SlideShare una empresa de Scribd logo
Triángulo
El triángulo es un polígono de tres lados.
Un triángulo, en geometría, es un polígono determinado por tres rectas que se cortan dos a
dos en tres puntos (que no se encuentran alineados, es decir: no colineales). Los puntos de
intersección de las rectas son los vértices y los segmentos de recta determinados son los
lados del triángulo. Dos lados contiguos forman uno de los ángulos interiores del triángulo.
Por lo tanto, un triángulo tiene 3 ángulos interiores, 3 ángulos exteriores, 3 lados y 3
vértices.
Si está contenido en una superficie plana se denomina triángulo, o trígono, un nombre
menos común para este tipo de polígonos. Si está contenido en una superficie esférica se
denomina triángulo esférico. Representado, en cartografía, sobre la superficie terrestre, se
llama triángulo geodésico
Clasificación de los triángulos
Los triángulos se pueden clasificar por la relación entre las longitudes de sus lados o por la
amplitud de sus ángulos.
[editar]Por las longitudes de sus lados
Por las longitudes de sus lados, todo triángulo se clasifica:
Como triángulo equilátero, cuando los tres lados del triángulo son del mismo tamaño (los
tres ángulos internos miden 60 grados ó radianes.)
Como triángulo isósceles (del griego ἴ σος "igual" y σκέλη "piernas", es decir, "con dos
piernas iguales"), si tiene dos lados de la misma longitud. Los ángulos que se oponen a
estos lados tienen la misma medida. (Tales de Mileto, filósofo griego, demostró que un
triángulo isósceles tiene dos ángulos iguales, estableciendo así una relación entre
longitudes y ángulos; a lados iguales, ángulos iguales1
).
Como triángulo escaleno (del griego σκαληνός "desigual"), si todos sus lados tienen
longitudes diferentes (en un triángulo escaleno no hay dos ángulos que tengan la misma
medida).
Equilátero Isósceles Escaleno
[editar]Por la amplitud de sus ángulos
Por la amplitud de sus ángulos los triángulos se clasifican en:
(Clasificación por amplitud de sus ángulos)
Triángulos
Rectángulos
Oblicuángulos
Obtusángulos
Acutángulos
Triángulo rectángulo: si tiene un ángulo interior recto (90°). A los dos lados que
conforman el ángulo recto se les denomina catetos y al otro lado hipotenusa.
Triángulo oblicuángulo: cuando ninguno de sus ángulos interiores son rectos (90°). Por
ello, los triángulos obtusángulos y acutángulos son oblicuángulos.
Triángulo obtusángulo: si uno de sus ángulos interiores es obtuso (mayor de 90°); los
otros dos son agudos (menores de 90°).
Triángulo acutángulo: cuando sus tres ángulos interiores son menores de 90°. El triángulo
equilátero es un caso particular de triángulo acutángulo.
Rectángulo Obtusángulo Acutángulo
Oblicuángulos
[editar]Clasificación según los lados y los ángulos
Los triángulos acutángulos pueden ser:
Triángulo acutángulo isósceles: con todos los ángulos agudos, siendo dos iguales, y el otro
distinto. Este triángulo es simétrico respecto de su altura.
Triángulo acutángulo escaleno: con todos sus ángulos agudos y todos diferentes, no tiene
eje de simetría.
Triángulo acutángulo equilátero: sus tres lados y sus tres ángulos son iguales; las tres
alturas son ejes de simetría (dividen al triángulo en dos triángulos iguales).
Los triángulos rectángulos pueden ser:
Triángulo rectángulo isósceles: con un ángulo recto y dos agudos iguales (de 45° cada
uno), dos lados son iguales y el otro diferente: los lados iguales son los catetos y el
diferente es la hipotenusa. Es simétrico respecto a la altura de la hipotenusa, que pasa por
el ángulo recto.
Triángulo rectángulo escaleno: tiene un ángulo recto, y todos sus lados y ángulos son
diferentes.
Los triángulos obtusángulos pueden ser:
Triángulo obtusángulo isósceles: tiene un ángulo obtuso, y dos lados iguales que son los
que forman el ángulo obtuso; el otro lado es mayor que éstos dos.
Triángulo obtusángulo escaleno: tiene un ángulo obtuso y todos sus lados son diferentes.
Triángulo equilátero isósceles escaleno
acutángulo
rectángulo
obtusángulo
Congruencia de triángulos
Dos triángulos son congruentes si hay una correspondencia entre sus vértices de tal manera
que el ángulo del vértice y los lados que lo componen, en uno de los triángulos, sean
congruentes con los del otro triángulo.
Triángulo Postulados de congruencia
Postulado LAL (Lado, Ángulo, Lado)
Dos triángulos son congruentes si dos lados de uno tienen la misma
longitud que dos lados del otro triángulo, y los ángulos comprendidos entre
esos lados tienen también la misma medida.
Postulado ALA (Ángulo, Lado, Ángulo)
Dos triángulos son congruentes si dos ángulos interiores y el lado
comprendido entre ellos tienen la misma medida y longitud,
respectivamente. (El lado comprendido entre dos ángulos es el lado común
a ellos).
Postulado LLL (Lado, Lado, Lado)
Dos triángulos son congruentes si cada lado de un triángulo tiene la misma
longitud que los correspondientes del otro triángulo.
Centros del triángulo
Geométricamente se pueden definir varios centros en un triángulo:
Baricentro o Centroide: es el punto que se encuentra en la intersección de las medianas, y
equivale al centro de gravedad
Circuncentro: es el centro de la circunferencia circunscrita, aquella que pasa por los tres
vértices del triángulo. Se encuentra en la intersección de las mediatrices de los lados.
Además, la circunferencia circunscrita contiene los puntos de intersección de la mediatriz
de cada lado con las bisectrices que pasan por el vértice opuesto.
Incentro: es el centro de la circunferencia inscrita, aquella que es tangente a los lados del
triángulo. Se encuentra en la intersección de las bisectrices de los ángulos.
Ortocentro: es el punto que se encuentra en la intersección de las alturas.
Exincentros son los centros de las circunferencias exinscritas.3
Se encuentra en la
intersección de una bisectriz interior y dos bisectrices exteriores de los ángulos.
El único caso en que los cuatro primeros centros coinciden en un único punto es en un
triángulo equilátero
Medianas
BISECTRIZ Y CIRCUNFERENCIA INSCRITA
ALTURA Y ORTOCENTRO

Más contenido relacionado

Similar a Triángulos y mas ....

Triángulo..[1]
Triángulo..[1]Triángulo..[1]
Triángulo..[1]
Marco Vinueza
 
Triángulo
 Triángulo Triángulo
Triángulo
Marco Vinueza
 
Triángulo..[1]
Triángulo..[1]Triángulo..[1]
Triángulo..[1]
Marco Vinueza
 
Triángulo..[1]
Triángulo..[1]Triángulo..[1]
Triángulo..[1]
Marco Vinueza
 
Triángulos
TriángulosTriángulos
Triángulos
MishellCarvajal
 
Triángulos
TriángulosTriángulos
Triángulos
MishellCarvajal
 
Los triángulos
Los triángulosLos triángulos
Los triángulos
Pepeins
 
Triangulos
TriangulosTriangulos
Triangulos
tefitaangel
 
Triangulos oblicuangulos
Triangulos oblicuangulosTriangulos oblicuangulos
Triangulos oblicuangulos
Roxana Abarca Gonzalez
 
Triángulo
TriánguloTriángulo
Triángulo
Xavi Valenzuela
 
Pontificia universidad católica del ecuador
Pontificia universidad católica del ecuadorPontificia universidad católica del ecuador
Pontificia universidad católica del ecuador
alexandraaguirre
 
Triangulos
TriangulosTriangulos
Triangulos
GabyPozo
 
Logica+matematica+1
Logica+matematica+1Logica+matematica+1
Logica+matematica+1
GabyPozo
 
Triangulos
TriangulosTriangulos
Triangulos
anita villarreal
 
El triangulo
El trianguloEl triangulo
El triangulo
Jorge Arturo Cordova
 
Triángulos
TriángulosTriángulos
Triángulos conceptos básicos
Triángulos conceptos básicosTriángulos conceptos básicos
Triángulos conceptos básicos
Bety Anguita
 
Triángulos
Triángulos Triángulos
Triángulo
Triángulo Triángulo
Triángulo
Ing Alfonso Herrera
 
Triángulo
Triángulo Triángulo

Similar a Triángulos y mas .... (20)

Triángulo..[1]
Triángulo..[1]Triángulo..[1]
Triángulo..[1]
 
Triángulo
 Triángulo Triángulo
Triángulo
 
Triángulo..[1]
Triángulo..[1]Triángulo..[1]
Triángulo..[1]
 
Triángulo..[1]
Triángulo..[1]Triángulo..[1]
Triángulo..[1]
 
Triángulos
TriángulosTriángulos
Triángulos
 
Triángulos
TriángulosTriángulos
Triángulos
 
Los triángulos
Los triángulosLos triángulos
Los triángulos
 
Triangulos
TriangulosTriangulos
Triangulos
 
Triangulos oblicuangulos
Triangulos oblicuangulosTriangulos oblicuangulos
Triangulos oblicuangulos
 
Triángulo
TriánguloTriángulo
Triángulo
 
Pontificia universidad católica del ecuador
Pontificia universidad católica del ecuadorPontificia universidad católica del ecuador
Pontificia universidad católica del ecuador
 
Triangulos
TriangulosTriangulos
Triangulos
 
Logica+matematica+1
Logica+matematica+1Logica+matematica+1
Logica+matematica+1
 
Triangulos
TriangulosTriangulos
Triangulos
 
El triangulo
El trianguloEl triangulo
El triangulo
 
Triángulos
TriángulosTriángulos
Triángulos
 
Triángulos conceptos básicos
Triángulos conceptos básicosTriángulos conceptos básicos
Triángulos conceptos básicos
 
Triángulos
Triángulos Triángulos
Triángulos
 
Triángulo
Triángulo Triángulo
Triángulo
 
Triángulo
Triángulo Triángulo
Triángulo
 

Último

EL PRIMER SEMESTRE EN ENFERMERÍA BLOGS 3
EL PRIMER SEMESTRE EN ENFERMERÍA BLOGS 3EL PRIMER SEMESTRE EN ENFERMERÍA BLOGS 3
EL PRIMER SEMESTRE EN ENFERMERÍA BLOGS 3
yanebermendoza
 
Organizacion política de los Incas, Mayas y Aztecas.pptx
Organizacion política de los Incas, Mayas y Aztecas.pptxOrganizacion política de los Incas, Mayas y Aztecas.pptx
Organizacion política de los Incas, Mayas y Aztecas.pptx
favianrea547
 
Filigramma #17, revista literaria del Círculo de Escritores Sabersinfin
Filigramma #17, revista literaria del Círculo de Escritores SabersinfinFiligramma #17, revista literaria del Círculo de Escritores Sabersinfin
Filigramma #17, revista literaria del Círculo de Escritores Sabersinfin
Sabersinfin Portal
 
Relieve de la Región de la Selva Peruana.pdf
Relieve de la Región de la Selva Peruana.pdfRelieve de la Región de la Selva Peruana.pdf
Relieve de la Región de la Selva Peruana.pdf
angelakarenhuayre
 
2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA
Sandra Mariela Ballón Aguedo
 
INFORME RESULTADOS DE CREA Y EMPRENDE 2024.pdf
INFORME RESULTADOS DE CREA Y EMPRENDE 2024.pdfINFORME RESULTADOS DE CREA Y EMPRENDE 2024.pdf
INFORME RESULTADOS DE CREA Y EMPRENDE 2024.pdf
Juan Carlos Catura Arapa
 
PPT II BLOQUE SG 2024 - semana de gestion.pdf
PPT  II BLOQUE SG 2024 - semana de gestion.pdfPPT  II BLOQUE SG 2024 - semana de gestion.pdf
PPT II BLOQUE SG 2024 - semana de gestion.pdf
ISAACMAMANIFLORES2
 
Semana 1 Derecho a interponer recursos y reparación.
Semana 1 Derecho a interponer recursos y reparación.Semana 1 Derecho a interponer recursos y reparación.
Semana 1 Derecho a interponer recursos y reparación.
SergioAlfrediMontoya
 
🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...
🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...
🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...
FernandoEstebanLlont
 
ENFERMERIA TECNICA-FUNDAMENTOS DE SALUD.
ENFERMERIA TECNICA-FUNDAMENTOS DE SALUD.ENFERMERIA TECNICA-FUNDAMENTOS DE SALUD.
ENFERMERIA TECNICA-FUNDAMENTOS DE SALUD.
marluzsagar
 
Taller Intensivo de Formación Continua para Docentes_24_Julio.pdf
Taller Intensivo de Formación Continua para Docentes_24_Julio.pdfTaller Intensivo de Formación Continua para Docentes_24_Julio.pdf
Taller Intensivo de Formación Continua para Docentes_24_Julio.pdf
htebazileahcug
 
Introduccion-a-la-circunferencia area y longitud
Introduccion-a-la-circunferencia area y longitudIntroduccion-a-la-circunferencia area y longitud
Introduccion-a-la-circunferencia area y longitud
AsafHdez
 
🔴 (AC-S18) Semana 18 - Tema 1 Informe sobre un tema del curso.docx
🔴 (AC-S18) Semana 18 - Tema 1 Informe sobre un tema del curso.docx🔴 (AC-S18) Semana 18 - Tema 1 Informe sobre un tema del curso.docx
🔴 (AC-S18) Semana 18 - Tema 1 Informe sobre un tema del curso.docx
FernandoEstebanLlont
 
Apuntes Unidad I Conceptos Básicos_compressed.pdf
Apuntes Unidad I Conceptos Básicos_compressed.pdfApuntes Unidad I Conceptos Básicos_compressed.pdf
Apuntes Unidad I Conceptos Básicos_compressed.pdf
VeronicaCabrera50
 
Flipped Classroom con TIC (1 de julio de 2024)
Flipped Classroom con TIC (1 de julio de 2024)Flipped Classroom con TIC (1 de julio de 2024)
Flipped Classroom con TIC (1 de julio de 2024)
Cátedra Banco Santander
 
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
Sandra Mariela Ballón Aguedo
 
Sesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdfSesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdf
https://gramadal.wordpress.com/
 
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
Sandra Mariela Ballón Aguedo
 
2024 DIA DEL LOGRO-ARTE 3 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 3 - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-ARTE 3 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 3 - IE HONORIO DELGADO ESPINOZA
Sandra Mariela Ballón Aguedo
 
La Relación Mixta DA ( Riesgo)- Matriz DA
La Relación Mixta DA ( Riesgo)- Matriz DALa Relación Mixta DA ( Riesgo)- Matriz DA
La Relación Mixta DA ( Riesgo)- Matriz DA
JonathanCovena1
 

Último (20)

EL PRIMER SEMESTRE EN ENFERMERÍA BLOGS 3
EL PRIMER SEMESTRE EN ENFERMERÍA BLOGS 3EL PRIMER SEMESTRE EN ENFERMERÍA BLOGS 3
EL PRIMER SEMESTRE EN ENFERMERÍA BLOGS 3
 
Organizacion política de los Incas, Mayas y Aztecas.pptx
Organizacion política de los Incas, Mayas y Aztecas.pptxOrganizacion política de los Incas, Mayas y Aztecas.pptx
Organizacion política de los Incas, Mayas y Aztecas.pptx
 
Filigramma #17, revista literaria del Círculo de Escritores Sabersinfin
Filigramma #17, revista literaria del Círculo de Escritores SabersinfinFiligramma #17, revista literaria del Círculo de Escritores Sabersinfin
Filigramma #17, revista literaria del Círculo de Escritores Sabersinfin
 
Relieve de la Región de la Selva Peruana.pdf
Relieve de la Región de la Selva Peruana.pdfRelieve de la Región de la Selva Peruana.pdf
Relieve de la Región de la Selva Peruana.pdf
 
2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA
 
INFORME RESULTADOS DE CREA Y EMPRENDE 2024.pdf
INFORME RESULTADOS DE CREA Y EMPRENDE 2024.pdfINFORME RESULTADOS DE CREA Y EMPRENDE 2024.pdf
INFORME RESULTADOS DE CREA Y EMPRENDE 2024.pdf
 
PPT II BLOQUE SG 2024 - semana de gestion.pdf
PPT  II BLOQUE SG 2024 - semana de gestion.pdfPPT  II BLOQUE SG 2024 - semana de gestion.pdf
PPT II BLOQUE SG 2024 - semana de gestion.pdf
 
Semana 1 Derecho a interponer recursos y reparación.
Semana 1 Derecho a interponer recursos y reparación.Semana 1 Derecho a interponer recursos y reparación.
Semana 1 Derecho a interponer recursos y reparación.
 
🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...
🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...
🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...
 
ENFERMERIA TECNICA-FUNDAMENTOS DE SALUD.
ENFERMERIA TECNICA-FUNDAMENTOS DE SALUD.ENFERMERIA TECNICA-FUNDAMENTOS DE SALUD.
ENFERMERIA TECNICA-FUNDAMENTOS DE SALUD.
 
Taller Intensivo de Formación Continua para Docentes_24_Julio.pdf
Taller Intensivo de Formación Continua para Docentes_24_Julio.pdfTaller Intensivo de Formación Continua para Docentes_24_Julio.pdf
Taller Intensivo de Formación Continua para Docentes_24_Julio.pdf
 
Introduccion-a-la-circunferencia area y longitud
Introduccion-a-la-circunferencia area y longitudIntroduccion-a-la-circunferencia area y longitud
Introduccion-a-la-circunferencia area y longitud
 
🔴 (AC-S18) Semana 18 - Tema 1 Informe sobre un tema del curso.docx
🔴 (AC-S18) Semana 18 - Tema 1 Informe sobre un tema del curso.docx🔴 (AC-S18) Semana 18 - Tema 1 Informe sobre un tema del curso.docx
🔴 (AC-S18) Semana 18 - Tema 1 Informe sobre un tema del curso.docx
 
Apuntes Unidad I Conceptos Básicos_compressed.pdf
Apuntes Unidad I Conceptos Básicos_compressed.pdfApuntes Unidad I Conceptos Básicos_compressed.pdf
Apuntes Unidad I Conceptos Básicos_compressed.pdf
 
Flipped Classroom con TIC (1 de julio de 2024)
Flipped Classroom con TIC (1 de julio de 2024)Flipped Classroom con TIC (1 de julio de 2024)
Flipped Classroom con TIC (1 de julio de 2024)
 
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
 
Sesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdfSesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdf
 
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
 
2024 DIA DEL LOGRO-ARTE 3 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 3 - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-ARTE 3 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 3 - IE HONORIO DELGADO ESPINOZA
 
La Relación Mixta DA ( Riesgo)- Matriz DA
La Relación Mixta DA ( Riesgo)- Matriz DALa Relación Mixta DA ( Riesgo)- Matriz DA
La Relación Mixta DA ( Riesgo)- Matriz DA
 

Triángulos y mas ....

  • 1. Triángulo El triángulo es un polígono de tres lados. Un triángulo, en geometría, es un polígono determinado por tres rectas que se cortan dos a dos en tres puntos (que no se encuentran alineados, es decir: no colineales). Los puntos de intersección de las rectas son los vértices y los segmentos de recta determinados son los lados del triángulo. Dos lados contiguos forman uno de los ángulos interiores del triángulo. Por lo tanto, un triángulo tiene 3 ángulos interiores, 3 ángulos exteriores, 3 lados y 3 vértices. Si está contenido en una superficie plana se denomina triángulo, o trígono, un nombre menos común para este tipo de polígonos. Si está contenido en una superficie esférica se denomina triángulo esférico. Representado, en cartografía, sobre la superficie terrestre, se llama triángulo geodésico Clasificación de los triángulos Los triángulos se pueden clasificar por la relación entre las longitudes de sus lados o por la amplitud de sus ángulos. [editar]Por las longitudes de sus lados Por las longitudes de sus lados, todo triángulo se clasifica: Como triángulo equilátero, cuando los tres lados del triángulo son del mismo tamaño (los tres ángulos internos miden 60 grados ó radianes.) Como triángulo isósceles (del griego ἴ σος "igual" y σκέλη "piernas", es decir, "con dos piernas iguales"), si tiene dos lados de la misma longitud. Los ángulos que se oponen a estos lados tienen la misma medida. (Tales de Mileto, filósofo griego, demostró que un triángulo isósceles tiene dos ángulos iguales, estableciendo así una relación entre longitudes y ángulos; a lados iguales, ángulos iguales1 ). Como triángulo escaleno (del griego σκαληνός "desigual"), si todos sus lados tienen longitudes diferentes (en un triángulo escaleno no hay dos ángulos que tengan la misma medida).
  • 2. Equilátero Isósceles Escaleno [editar]Por la amplitud de sus ángulos Por la amplitud de sus ángulos los triángulos se clasifican en: (Clasificación por amplitud de sus ángulos) Triángulos Rectángulos Oblicuángulos Obtusángulos Acutángulos Triángulo rectángulo: si tiene un ángulo interior recto (90°). A los dos lados que conforman el ángulo recto se les denomina catetos y al otro lado hipotenusa. Triángulo oblicuángulo: cuando ninguno de sus ángulos interiores son rectos (90°). Por ello, los triángulos obtusángulos y acutángulos son oblicuángulos. Triángulo obtusángulo: si uno de sus ángulos interiores es obtuso (mayor de 90°); los otros dos son agudos (menores de 90°). Triángulo acutángulo: cuando sus tres ángulos interiores son menores de 90°. El triángulo equilátero es un caso particular de triángulo acutángulo. Rectángulo Obtusángulo Acutángulo Oblicuángulos [editar]Clasificación según los lados y los ángulos Los triángulos acutángulos pueden ser:
  • 3. Triángulo acutángulo isósceles: con todos los ángulos agudos, siendo dos iguales, y el otro distinto. Este triángulo es simétrico respecto de su altura. Triángulo acutángulo escaleno: con todos sus ángulos agudos y todos diferentes, no tiene eje de simetría. Triángulo acutángulo equilátero: sus tres lados y sus tres ángulos son iguales; las tres alturas son ejes de simetría (dividen al triángulo en dos triángulos iguales). Los triángulos rectángulos pueden ser: Triángulo rectángulo isósceles: con un ángulo recto y dos agudos iguales (de 45° cada uno), dos lados son iguales y el otro diferente: los lados iguales son los catetos y el diferente es la hipotenusa. Es simétrico respecto a la altura de la hipotenusa, que pasa por el ángulo recto. Triángulo rectángulo escaleno: tiene un ángulo recto, y todos sus lados y ángulos son diferentes. Los triángulos obtusángulos pueden ser: Triángulo obtusángulo isósceles: tiene un ángulo obtuso, y dos lados iguales que son los que forman el ángulo obtuso; el otro lado es mayor que éstos dos. Triángulo obtusángulo escaleno: tiene un ángulo obtuso y todos sus lados son diferentes. Triángulo equilátero isósceles escaleno acutángulo rectángulo obtusángulo
  • 4. Congruencia de triángulos Dos triángulos son congruentes si hay una correspondencia entre sus vértices de tal manera que el ángulo del vértice y los lados que lo componen, en uno de los triángulos, sean congruentes con los del otro triángulo. Triángulo Postulados de congruencia Postulado LAL (Lado, Ángulo, Lado) Dos triángulos son congruentes si dos lados de uno tienen la misma longitud que dos lados del otro triángulo, y los ángulos comprendidos entre esos lados tienen también la misma medida. Postulado ALA (Ángulo, Lado, Ángulo) Dos triángulos son congruentes si dos ángulos interiores y el lado comprendido entre ellos tienen la misma medida y longitud, respectivamente. (El lado comprendido entre dos ángulos es el lado común a ellos). Postulado LLL (Lado, Lado, Lado) Dos triángulos son congruentes si cada lado de un triángulo tiene la misma longitud que los correspondientes del otro triángulo. Centros del triángulo Geométricamente se pueden definir varios centros en un triángulo: Baricentro o Centroide: es el punto que se encuentra en la intersección de las medianas, y equivale al centro de gravedad Circuncentro: es el centro de la circunferencia circunscrita, aquella que pasa por los tres vértices del triángulo. Se encuentra en la intersección de las mediatrices de los lados. Además, la circunferencia circunscrita contiene los puntos de intersección de la mediatriz de cada lado con las bisectrices que pasan por el vértice opuesto. Incentro: es el centro de la circunferencia inscrita, aquella que es tangente a los lados del triángulo. Se encuentra en la intersección de las bisectrices de los ángulos. Ortocentro: es el punto que se encuentra en la intersección de las alturas. Exincentros son los centros de las circunferencias exinscritas.3 Se encuentra en la intersección de una bisectriz interior y dos bisectrices exteriores de los ángulos. El único caso en que los cuatro primeros centros coinciden en un único punto es en un triángulo equilátero Medianas
  • 5. BISECTRIZ Y CIRCUNFERENCIA INSCRITA ALTURA Y ORTOCENTRO