SlideShare una empresa de Scribd logo
Integrante:
Michael Evies
C.I: V-28.566.055
PNF Distribución Logística
Sección: 0413
Plano Numérico o Cartesiano
Está formado por dos rectas numéricas, una horizontal y otra vertical que se cortan en un punto. La recta horizontal es llamada eje de
las abscisas o de las (x), y la vertical, eje de las ordenadas o de las (y); el punto donde se cortan recibe el nombre de origen.
El plano cartesiano tiene como finalidad describir la posición de puntos, los cuales
se representan por sus coordenadas o pares ordenados. Las coordenadas se forman
asociando un valor del eje de las "X" y uno de las "Y", respectivamente, esto indica
que un punto se puede ubicar en el plano cartesiano con base en sus
coordenadas, lo cual se representa como:
P ( x , y)
Para localizar puntos en el plano
cartesiano se debe llevar a cabo el
siguiente procedimiento.
1. Para localizar la abscisa o valor de x,
se cuentan las unidades
correspondientes hacia la derecha si
son positivas o hacia a izquierda si son
negativas, a partir del punto de origen,
en este caso el cero.
2. Desde donde se localiza el valor de x,
se cuentan las unidades
correspondientes hacia arriba si son
positivas o hacia abajo, si son negativas
y de esta forma se localiza cualquier
punto dadas sus coordenadas.
Plano Numérico o Cartesiano
Localizar el punto A ( -4, 5 ) en el plano cartesiano. Este procedimiento también se emplea cuando se requiere
determinar las coordenadas de cualquier punto que esté en el plano cartesiano.
Determinar las coordenadas del punto M.
Las coordenadas del punto M son (3,-5).
De lo anterior se concluye que:
Para determinar las coordenadas de un punto o localizarlo en el plano cartesiano, se encuentran unidades correspondientes
en el eje de las x hacia la derecha o hacia la izquierda y luego las unidades del eje de las y hacia arriba o hacia abajo,
según sean positivas o negativas, respectivamente.
Ejemplo
La distancia, en matemáticas, es una magnitud escalar que se mide en unidades de longitud, y que
se puede entender como el camino entre un punto de origen A y un punto de destino B. Dicho
trayecto normalmente equivale a la longitud de una recta que une dos puntos, estando en un plano
euclídeo.
Es el punto que se encuentra a la misma distancia de otros dos puntos cualquiera o extremos de un
segmento. Si es un segmento, el punto medio es el que lo divide en dos partes iguales.
Punto medio
y
los extremos de un segmento, el punto medio del segmento viene dado por:
Sean y
Distancia
Una circunferencia se define como el lugar geométrico de los puntos del plano equidistantes de
otro, llamado centro de la circunferencia. No debemos nunca confundir el concepto de círculo con el
concepto de circunferencia, que en realidad una circunferencia es la curva que encierra a un círculo (la
circunferencia es una curva, el círculo una superficie).
En realidad, y de manera más sencilla, una circunferencia es el conjunto de puntos situados en
el plano todos a la misma distancia de un mismo punto central, al que llamaremos centro, y del que
hablaremos más adelante con detalle en la parte de elementos básicos de la circunferencia.
También podemos decir que la circunferencia es la línea formada por todos los puntos que
están a la misma distancia de otro punto, llamado centro.
Esta propiedad es la clave para hallar la expresión analítica de una circunferencia (la ecuación
de la circunferencia).
Entonces, entrando en el terreno de la Geometría Analítica, (donde del plano cartesiano)
diremos que para cualquier punto, P (x , y) , de una circunferencia cuyo centro es el punto C (a , b) y
con radio r, la ecuación ordinaria es
(x ─ a) 2 + (y ─ b) 2 = r 2
Ecuaciones y Trazados de Circunferencia
Centro: punto central que está a la misma distancia de todos los
puntos pertenecientes a la circunferencia.
Radio: pedazo de recta que une el centro con cualquier punto
perteneciente a la circunferencia.
Cuerda: pedazo de recta que une dos puntos cualquiera de una
circunferencia.
Diámetro: mayor cuerda que une dos puntos de una circunferencia.
Hay infinitos diámetros y todos pasan por el centro de la
circunferencia.
Recta secante: recta que corta dos puntos cualesquiera de una
circunferencia.
Recta tangente: recta que toca a la circunferencia en un solo punto
y es perpendicular a un radio.
Una parábola queda definida por el conjunto de los puntos del plano que equidistan de una recta fija y un punto fijo.
Elementos Básicos
Parábola
Elipse es el lugar geométrico de todos los
puntos de un plano, tales que la suma de
las distancias a otros dos puntos fijos
llamados focos es constante.
1. Focos: Son los puntos fijos F y F'.
2. Eje focal: Es la recta que pasa por los focos.
3. Eje secundario: Es la mediatriz del segmento FF'.
4. Centro: Es el punto de intersección de los ejes.
5. Radios vectores: Son los segmentos que van desde un
punto de la elipse a los focos: PF y PF'.
6. Distancia focal: Es el segmento segmento de longitud 2c,
c es el valor de la semidistancia focal.
7. Vértices: Son los puntos de intersección de la elipse con
los ejes: A, A', B y B'.
8. Eje mayor: Es el segmento segmento de longitud 2a, a es
el valor del semieje mayor.
9. Eje menor: Es el segmento segmento de longitud 2b, b es
el valor del semieje menor.
10. Ejes de simetría: Son las rectas que contienen al eje
mayor o al eje menor.
11. Centro de simetría: Coincide con el centro de la elipse,
que es el punto de intersección de los ejes de simetría.
Elipse
Elementos de la elipse
Es el lugar geométrico de los puntos del plano
cuya diferencia de distancias a dos puntos fijos
llamados focos es constante.
Relación entre la distancia focal y los semiejes
Hipérbola
1. Focos: Son los puntos fijos F y F'.
2. Eje principal o real: Es la recta que pasa por los focos.
3. Eje secundario o imaginario: Es la mediatriz del segmento FF'.
4. Centro: Es el punto de intersección de los ejes.
5. Vértices: Los puntos A y A' son los puntos de intersección de la hipérbola con el eje focal.
Los puntos B y B' se obtienen como intersección del eje imaginario con la circunferencia que tiene por
centro uno de los vértices y de radio c.
6. Radios vectores: Son los segmentos que van desde un punto de la hipérbola a los focos: PF y PF'.
7. Distancia focal: Es el segmento de longitud 2c.
8. Eje mayor: Es el segmento de longitud 2a.
9. Eje menor: Es el segmento de longitud 2b.
10. Ejes de simetría: Son las rectas que contienen al eje real o al eje imaginario.
11. Asíntotas: Son las rectas de ecuaciones:
12. Relación entre los semiejes:
Elementos de la hipérbola
Representar gráficamente las ecuaciones de las cónicas
Determine la Circunferencia de centro C y radio r es el lugar geométrico de los puntos cuya
distancia al centro es r.
Ejercicio para resolver
www.edilatex.com/index_archivos/algebra5tintas.pdf
Referencias Bibliográficas
https://www.cecyt3.ipn.mx/ibiblioteca/mundodelasmatematicas/PlanoCartesiano.html
https://www.significados.com/plano-cartesiano/
https://concepto.de/plano-cartesiano/

Más contenido relacionado

Similar a plano numerico o cartesiano.pdf

Plano numérico o plano cartesiano.pptx
Plano numérico o plano  cartesiano.pptxPlano numérico o plano  cartesiano.pptx
Plano numérico o plano cartesiano.pptx
AndersonMarchan
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
Francys Peroza
 
Plano Numerico.pdf
Plano Numerico.pdfPlano Numerico.pdf
Plano Numerico.pdf
FernandoAranguren3
 
PLANOS NUMERICOS PRESENTANCION DE HERNANDEZ INVER.pptx
PLANOS NUMERICOS PRESENTANCION DE HERNANDEZ INVER.pptxPLANOS NUMERICOS PRESENTANCION DE HERNANDEZ INVER.pptx
PLANOS NUMERICOS PRESENTANCION DE HERNANDEZ INVER.pptx
andresAmaya68
 
plano numerico -alfredo.pptx
plano numerico -alfredo.pptxplano numerico -alfredo.pptx
plano numerico -alfredo.pptx
tareasuptaeb
 
Plano numerico. rosanyely
Plano numerico. rosanyelyPlano numerico. rosanyely
Plano numerico. rosanyely
rosanyelymontilla
 
trabajodematematicas3.pptx
trabajodematematicas3.pptxtrabajodematematicas3.pptx
trabajodematematicas3.pptx
gissell_03112005
 
trabajodematematicas33.pptx
trabajodematematicas33.pptxtrabajodematematicas33.pptx
trabajodematematicas33.pptx
gissell_03112005
 
plano numerico - jhonny.pptx
plano numerico - jhonny.pptxplano numerico - jhonny.pptx
plano numerico - jhonny.pptx
tareasuptaeb
 
plano numerico.pptx
plano numerico.pptxplano numerico.pptx
plano numerico.pptx
MoisesAndrade22
 
PLANO NUMERICO KARLA GARCIA.pptx
PLANO NUMERICO KARLA GARCIA.pptxPLANO NUMERICO KARLA GARCIA.pptx
PLANO NUMERICO KARLA GARCIA.pptx
KarlaGarcia571339
 
Plano Numerico
Plano NumericoPlano Numerico
Plano Numerico
Gisel Martinez
 
Plano Numérico
Plano NuméricoPlano Numérico
Plano Numérico
MarielisGimnez
 
Plano numerico richard cortez
Plano numerico richard cortezPlano numerico richard cortez
Plano numerico richard cortez
RichardCortez17
 
matematica presentacion #2
matematica presentacion #2matematica presentacion #2
matematica presentacion #2
JesusTorres750983
 
TRABAJO PLANO NUMÉRICO
TRABAJO PLANO NUMÉRICOTRABAJO PLANO NUMÉRICO
TRABAJO PLANO NUMÉRICO
EmilyGonzalez64
 
Plano Numérico
Plano NuméricoPlano Numérico
Plano Numérico
Jose290394
 
Plano Numérico Michell Urra IN0114.pptx
Plano Numérico Michell Urra IN0114.pptxPlano Numérico Michell Urra IN0114.pptx
Plano Numérico Michell Urra IN0114.pptx
Michell Urra Juarez
 
Plano numerico.docx
Plano numerico.docxPlano numerico.docx
Plano numerico.docx
Estudiante
 
Plano numerico 0203 Daymar Perez A.pdf
Plano numerico 0203 Daymar Perez A.pdfPlano numerico 0203 Daymar Perez A.pdf
Plano numerico 0203 Daymar Perez A.pdf
daymarperez2
 

Similar a plano numerico o cartesiano.pdf (20)

Plano numérico o plano cartesiano.pptx
Plano numérico o plano  cartesiano.pptxPlano numérico o plano  cartesiano.pptx
Plano numérico o plano cartesiano.pptx
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Plano Numerico.pdf
Plano Numerico.pdfPlano Numerico.pdf
Plano Numerico.pdf
 
PLANOS NUMERICOS PRESENTANCION DE HERNANDEZ INVER.pptx
PLANOS NUMERICOS PRESENTANCION DE HERNANDEZ INVER.pptxPLANOS NUMERICOS PRESENTANCION DE HERNANDEZ INVER.pptx
PLANOS NUMERICOS PRESENTANCION DE HERNANDEZ INVER.pptx
 
plano numerico -alfredo.pptx
plano numerico -alfredo.pptxplano numerico -alfredo.pptx
plano numerico -alfredo.pptx
 
Plano numerico. rosanyely
Plano numerico. rosanyelyPlano numerico. rosanyely
Plano numerico. rosanyely
 
trabajodematematicas3.pptx
trabajodematematicas3.pptxtrabajodematematicas3.pptx
trabajodematematicas3.pptx
 
trabajodematematicas33.pptx
trabajodematematicas33.pptxtrabajodematematicas33.pptx
trabajodematematicas33.pptx
 
plano numerico - jhonny.pptx
plano numerico - jhonny.pptxplano numerico - jhonny.pptx
plano numerico - jhonny.pptx
 
plano numerico.pptx
plano numerico.pptxplano numerico.pptx
plano numerico.pptx
 
PLANO NUMERICO KARLA GARCIA.pptx
PLANO NUMERICO KARLA GARCIA.pptxPLANO NUMERICO KARLA GARCIA.pptx
PLANO NUMERICO KARLA GARCIA.pptx
 
Plano Numerico
Plano NumericoPlano Numerico
Plano Numerico
 
Plano Numérico
Plano NuméricoPlano Numérico
Plano Numérico
 
Plano numerico richard cortez
Plano numerico richard cortezPlano numerico richard cortez
Plano numerico richard cortez
 
matematica presentacion #2
matematica presentacion #2matematica presentacion #2
matematica presentacion #2
 
TRABAJO PLANO NUMÉRICO
TRABAJO PLANO NUMÉRICOTRABAJO PLANO NUMÉRICO
TRABAJO PLANO NUMÉRICO
 
Plano Numérico
Plano NuméricoPlano Numérico
Plano Numérico
 
Plano Numérico Michell Urra IN0114.pptx
Plano Numérico Michell Urra IN0114.pptxPlano Numérico Michell Urra IN0114.pptx
Plano Numérico Michell Urra IN0114.pptx
 
Plano numerico.docx
Plano numerico.docxPlano numerico.docx
Plano numerico.docx
 
Plano numerico 0203 Daymar Perez A.pdf
Plano numerico 0203 Daymar Perez A.pdfPlano numerico 0203 Daymar Perez A.pdf
Plano numerico 0203 Daymar Perez A.pdf
 

Último

Mi Comunidad En El Sector Monterrey-Poste Blanco
Mi Comunidad En El Sector Monterrey-Poste BlancoMi Comunidad En El Sector Monterrey-Poste Blanco
Mi Comunidad En El Sector Monterrey-Poste Blanco
Ruth Noemí Soto Villegas
 
Evaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdf
Evaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdfEvaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdf
Evaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdf
EfranMartnez8
 
Lecciones 11 Esc. Sabática. El conflicto inminente docx
Lecciones 11 Esc. Sabática. El conflicto inminente docxLecciones 11 Esc. Sabática. El conflicto inminente docx
Lecciones 11 Esc. Sabática. El conflicto inminente docx
Alejandrino Halire Ccahuana
 
Marketing responsable - Ética y Responsabilidad Social Empresarial
Marketing responsable - Ética y Responsabilidad Social EmpresarialMarketing responsable - Ética y Responsabilidad Social Empresarial
Marketing responsable - Ética y Responsabilidad Social Empresarial
JonathanCovena1
 
La filosofía presocrática y los filosofos más relvantes del periodo.
La filosofía presocrática y los filosofos más relvantes del periodo.La filosofía presocrática y los filosofos más relvantes del periodo.
La filosofía presocrática y los filosofos más relvantes del periodo.
DobbieElfo
 
Business Plan -rAIces - Agro Business Tech
Business Plan -rAIces - Agro Business TechBusiness Plan -rAIces - Agro Business Tech
Business Plan -rAIces - Agro Business Tech
johnyamg20
 
Sesión de clase: El conflicto inminente.
Sesión de clase: El conflicto inminente.Sesión de clase: El conflicto inminente.
Sesión de clase: El conflicto inminente.
https://gramadal.wordpress.com/
 
Los Recursos Naturales como Base de la Economía
Los Recursos Naturales como Base de la EconomíaLos Recursos Naturales como Base de la Economía
Los Recursos Naturales como Base de la Economía
JonathanCovena1
 
Leyes de los gases según Boyle-Marriote, Charles, Gay- Lussac, Ley general de...
Leyes de los gases según Boyle-Marriote, Charles, Gay- Lussac, Ley general de...Leyes de los gases según Boyle-Marriote, Charles, Gay- Lussac, Ley general de...
Leyes de los gases según Boyle-Marriote, Charles, Gay- Lussac, Ley general de...
Shirley Vásquez Esparza
 
CUADRO COMPARATIVO Aylen.docx............
CUADRO COMPARATIVO Aylen.docx............CUADRO COMPARATIVO Aylen.docx............
CUADRO COMPARATIVO Aylen.docx............
LuanaJaime1
 
Compartir p4s.co Pitch Hackathon Template Plantilla final.pptx-2.pdf
Compartir p4s.co Pitch Hackathon Template Plantilla final.pptx-2.pdfCompartir p4s.co Pitch Hackathon Template Plantilla final.pptx-2.pdf
Compartir p4s.co Pitch Hackathon Template Plantilla final.pptx-2.pdf
JimmyDeveloperWebAnd
 
Clasificación de los animales vertebrados
Clasificación de los animales vertebradosClasificación de los animales vertebrados
Clasificación de los animales vertebrados
DianaLopez859290
 
La orientación educativa en el proceso de enseñanza-aprendizaje.pptx
La orientación educativa en el proceso de enseñanza-aprendizaje.pptxLa orientación educativa en el proceso de enseñanza-aprendizaje.pptx
La orientación educativa en el proceso de enseñanza-aprendizaje.pptx
PaolaAlejandraCarmon1
 
ROMPECABEZAS DE COMPETENCIAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ROMPECABEZAS DE COMPETENCIAS OLÍMPICAS. Por JAVIER SOLIS NOYOLAROMPECABEZAS DE COMPETENCIAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ROMPECABEZAS DE COMPETENCIAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
JAVIER SOLIS NOYOLA
 
DIPLOMA Teachers For Future junio2024.pdf
DIPLOMA Teachers For Future junio2024.pdfDIPLOMA Teachers For Future junio2024.pdf
DIPLOMA Teachers For Future junio2024.pdf
Alfaresbilingual
 
Carnavision: anticipa y aprovecha - hackathon Pasto2024 .pdf
Carnavision: anticipa y aprovecha - hackathon Pasto2024 .pdfCarnavision: anticipa y aprovecha - hackathon Pasto2024 .pdf
Carnavision: anticipa y aprovecha - hackathon Pasto2024 .pdf
EleNoguera
 
Presentación simple corporativa degradado en violeta blanco.pdf
Presentación simple corporativa degradado en violeta blanco.pdfPresentación simple corporativa degradado en violeta blanco.pdf
Presentación simple corporativa degradado en violeta blanco.pdf
eleandroth
 
Los Dominios y Reinos de los Seres Vivos
Los Dominios y Reinos de los Seres VivosLos Dominios y Reinos de los Seres Vivos
Los Dominios y Reinos de los Seres Vivos
karlafreire0608
 
1.- manual-para-la-creacion-33-dias-de-manifestacion-ulises-sampe.pdf
1.- manual-para-la-creacion-33-dias-de-manifestacion-ulises-sampe.pdf1.- manual-para-la-creacion-33-dias-de-manifestacion-ulises-sampe.pdf
1.- manual-para-la-creacion-33-dias-de-manifestacion-ulises-sampe.pdf
MiNeyi1
 
UESJLS Robótica Clase 19 - Dibujo de un polígono sobre otro
UESJLS Robótica Clase 19 - Dibujo de un  polígono sobre otroUESJLS Robótica Clase 19 - Dibujo de un  polígono sobre otro
UESJLS Robótica Clase 19 - Dibujo de un polígono sobre otro
Docente Informático
 

Último (20)

Mi Comunidad En El Sector Monterrey-Poste Blanco
Mi Comunidad En El Sector Monterrey-Poste BlancoMi Comunidad En El Sector Monterrey-Poste Blanco
Mi Comunidad En El Sector Monterrey-Poste Blanco
 
Evaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdf
Evaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdfEvaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdf
Evaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdf
 
Lecciones 11 Esc. Sabática. El conflicto inminente docx
Lecciones 11 Esc. Sabática. El conflicto inminente docxLecciones 11 Esc. Sabática. El conflicto inminente docx
Lecciones 11 Esc. Sabática. El conflicto inminente docx
 
Marketing responsable - Ética y Responsabilidad Social Empresarial
Marketing responsable - Ética y Responsabilidad Social EmpresarialMarketing responsable - Ética y Responsabilidad Social Empresarial
Marketing responsable - Ética y Responsabilidad Social Empresarial
 
La filosofía presocrática y los filosofos más relvantes del periodo.
La filosofía presocrática y los filosofos más relvantes del periodo.La filosofía presocrática y los filosofos más relvantes del periodo.
La filosofía presocrática y los filosofos más relvantes del periodo.
 
Business Plan -rAIces - Agro Business Tech
Business Plan -rAIces - Agro Business TechBusiness Plan -rAIces - Agro Business Tech
Business Plan -rAIces - Agro Business Tech
 
Sesión de clase: El conflicto inminente.
Sesión de clase: El conflicto inminente.Sesión de clase: El conflicto inminente.
Sesión de clase: El conflicto inminente.
 
Los Recursos Naturales como Base de la Economía
Los Recursos Naturales como Base de la EconomíaLos Recursos Naturales como Base de la Economía
Los Recursos Naturales como Base de la Economía
 
Leyes de los gases según Boyle-Marriote, Charles, Gay- Lussac, Ley general de...
Leyes de los gases según Boyle-Marriote, Charles, Gay- Lussac, Ley general de...Leyes de los gases según Boyle-Marriote, Charles, Gay- Lussac, Ley general de...
Leyes de los gases según Boyle-Marriote, Charles, Gay- Lussac, Ley general de...
 
CUADRO COMPARATIVO Aylen.docx............
CUADRO COMPARATIVO Aylen.docx............CUADRO COMPARATIVO Aylen.docx............
CUADRO COMPARATIVO Aylen.docx............
 
Compartir p4s.co Pitch Hackathon Template Plantilla final.pptx-2.pdf
Compartir p4s.co Pitch Hackathon Template Plantilla final.pptx-2.pdfCompartir p4s.co Pitch Hackathon Template Plantilla final.pptx-2.pdf
Compartir p4s.co Pitch Hackathon Template Plantilla final.pptx-2.pdf
 
Clasificación de los animales vertebrados
Clasificación de los animales vertebradosClasificación de los animales vertebrados
Clasificación de los animales vertebrados
 
La orientación educativa en el proceso de enseñanza-aprendizaje.pptx
La orientación educativa en el proceso de enseñanza-aprendizaje.pptxLa orientación educativa en el proceso de enseñanza-aprendizaje.pptx
La orientación educativa en el proceso de enseñanza-aprendizaje.pptx
 
ROMPECABEZAS DE COMPETENCIAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ROMPECABEZAS DE COMPETENCIAS OLÍMPICAS. Por JAVIER SOLIS NOYOLAROMPECABEZAS DE COMPETENCIAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ROMPECABEZAS DE COMPETENCIAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
 
DIPLOMA Teachers For Future junio2024.pdf
DIPLOMA Teachers For Future junio2024.pdfDIPLOMA Teachers For Future junio2024.pdf
DIPLOMA Teachers For Future junio2024.pdf
 
Carnavision: anticipa y aprovecha - hackathon Pasto2024 .pdf
Carnavision: anticipa y aprovecha - hackathon Pasto2024 .pdfCarnavision: anticipa y aprovecha - hackathon Pasto2024 .pdf
Carnavision: anticipa y aprovecha - hackathon Pasto2024 .pdf
 
Presentación simple corporativa degradado en violeta blanco.pdf
Presentación simple corporativa degradado en violeta blanco.pdfPresentación simple corporativa degradado en violeta blanco.pdf
Presentación simple corporativa degradado en violeta blanco.pdf
 
Los Dominios y Reinos de los Seres Vivos
Los Dominios y Reinos de los Seres VivosLos Dominios y Reinos de los Seres Vivos
Los Dominios y Reinos de los Seres Vivos
 
1.- manual-para-la-creacion-33-dias-de-manifestacion-ulises-sampe.pdf
1.- manual-para-la-creacion-33-dias-de-manifestacion-ulises-sampe.pdf1.- manual-para-la-creacion-33-dias-de-manifestacion-ulises-sampe.pdf
1.- manual-para-la-creacion-33-dias-de-manifestacion-ulises-sampe.pdf
 
UESJLS Robótica Clase 19 - Dibujo de un polígono sobre otro
UESJLS Robótica Clase 19 - Dibujo de un  polígono sobre otroUESJLS Robótica Clase 19 - Dibujo de un  polígono sobre otro
UESJLS Robótica Clase 19 - Dibujo de un polígono sobre otro
 

plano numerico o cartesiano.pdf

  • 1. Integrante: Michael Evies C.I: V-28.566.055 PNF Distribución Logística Sección: 0413 Plano Numérico o Cartesiano
  • 2. Está formado por dos rectas numéricas, una horizontal y otra vertical que se cortan en un punto. La recta horizontal es llamada eje de las abscisas o de las (x), y la vertical, eje de las ordenadas o de las (y); el punto donde se cortan recibe el nombre de origen. El plano cartesiano tiene como finalidad describir la posición de puntos, los cuales se representan por sus coordenadas o pares ordenados. Las coordenadas se forman asociando un valor del eje de las "X" y uno de las "Y", respectivamente, esto indica que un punto se puede ubicar en el plano cartesiano con base en sus coordenadas, lo cual se representa como: P ( x , y) Para localizar puntos en el plano cartesiano se debe llevar a cabo el siguiente procedimiento. 1. Para localizar la abscisa o valor de x, se cuentan las unidades correspondientes hacia la derecha si son positivas o hacia a izquierda si son negativas, a partir del punto de origen, en este caso el cero. 2. Desde donde se localiza el valor de x, se cuentan las unidades correspondientes hacia arriba si son positivas o hacia abajo, si son negativas y de esta forma se localiza cualquier punto dadas sus coordenadas. Plano Numérico o Cartesiano
  • 3. Localizar el punto A ( -4, 5 ) en el plano cartesiano. Este procedimiento también se emplea cuando se requiere determinar las coordenadas de cualquier punto que esté en el plano cartesiano. Determinar las coordenadas del punto M. Las coordenadas del punto M son (3,-5). De lo anterior se concluye que: Para determinar las coordenadas de un punto o localizarlo en el plano cartesiano, se encuentran unidades correspondientes en el eje de las x hacia la derecha o hacia la izquierda y luego las unidades del eje de las y hacia arriba o hacia abajo, según sean positivas o negativas, respectivamente. Ejemplo
  • 4. La distancia, en matemáticas, es una magnitud escalar que se mide en unidades de longitud, y que se puede entender como el camino entre un punto de origen A y un punto de destino B. Dicho trayecto normalmente equivale a la longitud de una recta que une dos puntos, estando en un plano euclídeo. Es el punto que se encuentra a la misma distancia de otros dos puntos cualquiera o extremos de un segmento. Si es un segmento, el punto medio es el que lo divide en dos partes iguales. Punto medio y los extremos de un segmento, el punto medio del segmento viene dado por: Sean y Distancia
  • 5. Una circunferencia se define como el lugar geométrico de los puntos del plano equidistantes de otro, llamado centro de la circunferencia. No debemos nunca confundir el concepto de círculo con el concepto de circunferencia, que en realidad una circunferencia es la curva que encierra a un círculo (la circunferencia es una curva, el círculo una superficie). En realidad, y de manera más sencilla, una circunferencia es el conjunto de puntos situados en el plano todos a la misma distancia de un mismo punto central, al que llamaremos centro, y del que hablaremos más adelante con detalle en la parte de elementos básicos de la circunferencia. También podemos decir que la circunferencia es la línea formada por todos los puntos que están a la misma distancia de otro punto, llamado centro. Esta propiedad es la clave para hallar la expresión analítica de una circunferencia (la ecuación de la circunferencia). Entonces, entrando en el terreno de la Geometría Analítica, (donde del plano cartesiano) diremos que para cualquier punto, P (x , y) , de una circunferencia cuyo centro es el punto C (a , b) y con radio r, la ecuación ordinaria es (x ─ a) 2 + (y ─ b) 2 = r 2 Ecuaciones y Trazados de Circunferencia
  • 6. Centro: punto central que está a la misma distancia de todos los puntos pertenecientes a la circunferencia. Radio: pedazo de recta que une el centro con cualquier punto perteneciente a la circunferencia. Cuerda: pedazo de recta que une dos puntos cualquiera de una circunferencia. Diámetro: mayor cuerda que une dos puntos de una circunferencia. Hay infinitos diámetros y todos pasan por el centro de la circunferencia. Recta secante: recta que corta dos puntos cualesquiera de una circunferencia. Recta tangente: recta que toca a la circunferencia en un solo punto y es perpendicular a un radio. Una parábola queda definida por el conjunto de los puntos del plano que equidistan de una recta fija y un punto fijo. Elementos Básicos Parábola
  • 7. Elipse es el lugar geométrico de todos los puntos de un plano, tales que la suma de las distancias a otros dos puntos fijos llamados focos es constante. 1. Focos: Son los puntos fijos F y F'. 2. Eje focal: Es la recta que pasa por los focos. 3. Eje secundario: Es la mediatriz del segmento FF'. 4. Centro: Es el punto de intersección de los ejes. 5. Radios vectores: Son los segmentos que van desde un punto de la elipse a los focos: PF y PF'. 6. Distancia focal: Es el segmento segmento de longitud 2c, c es el valor de la semidistancia focal. 7. Vértices: Son los puntos de intersección de la elipse con los ejes: A, A', B y B'. 8. Eje mayor: Es el segmento segmento de longitud 2a, a es el valor del semieje mayor. 9. Eje menor: Es el segmento segmento de longitud 2b, b es el valor del semieje menor. 10. Ejes de simetría: Son las rectas que contienen al eje mayor o al eje menor. 11. Centro de simetría: Coincide con el centro de la elipse, que es el punto de intersección de los ejes de simetría. Elipse Elementos de la elipse
  • 8. Es el lugar geométrico de los puntos del plano cuya diferencia de distancias a dos puntos fijos llamados focos es constante. Relación entre la distancia focal y los semiejes Hipérbola
  • 9. 1. Focos: Son los puntos fijos F y F'. 2. Eje principal o real: Es la recta que pasa por los focos. 3. Eje secundario o imaginario: Es la mediatriz del segmento FF'. 4. Centro: Es el punto de intersección de los ejes. 5. Vértices: Los puntos A y A' son los puntos de intersección de la hipérbola con el eje focal. Los puntos B y B' se obtienen como intersección del eje imaginario con la circunferencia que tiene por centro uno de los vértices y de radio c. 6. Radios vectores: Son los segmentos que van desde un punto de la hipérbola a los focos: PF y PF'. 7. Distancia focal: Es el segmento de longitud 2c. 8. Eje mayor: Es el segmento de longitud 2a. 9. Eje menor: Es el segmento de longitud 2b. 10. Ejes de simetría: Son las rectas que contienen al eje real o al eje imaginario. 11. Asíntotas: Son las rectas de ecuaciones: 12. Relación entre los semiejes: Elementos de la hipérbola
  • 10. Representar gráficamente las ecuaciones de las cónicas
  • 11. Determine la Circunferencia de centro C y radio r es el lugar geométrico de los puntos cuya distancia al centro es r. Ejercicio para resolver