SlideShare una empresa de Scribd logo
1 de 9
Descargar para leer sin conexión
A partir de conocer la ubicación de dos puntos en el plano cartesiano, es posible determinar la
distancia que hay entre éstos. Cuando algún punto se encuentra en el eje de las x o de las abscisas o en
una recta paralela a éste eje, la distancia entre los puntos corresponde al valor absoluto de las
diferencia de sus abscisas. (x 2 – x 1 ).
Ejemplo:
La distancia entre los puntos (–4, 0) y (5, 0).
Donde (-4) = x 1 ; 5 = x 2. Aplicando la fórmula es 5 – (–4) = 5 +4 = 9 unidades.
El punto medio, es el punto que se encuentra a la misma distancia de otros dos puntos cualquiera o
extremos de un segmento. Si es un segmento, el punto medio es el que lo divide en dos partes
iguales.
Ejemplo:
Sean A(x_1, y_1, z_1) y B(x_2, y_2, z_2) los extremos de un
segmento, el punto medio del segmento viene dado por:
En las ecuaciones se sustituyen ciertos valores, para definir los puntos que seguirá la gráfica. Es
importante destacar, que las funciones pueden variar mucho una de otra, por lo tanto, es
necesario identificar con cual tipo de ecuación se está trabajando. Recuerda que existen
ecuaciones para funciones lineales, parábolas, hipérbolas, circunferencias, elipses, entre otras.
Lo primero que debes tener en cuenta para representan las ecuaciones en el plano cartesiano
Es que todo se fundamente en el par ordenado. Este se define sustituyendo un valor
independiente en la ecuación y consiguiendo así la variable dependiente. Seguidamente, se
organizan y se representan en el plano cartesiano.
Una vez que se hayan representados todos los pares ordenados en el plano cartesiano, es
necesarios empezar a unirlos. Para ello, es importante que sigas el orden que seguiste para
calcular los pares ordenados. Como resultado, conseguirás la gráfica correspondiente a la
ecuación de la función desarrollada
La circunferencia es el lugar geométrico de los puntos del plano cartesiano que equidistan de un
punto fijo llamado centro. Una circunferencia queda determinada cuando conocemos: Tres
puntos de la misma, equidistantes del centro, El centro y el radio, El centro y un punto en ella, El
centro y una recta tangente a la circunferencia.
También podemos decir que la circunferencia es la línea formada por todos los puntos que están
a la misma distancia de otro punto, llamado centro .Esta propiedad es la clave para hallar la
expresión analítica de una circunferencia. Entonces, entrando en el terreno de la Geometría
Analítica , (dentro del Plano Cartesiano ) diremos que para cualquier punto, P (x, y) , de una
circunferencia cuyo centro es el punto C (a, b) y con radio r ─, la ecuación ordinaria es(x ─ a) 2 +
(y ─ b) 2 = r 2
Ejemplo:
En el Plano Cartesiano una parábola puede tener su vértice en cualquier par de coordenadas y
puede estar orientada hacia arriba, hacia abajo o hacia la izquierda o la derecha.
Ecuaciones de la parábola con vértice en el origen
Primeramente, estudiaremos la ecuación de la parábola para los casos en que su vértice esté en
el origen, y según esto, tenemos cuatro posibilidades de ecuación y cada una es característica.
Para iniciar nuestra explicación empezaremos con la parábola cuyo vértice está en el origen, su
eje focal o de simetría coincide con el eje de las X (abscisas) y que está orientada (se abre) hacia
la derecha. Por definición, sabemos que, en una parábola la distancia entre un punto “P” (no
confundir con el “parámetro p”), cualquiera de coordenadas (x, y), y el foco “F” será igual a la
distancia entre la directriz (D) y dicho punto, como vemos en la figura:
Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es
constante.
Elementos de la elipse:
1. Focos: Son los puntos fijos F y F'.
2. Eje focal: Es la recta que pasa por los focos.
3. Eje secundario: Es la mediatriz del segmento FF'.
4. Centro: Es el punto de intersección de los ejes.
5. Radios vectores: Son los segmentos que van desde un punto de la elipse a los focos: PF y PF'.
6. Distancia focal: Es el segmento segmento de longitud 2c, c es el valor de la semidistancia focal.
7. Vértices: Son los puntos de intersección de la elipse con los ejes: A, A', B y B'.
8. Eje mayor: Es el segmento segmento de longitud 2a, a es el valor del semieje mayor.
9. Eje menor: Es el segmento segmento de longitud 2b, b es el valor del semieje menor.
10. Ejes de simetría: Son las rectas que contienen al eje mayor o al eje menor.
11. Centro de simetría: Coincide con el centro de la elipse, que es el punto de intersección de los ejes de
simetría.
La hipérbola es una curva plana, abierta, con dos ramas; se define como el lugar geométrico de los
puntos cuya diferencia de distancias a otros dos fijos, llamados focos, es constante e igual a 2a = AB, la
longitud del eje real. Tiene dos ejes perpendiculares que se cortan en el punto medio O, centro de la
curva. El eje mayor AB se llama eje real y se representa por 2a; el eje menor se representa por 2b y se
llama imaginario porque no tiene puntos comunes con la curva. Los focos están en el eje real. La
distancia focal se representa por 2c.
Entre a, b y c existe la relación c2 = a2 + b2.
La hipérbola es simétrica respecto de los dos ejes y, por lo tanto respecto del centro O. Las rectas que
unen un punto M de la curva con dos focos, se llaman radios vectores r y r' y por definición se verifica: r -
r' = 2a.
La circunferencia principal de la hipérbola es la que tiene por centro O y radio 2a. Se define como el lugar
geométrico de los pies de las perpendiculares trazadas por los focos a cada una de las tangentes. Las
circunferencias focales tienen por centro los focos y radio a.
Se denomina CONICA a todas las curvas intersección entre un cono y un plano; si dicho plano no pasa
por el vértice, se obtienen las cónicas propiamente dichas. Se clasifican en tres tipos: elipse, parábola e
hipérbola. Un cono circular recto.
En función de la relación existente entre el ángulo de conicidad (α) y la inclinación del plano respecto del
eje del cono (β), pueden obtenerse diferentes secciones cónicas

Más contenido relacionado

Similar a trabajodematematicas3.pptx

Plano Numerico-presentacion de matematica-.pdf
Plano Numerico-presentacion de matematica-.pdfPlano Numerico-presentacion de matematica-.pdf
Plano Numerico-presentacion de matematica-.pdfKarelbysDanielaTeran
 
PLANO CARTESIANO GABRIEL .pdf
PLANO CARTESIANO GABRIEL .pdfPLANO CARTESIANO GABRIEL .pdf
PLANO CARTESIANO GABRIEL .pdfGabriel Peña
 
Plano Numérico Michell Urra IN0114.pptx
Plano Numérico Michell Urra IN0114.pptxPlano Numérico Michell Urra IN0114.pptx
Plano Numérico Michell Urra IN0114.pptxMichell Urra Juarez
 
Plano numerico
Plano numericoPlano numerico
Plano numericoErikNava9
 
Plano numérico o plano cartesiano.pptx
Plano numérico o plano  cartesiano.pptxPlano numérico o plano  cartesiano.pptx
Plano numérico o plano cartesiano.pptxAndersonMarchan
 
PLANO NUMERICO KARLA GARCIA.pptx
PLANO NUMERICO KARLA GARCIA.pptxPLANO NUMERICO KARLA GARCIA.pptx
PLANO NUMERICO KARLA GARCIA.pptxKarlaGarcia571339
 
Plano Numérico - Pedro Briceño.pdf
Plano Numérico - Pedro Briceño.pdfPlano Numérico - Pedro Briceño.pdf
Plano Numérico - Pedro Briceño.pdfpedrobriceooliva
 
plano numerico.pdf
plano numerico.pdfplano numerico.pdf
plano numerico.pdfSolBarrios13
 
Plano numerico (dennisse_perez)
Plano numerico (dennisse_perez)Plano numerico (dennisse_perez)
Plano numerico (dennisse_perez)Dennisse Pérez
 
Plano Numérico o Plano Cartesiano.pdf
Plano Numérico o Plano Cartesiano.pdfPlano Numérico o Plano Cartesiano.pdf
Plano Numérico o Plano Cartesiano.pdfAngelDavidMendoza2
 
presentacion plano numerico emmanuel suarez IN0114.pptx
presentacion plano numerico emmanuel suarez IN0114.pptxpresentacion plano numerico emmanuel suarez IN0114.pptx
presentacion plano numerico emmanuel suarez IN0114.pptxEmmanuelSurez6
 
plano numerico.pdf
plano numerico.pdfplano numerico.pdf
plano numerico.pdfangelyeerum
 

Similar a trabajodematematicas3.pptx (20)

TRABAJO PLANO NUMÉRICO
TRABAJO PLANO NUMÉRICOTRABAJO PLANO NUMÉRICO
TRABAJO PLANO NUMÉRICO
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Plano Numerico-presentacion de matematica-.pdf
Plano Numerico-presentacion de matematica-.pdfPlano Numerico-presentacion de matematica-.pdf
Plano Numerico-presentacion de matematica-.pdf
 
PLANO CARTESIANO GABRIEL .pdf
PLANO CARTESIANO GABRIEL .pdfPLANO CARTESIANO GABRIEL .pdf
PLANO CARTESIANO GABRIEL .pdf
 
Plano Numérico Michell Urra IN0114.pptx
Plano Numérico Michell Urra IN0114.pptxPlano Numérico Michell Urra IN0114.pptx
Plano Numérico Michell Urra IN0114.pptx
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
PUNTO.pptx
PUNTO.pptxPUNTO.pptx
PUNTO.pptx
 
Plano Numerico
Plano NumericoPlano Numerico
Plano Numerico
 
Plano numérico o plano cartesiano.pptx
Plano numérico o plano  cartesiano.pptxPlano numérico o plano  cartesiano.pptx
Plano numérico o plano cartesiano.pptx
 
matematica presentacion #2
matematica presentacion #2matematica presentacion #2
matematica presentacion #2
 
Plano Numerico
Plano NumericoPlano Numerico
Plano Numerico
 
PLANO NUMERICO KARLA GARCIA.pptx
PLANO NUMERICO KARLA GARCIA.pptxPLANO NUMERICO KARLA GARCIA.pptx
PLANO NUMERICO KARLA GARCIA.pptx
 
Plano Numérico - Pedro Briceño.pdf
Plano Numérico - Pedro Briceño.pdfPlano Numérico - Pedro Briceño.pdf
Plano Numérico - Pedro Briceño.pdf
 
plano numerico.pdf
plano numerico.pdfplano numerico.pdf
plano numerico.pdf
 
Plano numerico (dennisse_perez)
Plano numerico (dennisse_perez)Plano numerico (dennisse_perez)
Plano numerico (dennisse_perez)
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Plano Numérico o Plano Cartesiano.pdf
Plano Numérico o Plano Cartesiano.pdfPlano Numérico o Plano Cartesiano.pdf
Plano Numérico o Plano Cartesiano.pdf
 
presentacion plano numerico emmanuel suarez IN0114.pptx
presentacion plano numerico emmanuel suarez IN0114.pptxpresentacion plano numerico emmanuel suarez IN0114.pptx
presentacion plano numerico emmanuel suarez IN0114.pptx
 
plano numerico.pdf
plano numerico.pdfplano numerico.pdf
plano numerico.pdf
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 

Más de gissell_03112005

trabajodematematicas33.pptx
trabajodematematicas33.pptxtrabajodematematicas33.pptx
trabajodematematicas33.pptxgissell_03112005
 
trabajo de matematicas.pptx
trabajo de matematicas.pptxtrabajo de matematicas.pptx
trabajo de matematicas.pptxgissell_03112005
 
Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion gissell_03112005
 
Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y FactorizacionExpresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizaciongissell_03112005
 
Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion gissell_03112005
 

Más de gissell_03112005 (7)

trabajodematematicas33.pptx
trabajodematematicas33.pptxtrabajodematematicas33.pptx
trabajodematematicas33.pptx
 
trabajo de matematicas.pptx
trabajo de matematicas.pptxtrabajo de matematicas.pptx
trabajo de matematicas.pptx
 
Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion
 
Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y FactorizacionExpresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion
 
Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion Expresiones Algebraicas y Factorizacion
Expresiones Algebraicas y Factorizacion
 
Gissell leal 4to "A"
Gissell leal 4to "A"Gissell leal 4to "A"
Gissell leal 4to "A"
 
Arbol genealogico gissel
Arbol genealogico gisselArbol genealogico gissel
Arbol genealogico gissel
 

Último

Revista Apuntes de Historia. Abril 2024.pdf
Revista Apuntes de Historia. Abril 2024.pdfRevista Apuntes de Historia. Abril 2024.pdf
Revista Apuntes de Historia. Abril 2024.pdfapunteshistoriamarmo
 
BOCA Y NARIZ (2).pdf....................
BOCA Y NARIZ (2).pdf....................BOCA Y NARIZ (2).pdf....................
BOCA Y NARIZ (2).pdf....................ScarletMedina4
 
PRUEBA APTITUD CONTRALORIA- examen 1.pdf
PRUEBA APTITUD CONTRALORIA- examen 1.pdfPRUEBA APTITUD CONTRALORIA- examen 1.pdf
PRUEBA APTITUD CONTRALORIA- examen 1.pdfRobertoCarlo15
 
REGISTRO AUXILIAR 2024.pptx - Primaria EBR
REGISTRO AUXILIAR 2024.pptx - Primaria EBRREGISTRO AUXILIAR 2024.pptx - Primaria EBR
REGISTRO AUXILIAR 2024.pptx - Primaria EBRMarielLorena2
 
IMÁGENES SUBLIMINALES EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
IMÁGENES SUBLIMINALES EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁIMÁGENES SUBLIMINALES EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
IMÁGENES SUBLIMINALES EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁdavidterri38
 
'Diseño Curricular Misiones 2022 (2).pdf
'Diseño Curricular Misiones 2022 (2).pdf'Diseño Curricular Misiones 2022 (2).pdf
'Diseño Curricular Misiones 2022 (2).pdfJuana aranda
 
revista dxn 2024.pdf--------------------
revista dxn 2024.pdf--------------------revista dxn 2024.pdf--------------------
revista dxn 2024.pdf--------------------fiorevega666
 
Presentación MF 1445 EVALUACION COMO Y QUE
Presentación MF 1445 EVALUACION COMO Y QUEPresentación MF 1445 EVALUACION COMO Y QUE
Presentación MF 1445 EVALUACION COMO Y QUEJosé Hecht
 
CARTEL DE BIENVENIDA AL ECLIPSE DE SOL A LA CIUDAD DE TORREON. Autor y diseña...
CARTEL DE BIENVENIDA AL ECLIPSE DE SOL A LA CIUDAD DE TORREON. Autor y diseña...CARTEL DE BIENVENIDA AL ECLIPSE DE SOL A LA CIUDAD DE TORREON. Autor y diseña...
CARTEL DE BIENVENIDA AL ECLIPSE DE SOL A LA CIUDAD DE TORREON. Autor y diseña...JAVIER SOLIS NOYOLA
 
Filosofía del gobierno del general Alfaro
Filosofía del gobierno del general AlfaroFilosofía del gobierno del general Alfaro
Filosofía del gobierno del general AlfaroJosé Luis Palma
 
Descripción Und Curso Inf.Médica - Diseño ExpAprendizaje2.pdf
Descripción Und Curso Inf.Médica - Diseño ExpAprendizaje2.pdfDescripción Und Curso Inf.Médica - Diseño ExpAprendizaje2.pdf
Descripción Und Curso Inf.Médica - Diseño ExpAprendizaje2.pdfCarol Andrea Eraso Guerrero
 
PROGRAMACIÓN ANUAL EPT 1RO 2024 - Perú.docx
PROGRAMACIÓN ANUAL EPT 1RO 2024 - Perú.docxPROGRAMACIÓN ANUAL EPT 1RO 2024 - Perú.docx
PROGRAMACIÓN ANUAL EPT 1RO 2024 - Perú.docxLenin Villanueva
 
ERAS Y PERIODOS DEL TIEMPO GEOLOGICO.pptx
ERAS Y PERIODOS DEL TIEMPO GEOLOGICO.pptxERAS Y PERIODOS DEL TIEMPO GEOLOGICO.pptx
ERAS Y PERIODOS DEL TIEMPO GEOLOGICO.pptxduquemariact
 
Tema 13a. Catabolismo aerobio y anaerobio 2024
Tema 13a.  Catabolismo aerobio y anaerobio  2024Tema 13a.  Catabolismo aerobio y anaerobio  2024
Tema 13a. Catabolismo aerobio y anaerobio 2024IES Vicent Andres Estelles
 
Diplomatura Ultrasonido Reproducción Asistidada
Diplomatura Ultrasonido Reproducción AsistidadaDiplomatura Ultrasonido Reproducción Asistidada
Diplomatura Ultrasonido Reproducción AsistidadaTony Terrones
 
La-cosmovision-del-curriculo-educativo-en-Venezuela (1).pptx
La-cosmovision-del-curriculo-educativo-en-Venezuela (1).pptxLa-cosmovision-del-curriculo-educativo-en-Venezuela (1).pptx
La-cosmovision-del-curriculo-educativo-en-Venezuela (1).pptxMAURICIO329243
 

Último (20)

Revista Apuntes de Historia. Abril 2024.pdf
Revista Apuntes de Historia. Abril 2024.pdfRevista Apuntes de Historia. Abril 2024.pdf
Revista Apuntes de Historia. Abril 2024.pdf
 
BOCA Y NARIZ (2).pdf....................
BOCA Y NARIZ (2).pdf....................BOCA Y NARIZ (2).pdf....................
BOCA Y NARIZ (2).pdf....................
 
PRUEBA APTITUD CONTRALORIA- examen 1.pdf
PRUEBA APTITUD CONTRALORIA- examen 1.pdfPRUEBA APTITUD CONTRALORIA- examen 1.pdf
PRUEBA APTITUD CONTRALORIA- examen 1.pdf
 
REGISTRO AUXILIAR 2024.pptx - Primaria EBR
REGISTRO AUXILIAR 2024.pptx - Primaria EBRREGISTRO AUXILIAR 2024.pptx - Primaria EBR
REGISTRO AUXILIAR 2024.pptx - Primaria EBR
 
IMÁGENES SUBLIMINALES EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
IMÁGENES SUBLIMINALES EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁIMÁGENES SUBLIMINALES EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
IMÁGENES SUBLIMINALES EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
 
'Diseño Curricular Misiones 2022 (2).pdf
'Diseño Curricular Misiones 2022 (2).pdf'Diseño Curricular Misiones 2022 (2).pdf
'Diseño Curricular Misiones 2022 (2).pdf
 
Act#25 TDLab. Eclipse Solar 08/abril/2024
Act#25 TDLab. Eclipse Solar 08/abril/2024Act#25 TDLab. Eclipse Solar 08/abril/2024
Act#25 TDLab. Eclipse Solar 08/abril/2024
 
revista dxn 2024.pdf--------------------
revista dxn 2024.pdf--------------------revista dxn 2024.pdf--------------------
revista dxn 2024.pdf--------------------
 
Presentación MF 1445 EVALUACION COMO Y QUE
Presentación MF 1445 EVALUACION COMO Y QUEPresentación MF 1445 EVALUACION COMO Y QUE
Presentación MF 1445 EVALUACION COMO Y QUE
 
CARTEL DE BIENVENIDA AL ECLIPSE DE SOL A LA CIUDAD DE TORREON. Autor y diseña...
CARTEL DE BIENVENIDA AL ECLIPSE DE SOL A LA CIUDAD DE TORREON. Autor y diseña...CARTEL DE BIENVENIDA AL ECLIPSE DE SOL A LA CIUDAD DE TORREON. Autor y diseña...
CARTEL DE BIENVENIDA AL ECLIPSE DE SOL A LA CIUDAD DE TORREON. Autor y diseña...
 
Filosofía del gobierno del general Alfaro
Filosofía del gobierno del general AlfaroFilosofía del gobierno del general Alfaro
Filosofía del gobierno del general Alfaro
 
Descripción Und Curso Inf.Médica - Diseño ExpAprendizaje2.pdf
Descripción Und Curso Inf.Médica - Diseño ExpAprendizaje2.pdfDescripción Und Curso Inf.Médica - Diseño ExpAprendizaje2.pdf
Descripción Und Curso Inf.Médica - Diseño ExpAprendizaje2.pdf
 
PROGRAMACIÓN ANUAL EPT 1RO 2024 - Perú.docx
PROGRAMACIÓN ANUAL EPT 1RO 2024 - Perú.docxPROGRAMACIÓN ANUAL EPT 1RO 2024 - Perú.docx
PROGRAMACIÓN ANUAL EPT 1RO 2024 - Perú.docx
 
ERAS Y PERIODOS DEL TIEMPO GEOLOGICO.pptx
ERAS Y PERIODOS DEL TIEMPO GEOLOGICO.pptxERAS Y PERIODOS DEL TIEMPO GEOLOGICO.pptx
ERAS Y PERIODOS DEL TIEMPO GEOLOGICO.pptx
 
Tema 13a. Catabolismo aerobio y anaerobio 2024
Tema 13a.  Catabolismo aerobio y anaerobio  2024Tema 13a.  Catabolismo aerobio y anaerobio  2024
Tema 13a. Catabolismo aerobio y anaerobio 2024
 
Unidad 1 | Metodología de la Investigación
Unidad 1 | Metodología de la InvestigaciónUnidad 1 | Metodología de la Investigación
Unidad 1 | Metodología de la Investigación
 
AO TEATRO, COM ANTÓNIO MOTA! _
AO TEATRO, COM ANTÓNIO MOTA!             _AO TEATRO, COM ANTÓNIO MOTA!             _
AO TEATRO, COM ANTÓNIO MOTA! _
 
Diplomatura Ultrasonido Reproducción Asistidada
Diplomatura Ultrasonido Reproducción AsistidadaDiplomatura Ultrasonido Reproducción Asistidada
Diplomatura Ultrasonido Reproducción Asistidada
 
Acuerdo segundo periodo - Grado Noveno.pptx
Acuerdo segundo periodo - Grado Noveno.pptxAcuerdo segundo periodo - Grado Noveno.pptx
Acuerdo segundo periodo - Grado Noveno.pptx
 
La-cosmovision-del-curriculo-educativo-en-Venezuela (1).pptx
La-cosmovision-del-curriculo-educativo-en-Venezuela (1).pptxLa-cosmovision-del-curriculo-educativo-en-Venezuela (1).pptx
La-cosmovision-del-curriculo-educativo-en-Venezuela (1).pptx
 

trabajodematematicas3.pptx

  • 1.
  • 2. A partir de conocer la ubicación de dos puntos en el plano cartesiano, es posible determinar la distancia que hay entre éstos. Cuando algún punto se encuentra en el eje de las x o de las abscisas o en una recta paralela a éste eje, la distancia entre los puntos corresponde al valor absoluto de las diferencia de sus abscisas. (x 2 – x 1 ). Ejemplo: La distancia entre los puntos (–4, 0) y (5, 0). Donde (-4) = x 1 ; 5 = x 2. Aplicando la fórmula es 5 – (–4) = 5 +4 = 9 unidades.
  • 3. El punto medio, es el punto que se encuentra a la misma distancia de otros dos puntos cualquiera o extremos de un segmento. Si es un segmento, el punto medio es el que lo divide en dos partes iguales. Ejemplo: Sean A(x_1, y_1, z_1) y B(x_2, y_2, z_2) los extremos de un segmento, el punto medio del segmento viene dado por:
  • 4. En las ecuaciones se sustituyen ciertos valores, para definir los puntos que seguirá la gráfica. Es importante destacar, que las funciones pueden variar mucho una de otra, por lo tanto, es necesario identificar con cual tipo de ecuación se está trabajando. Recuerda que existen ecuaciones para funciones lineales, parábolas, hipérbolas, circunferencias, elipses, entre otras. Lo primero que debes tener en cuenta para representan las ecuaciones en el plano cartesiano Es que todo se fundamente en el par ordenado. Este se define sustituyendo un valor independiente en la ecuación y consiguiendo así la variable dependiente. Seguidamente, se organizan y se representan en el plano cartesiano. Una vez que se hayan representados todos los pares ordenados en el plano cartesiano, es necesarios empezar a unirlos. Para ello, es importante que sigas el orden que seguiste para calcular los pares ordenados. Como resultado, conseguirás la gráfica correspondiente a la ecuación de la función desarrollada
  • 5. La circunferencia es el lugar geométrico de los puntos del plano cartesiano que equidistan de un punto fijo llamado centro. Una circunferencia queda determinada cuando conocemos: Tres puntos de la misma, equidistantes del centro, El centro y el radio, El centro y un punto en ella, El centro y una recta tangente a la circunferencia. También podemos decir que la circunferencia es la línea formada por todos los puntos que están a la misma distancia de otro punto, llamado centro .Esta propiedad es la clave para hallar la expresión analítica de una circunferencia. Entonces, entrando en el terreno de la Geometría Analítica , (dentro del Plano Cartesiano ) diremos que para cualquier punto, P (x, y) , de una circunferencia cuyo centro es el punto C (a, b) y con radio r ─, la ecuación ordinaria es(x ─ a) 2 + (y ─ b) 2 = r 2 Ejemplo:
  • 6. En el Plano Cartesiano una parábola puede tener su vértice en cualquier par de coordenadas y puede estar orientada hacia arriba, hacia abajo o hacia la izquierda o la derecha. Ecuaciones de la parábola con vértice en el origen Primeramente, estudiaremos la ecuación de la parábola para los casos en que su vértice esté en el origen, y según esto, tenemos cuatro posibilidades de ecuación y cada una es característica. Para iniciar nuestra explicación empezaremos con la parábola cuyo vértice está en el origen, su eje focal o de simetría coincide con el eje de las X (abscisas) y que está orientada (se abre) hacia la derecha. Por definición, sabemos que, en una parábola la distancia entre un punto “P” (no confundir con el “parámetro p”), cualquiera de coordenadas (x, y), y el foco “F” será igual a la distancia entre la directriz (D) y dicho punto, como vemos en la figura:
  • 7. Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante. Elementos de la elipse: 1. Focos: Son los puntos fijos F y F'. 2. Eje focal: Es la recta que pasa por los focos. 3. Eje secundario: Es la mediatriz del segmento FF'. 4. Centro: Es el punto de intersección de los ejes. 5. Radios vectores: Son los segmentos que van desde un punto de la elipse a los focos: PF y PF'. 6. Distancia focal: Es el segmento segmento de longitud 2c, c es el valor de la semidistancia focal. 7. Vértices: Son los puntos de intersección de la elipse con los ejes: A, A', B y B'. 8. Eje mayor: Es el segmento segmento de longitud 2a, a es el valor del semieje mayor. 9. Eje menor: Es el segmento segmento de longitud 2b, b es el valor del semieje menor. 10. Ejes de simetría: Son las rectas que contienen al eje mayor o al eje menor. 11. Centro de simetría: Coincide con el centro de la elipse, que es el punto de intersección de los ejes de simetría.
  • 8. La hipérbola es una curva plana, abierta, con dos ramas; se define como el lugar geométrico de los puntos cuya diferencia de distancias a otros dos fijos, llamados focos, es constante e igual a 2a = AB, la longitud del eje real. Tiene dos ejes perpendiculares que se cortan en el punto medio O, centro de la curva. El eje mayor AB se llama eje real y se representa por 2a; el eje menor se representa por 2b y se llama imaginario porque no tiene puntos comunes con la curva. Los focos están en el eje real. La distancia focal se representa por 2c. Entre a, b y c existe la relación c2 = a2 + b2. La hipérbola es simétrica respecto de los dos ejes y, por lo tanto respecto del centro O. Las rectas que unen un punto M de la curva con dos focos, se llaman radios vectores r y r' y por definición se verifica: r - r' = 2a. La circunferencia principal de la hipérbola es la que tiene por centro O y radio 2a. Se define como el lugar geométrico de los pies de las perpendiculares trazadas por los focos a cada una de las tangentes. Las circunferencias focales tienen por centro los focos y radio a.
  • 9. Se denomina CONICA a todas las curvas intersección entre un cono y un plano; si dicho plano no pasa por el vértice, se obtienen las cónicas propiamente dichas. Se clasifican en tres tipos: elipse, parábola e hipérbola. Un cono circular recto. En función de la relación existente entre el ángulo de conicidad (α) y la inclinación del plano respecto del eje del cono (β), pueden obtenerse diferentes secciones cónicas