SlideShare una empresa de Scribd logo
1 de 28
ELECTRICIDAD Y MAGNETISMOOSCAR EDUARDO RIVERA DIAZLIC. LUCY PIEDAD MOSQUERA PEREAINSTITUCION EDUCATIVA COLEGIO GUATIQUIA2011 – 10º1
ELECTRICIDAD
INTRODUCCION La electricidad es una fuente de energía que con el tiempo se vuelve cada vez mas importante e indispensable para todos , ya que las maquinarias y artefactos modernos necesitan de esta para su funcionamiento , por lo tanto hay que cuidar y no malgastarlo en cosas inútiles.
¿QUÉ ES LA ELECTRICIDAD? En nuestras casas, la electricidad permite que funcionen las lamparitas eléctricas, la televisión, la tostadora y muchas otras cosas. Es muy difícil imaginar nuestra vida sin ella.Ahora bien, nos damos cuenta de qué es lo que podemos hacer con ella pero, ¿qué es la electricidad?.La electricidad es una forma de energía. Energía es poder... el poder de hacer, de hacer por ejemplo que las cosas se muevan y de hacer que las cosas funcionen. 
Para entender qué es la electricidad debemos comenzar con los átomos. Los átomos son pequeñas partículas que son muy difíciles de ver, y son los elementos con los que está hecho todo a nuestro alrededor. Un átomo está compuesto por protones, electrones y neutrones. El centro de un átomo, al cual se llama “núcleo”, tiene al menos un protón.Alrededor del núcleo viajan los electrones (en igual cantidad que los protones) a gran velocidad.Los protones y electrones tienen una propiedad llamada carga, la de los protones es de signo positivo y la de los electrones es de signo negativo. Los neutrones no tienen carga. Los protones y electrones se atraen entre sí porque tienen cargas de distinto signo. En cambio las partículas que tienen cargas del mismo signo se repelen.
¿DE DONDE VIENE? Cuando queremos hacer funcionar un aparato eléctrico lo conectamos a un enchufe. Pero, ¿de dónde viene la corriente eléctrica? La corriente eléctrica es la circulación de electrones. Se produce en plantas de generación y luego es conducida a través de gruesos cables, que forman la red de distribución, hasta las subestaciones de transformación y finalmente, por ejemplo, a tu casa.  
TIPOS DE ELECTRICIDAD: Si se aplica una diferencia de potencial eléctrico suficientemente grande (usualmente llamado voltaje) se genera una fuerza que puede empujar a los electrones de un átomo a otro. Este movimiento de electrones se llama corriente eléctrica. Esto es lo que ocurre en un trozo de alambre que se conecta a los extremos de una pila. Los electrones pasan de un átomo a otro creando la corriente eléctrica. Hay corrientes eléctricas de dos tipos: la corriente continua y la corriente alterna.
En la corriente continua los electrones se mueven siempre en la misma dirección. Este es el tipo de corriente eléctrica que se obtiene de una pila, como las que se usan en una linterna. En la corriente alterna, como su nombre lo indica, los electrones van primero para un lado y luego en dirección contraria, y así siempre. Este es el tipo de corriente eléctrica que obtenemos en la red eléctrica de nuestras casas y con la que hacemos funcionar la heladera, el televisor, etc.
CONDUCTORES: Los conductores son materiales a través de los cuales la corriente eléctrica viaja con facilidad; por eso decimos que tienen baja resistencia eléctrica. Los metales son muy buenos conductores, por eso se usan para construir los cables con los cuales se provee a las casas de corriente eléctrica. También es lo que usamos para conectar los aparatos eléctricos a los enchufes de la red eléctrica de nuestras casas. El metal más usado para construir cables de conducción es el cobre. El agua (como la que sale de la canilla) es otro buen conductor de la electricidad. Es muy importante recordar esto, porque nuestro cuerpo está constituido en gran parte de agua (un 70% aproximadamente), entonces la electricidad puede circular fácilmente a través de nosotros. Pero si la electricidad viaja por nuestro cuerpo puede causarnos mucho daño. Es por eso que los cables eléctricos están recubiertos de algún material de alta resistencia (aislante) como por ejemplo el plástico, para que puedan ser manipulados sin peligro.
AISLANTES: La electricidad no circula fácilmente por los aislantes. A los átomos que constituyen los aislantes no les gusta compartir sus electrones. Algunos materiales aislantes son: Plásticos - Vidrios - Cerámicas Al cubrir los metales que forman los cables eléctricos con aislantes nos aseguramos que la corriente eléctrica circule por donde debe, cumpliendo su función correctamente y sin riegos para nosotros, que también somos buenos conductores.
UNIDADES DE LA ELECTRICIDAD Estamos acostumbrados a hablar con ciertos términos especiales para referirnos a fenómenos eléctricos, así sabemos, por ejemplo, que una lamparita de 100 vatios nos dará mucha luz. Como vimos al estudiar el átomo, los protones y electrones tienen una propiedad que llamamos carga. La carga en movimiento es lo que llamamos corriente eléctrica. La carga se mide en culombios la corriente en amperios. Así entonces un culombio es la cantidad de carga que una corriente de un amperio transporta en un segundo.
Para construir un culombio necesitamos más de un trillón de electrones; la cantidad es enorme, 1,5 x 10.000.000.000.000.000.000 electrones! También hablamos que para mover los electrones hay que hacer una fuerza sobre ellos. Esta fuerza que “empuja” a los electrones se mide en voltios. En nuestras casas usamos 220 voltios. También hemos hablado de la resistencia de los materiales a conducir la corriente eléctrica. La resistencia se mide en ohmios. Voltios y ohmios están relacionados del siguiente modo, por una resistencia de un ohmio circulará un amperio si se le aplica un voltio Del mismo modo un vatio se define como la potencia usada para hacer circular un amperio por una diferencia de potencial de unvoltio
APORTE A LA ELECTRICIDAD La importancia de la electricidad radica en que es una de las principales formas de energía usadas en el mundo actual. Sin ella la iluminación, comunicación, teléfono, radio, no existiría y las personas que tuvieran que prescindir de aparatos eléctricos que ya llegaron a constituir parte integrante del hogar. Además sin la electricidad el campo del transporte no sería lo que es en la actualidad. De hecho puede decirse que la electricidad se usa en todas partes.
CAMPOS ELÉCTRICO Y MAGNÉTICO       Líneas de campo de dos cargas eléctricas de igual valor absoluto y signos opuestos. Artículos principales: campo eléctrico y campo magnético Los campos eléctrico         y magnético        , son campos vectoriales caracterizables en cada punto del espacio y cada instante del tiempo por un módulo, una dirección y un sentido.  Una propiedad fundamental de estos campos es el principio de superposición, según el cual el campo resultante puede ser calculado como la suma vectorial de los campos creados por cada una de las cargas eléctricas.
Se obtiene una descripción sencilla de estos campos dando las líneas de fuerza o de campo, que son curvas tangentes a la dirección de los vectores de campo. En el caso del campo eléctrico, esta línea corresponde a la trayectoria que seguiría una carga sin masa que se encuentre libre en el seno del campo y que se deja mover muy lentamente. Normalmente la materia es neutra, es decir, su carga eléctrica neta es nula. Sin embargo, en su interior tiene cargas positivas y negativas y se localizan corrientes eléctricas en los átomos y moléculas, lo cual da lugar a campos eléctricos y magnéticos. En el caso de dos cargas opuestas se generan campos dipolares, como el representado en la figura de la derecha, donde las cargas de igual magnitud y signos opuestos están muy cercanas entre sí. Estos campos dipolares son la base para describir casos tan fundamentales como los enlaces iónicos en las moléculas, las características como disolvente del agua, o el funcionamiento de las antenas entre otros.
SUMINISTRO ELECTRICO Se denomina suministro eléctrico al conjunto de etapas que son necesarias para que la energía eléctrica llegue al consumidor final. Como la energía eléctrica es difícil de almacenar, este sistema tiene la particularidad de generar y distribuir la energía conforme ésta es consumida. Por otra parte, debido a la importancia de la energía eléctrica, el suministro es vital para el desarrollo de los países y de interés para los gobiernos nacionales, por lo que estos cuentan con instituciones especializadas en el seguimiento de las tres etapas fundamentales: generación, transmisión y distribución.
MAGNETISMO
El campo magnético es producido por la corriente eléctrica que circula por un conductor. Para determinar la expresión del campo magnético producido por una corriente se emplean dos leyes: la ley de Biot-Savart y la ley de Ampère.
EL MAGNETISMO es un fenómeno físico por el que los materiales ejercen fuerzas de atracción o repulsión sobre otros materiales. Hay algunos materiales conocidos que han presentado propiedades magnéticas detectables fácilmente como el níquel, hierro, cobalto y sus aleaciones que comúnmente se llaman imanes. Sin embargo todos los materiales son influidos, de mayor o menor forma, por la presencia de un campo magnético. El magnetismo también tiene otras manifestaciones en física, particularmente como uno de los dos componentes de la radiación electromagnética, como por ejemplo, la luz.
BREVE EXPLICACION DEL MAGNETISMO Cada electrón es, por su naturaleza, un pequeño imán (véase Momento dipolar magnético electrónico). Ordinariamente, innumerables electrones de un material están orientados aleatoriamente en diferentes direcciones, pero en un imán casi todos los electrones tienden a orientarse en la misma dirección, creando una fuerza magnética grande o pequeña dependiendo del número de electrones que estén orientados. Además del campo magnético intrínseco del electrón, algunas veces hay que contar también con el campo magnético debido al movimiento orbital del electrón alrededor del núcleo. Este efecto es análogo al campo generado por una corriente eléctrica que circula por una bobina (ver dipolo magnético). De nuevo, en general el movimiento de los electrones no da lugar a un campo magnético en el material, pero en ciertas condiciones los movimientos pueden alinearse y producir un campo magnético total medible.
CAMPOS Y FUERZAS MAGNÉTICAS El fenómeno del magnetismo es ejercido por un campo magnético, por ejemplo, una corriente eléctrica o un dipolo magnético crea un campo magnético, éste al girar imparte una fuerza magnética a otras partículas que están en el campo. Para una aproximación excelente (pero ignorando algunos efectos cuánticos, véase electrodinámica cuántica) las ecuaciones de Maxwell (que simplifican la ley de Biot-Savart en el caso de corriente constante) describen el origen y el comportamiento de los campos que gobiernan esas fuerzas. Por lo tanto el magnetismo se observa siempre que partículas cargadas eléctricamente están en movimiento. Por ejemplo, del movimiento de electrones en una corriente eléctrica o en casos del movimiento orbital de los electrones alrededor del núcleo atómico. Estas también aparecen de un dipolo magnético intrínseco que aparece de los efectos cuánticos, p.e. del spin de la mecánica cuántica.
DIPOLOS MAGNÉTICOS Se puede ver una muy común fuente de campo magnético en la naturaleza, un dipolo. Éste tiene un "polo sur" y un "polo norte", sus nombres se deben a que antes se usaban los magnetos como brújulas, que interactuaban con el campo magnético terrestre para indicar el norte y el sur del globo. Un campo magnético contiene energía y sistemas físicos que se estabilizan con configuraciones de menor energía. Por lo tanto, cuando se encuentra en un campo magnético, un dipolo magnético tiende a alinearse sólo con una polaridad diferente a la del campo, lo que cancela al campo lo máximo posible y disminuye la energía recolectada en el campo al mínimo.  Por ejemplo, dos barras magnéticas idénticas pueden estar una a lado de otra normalmente alineadas de norte a sur, resultando en un campo magnético más pequeño y resiste cualquier intento de reorientar todos sus puntos en una misma dirección.
DIPOLOS MAGNÉTICOS ATÓMICOS La causa física del magnetismo en los cuerpos, distinto a la corriente eléctrica, es por los dipolos atómicos magnéticos. Dipolos magnéticos o momentos magnéticos, en escala atómica, resultan de dos tipos diferentes del movimiento de electrones. El primero es el movimiento orbital del electrón sobre su núcleo atómico; este movimiento puede ser considerado como una corriente de bucles, resultando en el momento dipolar magnético del orbital.  La segunda, más fuerte, fuente de momento electrónico magnético, es debido a las propiedades cuánticas llamadas momento de spin del dipolo magnético (aunque la teoría mecánica cuántica actual dice que los electrones no giran físicamente, ni orbitan el núcleo). El momento magnético general de un átomo es la suma neta de todos los momentos magnéticos de los electrones individuales. Por la tendencia de los dipolos magnéticos a oponerse entre ellos se reduce la energía neta.
MONOPOLOS MAGNÉTICOS Puesto que un imán de barra obtiene su ferromagnetismo de los electrones magnéticos microscópicos distribuidos uniformemente a través del imán, cuando un imán es partido a la mitad cada una de las piezas resultantes es un imán más pequeño. Aunque se dice que un imán tiene un polo norte y un polo sur, estos dos polos no pueden separarse el uno del otro. Un mono polo -si tal cosa existe- sería una nueva clase fundamentalmente diferente de objeto magnético. Actuaría como un polo norte aislado, no atado a un polo sur, o viceversa. Los mono polos llevarían "carga magnética" análoga a la carga eléctrica. A pesar de búsquedas sistemáticas a partir de 1931 (como la de 2006), nunca han sido observadas, y muy bien podrían no existir. Milton menciona algunos eventos no concluyentes (p.60) y aún concluye que "no ha sobrevivido en absoluto ninguna evidencia de mono polos magnéticos".
ELECTROMAGNETOS Un electroimán es un imán hecho de alambre eléctrico bobinado en torno a un material magnético como el hierro. Este tipo de imán es útil en los casos en que un imán debe estar encendido o apagado, por ejemplo, las grandes grúas para levantar chatarra de automóviles. Para el caso de corriente eléctrica se desplazan a través de un cable, el campo resultante se dirige de acuerdo con la "regla de la mano derecha." Si la mano derecha se utiliza como un modelo, y el pulgar de la mano derecha a lo largo del cable de positivo hacia el lado negativo ( "convencional actual", a la inversa de la dirección del movimiento real de los electrones), entonces el campo magnético hace una recapitulación de todo el cable en la dirección indicada por los dedos de la mano derecha. 
MAGNETOS TEMPORALES Y PERMANENTES Un imán permanente conserva su magnetismo sin un campo magnético exterior, mientras que un imán temporal sólo es magnético, siempre que esté situado en otro campo magnético. Inducir el magnetismo del acero en los resultados en un imán de hierro, pierde su magnetismo cuando la inducción de campo se retira. Un imán temporal como el hierro es un material adecuado para los electroimanes. Los imanes son hechos por acariciar con otro imán, la grabación, mientras que fija en un campo magnético opuesto dentro de una solenoide bobina, se suministra con una corriente directa. Un imán permanente puede ser la remoción de los imanes de someter a la calefacción, fuertes golpes, o colocarlo dentro de un solenoide se suministra con una reducción de corriente alterna.
CAMPO MEDIDO POR DOS OBSERVADORES La teoría de la relatividad especial probó que de la misma manera que espacio y tiempo no son conceptos absolutos, la parte eléctrica y magnética de un campo electromagnético dependen del observador. Eso significa que dados dos observadores       y       en movimiento relativo un respecto a otro el campo magnético y eléctrico medido por cada uno de ellos no será el mismo. 
CONCLUSIONES -  Racionalizar el uso de la electricidad. - Interpretar que la electricidad es muy peligrosa y que no hay que jugar con ella. - Gracias a grandes personajes que descubrieron la electricidad podemos facilitarnos muchas trabajos.   - La generación de electricidad a partir de biomasa se está desarrollando intensamente con una participación importante de los ingenios azucareros, industrias de pulpa y papel y aserraderos, mediante la utilización de sus residuos, ampliando el campo de la dentro energía hacia sistemas racionales de cogeneración y venta de excedentes a la red pública. . - La generación de electricidad a partir de biomasa debe ser altamente valorada en los organismos nacionales y regionales vinculados a los sectores energéticos y al desarrollo rural en general.

Más contenido relacionado

La actualidad más candente

Qué es la electricidad
Qué es la electricidadQué es la electricidad
Qué es la electricidadEnrique Val
 
La Electricidad y la Corriente Eléctrica
La Electricidad y la Corriente EléctricaLa Electricidad y la Corriente Eléctrica
La Electricidad y la Corriente Eléctricarichardvergara
 
Electricidad
ElectricidadElectricidad
Electricidadhujiol
 
Electricidad Y Apicaciones
Electricidad Y ApicacionesElectricidad Y Apicaciones
Electricidad Y Apicacionesdavidteje
 
Electricidad Básica. Módulo A
Electricidad Básica. Módulo AElectricidad Básica. Módulo A
Electricidad Básica. Módulo APaolo Castillo
 
Conceptos básicos de electricidad y electrónica
Conceptos básicos de electricidad y electrónicaConceptos básicos de electricidad y electrónica
Conceptos básicos de electricidad y electrónicaErnestina Sandoval
 
Flujo de electrones
Flujo de electronesFlujo de electrones
Flujo de electronesPaola Chamba
 
Circuitos Electricos Cap. 1, 2, 3
Circuitos Electricos Cap. 1, 2, 3Circuitos Electricos Cap. 1, 2, 3
Circuitos Electricos Cap. 1, 2, 3efrainL145
 
Introduccion a la Electrodinamica
Introduccion a la ElectrodinamicaIntroduccion a la Electrodinamica
Introduccion a la ElectrodinamicaTefa195
 
Conceptos básicos de electrónica
Conceptos básicos de electrónicaConceptos básicos de electrónica
Conceptos básicos de electrónicaJohnny Cabrera
 
La electricidad y magnetismo
La electricidad y magnetismoLa electricidad y magnetismo
La electricidad y magnetismoJhon Ediison
 
Conceptos básicos de la electricidad, Circuito I, Autor Samuel Vallenilla.pptx
Conceptos básicos de la electricidad, Circuito I, Autor Samuel Vallenilla.pptxConceptos básicos de la electricidad, Circuito I, Autor Samuel Vallenilla.pptx
Conceptos básicos de la electricidad, Circuito I, Autor Samuel Vallenilla.pptxSamuelVallenilla
 
electricidad y electronica basica
electricidad y electronica basicaelectricidad y electronica basica
electricidad y electronica basicaJim Jl
 
Conceptos básicos de la electricidad, Circuito I, Autor Samuel Vallenilla.pptx
Conceptos básicos de la electricidad, Circuito I, Autor Samuel Vallenilla.pptxConceptos básicos de la electricidad, Circuito I, Autor Samuel Vallenilla.pptx
Conceptos básicos de la electricidad, Circuito I, Autor Samuel Vallenilla.pptxSamuelVallenilla
 
La electricidad trabajo en word
La electricidad trabajo en wordLa electricidad trabajo en word
La electricidad trabajo en wordsantiag97
 
Conceptos básicos de electricidad
Conceptos básicos de electricidadConceptos básicos de electricidad
Conceptos básicos de electricidadEsteban Padilla
 

La actualidad más candente (20)

Qué es la electricidad
Qué es la electricidadQué es la electricidad
Qué es la electricidad
 
La Electricidad y la Corriente Eléctrica
La Electricidad y la Corriente EléctricaLa Electricidad y la Corriente Eléctrica
La Electricidad y la Corriente Eléctrica
 
Electricidad
ElectricidadElectricidad
Electricidad
 
electricidad 1
electricidad 1electricidad 1
electricidad 1
 
Electricidad Y Apicaciones
Electricidad Y ApicacionesElectricidad Y Apicaciones
Electricidad Y Apicaciones
 
Electricidad Básica. Módulo A
Electricidad Básica. Módulo AElectricidad Básica. Módulo A
Electricidad Básica. Módulo A
 
Conceptos básicos de electricidad y electrónica
Conceptos básicos de electricidad y electrónicaConceptos básicos de electricidad y electrónica
Conceptos básicos de electricidad y electrónica
 
Flujo de electrones
Flujo de electronesFlujo de electrones
Flujo de electrones
 
Circuitos Electricos Cap. 1, 2, 3
Circuitos Electricos Cap. 1, 2, 3Circuitos Electricos Cap. 1, 2, 3
Circuitos Electricos Cap. 1, 2, 3
 
Electrodinamica fisica
Electrodinamica  fisicaElectrodinamica  fisica
Electrodinamica fisica
 
Introduccion a la Electrodinamica
Introduccion a la ElectrodinamicaIntroduccion a la Electrodinamica
Introduccion a la Electrodinamica
 
Conceptos básicos de electrónica
Conceptos básicos de electrónicaConceptos básicos de electrónica
Conceptos básicos de electrónica
 
La electricidad y magnetismo
La electricidad y magnetismoLa electricidad y magnetismo
La electricidad y magnetismo
 
Conceptos básicos de la electricidad, Circuito I, Autor Samuel Vallenilla.pptx
Conceptos básicos de la electricidad, Circuito I, Autor Samuel Vallenilla.pptxConceptos básicos de la electricidad, Circuito I, Autor Samuel Vallenilla.pptx
Conceptos básicos de la electricidad, Circuito I, Autor Samuel Vallenilla.pptx
 
electricidad y electronica basica
electricidad y electronica basicaelectricidad y electronica basica
electricidad y electronica basica
 
Corriente eléctrica
Corriente eléctricaCorriente eléctrica
Corriente eléctrica
 
Conceptos básicos de la electricidad, Circuito I, Autor Samuel Vallenilla.pptx
Conceptos básicos de la electricidad, Circuito I, Autor Samuel Vallenilla.pptxConceptos básicos de la electricidad, Circuito I, Autor Samuel Vallenilla.pptx
Conceptos básicos de la electricidad, Circuito I, Autor Samuel Vallenilla.pptx
 
La electricidad trabajo en word
La electricidad trabajo en wordLa electricidad trabajo en word
La electricidad trabajo en word
 
Conceptos básicos de electricidad
Conceptos básicos de electricidadConceptos básicos de electricidad
Conceptos básicos de electricidad
 
Electricidad
ElectricidadElectricidad
Electricidad
 

Similar a Electricidad y magnetismo

PresentacióN Electricidad
PresentacióN ElectricidadPresentacióN Electricidad
PresentacióN Electricidadjorge camargo
 
2.introduccion a la electricidad
2.introduccion a la electricidad2.introduccion a la electricidad
2.introduccion a la electricidadCarlos Cardelo
 
Fundamentos de la electricidad y electronica
Fundamentos de la electricidad y electronicaFundamentos de la electricidad y electronica
Fundamentos de la electricidad y electronicaanamaramirez19
 
Conceptos básicos de electricidad
Conceptos básicos de electricidadConceptos básicos de electricidad
Conceptos básicos de electricidadHamiltonn Casallas
 
Terminos basicos de la electronica
Terminos basicos de la electronicaTerminos basicos de la electronica
Terminos basicos de la electronicaJulianaRojas48
 
Terminos basicos de la electronica
Terminos basicos de la electronicaTerminos basicos de la electronica
Terminos basicos de la electronicaJudith Martos Florez
 
Terminos basicos de la electronica
Terminos basicos de la electronicaTerminos basicos de la electronica
Terminos basicos de la electronicasamueldavidcaldernri
 
Terminos basicos de la electronica
Terminos basicos de la electronicaTerminos basicos de la electronica
Terminos basicos de la electronicavaleriarondonisaza
 
Tema+2.+electricidad+y+electromagnetismo+(parte+1)
Tema+2.+electricidad+y+electromagnetismo+(parte+1)Tema+2.+electricidad+y+electromagnetismo+(parte+1)
Tema+2.+electricidad+y+electromagnetismo+(parte+1)daesel
 
Conceptos basicos de la energia
Conceptos basicos de la energiaConceptos basicos de la energia
Conceptos basicos de la energiasonriealavida
 
Conceptos basicos de la energia
Conceptos basicos de la energiaConceptos basicos de la energia
Conceptos basicos de la energiasonriealavida
 
Electricidad y magnetismo
Electricidad y magnetismoElectricidad y magnetismo
Electricidad y magnetismoMichael-vanessa
 
curso de electricidad 1
curso de electricidad 1curso de electricidad 1
curso de electricidad 1andrea oncehex
 
Fundamentos de la_electricidad_y_electronica_(1)-convertido
Fundamentos de la_electricidad_y_electronica_(1)-convertidoFundamentos de la_electricidad_y_electronica_(1)-convertido
Fundamentos de la_electricidad_y_electronica_(1)-convertidojhonatanzambrano6
 
Fundamentos de la_electricidad_y_electronica_(1)-convertido
Fundamentos de la_electricidad_y_electronica_(1)-convertidoFundamentos de la_electricidad_y_electronica_(1)-convertido
Fundamentos de la_electricidad_y_electronica_(1)-convertidojhonatanzambrano6
 

Similar a Electricidad y magnetismo (20)

PresentacióN Electricidad
PresentacióN ElectricidadPresentacióN Electricidad
PresentacióN Electricidad
 
2.introduccion a la electricidad
2.introduccion a la electricidad2.introduccion a la electricidad
2.introduccion a la electricidad
 
Fundamentos de la electricidad y electronica
Fundamentos de la electricidad y electronicaFundamentos de la electricidad y electronica
Fundamentos de la electricidad y electronica
 
Conceptos básicos de electricidad
Conceptos básicos de electricidadConceptos básicos de electricidad
Conceptos básicos de electricidad
 
Terminos basicos de la electronica
Terminos basicos de la electronicaTerminos basicos de la electronica
Terminos basicos de la electronica
 
Terminos basicos de la electronica
Terminos basicos de la electronicaTerminos basicos de la electronica
Terminos basicos de la electronica
 
Terminos basicos de la electronica
Terminos basicos de la electronicaTerminos basicos de la electronica
Terminos basicos de la electronica
 
Terminos basicos de la electronica
Terminos basicos de la electronicaTerminos basicos de la electronica
Terminos basicos de la electronica
 
Clase1 once
Clase1 onceClase1 once
Clase1 once
 
Tema+2.+electricidad+y+electromagnetismo+(parte+1)
Tema+2.+electricidad+y+electromagnetismo+(parte+1)Tema+2.+electricidad+y+electromagnetismo+(parte+1)
Tema+2.+electricidad+y+electromagnetismo+(parte+1)
 
Conceptos basicos de la energia
Conceptos basicos de la energiaConceptos basicos de la energia
Conceptos basicos de la energia
 
Conceptos basicos de la energia
Conceptos basicos de la energiaConceptos basicos de la energia
Conceptos basicos de la energia
 
Conceptos basicos
Conceptos basicosConceptos basicos
Conceptos basicos
 
Conceptos basicos
Conceptos basicosConceptos basicos
Conceptos basicos
 
Electricidad y magnetismo
Electricidad y magnetismoElectricidad y magnetismo
Electricidad y magnetismo
 
curso de electricidad 1
curso de electricidad 1curso de electricidad 1
curso de electricidad 1
 
Fundamentos de la_electricidad_y_electronica_(1)-convertido
Fundamentos de la_electricidad_y_electronica_(1)-convertidoFundamentos de la_electricidad_y_electronica_(1)-convertido
Fundamentos de la_electricidad_y_electronica_(1)-convertido
 
Fundamentos de la_electricidad_y_electronica_(1)-convertido
Fundamentos de la_electricidad_y_electronica_(1)-convertidoFundamentos de la_electricidad_y_electronica_(1)-convertido
Fundamentos de la_electricidad_y_electronica_(1)-convertido
 
Electricidad
ElectricidadElectricidad
Electricidad
 
Electricidad
ElectricidadElectricidad
Electricidad
 

Último

TEMA 6.- MAXIMIZACION DE LA CONDUCTA DEL PRODUCTOR.pptx
TEMA 6.- MAXIMIZACION DE LA CONDUCTA DEL PRODUCTOR.pptxTEMA 6.- MAXIMIZACION DE LA CONDUCTA DEL PRODUCTOR.pptx
TEMA 6.- MAXIMIZACION DE LA CONDUCTA DEL PRODUCTOR.pptxFrancoSGonzales
 
ANÁLISIS CAME, DIAGNOSTICO PUERTO DEL CALLAO
ANÁLISIS CAME, DIAGNOSTICO  PUERTO DEL CALLAOANÁLISIS CAME, DIAGNOSTICO  PUERTO DEL CALLAO
ANÁLISIS CAME, DIAGNOSTICO PUERTO DEL CALLAOCarlosAlbertoVillafu3
 
Teleconferencia Accionistas Q1 2024 . Primer Trimestre-
Teleconferencia Accionistas Q1 2024 . Primer Trimestre-Teleconferencia Accionistas Q1 2024 . Primer Trimestre-
Teleconferencia Accionistas Q1 2024 . Primer Trimestre-ComunicacionesIMSA
 
instrumentos de mercados financieros para estudiantes
instrumentos de mercados financieros  para estudiantesinstrumentos de mercados financieros  para estudiantes
instrumentos de mercados financieros para estudiantessuperamigo2014
 
Gestion de rendicion de cuentas viaticos.pptx
Gestion de rendicion de cuentas viaticos.pptxGestion de rendicion de cuentas viaticos.pptx
Gestion de rendicion de cuentas viaticos.pptxignaciomiguel162
 
Trabajo de Sifilisn…………………………………………………..
Trabajo de Sifilisn…………………………………………………..Trabajo de Sifilisn…………………………………………………..
Trabajo de Sifilisn…………………………………………………..JoseRamirez247144
 
gua de docente para el curso de finanzas
gua de docente para el curso de finanzasgua de docente para el curso de finanzas
gua de docente para el curso de finanzassuperamigo2014
 
EVALUACIÓN PARCIAL de seminario de .pdf
EVALUACIÓN PARCIAL de seminario de  .pdfEVALUACIÓN PARCIAL de seminario de  .pdf
EVALUACIÓN PARCIAL de seminario de .pdfDIEGOSEBASTIANCAHUAN
 
1.- PLANIFICACIÓN PRELIMINAR DE AUDITORÍA.pptx
1.- PLANIFICACIÓN PRELIMINAR DE AUDITORÍA.pptx1.- PLANIFICACIÓN PRELIMINAR DE AUDITORÍA.pptx
1.- PLANIFICACIÓN PRELIMINAR DE AUDITORÍA.pptxCarlosQuionez42
 
TEMA N° 3.2 DISENO DE ESTRATEGIA y ANALISIS FODA
TEMA N° 3.2 DISENO DE ESTRATEGIA y ANALISIS FODATEMA N° 3.2 DISENO DE ESTRATEGIA y ANALISIS FODA
TEMA N° 3.2 DISENO DE ESTRATEGIA y ANALISIS FODACarmeloPrez1
 
clase de Mercados financieros - lectura importante
clase de Mercados financieros - lectura importanteclase de Mercados financieros - lectura importante
clase de Mercados financieros - lectura importanteJanettCervantes1
 
Presentación La mujer en la Esperanza AC.pptx
Presentación La mujer en la Esperanza AC.pptxPresentación La mujer en la Esperanza AC.pptx
Presentación La mujer en la Esperanza AC.pptxDanielFerreiraDuran1
 
Modelo de convenio de pago con morosos del condominio (GENÉRICO).docx
Modelo de convenio de pago con morosos del condominio (GENÉRICO).docxModelo de convenio de pago con morosos del condominio (GENÉRICO).docx
Modelo de convenio de pago con morosos del condominio (GENÉRICO).docxedwinrojas836235
 
exportacion y comercializacion de palta hass
exportacion y comercializacion de palta hassexportacion y comercializacion de palta hass
exportacion y comercializacion de palta hassJhonnyvalenssYupanqu
 
PLAN LECTOR JOSÉ MARÍA ARGUEDAS (1).docx
PLAN LECTOR JOSÉ MARÍA ARGUEDAS (1).docxPLAN LECTOR JOSÉ MARÍA ARGUEDAS (1).docx
PLAN LECTOR JOSÉ MARÍA ARGUEDAS (1).docxwilliamzaveltab
 
Ejemplo Caso: El Juego de la negociación
Ejemplo Caso: El Juego de la negociaciónEjemplo Caso: El Juego de la negociación
Ejemplo Caso: El Juego de la negociaciónlicmarinaglez
 
DELITOS CONTRA LA GESTION PUBLICA PPT.pdf
DELITOS CONTRA LA GESTION PUBLICA PPT.pdfDELITOS CONTRA LA GESTION PUBLICA PPT.pdf
DELITOS CONTRA LA GESTION PUBLICA PPT.pdfJaquelinRamos6
 
informacion-finanTFHHETHAETHciera-2022.pdf
informacion-finanTFHHETHAETHciera-2022.pdfinformacion-finanTFHHETHAETHciera-2022.pdf
informacion-finanTFHHETHAETHciera-2022.pdfPriscilaBermello
 
Presentación de la empresa polar, estados financieros
Presentación de la empresa polar, estados financierosPresentación de la empresa polar, estados financieros
Presentación de la empresa polar, estados financierosmadaloga01
 
cuadro sinoptico tipos de organizaci.pdf
cuadro sinoptico tipos de organizaci.pdfcuadro sinoptico tipos de organizaci.pdf
cuadro sinoptico tipos de organizaci.pdfjesuseleazarcenuh
 

Último (20)

TEMA 6.- MAXIMIZACION DE LA CONDUCTA DEL PRODUCTOR.pptx
TEMA 6.- MAXIMIZACION DE LA CONDUCTA DEL PRODUCTOR.pptxTEMA 6.- MAXIMIZACION DE LA CONDUCTA DEL PRODUCTOR.pptx
TEMA 6.- MAXIMIZACION DE LA CONDUCTA DEL PRODUCTOR.pptx
 
ANÁLISIS CAME, DIAGNOSTICO PUERTO DEL CALLAO
ANÁLISIS CAME, DIAGNOSTICO  PUERTO DEL CALLAOANÁLISIS CAME, DIAGNOSTICO  PUERTO DEL CALLAO
ANÁLISIS CAME, DIAGNOSTICO PUERTO DEL CALLAO
 
Teleconferencia Accionistas Q1 2024 . Primer Trimestre-
Teleconferencia Accionistas Q1 2024 . Primer Trimestre-Teleconferencia Accionistas Q1 2024 . Primer Trimestre-
Teleconferencia Accionistas Q1 2024 . Primer Trimestre-
 
instrumentos de mercados financieros para estudiantes
instrumentos de mercados financieros  para estudiantesinstrumentos de mercados financieros  para estudiantes
instrumentos de mercados financieros para estudiantes
 
Gestion de rendicion de cuentas viaticos.pptx
Gestion de rendicion de cuentas viaticos.pptxGestion de rendicion de cuentas viaticos.pptx
Gestion de rendicion de cuentas viaticos.pptx
 
Trabajo de Sifilisn…………………………………………………..
Trabajo de Sifilisn…………………………………………………..Trabajo de Sifilisn…………………………………………………..
Trabajo de Sifilisn…………………………………………………..
 
gua de docente para el curso de finanzas
gua de docente para el curso de finanzasgua de docente para el curso de finanzas
gua de docente para el curso de finanzas
 
EVALUACIÓN PARCIAL de seminario de .pdf
EVALUACIÓN PARCIAL de seminario de  .pdfEVALUACIÓN PARCIAL de seminario de  .pdf
EVALUACIÓN PARCIAL de seminario de .pdf
 
1.- PLANIFICACIÓN PRELIMINAR DE AUDITORÍA.pptx
1.- PLANIFICACIÓN PRELIMINAR DE AUDITORÍA.pptx1.- PLANIFICACIÓN PRELIMINAR DE AUDITORÍA.pptx
1.- PLANIFICACIÓN PRELIMINAR DE AUDITORÍA.pptx
 
TEMA N° 3.2 DISENO DE ESTRATEGIA y ANALISIS FODA
TEMA N° 3.2 DISENO DE ESTRATEGIA y ANALISIS FODATEMA N° 3.2 DISENO DE ESTRATEGIA y ANALISIS FODA
TEMA N° 3.2 DISENO DE ESTRATEGIA y ANALISIS FODA
 
clase de Mercados financieros - lectura importante
clase de Mercados financieros - lectura importanteclase de Mercados financieros - lectura importante
clase de Mercados financieros - lectura importante
 
Presentación La mujer en la Esperanza AC.pptx
Presentación La mujer en la Esperanza AC.pptxPresentación La mujer en la Esperanza AC.pptx
Presentación La mujer en la Esperanza AC.pptx
 
Modelo de convenio de pago con morosos del condominio (GENÉRICO).docx
Modelo de convenio de pago con morosos del condominio (GENÉRICO).docxModelo de convenio de pago con morosos del condominio (GENÉRICO).docx
Modelo de convenio de pago con morosos del condominio (GENÉRICO).docx
 
exportacion y comercializacion de palta hass
exportacion y comercializacion de palta hassexportacion y comercializacion de palta hass
exportacion y comercializacion de palta hass
 
PLAN LECTOR JOSÉ MARÍA ARGUEDAS (1).docx
PLAN LECTOR JOSÉ MARÍA ARGUEDAS (1).docxPLAN LECTOR JOSÉ MARÍA ARGUEDAS (1).docx
PLAN LECTOR JOSÉ MARÍA ARGUEDAS (1).docx
 
Ejemplo Caso: El Juego de la negociación
Ejemplo Caso: El Juego de la negociaciónEjemplo Caso: El Juego de la negociación
Ejemplo Caso: El Juego de la negociación
 
DELITOS CONTRA LA GESTION PUBLICA PPT.pdf
DELITOS CONTRA LA GESTION PUBLICA PPT.pdfDELITOS CONTRA LA GESTION PUBLICA PPT.pdf
DELITOS CONTRA LA GESTION PUBLICA PPT.pdf
 
informacion-finanTFHHETHAETHciera-2022.pdf
informacion-finanTFHHETHAETHciera-2022.pdfinformacion-finanTFHHETHAETHciera-2022.pdf
informacion-finanTFHHETHAETHciera-2022.pdf
 
Presentación de la empresa polar, estados financieros
Presentación de la empresa polar, estados financierosPresentación de la empresa polar, estados financieros
Presentación de la empresa polar, estados financieros
 
cuadro sinoptico tipos de organizaci.pdf
cuadro sinoptico tipos de organizaci.pdfcuadro sinoptico tipos de organizaci.pdf
cuadro sinoptico tipos de organizaci.pdf
 

Electricidad y magnetismo

  • 1. ELECTRICIDAD Y MAGNETISMOOSCAR EDUARDO RIVERA DIAZLIC. LUCY PIEDAD MOSQUERA PEREAINSTITUCION EDUCATIVA COLEGIO GUATIQUIA2011 – 10º1
  • 3. INTRODUCCION La electricidad es una fuente de energía que con el tiempo se vuelve cada vez mas importante e indispensable para todos , ya que las maquinarias y artefactos modernos necesitan de esta para su funcionamiento , por lo tanto hay que cuidar y no malgastarlo en cosas inútiles.
  • 4. ¿QUÉ ES LA ELECTRICIDAD? En nuestras casas, la electricidad permite que funcionen las lamparitas eléctricas, la televisión, la tostadora y muchas otras cosas. Es muy difícil imaginar nuestra vida sin ella.Ahora bien, nos damos cuenta de qué es lo que podemos hacer con ella pero, ¿qué es la electricidad?.La electricidad es una forma de energía. Energía es poder... el poder de hacer, de hacer por ejemplo que las cosas se muevan y de hacer que las cosas funcionen. 
  • 5. Para entender qué es la electricidad debemos comenzar con los átomos. Los átomos son pequeñas partículas que son muy difíciles de ver, y son los elementos con los que está hecho todo a nuestro alrededor. Un átomo está compuesto por protones, electrones y neutrones. El centro de un átomo, al cual se llama “núcleo”, tiene al menos un protón.Alrededor del núcleo viajan los electrones (en igual cantidad que los protones) a gran velocidad.Los protones y electrones tienen una propiedad llamada carga, la de los protones es de signo positivo y la de los electrones es de signo negativo. Los neutrones no tienen carga. Los protones y electrones se atraen entre sí porque tienen cargas de distinto signo. En cambio las partículas que tienen cargas del mismo signo se repelen.
  • 6. ¿DE DONDE VIENE? Cuando queremos hacer funcionar un aparato eléctrico lo conectamos a un enchufe. Pero, ¿de dónde viene la corriente eléctrica? La corriente eléctrica es la circulación de electrones. Se produce en plantas de generación y luego es conducida a través de gruesos cables, que forman la red de distribución, hasta las subestaciones de transformación y finalmente, por ejemplo, a tu casa.  
  • 7. TIPOS DE ELECTRICIDAD: Si se aplica una diferencia de potencial eléctrico suficientemente grande (usualmente llamado voltaje) se genera una fuerza que puede empujar a los electrones de un átomo a otro. Este movimiento de electrones se llama corriente eléctrica. Esto es lo que ocurre en un trozo de alambre que se conecta a los extremos de una pila. Los electrones pasan de un átomo a otro creando la corriente eléctrica. Hay corrientes eléctricas de dos tipos: la corriente continua y la corriente alterna.
  • 8. En la corriente continua los electrones se mueven siempre en la misma dirección. Este es el tipo de corriente eléctrica que se obtiene de una pila, como las que se usan en una linterna. En la corriente alterna, como su nombre lo indica, los electrones van primero para un lado y luego en dirección contraria, y así siempre. Este es el tipo de corriente eléctrica que obtenemos en la red eléctrica de nuestras casas y con la que hacemos funcionar la heladera, el televisor, etc.
  • 9. CONDUCTORES: Los conductores son materiales a través de los cuales la corriente eléctrica viaja con facilidad; por eso decimos que tienen baja resistencia eléctrica. Los metales son muy buenos conductores, por eso se usan para construir los cables con los cuales se provee a las casas de corriente eléctrica. También es lo que usamos para conectar los aparatos eléctricos a los enchufes de la red eléctrica de nuestras casas. El metal más usado para construir cables de conducción es el cobre. El agua (como la que sale de la canilla) es otro buen conductor de la electricidad. Es muy importante recordar esto, porque nuestro cuerpo está constituido en gran parte de agua (un 70% aproximadamente), entonces la electricidad puede circular fácilmente a través de nosotros. Pero si la electricidad viaja por nuestro cuerpo puede causarnos mucho daño. Es por eso que los cables eléctricos están recubiertos de algún material de alta resistencia (aislante) como por ejemplo el plástico, para que puedan ser manipulados sin peligro.
  • 10. AISLANTES: La electricidad no circula fácilmente por los aislantes. A los átomos que constituyen los aislantes no les gusta compartir sus electrones. Algunos materiales aislantes son: Plásticos - Vidrios - Cerámicas Al cubrir los metales que forman los cables eléctricos con aislantes nos aseguramos que la corriente eléctrica circule por donde debe, cumpliendo su función correctamente y sin riegos para nosotros, que también somos buenos conductores.
  • 11. UNIDADES DE LA ELECTRICIDAD Estamos acostumbrados a hablar con ciertos términos especiales para referirnos a fenómenos eléctricos, así sabemos, por ejemplo, que una lamparita de 100 vatios nos dará mucha luz. Como vimos al estudiar el átomo, los protones y electrones tienen una propiedad que llamamos carga. La carga en movimiento es lo que llamamos corriente eléctrica. La carga se mide en culombios la corriente en amperios. Así entonces un culombio es la cantidad de carga que una corriente de un amperio transporta en un segundo.
  • 12. Para construir un culombio necesitamos más de un trillón de electrones; la cantidad es enorme, 1,5 x 10.000.000.000.000.000.000 electrones! También hablamos que para mover los electrones hay que hacer una fuerza sobre ellos. Esta fuerza que “empuja” a los electrones se mide en voltios. En nuestras casas usamos 220 voltios. También hemos hablado de la resistencia de los materiales a conducir la corriente eléctrica. La resistencia se mide en ohmios. Voltios y ohmios están relacionados del siguiente modo, por una resistencia de un ohmio circulará un amperio si se le aplica un voltio Del mismo modo un vatio se define como la potencia usada para hacer circular un amperio por una diferencia de potencial de unvoltio
  • 13. APORTE A LA ELECTRICIDAD La importancia de la electricidad radica en que es una de las principales formas de energía usadas en el mundo actual. Sin ella la iluminación, comunicación, teléfono, radio, no existiría y las personas que tuvieran que prescindir de aparatos eléctricos que ya llegaron a constituir parte integrante del hogar. Además sin la electricidad el campo del transporte no sería lo que es en la actualidad. De hecho puede decirse que la electricidad se usa en todas partes.
  • 14. CAMPOS ELÉCTRICO Y MAGNÉTICO       Líneas de campo de dos cargas eléctricas de igual valor absoluto y signos opuestos. Artículos principales: campo eléctrico y campo magnético Los campos eléctrico        y magnético       , son campos vectoriales caracterizables en cada punto del espacio y cada instante del tiempo por un módulo, una dirección y un sentido. Una propiedad fundamental de estos campos es el principio de superposición, según el cual el campo resultante puede ser calculado como la suma vectorial de los campos creados por cada una de las cargas eléctricas.
  • 15. Se obtiene una descripción sencilla de estos campos dando las líneas de fuerza o de campo, que son curvas tangentes a la dirección de los vectores de campo. En el caso del campo eléctrico, esta línea corresponde a la trayectoria que seguiría una carga sin masa que se encuentre libre en el seno del campo y que se deja mover muy lentamente. Normalmente la materia es neutra, es decir, su carga eléctrica neta es nula. Sin embargo, en su interior tiene cargas positivas y negativas y se localizan corrientes eléctricas en los átomos y moléculas, lo cual da lugar a campos eléctricos y magnéticos. En el caso de dos cargas opuestas se generan campos dipolares, como el representado en la figura de la derecha, donde las cargas de igual magnitud y signos opuestos están muy cercanas entre sí. Estos campos dipolares son la base para describir casos tan fundamentales como los enlaces iónicos en las moléculas, las características como disolvente del agua, o el funcionamiento de las antenas entre otros.
  • 16. SUMINISTRO ELECTRICO Se denomina suministro eléctrico al conjunto de etapas que son necesarias para que la energía eléctrica llegue al consumidor final. Como la energía eléctrica es difícil de almacenar, este sistema tiene la particularidad de generar y distribuir la energía conforme ésta es consumida. Por otra parte, debido a la importancia de la energía eléctrica, el suministro es vital para el desarrollo de los países y de interés para los gobiernos nacionales, por lo que estos cuentan con instituciones especializadas en el seguimiento de las tres etapas fundamentales: generación, transmisión y distribución.
  • 18. El campo magnético es producido por la corriente eléctrica que circula por un conductor. Para determinar la expresión del campo magnético producido por una corriente se emplean dos leyes: la ley de Biot-Savart y la ley de Ampère.
  • 19. EL MAGNETISMO es un fenómeno físico por el que los materiales ejercen fuerzas de atracción o repulsión sobre otros materiales. Hay algunos materiales conocidos que han presentado propiedades magnéticas detectables fácilmente como el níquel, hierro, cobalto y sus aleaciones que comúnmente se llaman imanes. Sin embargo todos los materiales son influidos, de mayor o menor forma, por la presencia de un campo magnético. El magnetismo también tiene otras manifestaciones en física, particularmente como uno de los dos componentes de la radiación electromagnética, como por ejemplo, la luz.
  • 20. BREVE EXPLICACION DEL MAGNETISMO Cada electrón es, por su naturaleza, un pequeño imán (véase Momento dipolar magnético electrónico). Ordinariamente, innumerables electrones de un material están orientados aleatoriamente en diferentes direcciones, pero en un imán casi todos los electrones tienden a orientarse en la misma dirección, creando una fuerza magnética grande o pequeña dependiendo del número de electrones que estén orientados. Además del campo magnético intrínseco del electrón, algunas veces hay que contar también con el campo magnético debido al movimiento orbital del electrón alrededor del núcleo. Este efecto es análogo al campo generado por una corriente eléctrica que circula por una bobina (ver dipolo magnético). De nuevo, en general el movimiento de los electrones no da lugar a un campo magnético en el material, pero en ciertas condiciones los movimientos pueden alinearse y producir un campo magnético total medible.
  • 21. CAMPOS Y FUERZAS MAGNÉTICAS El fenómeno del magnetismo es ejercido por un campo magnético, por ejemplo, una corriente eléctrica o un dipolo magnético crea un campo magnético, éste al girar imparte una fuerza magnética a otras partículas que están en el campo. Para una aproximación excelente (pero ignorando algunos efectos cuánticos, véase electrodinámica cuántica) las ecuaciones de Maxwell (que simplifican la ley de Biot-Savart en el caso de corriente constante) describen el origen y el comportamiento de los campos que gobiernan esas fuerzas. Por lo tanto el magnetismo se observa siempre que partículas cargadas eléctricamente están en movimiento. Por ejemplo, del movimiento de electrones en una corriente eléctrica o en casos del movimiento orbital de los electrones alrededor del núcleo atómico. Estas también aparecen de un dipolo magnético intrínseco que aparece de los efectos cuánticos, p.e. del spin de la mecánica cuántica.
  • 22. DIPOLOS MAGNÉTICOS Se puede ver una muy común fuente de campo magnético en la naturaleza, un dipolo. Éste tiene un "polo sur" y un "polo norte", sus nombres se deben a que antes se usaban los magnetos como brújulas, que interactuaban con el campo magnético terrestre para indicar el norte y el sur del globo. Un campo magnético contiene energía y sistemas físicos que se estabilizan con configuraciones de menor energía. Por lo tanto, cuando se encuentra en un campo magnético, un dipolo magnético tiende a alinearse sólo con una polaridad diferente a la del campo, lo que cancela al campo lo máximo posible y disminuye la energía recolectada en el campo al mínimo. Por ejemplo, dos barras magnéticas idénticas pueden estar una a lado de otra normalmente alineadas de norte a sur, resultando en un campo magnético más pequeño y resiste cualquier intento de reorientar todos sus puntos en una misma dirección.
  • 23. DIPOLOS MAGNÉTICOS ATÓMICOS La causa física del magnetismo en los cuerpos, distinto a la corriente eléctrica, es por los dipolos atómicos magnéticos. Dipolos magnéticos o momentos magnéticos, en escala atómica, resultan de dos tipos diferentes del movimiento de electrones. El primero es el movimiento orbital del electrón sobre su núcleo atómico; este movimiento puede ser considerado como una corriente de bucles, resultando en el momento dipolar magnético del orbital. La segunda, más fuerte, fuente de momento electrónico magnético, es debido a las propiedades cuánticas llamadas momento de spin del dipolo magnético (aunque la teoría mecánica cuántica actual dice que los electrones no giran físicamente, ni orbitan el núcleo). El momento magnético general de un átomo es la suma neta de todos los momentos magnéticos de los electrones individuales. Por la tendencia de los dipolos magnéticos a oponerse entre ellos se reduce la energía neta.
  • 24. MONOPOLOS MAGNÉTICOS Puesto que un imán de barra obtiene su ferromagnetismo de los electrones magnéticos microscópicos distribuidos uniformemente a través del imán, cuando un imán es partido a la mitad cada una de las piezas resultantes es un imán más pequeño. Aunque se dice que un imán tiene un polo norte y un polo sur, estos dos polos no pueden separarse el uno del otro. Un mono polo -si tal cosa existe- sería una nueva clase fundamentalmente diferente de objeto magnético. Actuaría como un polo norte aislado, no atado a un polo sur, o viceversa. Los mono polos llevarían "carga magnética" análoga a la carga eléctrica. A pesar de búsquedas sistemáticas a partir de 1931 (como la de 2006), nunca han sido observadas, y muy bien podrían no existir. Milton menciona algunos eventos no concluyentes (p.60) y aún concluye que "no ha sobrevivido en absoluto ninguna evidencia de mono polos magnéticos".
  • 25. ELECTROMAGNETOS Un electroimán es un imán hecho de alambre eléctrico bobinado en torno a un material magnético como el hierro. Este tipo de imán es útil en los casos en que un imán debe estar encendido o apagado, por ejemplo, las grandes grúas para levantar chatarra de automóviles. Para el caso de corriente eléctrica se desplazan a través de un cable, el campo resultante se dirige de acuerdo con la "regla de la mano derecha." Si la mano derecha se utiliza como un modelo, y el pulgar de la mano derecha a lo largo del cable de positivo hacia el lado negativo ( "convencional actual", a la inversa de la dirección del movimiento real de los electrones), entonces el campo magnético hace una recapitulación de todo el cable en la dirección indicada por los dedos de la mano derecha. 
  • 26. MAGNETOS TEMPORALES Y PERMANENTES Un imán permanente conserva su magnetismo sin un campo magnético exterior, mientras que un imán temporal sólo es magnético, siempre que esté situado en otro campo magnético. Inducir el magnetismo del acero en los resultados en un imán de hierro, pierde su magnetismo cuando la inducción de campo se retira. Un imán temporal como el hierro es un material adecuado para los electroimanes. Los imanes son hechos por acariciar con otro imán, la grabación, mientras que fija en un campo magnético opuesto dentro de una solenoide bobina, se suministra con una corriente directa. Un imán permanente puede ser la remoción de los imanes de someter a la calefacción, fuertes golpes, o colocarlo dentro de un solenoide se suministra con una reducción de corriente alterna.
  • 27. CAMPO MEDIDO POR DOS OBSERVADORES La teoría de la relatividad especial probó que de la misma manera que espacio y tiempo no son conceptos absolutos, la parte eléctrica y magnética de un campo electromagnético dependen del observador. Eso significa que dados dos observadores      y      en movimiento relativo un respecto a otro el campo magnético y eléctrico medido por cada uno de ellos no será el mismo. 
  • 28. CONCLUSIONES - Racionalizar el uso de la electricidad. - Interpretar que la electricidad es muy peligrosa y que no hay que jugar con ella. - Gracias a grandes personajes que descubrieron la electricidad podemos facilitarnos muchas trabajos.   - La generación de electricidad a partir de biomasa se está desarrollando intensamente con una participación importante de los ingenios azucareros, industrias de pulpa y papel y aserraderos, mediante la utilización de sus residuos, ampliando el campo de la dentro energía hacia sistemas racionales de cogeneración y venta de excedentes a la red pública. . - La generación de electricidad a partir de biomasa debe ser altamente valorada en los organismos nacionales y regionales vinculados a los sectores energéticos y al desarrollo rural en general.