SlideShare una empresa de Scribd logo
1 de 18
ENEGIA MECANICA
La energía mecánica es la parte de la física que estudia el equilibrio y el movimiento de los cuerpos sometidos a la acción de fuerzas.  Hace referencia a las energías cinética y potencial.
Energía cinética. Se define como la energía asociada al movimiento. Ésta energía depende de la masa y de la velocidad según la ecuación:              Ec = ½ m . v2  Con lo cual un cuerpo de masa  m  que lleva una velocidad  v  posee energía.
 
Energía potencial. Se define como la energía determinada por la posición de los cuerpos. Esta energía depende de la altura y el peso del cuerpo según la ecuación:               Ep = m . g . h = P . h  Con lo cual un cuerpo de masa  m  situado a una altura  h  (se da por hecho que se encuentra en un planeta por lo que existe aceleración gravitatoria) posee energía. Debido a que esta energía depende de la posición del cuerpo con respecto al centro del planeta se la llama energía potencial gravitatoria.
Tipos de energía potencial. Elástica: la que posee un muelle estirado o comprimido. Química: la que posee un combustible, capaz de liberar calor. Eléctrica: la que posee un condensador cargado, capaz de encender una lámpara.
En algunas ocasiones un cuerpo puede tener ambas energías como por ejemplo la piedra que cae desde un edificio: tiene energía potencial porque tiene peso y está a una altura y al pasar los segundos la irá perdiendo (disminuye la altura) y posee energía cinética porque al caer lleva velocidad, que cada vez irá aumentando gracias a la aceleración de la gravedad. Las energías cinética y potencial se transforman entre sí, su suma se denomina energía mecánica y en determinadas condiciones permanece constante.
 
Demostración de la ecuación de la energía mecánica. Se define energía mecánica como la suma de sus energías cinética y potencial de un cuerpo:              Em = ½ m . v2 + m . g . h
Para demostrar esto hay que conocer la segunda ley de Newton:              F = m . a Siendo  F  la fuerza total que actúa sobre el cuerpo,  m  la masa y  a  la aceleración. También se debe saber la cinemática relacionada con posición en cuerpos con aceleración y una de sus fórmulas que lo demuestran             vf2 = vo2 + 2 . a . Δx
Se parte de un cuerpo que desciende por un plano inclinado liso. La fuerza que provoca la aceleración con que desciende es la componente x del peso Px  Se aplica la ley de Newton:              Fx = m . a     que conlleva    m . g . sen b = m . a
La relación  entre las velocidades vf y vo del cuerpo cuando se encuentra a unas alturas hf y ho es:           vf 2 = vo2 + 2 . a . Δx    que conlleva    a = (vf2 – vo2)/ 2 . Δx Al introducir esto en la segunda ley de Newton:             m . (vf2 – vo2)/ 2 .  Δ x = m . g . sen b
La relación  entre las velocidades vf y vo del cuerpo cuando se encuentra a unas alturas hf y ho es:           vf 2 = vo2 + 2 . a . Δx    que conlleva    a = (vf2 – vo2)/ 2 . Δx Al introducir esto en la segunda ley de Newton:             m . (vf2 – vo2)/ 2 .  Δ x = m . g . sen b
Conservación de la energía mecánica.
Si no hay rozamiento la energía mecánica siempre se conserva. Si un cuerpo cae desde una altura    se producirá una conversión de energía potencial en cinética. La pérdida de cualquiera de las energías queda compensada con la ganancia de la otra, por eso siempre la suma de las energías potencial y cinética en un punto será igual a la de otro punto.              Em = cte
Disipación de la energía mecánica.
Si existe rozamiento en una transformación de energía, la energía mecánica no se conserva. Por ejemplo, un cuerpo que cae por un plano inclinado perderá energía mecánica en energía térmica provocada por el rozamiento. Con lo cual en un proceso semejante a éste la energía cinética inicial acabará en una energía mecánica final inferior a la otra más el trabajo ejercido por la fuerza de rozamiento:        Emo = Emf + Tfr
 

Más contenido relacionado

La actualidad más candente

Fuerzas concurrentes y no concurrentes
Fuerzas concurrentes y no concurrentesFuerzas concurrentes y no concurrentes
Fuerzas concurrentes y no concurrentesJhonás A. Vega
 
PROYECTO DE ESTÁTICA-REACCIONES EN UNA VIGA
PROYECTO DE ESTÁTICA-REACCIONES EN UNA VIGAPROYECTO DE ESTÁTICA-REACCIONES EN UNA VIGA
PROYECTO DE ESTÁTICA-REACCIONES EN UNA VIGARICHARD CULQUE
 
Tippens fisica 7e_diapositivas_11b
Tippens fisica 7e_diapositivas_11bTippens fisica 7e_diapositivas_11b
Tippens fisica 7e_diapositivas_11bRobert
 
Fundamento conceptual fisica
Fundamento conceptual fisicaFundamento conceptual fisica
Fundamento conceptual fisicaTyrone Alvarez
 
Trabajo efectuado por una fuerza variable
Trabajo efectuado por una fuerza variableTrabajo efectuado por una fuerza variable
Trabajo efectuado por una fuerza variableXabier98
 
Equilibrio de cuerpos (opta)
Equilibrio de cuerpos (opta)Equilibrio de cuerpos (opta)
Equilibrio de cuerpos (opta)Julio Ruiz
 
Ecuaciones de equilibrio
Ecuaciones de equilibrioEcuaciones de equilibrio
Ecuaciones de equilibrioteresa may
 
Introducción a Mecánica de fluidos
Introducción a  Mecánica de fluidosIntroducción a  Mecánica de fluidos
Introducción a Mecánica de fluidosEdisson Paguatian
 
Fuerzas paralelas en equilibrio
Fuerzas paralelas en equilibrioFuerzas paralelas en equilibrio
Fuerzas paralelas en equilibrioJohnny Alex
 
Coordenadas cilindricas susana Gualpa
Coordenadas cilindricas susana GualpaCoordenadas cilindricas susana Gualpa
Coordenadas cilindricas susana GualpaSusanaGualpa
 
Vigas y todo lo relacionado
Vigas y todo lo relacionadoVigas y todo lo relacionado
Vigas y todo lo relacionadoDaniielaaOropeza
 
Movimiento parabólico de caída libre ( mpcl )
Movimiento parabólico de caída libre ( mpcl )Movimiento parabólico de caída libre ( mpcl )
Movimiento parabólico de caída libre ( mpcl )Diana Carolina Vela Garcia
 
58335745 informe-lab-de-fisica-centro-de-gravedad (1)
58335745 informe-lab-de-fisica-centro-de-gravedad (1)58335745 informe-lab-de-fisica-centro-de-gravedad (1)
58335745 informe-lab-de-fisica-centro-de-gravedad (1)nelson villegas
 
Fundamento de la estatica y centro de gravedad
Fundamento de la estatica y centro de gravedadFundamento de la estatica y centro de gravedad
Fundamento de la estatica y centro de gravedadAmerica Heidi Valero Lopez
 

La actualidad más candente (20)

Fuerzas concurrentes y no concurrentes
Fuerzas concurrentes y no concurrentesFuerzas concurrentes y no concurrentes
Fuerzas concurrentes y no concurrentes
 
PROYECTO DE ESTÁTICA-REACCIONES EN UNA VIGA
PROYECTO DE ESTÁTICA-REACCIONES EN UNA VIGAPROYECTO DE ESTÁTICA-REACCIONES EN UNA VIGA
PROYECTO DE ESTÁTICA-REACCIONES EN UNA VIGA
 
Tippens fisica 7e_diapositivas_11b
Tippens fisica 7e_diapositivas_11bTippens fisica 7e_diapositivas_11b
Tippens fisica 7e_diapositivas_11b
 
Fundamento conceptual fisica
Fundamento conceptual fisicaFundamento conceptual fisica
Fundamento conceptual fisica
 
C E09 S04 D C
C E09  S04  D CC E09  S04  D C
C E09 S04 D C
 
Aplicacion vectores
Aplicacion vectoresAplicacion vectores
Aplicacion vectores
 
Física I: Sistema de particulas
Física I:   Sistema de particulasFísica I:   Sistema de particulas
Física I: Sistema de particulas
 
Trabajo efectuado por una fuerza variable
Trabajo efectuado por una fuerza variableTrabajo efectuado por una fuerza variable
Trabajo efectuado por una fuerza variable
 
Derivadas en la ingenieria civil
Derivadas en la ingenieria civilDerivadas en la ingenieria civil
Derivadas en la ingenieria civil
 
Equilibrio de cuerpos (opta)
Equilibrio de cuerpos (opta)Equilibrio de cuerpos (opta)
Equilibrio de cuerpos (opta)
 
Sistema resultante de fuerzas
Sistema resultante de fuerzasSistema resultante de fuerzas
Sistema resultante de fuerzas
 
Ecuaciones de equilibrio
Ecuaciones de equilibrioEcuaciones de equilibrio
Ecuaciones de equilibrio
 
Introducción a Mecánica de fluidos
Introducción a  Mecánica de fluidosIntroducción a  Mecánica de fluidos
Introducción a Mecánica de fluidos
 
Fuerzas paralelas en equilibrio
Fuerzas paralelas en equilibrioFuerzas paralelas en equilibrio
Fuerzas paralelas en equilibrio
 
Coordenadas cilindricas susana Gualpa
Coordenadas cilindricas susana GualpaCoordenadas cilindricas susana Gualpa
Coordenadas cilindricas susana Gualpa
 
Vigas y todo lo relacionado
Vigas y todo lo relacionadoVigas y todo lo relacionado
Vigas y todo lo relacionado
 
Movimiento parabólico de caída libre ( mpcl )
Movimiento parabólico de caída libre ( mpcl )Movimiento parabólico de caída libre ( mpcl )
Movimiento parabólico de caída libre ( mpcl )
 
58335745 informe-lab-de-fisica-centro-de-gravedad (1)
58335745 informe-lab-de-fisica-centro-de-gravedad (1)58335745 informe-lab-de-fisica-centro-de-gravedad (1)
58335745 informe-lab-de-fisica-centro-de-gravedad (1)
 
Fundamento de la estatica y centro de gravedad
Fundamento de la estatica y centro de gravedadFundamento de la estatica y centro de gravedad
Fundamento de la estatica y centro de gravedad
 
Equilibrio de una particula
Equilibrio de una particulaEquilibrio de una particula
Equilibrio de una particula
 

Similar a Energía Mecánica: Cinética, Potencial y su Transformación

Similar a Energía Mecánica: Cinética, Potencial y su Transformación (20)

Energia Mecanica
Energia MecanicaEnergia Mecanica
Energia Mecanica
 
Energia Mecanica
Energia MecanicaEnergia Mecanica
Energia Mecanica
 
EnergíA MecáNica
EnergíA MecáNicaEnergíA MecáNica
EnergíA MecáNica
 
6 EnergíA MecáNica
6 EnergíA MecáNica6 EnergíA MecáNica
6 EnergíA MecáNica
 
Energía Mecánica
Energía MecánicaEnergía Mecánica
Energía Mecánica
 
Energía mecánica
Energía mecánicaEnergía mecánica
Energía mecánica
 
Energia Mecanica(Rober)
Energia Mecanica(Rober)Energia Mecanica(Rober)
Energia Mecanica(Rober)
 
Energia Mecanica(Rober)
Energia Mecanica(Rober)Energia Mecanica(Rober)
Energia Mecanica(Rober)
 
Energia Mecanica
Energia MecanicaEnergia Mecanica
Energia Mecanica
 
EnergíA MecáNica
EnergíA MecáNicaEnergíA MecáNica
EnergíA MecáNica
 
Fisica
FisicaFisica
Fisica
 
martin alvarado
martin alvaradomartin alvarado
martin alvarado
 
Energia mecanica, potencial & cinetica
Energia mecanica, potencial & cineticaEnergia mecanica, potencial & cinetica
Energia mecanica, potencial & cinetica
 
Energía cinética 1
Energía cinética 1Energía cinética 1
Energía cinética 1
 
Energia mecanica
Energia mecanicaEnergia mecanica
Energia mecanica
 
Fisica
FisicaFisica
Fisica
 
Energia
EnergiaEnergia
Energia
 
E.Mecanica
E.MecanicaE.Mecanica
E.Mecanica
 
Trabajo y energía
Trabajo y energíaTrabajo y energía
Trabajo y energía
 
Trabajo mecanic1
Trabajo mecanic1Trabajo mecanic1
Trabajo mecanic1
 

Energía Mecánica: Cinética, Potencial y su Transformación

  • 2. La energía mecánica es la parte de la física que estudia el equilibrio y el movimiento de los cuerpos sometidos a la acción de fuerzas. Hace referencia a las energías cinética y potencial.
  • 3. Energía cinética. Se define como la energía asociada al movimiento. Ésta energía depende de la masa y de la velocidad según la ecuación:              Ec = ½ m . v2  Con lo cual un cuerpo de masa m que lleva una velocidad v posee energía.
  • 4.  
  • 5. Energía potencial. Se define como la energía determinada por la posición de los cuerpos. Esta energía depende de la altura y el peso del cuerpo según la ecuación:              Ep = m . g . h = P . h  Con lo cual un cuerpo de masa m situado a una altura h (se da por hecho que se encuentra en un planeta por lo que existe aceleración gravitatoria) posee energía. Debido a que esta energía depende de la posición del cuerpo con respecto al centro del planeta se la llama energía potencial gravitatoria.
  • 6. Tipos de energía potencial. Elástica: la que posee un muelle estirado o comprimido. Química: la que posee un combustible, capaz de liberar calor. Eléctrica: la que posee un condensador cargado, capaz de encender una lámpara.
  • 7. En algunas ocasiones un cuerpo puede tener ambas energías como por ejemplo la piedra que cae desde un edificio: tiene energía potencial porque tiene peso y está a una altura y al pasar los segundos la irá perdiendo (disminuye la altura) y posee energía cinética porque al caer lleva velocidad, que cada vez irá aumentando gracias a la aceleración de la gravedad. Las energías cinética y potencial se transforman entre sí, su suma se denomina energía mecánica y en determinadas condiciones permanece constante.
  • 8.  
  • 9. Demostración de la ecuación de la energía mecánica. Se define energía mecánica como la suma de sus energías cinética y potencial de un cuerpo:             Em = ½ m . v2 + m . g . h
  • 10. Para demostrar esto hay que conocer la segunda ley de Newton:              F = m . a Siendo F la fuerza total que actúa sobre el cuerpo, m la masa y a la aceleración. También se debe saber la cinemática relacionada con posición en cuerpos con aceleración y una de sus fórmulas que lo demuestran             vf2 = vo2 + 2 . a . Δx
  • 11. Se parte de un cuerpo que desciende por un plano inclinado liso. La fuerza que provoca la aceleración con que desciende es la componente x del peso Px Se aplica la ley de Newton:              Fx = m . a     que conlleva    m . g . sen b = m . a
  • 12. La relación  entre las velocidades vf y vo del cuerpo cuando se encuentra a unas alturas hf y ho es:           vf 2 = vo2 + 2 . a . Δx    que conlleva    a = (vf2 – vo2)/ 2 . Δx Al introducir esto en la segunda ley de Newton:            m . (vf2 – vo2)/ 2 . Δ x = m . g . sen b
  • 13. La relación  entre las velocidades vf y vo del cuerpo cuando se encuentra a unas alturas hf y ho es:           vf 2 = vo2 + 2 . a . Δx    que conlleva    a = (vf2 – vo2)/ 2 . Δx Al introducir esto en la segunda ley de Newton:            m . (vf2 – vo2)/ 2 . Δ x = m . g . sen b
  • 14. Conservación de la energía mecánica.
  • 15. Si no hay rozamiento la energía mecánica siempre se conserva. Si un cuerpo cae desde una altura   se producirá una conversión de energía potencial en cinética. La pérdida de cualquiera de las energías queda compensada con la ganancia de la otra, por eso siempre la suma de las energías potencial y cinética en un punto será igual a la de otro punto.              Em = cte
  • 16. Disipación de la energía mecánica.
  • 17. Si existe rozamiento en una transformación de energía, la energía mecánica no se conserva. Por ejemplo, un cuerpo que cae por un plano inclinado perderá energía mecánica en energía térmica provocada por el rozamiento. Con lo cual en un proceso semejante a éste la energía cinética inicial acabará en una energía mecánica final inferior a la otra más el trabajo ejercido por la fuerza de rozamiento:      Emo = Emf + Tfr
  • 18.