad más candente

REDES NEURONALES De Hopfield
REDES NEURONALES De HopfieldREDES NEURONALES De Hopfield
REDES NEURONALES De HopfieldESCOM
 
Modulación AM - PM - FM
Modulación AM - PM - FMModulación AM - PM - FM
Modulación AM - PM - FM
Manuel Carreño (E.Fortuna, Oteima)
 
Perceptrón Simple – Redes Neuronales con Aprendizaje Supervisado
Perceptrón Simple – Redes Neuronales con Aprendizaje SupervisadoPerceptrón Simple – Redes Neuronales con Aprendizaje Supervisado
Perceptrón Simple – Redes Neuronales con Aprendizaje Supervisado
Andrea Lezcano
 
REDES NEURONALES COMPETITIVAS HAMMING
REDES NEURONALES COMPETITIVAS HAMMINGREDES NEURONALES COMPETITIVAS HAMMING
REDES NEURONALES COMPETITIVAS HAMMING
ESCOM
 
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBBREDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
ESCOM
 
Redes neuronales-funciones-activacion-hardlim- hardlims-matlab
Redes neuronales-funciones-activacion-hardlim- hardlims-matlabRedes neuronales-funciones-activacion-hardlim- hardlims-matlab
Redes neuronales-funciones-activacion-hardlim- hardlims-matlab
Ana Mora
 
Arduino c++ y puerto serie
Arduino c++ y puerto serieArduino c++ y puerto serie
Arduino c++ y puerto serie
Ángel Acaymo M. G.
 
Reporte de practica sumador binario
Reporte de practica sumador binarioReporte de practica sumador binario
Reporte de practica sumador binario
Diego Ramírez
 
Informe de practica_3_circuito_convertid
Informe de practica_3_circuito_convertidInforme de practica_3_circuito_convertid
Informe de practica_3_circuito_convertid
MarcosGarcia309
 
Construccion , Diseño y Entrenamiento de Redes Neuronales Artificiales
Construccion , Diseño y Entrenamiento de Redes Neuronales ArtificialesConstruccion , Diseño y Entrenamiento de Redes Neuronales Artificiales
Construccion , Diseño y Entrenamiento de Redes Neuronales ArtificialesESCOM
 
INTRODUCCION A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCION A LAS REDES NEURONALES ARTIFICIALESINTRODUCCION A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCION A LAS REDES NEURONALES ARTIFICIALES
ESCOM
 
correlacion-de-senales
correlacion-de-senalescorrelacion-de-senales
correlacion-de-senalescrico89
 
Operaciones entre lenguajes
Operaciones entre lenguajesOperaciones entre lenguajes
Operaciones entre lenguajes
Jean Bernard
 
Conferencia n° 5
Conferencia n° 5Conferencia n° 5
Conferencia n° 5
Santiago Acurio
 
examen inf-164
examen inf-164examen inf-164
examen inf-164
tecmac
 
Lecture 15 probabilidad de error y ber en señales bandabase binaria
Lecture 15 probabilidad de error y ber en señales bandabase binariaLecture 15 probabilidad de error y ber en señales bandabase binaria
Lecture 15 probabilidad de error y ber en señales bandabase binaria
nica2009
 
Señales de tiempo continuo y discreto MATLAB
Señales de tiempo continuo y discreto MATLABSeñales de tiempo continuo y discreto MATLAB
Señales de tiempo continuo y discreto MATLAB
Jose Agustin Estrada
 

La actualidad más candente (20)

REDES NEURONALES De Hopfield
REDES NEURONALES De HopfieldREDES NEURONALES De Hopfield
REDES NEURONALES De Hopfield
 
Modulación AM - PM - FM
Modulación AM - PM - FMModulación AM - PM - FM
Modulación AM - PM - FM
 
Perceptrón Simple – Redes Neuronales con Aprendizaje Supervisado
Perceptrón Simple – Redes Neuronales con Aprendizaje SupervisadoPerceptrón Simple – Redes Neuronales con Aprendizaje Supervisado
Perceptrón Simple – Redes Neuronales con Aprendizaje Supervisado
 
REDES NEURONALES COMPETITIVAS HAMMING
REDES NEURONALES COMPETITIVAS HAMMINGREDES NEURONALES COMPETITIVAS HAMMING
REDES NEURONALES COMPETITIVAS HAMMING
 
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBBREDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
REDES NEURONALES DE APRENDIZAJE NO SUPERVISADO HEBB
 
Pilas, colas, y listas estructura de datos
Pilas, colas, y listas estructura de datosPilas, colas, y listas estructura de datos
Pilas, colas, y listas estructura de datos
 
Redes neuronales-funciones-activacion-hardlim- hardlims-matlab
Redes neuronales-funciones-activacion-hardlim- hardlims-matlabRedes neuronales-funciones-activacion-hardlim- hardlims-matlab
Redes neuronales-funciones-activacion-hardlim- hardlims-matlab
 
Arduino c++ y puerto serie
Arduino c++ y puerto serieArduino c++ y puerto serie
Arduino c++ y puerto serie
 
Reporte de practica sumador binario
Reporte de practica sumador binarioReporte de practica sumador binario
Reporte de practica sumador binario
 
Pcm
PcmPcm
Pcm
 
Informe de practica_3_circuito_convertid
Informe de practica_3_circuito_convertidInforme de practica_3_circuito_convertid
Informe de practica_3_circuito_convertid
 
Construccion , Diseño y Entrenamiento de Redes Neuronales Artificiales
Construccion , Diseño y Entrenamiento de Redes Neuronales ArtificialesConstruccion , Diseño y Entrenamiento de Redes Neuronales Artificiales
Construccion , Diseño y Entrenamiento de Redes Neuronales Artificiales
 
INTRODUCCION A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCION A LAS REDES NEURONALES ARTIFICIALESINTRODUCCION A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCION A LAS REDES NEURONALES ARTIFICIALES
 
Lt concep basicos
Lt concep basicosLt concep basicos
Lt concep basicos
 
correlacion-de-senales
correlacion-de-senalescorrelacion-de-senales
correlacion-de-senales
 
Operaciones entre lenguajes
Operaciones entre lenguajesOperaciones entre lenguajes
Operaciones entre lenguajes
 
Conferencia n° 5
Conferencia n° 5Conferencia n° 5
Conferencia n° 5
 
examen inf-164
examen inf-164examen inf-164
examen inf-164
 
Lecture 15 probabilidad de error y ber en señales bandabase binaria
Lecture 15 probabilidad de error y ber en señales bandabase binariaLecture 15 probabilidad de error y ber en señales bandabase binaria
Lecture 15 probabilidad de error y ber en señales bandabase binaria
 
Señales de tiempo continuo y discreto MATLAB
Señales de tiempo continuo y discreto MATLABSeñales de tiempo continuo y discreto MATLAB
Señales de tiempo continuo y discreto MATLAB
 

Similar a Regla de aprendizaje del perceptrón simple

Redes de propagación hacia delante y aprendizaje supervisado
Redes de propagación hacia delante   y aprendizaje supervisadoRedes de propagación hacia delante   y aprendizaje supervisado
Redes de propagación hacia delante y aprendizaje supervisado
ESCOM
 
RED NERONAL ADALINE
RED NERONAL ADALINERED NERONAL ADALINE
RED NERONAL ADALINE
ESCOM
 
Redes Neuronales
Redes NeuronalesRedes Neuronales
Redes Neuronalesgueste7b261
 
Algoritmo de Retropropagación
Algoritmo de RetropropagaciónAlgoritmo de Retropropagación
Algoritmo de Retropropagación
ESCOM
 
Perceptron parte 1
Perceptron parte 1Perceptron parte 1
Perceptron parte 1
edeciofreitez
 
Red Neuronal Adaline
Red Neuronal AdalineRed Neuronal Adaline
Red Neuronal Adalinefernandoman
 
Redes neuronales artificiales
Redes neuronales artificialesRedes neuronales artificiales
Redes neuronales artificiales
Spacetoshare
 
Boletin3
Boletin3Boletin3
Boletin3
Yin Quark
 
Redes Neuronales Monocapa con Conexiones en Cascada PERCEPTRON
Redes Neuronales Monocapa con Conexiones en Cascada PERCEPTRONRedes Neuronales Monocapa con Conexiones en Cascada PERCEPTRON
Redes Neuronales Monocapa con Conexiones en Cascada PERCEPTRON
ESCOM
 
Red NEURONAL de Hamming
Red   NEURONAL    de HammingRed   NEURONAL    de Hamming
Red NEURONAL de HammingESCOM
 
Utp 2015-2_ia_s4_red perceptron
 Utp 2015-2_ia_s4_red perceptron Utp 2015-2_ia_s4_red perceptron
Utp 2015-2_ia_s4_red perceptronjcbp_peru
 
Utp 2015-2_sirn lab2
 Utp 2015-2_sirn lab2 Utp 2015-2_sirn lab2
Utp 2015-2_sirn lab2jcbp_peru
 
Utp 2015-2_sirn_s4_red perceptron
 Utp 2015-2_sirn_s4_red perceptron Utp 2015-2_sirn_s4_red perceptron
Utp 2015-2_sirn_s4_red perceptronjcbp_peru
 
Utp ia_s4_red perceptron
 Utp ia_s4_red perceptron Utp ia_s4_red perceptron
Utp ia_s4_red perceptronjcbp_peru
 
Utp 2015-2_ia lab2
 Utp 2015-2_ia lab2 Utp 2015-2_ia lab2
Utp 2015-2_ia lab2jcbp_peru
 
Utp 2015-2_ia_s6_adaline y backpropagation
 Utp 2015-2_ia_s6_adaline y backpropagation Utp 2015-2_ia_s6_adaline y backpropagation
Utp 2015-2_ia_s6_adaline y backpropagationjcbp_peru
 
Red Neuronal Difusa
Red Neuronal DifusaRed Neuronal Difusa
Red Neuronal Difusa
ESCOM
 
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALESINTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
ESCOM
 
Utp 2015-2_sirn_s6_adaline y backpropagation
 Utp 2015-2_sirn_s6_adaline y backpropagation Utp 2015-2_sirn_s6_adaline y backpropagation
Utp 2015-2_sirn_s6_adaline y backpropagationjcbenitezp
 

Similar a Regla de aprendizaje del perceptrón simple (20)

Redes de propagación hacia delante y aprendizaje supervisado
Redes de propagación hacia delante   y aprendizaje supervisadoRedes de propagación hacia delante   y aprendizaje supervisado
Redes de propagación hacia delante y aprendizaje supervisado
 
RED NERONAL ADALINE
RED NERONAL ADALINERED NERONAL ADALINE
RED NERONAL ADALINE
 
Redes Neuronales
Redes NeuronalesRedes Neuronales
Redes Neuronales
 
Algoritmo de Retropropagación
Algoritmo de RetropropagaciónAlgoritmo de Retropropagación
Algoritmo de Retropropagación
 
Perceptron parte 1
Perceptron parte 1Perceptron parte 1
Perceptron parte 1
 
Red Neuronal Adaline
Red Neuronal AdalineRed Neuronal Adaline
Red Neuronal Adaline
 
Redes neuronales artificiales
Redes neuronales artificialesRedes neuronales artificiales
Redes neuronales artificiales
 
Tema4
Tema4Tema4
Tema4
 
Boletin3
Boletin3Boletin3
Boletin3
 
Redes Neuronales Monocapa con Conexiones en Cascada PERCEPTRON
Redes Neuronales Monocapa con Conexiones en Cascada PERCEPTRONRedes Neuronales Monocapa con Conexiones en Cascada PERCEPTRON
Redes Neuronales Monocapa con Conexiones en Cascada PERCEPTRON
 
Red NEURONAL de Hamming
Red   NEURONAL    de HammingRed   NEURONAL    de Hamming
Red NEURONAL de Hamming
 
Utp 2015-2_ia_s4_red perceptron
 Utp 2015-2_ia_s4_red perceptron Utp 2015-2_ia_s4_red perceptron
Utp 2015-2_ia_s4_red perceptron
 
Utp 2015-2_sirn lab2
 Utp 2015-2_sirn lab2 Utp 2015-2_sirn lab2
Utp 2015-2_sirn lab2
 
Utp 2015-2_sirn_s4_red perceptron
 Utp 2015-2_sirn_s4_red perceptron Utp 2015-2_sirn_s4_red perceptron
Utp 2015-2_sirn_s4_red perceptron
 
Utp ia_s4_red perceptron
 Utp ia_s4_red perceptron Utp ia_s4_red perceptron
Utp ia_s4_red perceptron
 
Utp 2015-2_ia lab2
 Utp 2015-2_ia lab2 Utp 2015-2_ia lab2
Utp 2015-2_ia lab2
 
Utp 2015-2_ia_s6_adaline y backpropagation
 Utp 2015-2_ia_s6_adaline y backpropagation Utp 2015-2_ia_s6_adaline y backpropagation
Utp 2015-2_ia_s6_adaline y backpropagation
 
Red Neuronal Difusa
Red Neuronal DifusaRed Neuronal Difusa
Red Neuronal Difusa
 
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALESINTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES
 
Utp 2015-2_sirn_s6_adaline y backpropagation
 Utp 2015-2_sirn_s6_adaline y backpropagation Utp 2015-2_sirn_s6_adaline y backpropagation
Utp 2015-2_sirn_s6_adaline y backpropagation
 

Último

Libro infantil sapo y sepo un año entero pdf
Libro infantil sapo y sepo un año entero pdfLibro infantil sapo y sepo un año entero pdf
Libro infantil sapo y sepo un año entero pdf
danitarb
 
PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.
https://gramadal.wordpress.com/
 
Fase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría AnalíticaFase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría Analítica
YasneidyGonzalez
 
1º GRADO CONCLUSIONES DESCRIPTIVAS PRIMARIA.docx
1º GRADO CONCLUSIONES DESCRIPTIVAS  PRIMARIA.docx1º GRADO CONCLUSIONES DESCRIPTIVAS  PRIMARIA.docx
1º GRADO CONCLUSIONES DESCRIPTIVAS PRIMARIA.docx
FelixCamachoGuzman
 
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernándezPRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
Ruben53283
 
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNETPRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
CESAR MIJAEL ESPINOZA SALAZAR
 
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
Monseespinoza6
 
El fundamento del gobierno de Dios. El amor
El fundamento del gobierno de Dios. El amorEl fundamento del gobierno de Dios. El amor
El fundamento del gobierno de Dios. El amor
Alejandrino Halire Ccahuana
 
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdfAsistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Demetrio Ccesa Rayme
 
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLAACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
JAVIER SOLIS NOYOLA
 
Introducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BIIntroducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BI
arleyo2006
 
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
auxsoporte
 
Friedrich Nietzsche. Presentación de 2 de Bachillerato.
Friedrich Nietzsche. Presentación de 2 de Bachillerato.Friedrich Nietzsche. Presentación de 2 de Bachillerato.
Friedrich Nietzsche. Presentación de 2 de Bachillerato.
pablomarin116
 
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
UNIDAD DE APRENDIZAJE DEL MES  Junio 2024UNIDAD DE APRENDIZAJE DEL MES  Junio 2024
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
EdwardYumbato1
 
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIACONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
BetzabePecheSalcedo1
 
Sesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdfSesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdf
https://gramadal.wordpress.com/
 
Testimonio Paco Z PATRONATO_Valencia_24.pdf
Testimonio Paco Z PATRONATO_Valencia_24.pdfTestimonio Paco Z PATRONATO_Valencia_24.pdf
Testimonio Paco Z PATRONATO_Valencia_24.pdf
Txema Gs
 
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCIONCAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
MasielPMP
 
Automatización de proceso de producción de la empresa Gloria SA (1).pptx
Automatización de proceso de producción de la empresa Gloria SA (1).pptxAutomatización de proceso de producción de la empresa Gloria SA (1).pptx
Automatización de proceso de producción de la empresa Gloria SA (1).pptx
GallardoJahse
 
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdfAsistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Demetrio Ccesa Rayme
 

Último (20)

Libro infantil sapo y sepo un año entero pdf
Libro infantil sapo y sepo un año entero pdfLibro infantil sapo y sepo un año entero pdf
Libro infantil sapo y sepo un año entero pdf
 
PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.PPT: El fundamento del gobierno de Dios.
PPT: El fundamento del gobierno de Dios.
 
Fase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría AnalíticaFase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría Analítica
 
1º GRADO CONCLUSIONES DESCRIPTIVAS PRIMARIA.docx
1º GRADO CONCLUSIONES DESCRIPTIVAS  PRIMARIA.docx1º GRADO CONCLUSIONES DESCRIPTIVAS  PRIMARIA.docx
1º GRADO CONCLUSIONES DESCRIPTIVAS PRIMARIA.docx
 
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernándezPRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
 
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNETPRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
 
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
 
El fundamento del gobierno de Dios. El amor
El fundamento del gobierno de Dios. El amorEl fundamento del gobierno de Dios. El amor
El fundamento del gobierno de Dios. El amor
 
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdfAsistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
 
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLAACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
 
Introducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BIIntroducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BI
 
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
 
Friedrich Nietzsche. Presentación de 2 de Bachillerato.
Friedrich Nietzsche. Presentación de 2 de Bachillerato.Friedrich Nietzsche. Presentación de 2 de Bachillerato.
Friedrich Nietzsche. Presentación de 2 de Bachillerato.
 
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
UNIDAD DE APRENDIZAJE DEL MES  Junio 2024UNIDAD DE APRENDIZAJE DEL MES  Junio 2024
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
 
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIACONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
 
Sesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdfSesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdf
 
Testimonio Paco Z PATRONATO_Valencia_24.pdf
Testimonio Paco Z PATRONATO_Valencia_24.pdfTestimonio Paco Z PATRONATO_Valencia_24.pdf
Testimonio Paco Z PATRONATO_Valencia_24.pdf
 
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCIONCAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
 
Automatización de proceso de producción de la empresa Gloria SA (1).pptx
Automatización de proceso de producción de la empresa Gloria SA (1).pptxAutomatización de proceso de producción de la empresa Gloria SA (1).pptx
Automatización de proceso de producción de la empresa Gloria SA (1).pptx
 
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdfAsistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
 

Regla de aprendizaje del perceptrón simple

  • 1.  
  • 2. Redes Neuronales Artificiales Las entradas Xi representan las señales que provienen de otras neuronas Los pesos Wi son la intensidad con que están conectadas dos neuronas; tanto Xi como Wi son valores reales. neta =  XiWi
  • 3.
  • 4. El aprendizaje es el proceso por el cual una red neuronal modifica sus pesos en respuesta a una informacíon de entrada. Los cambios que se producen durante el proceso de aprendizaje son la destrucción, modificación y creación de conexiones entre las neuronas. W = 0 Destrucción; W › 0 Creación Aprendizaje Hay dos vías: - No adaptativo : Se determina de antemano cual será el valor de los pesos - Adaptativo : No existe una forma para determinar de antemano los pesos, por lo que se necesita un proceso iterativo: Wi(t) = Wi(t-1) + Δ Wi
  • 5.
  • 6. • Aprendizaje Supervisado A la red se le proporciona un conjunto de ejemplos del comportamiento propio de la red (inputs/targets) • Aprendizaje por Reforzamiento A la red se proporciona un grado de desempeño de la misma. • Aprendizaje No supervisado Las entradas son las unicas disponibles para el aprendizaje, el algoritmo de la red aprende a categorizar las entradas (clustering)
  • 7.  
  • 8.
  • 9.
  • 10. Consiste en ajustar los pesos de las conexiones de la red en función de la diferencia entre los valores deseados y los obtenidos en la salida de la red; es decir en función del error cometido en la salida
  • 11.
  • 12. PERCEPTRÓN Características -Entradas reales -Aprendizaje supervisado -El espacio debe ser linealmente separable
  • 13. PERCEPTRÓN - Antecedentes -La primera red neuronal conocida, fue desarrollada en 1943 por Warren McCulloch y Walter Pitts -Suma de las señales de entrada, multiplicadas por unos valores de pesos escogidos aleatoriamente. - La entrada es comparada con un patrón preestablecido para determinar la salida de la red. -Si en la comparación, la suma de las entradas multiplicadas por los pesos es mayor o igual que el patrón preestablecido la salida de la red es uno (1), en caso contrario la salida es cero (0).
  • 14. PERCEPTRÓN - Antecedentes -La red tipo Perceptrón fue inventada por el sicólogo Frank Rosenblatt en el año 1957 -El primer modelo de Perceptrón fue desarrollado en un ambiente biológico imitando el funcionamiento del ojo humano. El fotoperceptrón: era un dispositivo que respondía a señales ópticas.
  • 15. PERCEPTRÓN Esquema general de un Perceptrón sencillo:
  • 16. PERCEPTRÓN -Era inicialmente un dispositivo de aprendizaje -En su configuración inicial no estaba en capacidad de distinguir patrones de entrada muy complejos -Sin embargo mediante un proceso de aprendizaje era capaz de adquirir esta capacidad -En esencia, el entrenamiento implicaba un proceso de refuerzo mediante el cual la salida de las unidades A se incrementaba o se decrementaba dependiendo de si las unidades A contribuían o no a las respuestas correctas del Perceptrón para una entrada dada.
  • 17. PERCEPTRÓN -En 1969 Marvin Minsky y Seymour Papert publicaron su libro: “Perceptrons: An introduction to Computational Geometry” -Análisis detallado del Perceptrón, en términos de sus capacidades y limitaciones
  • 18. PERCEPTRÓN -La función de salida de la red es llamada función umbral o función de transferencia (tipo hardlim): 1 si (neta+bias) >= 0 f(neta+bias) = 0 si (neta+bias) < 0 -También puede utilizarse una función de transferencia tipo hardlims (salidas 1 ó -1)
  • 19. Estructura de la Red (Perceptrón) La neurona de salida realiza la suma ponderada de las entradas, suma el bias y pasa el resultado a una función de transferencia de tipo hardlim(s). La regla e decisión es responder +1 si el patrón presentado pertenece a la clase A, o 0(–1) si el patrón pertenece a la clase B.
  • 20. Regla de Aprendizaje (Perceptrón) El Perceptrón es un tipo de red de aprendizaje supervisado , es decir necesita conocer los valores esperados para cada una de las entradas presentadas; su comportamiento está definido por pares de esta forma: Cuando p j es aplicado a la red, la salida de la red es comparada con el valor esperado t j Recordemos que la salida de la red esta determinada por: a = f(  XiWi + bias) = hardlim(  XiWi + bias)
  • 21.
  • 22. En general: El valor a correspondiente a la aplicación del objeto p a la red constituye la clasificación (o salida) de la red para p. Este valor puede ser igual a t (la clasificación real de p) ó diferente. Si son iguales significa que la red a brindado el valor correcto para p, de lo contrario la red de ha “equivocado” Los posibles casos son los siguientes: 1) a = t La salida de la Red es igual a la clasificación de p por tanto funcionó correctamente y no hay que hacer cambios en los pesos 2) t = 1 y a = 0 3) t = 0 y a = 1 En los dos últimos casos la red se ha equivocado por tanto sería necesario modificar los pesos (aprender)
  • 23. Las acciones para el aprendizaje, en cada caso serían: 1. t = a W N = W A 2. t=1, a=0 W N = W A + p 3. t=0, a=1 W N = W A – p Simplificaremos los casos haciendo: e = t-a 1. e = 0 W N = W A 2. e = 1 W N = W A + p 3. e = -1 W N = W A – p En general: W N = W A + e * p Bias N = Bias A + e
  • 25. Ejemplo: Utilizaremos cuatro puntos para el aprendizaje de la RNA P1 = ( 2, 1) T1 = 1 (clase A) P2 = ( 0, -1) T2 = 1 (clase A) P3 = (-2, 1) T3 = -1 (clase B) P4 = ( 0, 2) T4 = -1 (clase B) Partimos de cualquier valor (aleatorios) para los pesos y el bias: W = ( -0.7, 0.2 ) bias = 0.5
  • 26. Procedimiento general: El procedimiento de aprendizaje de la red (ajuste de los pesos) se resume en aplicar cada objeto de la muestra a la red y ajustar los pesos en caso de que la salida de la red no sea correcta , de acuerdo a las fórmulas ya explicadas: W N = W A + e * p Bias N = Bias A + e Donde e = t-a t = valor real del objeto a = valor calculado por la Red
  • 27. Paso 1 . Objeto P1 = (2,1) T1 = 1 W = ( -0.7, 0.2 ) bias = 0.5 Aplicamos la Red para P1 neta+bias = -0.7*2 + 0.2*1 + 0.5 = -0.7 a = hardlims(-0.7) = -1 T1 = 1 K a = -1 Por tanto es necesario ajustar los pesos: e = T1 – a = 1 – (-1) = 2 W N = W + e*P1 = (-0.7,0.2) + 2*(2,1) W N = (3.3, 2.2) bias N = bias + e = 0.5 + e = 2.5
  • 28. Paso 2 . Objeto P2 = (0,-1) T2 = 1 W = ( 3.3, 2.2 ) bias = 2.5 Aplicamos la Red para P2 neta+bias = 3.3*0 + 2.2*-1 + 2.5 = 0.3 a = hardlims(0.3) = 1 T2 = 1 = a = 1 Por tanto NO es necesario ajustar los pesos
  • 29. Paso 3 . Objeto P3 = (-2,1) T3 = -1 W = ( 3.3, 2.2 ) bias = 2.5 Aplicamos la Red para P3 neta+bias = 3.3*-2 + 2.2*1 + 2.5 = -1.9 a = hardlims(-1.9) = -1 T3 = -1 = a = -1 Por tanto NO es necesario ajustar los pesos
  • 30. Paso 4 . Objeto P4 = (0,2) T4 = -1 W = ( 3.3, 2.2 ) bias = 2.5 Aplicamos la Red para P4 neta+bias = 3.3*0 + 2.2*2 + 2.5 = 6.9 a = hardlims(6.9) = 1 T4 = -1 K a = 1 Por tanto es necesario ajustar los pesos: e = T1 – a = -1 – (1) = -2 W N = W + e*P4 = (3.3,2.2) + -2*(0,2) W N = (3.3, -1.8) bias N = bias + e = 0.5 + e = 0.5
  • 31. Hemos concluido con todos los objetos de la muestra, por tanto los pesos calculados para la red son: W = (3.3, -1.8) bias 0.5 Podemos verificar la Red para los cuatro objetos: RNA(P1) = 1 ( neta+bias = 5.3 ) RNA(P2) = 1 ( neta+bias)= 2.3 ) RNA(P3) = -1 ( neta+bias = -7.9 ) RNA(P4) = -1 ( neta+bias = -3.1 )
  • 32. Limitación Este tipo de red puede resolver solamente problemas cuyas salidas estén clasificadas en dos categorías diferentes y que permitan que su espacio de entrada sea dividido en regiones linealmente separables El proceso para determinar si un problema es linealmente separable o no, se realiza gráficamente sin problema, cuando los patrones de entrada generan un espacio de dos dimensiones , como en el caso del ejemplo; sin embargo, esta visualización se dificulta cuando el conjunto de patrones de entrada es de tres dimensiones, y resulta imposible de observar gráficamente cuando los patrones de entrada son de dimensiones superiores; en este caso se requiere plantear condiciones de desigualdad que permitan comprobar la separabilidad lineal de los patrones, esto se realiza con base en la ecuación de salida del Perceptrón: W*P+Bias >= 0 para los Objetos P, clasificados como 1 W*P+Bias < 0 para los Objetos P, clasificados como 0 (-1)
  • 33. La solución al problema de clasificación de patrones de la función XOR se encontraría fácilmente si se descompone el espacio en tres regiones: una región pertenecería a una de las clases de salida y las otras dos pertenecen a la segunda clase, así que si en lugar de utilizar únicamente una neurona de salida se utilizaran dos, se obtendrían dos rectas por lo que podrían delimitarse tres zonas; para poder elegir entre una zona u otra de las tres, es necesario utilizar otra capa con una neurona cuyas entradas serán las salidas de las neuronas anteriores; las dos zonas o regiones que contienen los puntos (0,0) y (1,1) se asocian a una salida nula de la red y la zona central se asocia a la salida con valor 1, de esta forma es posible encontrar una solución al problema de la función XOR, por tanto se ha de utilizar una red de tres neuronas, distribuidas en dos capas para solucionar este problema, pero esto seria ya una red Perceptrón multicapa y esa parte no abarcaremos en esta presentación.