SlideShare una empresa de Scribd logo
1 de 44
Descargar para leer sin conexión
1
Ingeniería de los Sistemas de Producción
Rosendo Zamora Pedreño
Dpto. Ingeniería de Materiales y Fabricación
rosendo.zamora@upct.es
Soldadura: Procesos
2
Índice
1. Soldadura por Combustión (autógena)
2. Soldadura por Arco
3. Soldadura por Resistencia
4. Soldadura Heterogénea
5. Otros procesos de soldadura
Procesos de Soldadura
2
3
1. Soldadura por Combustión (autógena)
Fundamento: 
Proceso: por fusión.
Energía: combustión de un gas.
Composición mezcla combustible:
Oxigeno + (Metano, propano y 
fundamentalmente acetileno C2H2)
Soldadura oxiacetilénica OAW 
(Oxyacetylene Welding)
3100 oC.
1.‐ Soldadura por Combustión
*2
4
1. Soldadura por Combustión (autógena)
• Dardo
• Zona reductora
• Penacho
1.‐ Soldadura por Combustión
Zonas de la llama oxiacetilénica
3
5
1. Soldadura por Combustión (autógena)
Tipos de llama:
Neutra
•Dardo de color Verdoso ‐ Blanco bien definido.
•Uso habitual
Reductora
• Exceso de Acetileno
• Combustión irregular penacho blanco y alargado
• El exceso de C carbura el metal
• Acero sin metal de aporte
1.‐ Soldadura por Combustión
6
1. Soldadura por Combustión (autógena)
Tipos de llama:
Oxidante
•Exceso de Oxígeno
•Dardo Azul y corto
•Penacho inexistente (se queman los gases)
•Malas propiedades mecánicas
1.‐ Soldadura por Combustión
4
7
1. Soldadura por Combustión (autógena)
1.‐ Soldadura por Combustión
Tipos de llama:
*6
8
1. Soldadura por Combustión (autógena)
Protección:
Uso de fundentes:
• deshacen los óxidos superficiales
• protegen de la oxidación
•Para materiales férreos: mezclas a base de bórax, 
bicarbonato sódico, sílice y sosa.
•Para Cu y sus aleaciones: mezclas a base de bórax, ácido 
bórico y cloruros y fosfato sódico.
•Para Al y sus aleaciones: mezclas a base de sulfato 
sódico, cloruros de sodio, de potasio y magnesio, y 
fluoruros de potasio y sodio.
1.‐ Soldadura por Combustión
5
9
1. Soldadura por Combustión (autógena)
Métodos de soldeo
A izquierdas (clásico):
• La varilla va por delante del soplete
• La llama precalienta el material a soldar
• Inconveniente: empuja al metal en el sentido de trabajo lo que 
dificulta la penetración
1.‐ Soldadura por Combustión
*7
10
1. Soldadura por Combustión (autógena)
Métodos de soldeo
A derechas:
• La varilla va por detrás del soplete
• Facilita la penetración
• Se obtiene mayor velocidad de soldeo y cordones más estrechos
1.‐ Soldadura por Combustión
*7
6
11
1. Soldadura por Combustión (autógena)
Equipo:
Barato y de fácil transporte
1.‐ Soldadura por Combustión
*7
12
1. Soldadura por Combustión (autógena)
Aplicación:
Cualquier metal de uso industrial: aceros al carbón, 
aleados e inoxidables, cobre y sus aleaciones, aluminio y 
sus aleaciones, magnesio y sus aleaciones.
Utilización restringida. Se usa cuando hay problemas de 
accesibilidad. Está siendo desplazada por la soldadura por 
arco.
Problemas:
•Impurezas en el baño
•Difícil automatización
•Tasa de deposición es baja
1.‐ Soldadura por Combustión
7
13
1. Soldadura por Combustión (autógena)
2. Soldadura por Arco
3. Soldadura por Resistencia
4. Soldadura Heterogénea
5. Otros procesos de soldadura
Procesos de Soldadura
14
2.‐ Soldadura por Arco
Arco eléctrico:
efecto producido cuando la energía eléctrica 
se transforma en energía calorífica y en 
radiación electromagnética al pasar a través 
de un conductor gaseoso 
Es necesario que el gas sea conductor
Se ioniza (+) mediante una descarga.
El arco tiene forma cónica con vértice 
en la punta del electrodo y base en la 
pieza
2.‐ Soldadura por Arco
8
15
2.‐ Soldadura por Arco
1.‐ Plasma:  (10.000 ÷ 30.000 oC)
• Electrones: (‐)  (+). Energía cinética en calorífica.
• Iones metálicos: (+)  (‐)
• Átomos gaseosos: ionización y recombinación.
• Productos de la fusión de los metales: vapores, humos, 
escorias, etc.
2.‐ Llama 
Componentes del arco:
2.‐ Soldadura por Arco
16
2.‐ Soldadura por Arco
En corriente continua podemos trabajar con polaridad:
• Directa: el negativo en el electrodo 
El calor se concentra en la pieza
• Inversa: el positivo en el electrodo 
El calor se concentra en el electrodo (mayor penetración)
2.‐ Soldadura por Arco
*2
*TIG
9
17
2.‐ Soldadura por Arco
Procedimientos de soldeo por arco
1.‐ Electrodo revestido (SMAW  Shielded Metal Arc Welding )
2.‐ Electrodo no consumible y protección de gas inerte (TIG 
Tungsten Inert Gas )
3.‐ Electrodo consumible y protección por gas inerte (MIG) o por 
gas activo (MAG) (Metal Inert Gas, Metal Active Gas).
4.‐ Arco sumergido (SAW  Submerged Arc Welding ).
2.‐ Soldadura por Arco
18
2.‐ Soldadura por Arco
Procedimientos de soldeo por arco
1.‐ Electrodo revestido (SMAW  Shielded Metal Arc Welding )
2.‐ Electrodo no consumible y protección de gas inerte (TIG 
Tungsten Inert Gas )
3.‐ Electrodo consumible y protección por gas inerte (MIG) o por 
gas activo (MAG) (Metal Inert Gas, Metal Active Gas).
4.‐ Arco sumergido (SAW  Submerged Arc Welding ).
2.‐ Soldadura por Arco
10
19
2.1.‐ Electrodo revestido (SMAW  Shielded Metal Arc Welding )
• Fusión de bordes de las piezas 
a unir
• Energía = arco eléctrico entre 
pieza y electrodo consumible 
revestido
• Proceso manual
• Protección: escoria y gas 
procedente del revestimiento
2.‐ Soldadura por Arco
20
2.1.‐ Electrodo revestido (SMAW  Shielded Metal Arc Welding )
Protección:
‐ Revestimiento del electrodo.
‐ Funciones:
•Eléctrica: Cebado del arco y estabilidad del arco
•Física: Evita contacto con  O2, N2 y H2.
•Metalúrgica: mejorar características mecánicas.
2.‐ Soldadura por Arco
‐Tipos de revestimiento: 
Ácido, Celulósico, Rutilo, Básico, Gran rendimiento.
11
21
2.1.‐ Electrodo revestido (SMAW  Shielded Metal Arc Welding )
Protección:
‐ Revestimiento del electrodo.
‐ Funciones:
•Eléctrica: Cebado del arco y estabilidad del arco
•Física: Evita contacto con  O2, N2 y H2.
•Metalúrgica: mejorar características mecánicas.
2.‐ Soldadura por Arco
‐Tipos de revestimiento: 
Ácido, Celulósico, Rutilo, Básico, Gran rendimiento.
22
2.1.‐ Electrodo revestido (SMAW  Shielded Metal Arc Welding )
2.‐ Soldadura por Arco
Básicos
Rutilo
12
23
2.1.‐ Electrodo revestido (SMAW  Shielded Metal Arc Welding )
2.‐ Soldadura por Arco
Celulósicos
Ácidos
24
2.1.‐ Electrodo revestido (SMAW  Shielded Metal Arc Welding )
2.‐ Soldadura por Arco
Ej.: Denominación electrodos 
*2
13
25
2.1.‐ Electrodo revestido (SMAW  Shielded Metal Arc Welding )
Corriente:
•C.C. y C.A: 10 ÷ 500 A
•C.C. y electrodo conectado a +
•15 ÷ 45 V
2.‐ Soldadura por Arco
26
2.1.‐ Electrodo revestido (SMAW  Shielded Metal Arc Welding )
Campo de aplicación:
Casi todo tipo de acero: al carbono, inoxidables, débilmente 
aleados e incluso fundiciones de hierro, si bien en este caso el
rendimiento no es muy satisfactorio.
2.‐ Soldadura por Arco
14
27
2.1.‐ Electrodo revestido (SMAW  Shielded Metal Arc Welding )
Ventajas e inconvenientes:
•Utilizable en todas posiciones
•Equipo económico y versátil
•Gran variedad de electrodos
•Difícilmente automatizable
•Costo total elevado (escoria y rendimiento)
•Abundante mano de obra
2.‐ Soldadura por Arco
28
2.1.‐ Electrodo revestido (SMAW  Shielded Metal Arc Welding )
Otros aspectos:
Importante seleccionar el 
procedimiento a seguir, corriente 
a utilizar, tipo de electrodo, 
limpieza de escoria entre 
pasadas y tratamiento térmico 
cuando sea necesario.
2.‐ Soldadura por Arco
15
29
2.‐ Soldadura por Arco
Procedimientos de soldeo por arco
1.‐ Electrodo revestido (SMAW  Shielded Metal Arc Welding )
2.‐ Electrodo no consumible y protección de gas inerte (TIG 
Tungsten Inert Gas )
3.‐ Electrodo consumible y protección por gas inerte (MIG) o por 
gas activo (MAG) (Metal Inert Gas, Metal Active Gas).
4.‐ Arco sumergido (SAW  Submerged Arc Welding ).
2.‐ Soldadura por Arco
30
2.‐ Soldadura por Arco
Procedimientos de soldeo por arco
1.‐ Electrodo revestido (SMAW  Shielded Metal Arc Welding )
2.‐ Electrodo no consumible y protección de gas inerte (TIG 
Tungsten Inert Gas )
3.‐ Electrodo consumible y protección por gas inerte (MIG) o por 
gas activo (MAG) (Metal Inert Gas, Metal Active Gas).
4.‐ Arco sumergido (SAW  Submerged Arc Welding ).
2.‐ Soldadura por Arco
16
31
2.2.‐ Electrodo no consumible y protección de gas inerte TIG
Tungsten Inert Gas
Fundamento 
•Proceso: por fusión.
•Energía: arco eléctrico.
•Electrodo: no 
consumible 
•Gas inerte
2.‐ Soldadura por Arco
32
2.2.‐ Electrodo no consumible y protección de gas inerte TIG
Tungsten Inert Gas
Fundamento 
•Proceso: por fusión.
•Energía: arco eléctrico.
•Electrodo: no 
consumible 
•Gas inerte
2.‐ Soldadura por Arco
17
33
2.2.‐ Electrodo no consumible y protección de gas inerte TIG
Tungsten Inert Gas
Fundamento 
•Proceso: por fusión.
•Energía: arco eléctrico.
•Electrodo: no 
consumible 
•Gas inerte
2.‐ Soldadura por Arco
34
Electrodo:
•No se funde.
•Mantener el arco
•Acabado del extremo
•Material
2.2.‐ Electrodo no consumible y protección de gas inerte TIG
Tungsten Inert Gas
2.‐ Soldadura por Arco
18
35
2.2.‐ Electrodo no consumible y protección de gas inerte TIG
Tungsten Inert Gas
Tipos de electrodo Tugnsteno. Identificación AWS (BS6678)
‐La adición de 2% de torio permite una mayor capacidad de corriente, mejor
iniciación y estabilidad del arco.
‐Diámetros mas utilizados : 1,6 mm, 2,4 mm, 3,2 mm : largo estándar: 3"y 7".
2.‐ Soldadura por Arco
36
Metal de aporte:
•Soldadura con o sin metal de 
aporte
•Aporte manual o automático
•Composición química similar 
al metal base.
2.2.‐ Electrodo no consumible y protección de gas inerte TIG
Tungsten Inert Gas
2.‐ Soldadura por Arco
19
37
2.2.‐ Electrodo no consumible y protección de gas inerte TIG
Tungsten Inert Gas
Protección:
•Gas o mezcla de gases.
•Composición en función de material y 
penetración.
‐ Argón: mayor penetración, (mayor densidad)
‐ Helio (poco en Europa): menor penetración.
‐ Mezclas (75% He + 25% Ar)
2.‐ Soldadura por Arco
38
2.2.‐ Electrodo no consumible y protección de gas inerte TIG
Tungsten Inert Gas
Corriente:
1.‐ C.C. y polaridad directa.(+ a la pieza):
•Redimiento térmico aceptable
•Mayor penetración
•Mayor duración del electrodo
2.‐ C.C. y polaridad inversa. (+ al electrodo):
•Menor rendimiento térmico y penetración
•Mayor baño de fusión
•Mayor calentamiento de electrodo
3.‐ Corriente alterna:
•Ventajas de las dos de continua
•Inconvenientes: cebado y estabilidad ‐ (alta frecuencia)
2.‐ Soldadura por Arco
20
39
2.2.‐ Electrodo no consumible y protección de gas inerte TIG
Tungsten Inert Gas
Campo de aplicación:
•Todas las aleaciones, preferible con metales difíciles de 
soldar. (Al, Mg, aceros al Cr‐Ni).
•Industria petróleo, nucleares, química…
•c.c. e inversa:  Al, Mg y sus aleaciones
•c.a.: aleaciones ligeras
Ventajas e inconvenientes:
•Muy buena calidad de soldeo
•Caro (gas)
•Mano de obra especializada
2.‐ Soldadura por Arco
40
2.‐ Soldadura por Arco
Procedimientos de soldeo por arco
1.‐ Electrodo revestido (SMAW  Shielded Metal Arc Welding )
2.‐ Electrodo no consumible y protección de gas inerte (TIG 
Tungsten Inert Gas )
3.‐ Electrodo consumible y protección por gas inerte (MIG) o por 
gas activo (MAG) (Metal Inert Gas, Metal Active Gas).
4.‐ Arco sumergido (SAW  Submerged Arc Welding ).
2.‐ Soldadura por Arco
21
41
2.3.‐ MIG / MAG
Fundamento (Metal Inert Gas, Metal Active Gas):
•Proceso: por fusión.
•Energía: arco eléctrico.
•Electrodo: hilo consumible 
•Gas inerte (MIG), Gas activo (MAG)
Metal de aporte: 
•Electrodo.
•Electrodo continuo.
•Regulación velocidad del hilo
2.‐ Soldadura por Arco
42
2.3.‐ MIG / MAG
2.‐ Soldadura por Arco
Equipo MIG/MAG
22
43
2.3.‐ MIG / MAG
Protección:
Mediante gas
MIG
‐ Argón puro ó con hasta 5% de O2
‐ Helio (U.S.A.) Más caro
‐ Mezclas pobres con gases activos mejoran penetración
MAG
‐ Atmósfera oxidante o reductora según el gas.
‐ Gases CO2, Argón + CO2, O2 + Argón
‐ CO2 Cordones con muchos poros debido a O2
‐ Para aceros al carbono y baja aleación
2.‐ Soldadura por Arco
44
2.3.‐ MIG / MAG
Corriente:
‐ C.C. con polaridad inversa (electrodo +) Electrodo mayor Tª
‐ Raramente c.a.
Campo de aplicación:
‐ MIG: Casi todos los metales y sus aleaciones
‐ MAG: Aceros al carbono con baja aleación.
Ventajas e inconvenientes:
•Ausencia de escoria
•Alimentación automática de hilo
•Flexibilidad de regulación
•Problemas gas e hilo automatizado
2.‐ Soldadura por Arco
23
45
2.3.‐ MIG / MAG
Algunos problemas típicos:
2.‐ Soldadura por Arco
46
2.‐ Soldadura por Arco
Procedimientos de soldeo por arco
1.‐ Electrodo revestido (SMAW  Shielded Metal Arc Welding )
2.‐ Electrodo no consumible y protección de gas inerte (TIG 
Tungsten Inert Gas )
3.‐ Electrodo consumible y protección por gas inerte (MIG) o por 
gas activo (MAG) (Metal Inert Gas, Metal Active Gas).
4.‐ Arco sumergido (SAW  Submerged Arc Welding ).
2.‐ Soldadura por Arco
24
47
2.4.‐ Arco sumergido (SAW  Submerged Arc Welding ).
Fundamento:
•Proceso: por fusión.
•Energía: arco eléctrico sumergido en flux
•Electrodo: hilo consumible 
•Flux
Metal de aporte:
•Electrodo. 
•Su función: sostener el arco.
•Aporte continuo motorizado.
2.‐ Soldadura por Arco
Esquema del proceso
48
2.4.‐ Arco sumergido (SAW  Submerged Arc Welding ).
Protección:
•Capa de granulado fusible (Flux o polvo de soldadura), 
cubre el arco y la zona de soldadura. 
•Genera gas protector y escoria.
2.‐ Soldadura por Arco
Esquema de los elementos del 
equipo completo de soldeo
Carro SAW
25
49
2.4.‐ Arco sumergido (SAW  Submerged Arc Welding ).
Corriente:
•c.c. y c.a.
•c.c. y electrodo al positivo.
Campo de aplicación:
•Aceros al carbono, hasta 0,3% de C.
•Aceros al carbono y de baja aleación tratados térmicamente.
•Aceros al Cr‐Molibdeno
•Aceros inoxidables austeníticos
•Tuberías de acero en espiral.
2.‐ Soldadura por Arco
50
2.4.‐ Arco sumergido (SAW  Submerged Arc Welding ).
Ventajas e inconvenientes:
•Alta velocidad en posición sobremesa 
(chapas cilíndricas)
•Evita salpicaduras del arco
•Alimentación y recogida de flux
•Limitación de posiciones
2.‐ Soldadura por Arco
26
51
1. Soldadura por Combustión (autógena)
2. Soldadura por Arco
3. Soldadura por Resistencia
4. Soldadura Heterogénea
5. Otros procesos de soldadura
Procesos de Soldadura
52
t
R
I
Q 

 2
Fundamento (Resistance Welding):
Energía:    Corriente (efecto Joule)  Presión
Fases:
1.‐ Período de presión (fase de 
posicionamiento)
2.‐ Período de soldeo
3.‐ Período de mantenimiento (fase de 
forja)
4.‐ Período de separación
3.‐ Soldadura por Resistencia
27
53
Protección:
•Materiales limpios de óxido, grasa y pinturas
•No necesita fundente
Electrodos:
•Cobre o cobre aleado
•Elevada conductividad térmica y eléctrica 
•Refrigeración
3.‐ Soldadura por Resistencia
54
Corriente:
•c.a.
•I= 1.000 ÷ 100.000 A 
•V= 1 ÷ 30 V
•F= 100 ÷ 500 kp
Campo de aplicación:
•Chapa fina a solape.
•No en fundición de hierro ni con aleaciones 
de Cu (debido a los óxidos y a la fragilidad de la 
fundición).
•Optimo para metales de elevada resistencia 
(aceros al carbono e inoxidables).
3.‐ Soldadura por Resistencia
28
55
Tipos:
•Por puntos
•Resaltes o protuberancias
•Por roldanas
•A tope
•Por chispa
3.‐ Soldadura por Resistencia
56
3.1.‐ Por puntos
Características:
•Punto de soldadura de forma lenticular
•Preparación de juntas a solape
Campo de aplicación:
•Fabricación de carrocerías de automóviles, 
electrodomésticos y muebles metálicos.
•Espesores: 0,1 y 20 mm.; 
(en la práctica  8 mm)
•Proceso altamente automatizable.
3.‐ Soldadura por Resistencia
29
57
3.1.‐ Por puntos
3.‐ Soldadura por Resistencia
58
3.2.‐ Protuberancias
Características:
•Variación de la soldadura por puntos
•Resaltes se hacen antes de soldar con 
matrices
•Realización muchos puntos 
simultáneamente
•Electrodos de gran diámetro
•Grandes corrientes y mínimo número de 
ciclos de soldeo
3.‐ Soldadura por Resistencia
30
59
3.2.‐ Protuberancias
Campo de aplicación:
•Soldadura de varillas cruzadas (rejas, parrilla, verjas)
•Espesores: 0,5 a 6 mm.
•No Al ni aleaciones de Cu.
3.‐ Soldadura por Resistencia
*11
60
3.3.‐ Roldanas
Características:
•Los electrodos se reemplazan por roldanas
•La pieza se desplaza entre las roldanas
•Soldadura continua o espaciada
3.‐ Soldadura por Resistencia
31
61
Campo de aplicación:
•Recipientes de espesores de 0,05 a 3 mm.
3.3.‐ Roldanas
3.‐ Soldadura por Resistencia
62
3.4.‐ A tope
Características
•Las piezas se sujetan con mordaza.
•Se presionan las dos piezas.
•El paso de corriente calienta la unión.
•Se aumenta la presión y se produce la unión.
Si la presión es excesiva  el material se aplasta demasiado y las 
uniones tendrán baja resistencia
Si la presión es baja  la unión es porosa
Campo de aplicación:
Secciones rectas de alambres, barras, tubos y perfiles.
Sección máxima: 100 ÷ 300 mm2
3.‐ Soldadura por Resistencia
32
63
3.5.‐ Chisporroteo
Características:
•Igual que la soldadura a tope, pero sin 
presión, contacto móvil por puntos 
diversos de la sección.
•El chisporroteo funde los extremos.
•A continuación se aplica rápidamente una 
presión para realizar la unión.
3.‐ Soldadura por Resistencia
64
3.5.‐ Chisporroteo
Campo de aplicación:
•Las mismas que la de “a tope”
•Mayores secciones
•Raíles de ferrocarriles
•Rollos de redondos
•Metales distintos sin problemas de 
dilución
3.‐ Soldadura por Resistencia
33
65
1. Soldadura por Combustión (autógena)
2. Soldadura por Arco
3. Soldadura por Resistencia
4. Soldadura Heterogénea
5. Otros procesos de soldadura
Procesos de Soldadura
66
Fundamento:
•Aporte de material sin fusión del metal base
•Basado en fuerzas de capilaridad
•Permiten unión de materiales diferentes
4.‐ Soldadura Heterogénea
34
67
Tipos:
•Soldadura fuerte: Tª fusión material aporte > 450 º C
•Soldadura blanda: Tª fusión material aporte < 450 º C
4.‐ Soldadura Heterogénea
68
Protección:
•Limpieza de los metales a soldar
•Utilización de decapantes o antioxidantes
Fuente de calor:
•Llama oxidante o neutra
•Por resistencia 
•Inducción
•Por infrarrojos
•Por baño
•Horno
4.‐ Soldadura Heterogénea
35
69
Campo de aplicación:
•Idóneos para materiales delgados, piezas muy finas y 
pequeñas y materiales disimilares.
Soldadura fuerte:
‐ Uniones que necesiten resistencia intermedia y 
conductividad eléctrica
Soldadura blanda:
‐ Uniones con baja resistencia y necesidad de 
conductividad eléctrica
4.‐ Soldadura Heterogénea
70
4.‐ Soldadura Heterogénea
Ventajas:
•Evitan problemas metalúrgicos
•Menor distorsión
•Amplia gama de metales de aportación
•Tensiones residuales nulas o despreciables
•Economía para uniones complejas
•Conjuntos completos de soldaduras (horno, inducción, etc.)
•Producción en serie
•Posibilidad de unir materiales distintos.
•Soldadura fina, discreta y prácticamente invisible.
36
71
1. Soldadura por Combustión (autógena)
2. Soldadura por Arco
3. Soldadura por Resistencia
4. Soldadura Heterogénea
5. Otros procesos de soldadura
Procesos de Soldadura
72
5.‐ Otros procesos de soldadura
5.1.‐ Aluminotermia Termita – Thermit Welding
Principios del proceso
1. Se usa el calor desprendido en una reacción química exotérmica,
Fe2 O3 + 2 Al         2Fe + Al2 O3 +             880 KJ  
3Cu O + 2 Al        3Cu + Al2 O3+           1210 KJ
2. El calor generado funde el metal de aportación (Fe, Cu) y también funde los 
extremos de las piezas a unir
3. La alúmina queda como residuo protector en forma de escoria
O Me
Óxido metálico
R
agente reductor
Me
Metal reducido
OR
óxido del agente
reductor

+ + + Calor
37
73
5.‐ Otros procesos de soldadura
5.1.‐ Aluminotermia
*2
*3
74
5.‐ Otros procesos de soldadura
5.1.‐ Aluminotermia
Soldeo de raíles
1. El acero líquido producido es vertido en la unión, formada por la separación entre los 
extremos de los raíles, en un molde refractario que se acopla a los perfiles a unir, evitando 
el vertido incontrolado y el contacto con la atmósfera, y dando forma como si de un 
proceso de fundición se tratara.
2. La “carga aluminotérmica”, se presenta en forma de sacos de polvo perfectamente 
dosificados que contienen una mezcla granular de:
‐ óxidos de hierro
‐ aluminio
‐ aditivos estabilizadores de la reacción
3. La “carga aluminotérmica” viene en un Kit acompañada de los moldes refractarios, pasta 
selladora especial, encendedor, tapón para el vertido automático del acero líquido, etc.
4. A una temperatura de ignición determinada, la reacción química se activa violentamente 
dentro de un crisol refractario, y continúa hasta  agotarse los elementos iniciales de la 
carga
5. Para la ignición se usa una bengala encendida, puesta en contacto con la carga.
6. El acero se decanta por gravedad, debido a la mayor densidad que la alúmina.
38
75
5.‐ Otros procesos de soldadura
5.1.‐ Aluminotermia
La reacción es muy rápida y por tanto las piezas a soldar 
adquieren, en la zona que rodea al punto de soldadura, 
una temperatura muy inferior a la que se obtiene 
empleando los procedimientos habituales, factor muy 
importante cuando se trata de proteger el aislamiento del 
cable o las características físicas de los materiales a soldar. 
Características del uso con Cu
76
5.‐ Otros procesos de soldadura
5.1.‐ Aluminotermia
La aleación utilizada tiene una temperatura de fusión prácticamente igual a 
la del cobre y posee, generalmente, una sección aproximadamente doble que 
la de los conductores a soldar, por lo que:
•Las sobrecargas o intensidades de cortocircuito no afectan a la 
conexión y los ensayos han demostrado que los conductores funden 
antes que la soldadura.
•La conductividad de la conexión es, al menos, igual o superior a la de los 
conductores unidos.
•No existe posibilidad de corrosión galvánica, puesto que los 
conductores quedan integrados en la propia conexión.
Características del uso con Cu
39
77
5.‐ Otros procesos de soldadura
5.1.‐ Aluminotermia
*4
Procedimiento de conexión para la soldadura de cable
1º
2º
3º
4º
Pre‐
calentamiento
78
5.‐ Otros procesos de soldadura
5.1.‐ Aluminotermia
*5
40
79
5.‐ Otros procesos de soldadura
5.1.‐ Aluminotermia
*5
80
5.‐ Otros procesos de soldadura
5.2.‐ Electroescoria (ESW ElectroSlag Welding):
Fundamento:
•Energía: arco entre electrodo consumible y metal base recubierto de escoria de 
baja conductividad.
•Hay fusión material base.
•Empleo de moldes refrigerados como contención
Electrodo:
Consumible aportado mecánicamente
Protección:
Escoria depositada sobre las piezas a fundir
*2
41
81
Campo de aplicación:
•Unión en vertical o cuasi vertical ascendente
•Grandes secciones de fundición y forja de aceros
•Al y Ti de espesores gruesos 20 y 350 mm
•Industria naval y calderería pesada
•Grandes aportes de material
•Grandes espesores de junta en pasada única
5.2.‐ Electroescoria (ESW ElectroSlag Welding):
5.‐ Otros procesos de soldadura
*2
82
5.3.‐ Láser (LBW Laser Beam Welding)
Fundamento 
•Soldadura por fusión
•Calor generado por impacto de un rayo luminoso amplificado
Metal de aporte:
•Sin metal de aporte
Protección:
•Gas aportado
Campo de aplicación:
•Todos excepto Cu (reflectancia), fundición y refractarios.
5.‐ Otros procesos de soldadura
42
83
5.4.‐ Haz de Electrones (EBW Electron Beam Welding)
Fundamento:
•Soldadura por fusión
•Calor generado colisión de electrones 
•Soldadura en vacío
Metal de aporte:
•Sin metal de aporte
Protección:
•Cámara de vacío
Campo de aplicación:
•Materiales de difícil soldeo (circonio, berilio, wolframio)
•Muy alta pureza y calidad
•Mínima ZAT
•Industria automoción, óptica, aeronáutica...
5.‐ Otros procesos de soldadura
*8
84
5.5.‐ Explosión
Fundamento:
•Basada en el uso de explosivos
•La detonación de una carga colocada adecuadamente obliga a 
uno de los metales que se desean soldar a precipitarse 
aceleradamente sobre el otro, incidiendo a una cierta velocidad y 
bajo un determinado ángulo.
5.‐ Otros procesos de soldadura
*2
43
85
5.5.‐ Explosión
Campo de aplicación:
•Fabricación de placas bimetálicas
•Uniones Al‐Acero
•Materiales disimilares difícilmente soldables por fusión.
5.‐ Otros procesos de soldadura
*12
86
5.5.‐ Explosión
Campo de aplicación:
•Fabricación de placas bimetálicas
•Uniones Al‐Acero
•Materiales disimilares difícilmente soldables por fusión.
5.‐ Otros procesos de soldadura
*10
*9 Explosión 20 μs después del inicio
Metal base 1 (flyer plate)
Explosivo
44
87
Referencias
Referencias
1. http://www.electroglobal.net
2. M. Reina, “Soldadura de los Aceros. Aplicaciones”, Manuel Reina Gómez, Madrid, 1986
3. http://es.wikipedia.org/wiki/Soldadura_aluminot%C3%A9rmica
4. http://www.chinaleiying.com
5. http://www.kumwell.com
6. http://www.obtesol.es
7. http://es.slideshare.net/Fran1176/ud10‐mecanizado‐bsico
8. http://www.ebteccorp.com/
9. http://www.amexservices.com
10. http://www.aist.go.jp
11. http://es.machinetools.net.tw
12. http://www.eltecheng.com
Figuras
Nota: Todas las imágenes se han obtenido utilizando resultados de búsquedas en la sección de Imágenes de Google
•S. Kalpakjian, S.R. Schmid, (2008) Manufactura, Ingeniería y Tecnología, Pearson Educación, ISBN 10: 970‐26‐1026‐5
•M. Reina, “Soldadura de los Aceros. Aplicaciones”, Manuel Reina Gómez, Madrid, 1986
Rosendo Zamora Pedreño
Dpto. Ingeniería de Materiales y Fabricación
rosendo.zamora@upct.es
Ingeniería de los Sistemas de Producción

Más contenido relacionado

La actualidad más candente

Riesgos proceso de_soldadura
Riesgos proceso de_soldaduraRiesgos proceso de_soldadura
Riesgos proceso de_soldadura
pandreartorrez
 
Soladura oxigas en soldaduras duras
Soladura oxigas en soldaduras durasSoladura oxigas en soldaduras duras
Soladura oxigas en soldaduras duras
alba jimenez
 
Procesos de soldadura
Procesos de soldaduraProcesos de soldadura
Procesos de soldadura
ENEND
 
Soldadura oxi acetilénica
Soldadura oxi acetilénicaSoldadura oxi acetilénica
Soldadura oxi acetilénica
jesusgurrola
 

La actualidad más candente (20)

Soldadura oxiacetilénica
Soldadura oxiacetilénicaSoldadura oxiacetilénica
Soldadura oxiacetilénica
 
Procesos de soldadura
Procesos de soldaduraProcesos de soldadura
Procesos de soldadura
 
Soldadura oxigeneta
Soldadura oxigenetaSoldadura oxigeneta
Soldadura oxigeneta
 
soldadura TIG
soldadura TIGsoldadura TIG
soldadura TIG
 
Riesgos proceso de_soldadura
Riesgos proceso de_soldaduraRiesgos proceso de_soldadura
Riesgos proceso de_soldadura
 
Mezclas de gases para el soldeo
Mezclas de gases para el soldeoMezclas de gases para el soldeo
Mezclas de gases para el soldeo
 
Soladura oxigas en soldaduras duras
Soladura oxigas en soldaduras durasSoladura oxigas en soldaduras duras
Soladura oxigas en soldaduras duras
 
Soldadura en Odontología
Soldadura en OdontologíaSoldadura en Odontología
Soldadura en Odontología
 
Soldadura en frio y por ultrasonido
Soldadura en frio y por ultrasonidoSoldadura en frio y por ultrasonido
Soldadura en frio y por ultrasonido
 
Soldadura
SoldaduraSoldadura
Soldadura
 
Soldadura 2013 1
Soldadura  2013 1Soldadura  2013 1
Soldadura 2013 1
 
Tipos de soldadura
Tipos de soldaduraTipos de soldadura
Tipos de soldadura
 
Soldadura
Soldadura Soldadura
Soldadura
 
Soldadura por Electroescoria
Soldadura por ElectroescoriaSoldadura por Electroescoria
Soldadura por Electroescoria
 
Soldadura
SoldaduraSoldadura
Soldadura
 
Procesos de soldadura
Procesos de soldaduraProcesos de soldadura
Procesos de soldadura
 
Pres. sold
Pres. soldPres. sold
Pres. sold
 
Práctica soldadura
Práctica soldaduraPráctica soldadura
Práctica soldadura
 
Fisuración por hidrógeno: grietas a frío.
Fisuración por hidrógeno: grietas a frío.Fisuración por hidrógeno: grietas a frío.
Fisuración por hidrógeno: grietas a frío.
 
Soldadura oxi acetilénica
Soldadura oxi acetilénicaSoldadura oxi acetilénica
Soldadura oxi acetilénica
 

Similar a Procesos de soldadura

siderurgia en metales coque reduccion
siderurgia en metales  coque reduccionsiderurgia en metales  coque reduccion
siderurgia en metales coque reduccion
alexpaullopezsalazar
 
Riesgoshigienicosdelasoldadura 100530162841-phpapp02
Riesgoshigienicosdelasoldadura 100530162841-phpapp02Riesgoshigienicosdelasoldadura 100530162841-phpapp02
Riesgoshigienicosdelasoldadura 100530162841-phpapp02
VHADRIANO
 

Similar a Procesos de soldadura (20)

03b soldadura procesos_v1.4
03b soldadura procesos_v1.403b soldadura procesos_v1.4
03b soldadura procesos_v1.4
 
CAPACITACION THEBETEH-EQUIPOS DE PODER.pdf
CAPACITACION THEBETEH-EQUIPOS DE PODER.pdfCAPACITACION THEBETEH-EQUIPOS DE PODER.pdf
CAPACITACION THEBETEH-EQUIPOS DE PODER.pdf
 
soldaduras especiales
soldaduras especialessoldaduras especiales
soldaduras especiales
 
Oxicorte Soldadura Oxiacetienica
Oxicorte Soldadura OxiacetienicaOxicorte Soldadura Oxiacetienica
Oxicorte Soldadura Oxiacetienica
 
Final final soldadura
Final final soldaduraFinal final soldadura
Final final soldadura
 
Final final soldadura
Final final soldaduraFinal final soldadura
Final final soldadura
 
Final final soldadura
Final final soldaduraFinal final soldadura
Final final soldadura
 
OXICORTE Y OXIGAS MEDIANTE EL USO DE COMBUSTILBES GASEOSOS
OXICORTE Y OXIGAS MEDIANTE EL USO DE COMBUSTILBES GASEOSOSOXICORTE Y OXIGAS MEDIANTE EL USO DE COMBUSTILBES GASEOSOS
OXICORTE Y OXIGAS MEDIANTE EL USO DE COMBUSTILBES GASEOSOS
 
Difusión en aceros
Difusión en acerosDifusión en aceros
Difusión en aceros
 
Soldadura
SoldaduraSoldadura
Soldadura
 
Presentación soldadura
Presentación soldaduraPresentación soldadura
Presentación soldadura
 
9 tratamientos aceros
9 tratamientos aceros9 tratamientos aceros
9 tratamientos aceros
 
Soldadura
SoldaduraSoldadura
Soldadura
 
siderurgia en metales coque reduccion
siderurgia en metales  coque reduccionsiderurgia en metales  coque reduccion
siderurgia en metales coque reduccion
 
Uniones por-soldadura
Uniones por-soldaduraUniones por-soldadura
Uniones por-soldadura
 
Presentación soldadura
Presentación soldaduraPresentación soldadura
Presentación soldadura
 
4ta class corro parte ii
4ta class corro parte ii4ta class corro parte ii
4ta class corro parte ii
 
Riesgoshigienicosdelasoldadura 100530162841-phpapp02
Riesgoshigienicosdelasoldadura 100530162841-phpapp02Riesgoshigienicosdelasoldadura 100530162841-phpapp02
Riesgoshigienicosdelasoldadura 100530162841-phpapp02
 
difusión aplicaciones.pdf
difusión aplicaciones.pdfdifusión aplicaciones.pdf
difusión aplicaciones.pdf
 
Introducción soldadura y procesos de manufactura
Introducción soldadura y procesos de manufacturaIntroducción soldadura y procesos de manufactura
Introducción soldadura y procesos de manufactura
 

Último

Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdf
patriciaines1993
 
TALLER DE DEMOCRACIA Y GOBIERNO ESCOLAR-COMPETENCIAS N°3.docx
TALLER DE DEMOCRACIA Y GOBIERNO ESCOLAR-COMPETENCIAS N°3.docxTALLER DE DEMOCRACIA Y GOBIERNO ESCOLAR-COMPETENCIAS N°3.docx
TALLER DE DEMOCRACIA Y GOBIERNO ESCOLAR-COMPETENCIAS N°3.docx
NadiaMartnez11
 
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
UPTAIDELTACHIRA
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
Wilian24
 

Último (20)

LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptxLA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
 
Usos y desusos de la inteligencia artificial en revistas científicas
Usos y desusos de la inteligencia artificial en revistas científicasUsos y desusos de la inteligencia artificial en revistas científicas
Usos y desusos de la inteligencia artificial en revistas científicas
 
Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literario
 
La Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalLa Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración Ambiental
 
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
 
Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdf
 
Biografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdfBiografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdf
 
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptPINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
 
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
 
Sesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdfSesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdf
 
semana 4 9NO Estudios sociales.pptxnnnn
semana 4  9NO Estudios sociales.pptxnnnnsemana 4  9NO Estudios sociales.pptxnnnn
semana 4 9NO Estudios sociales.pptxnnnn
 
TALLER DE DEMOCRACIA Y GOBIERNO ESCOLAR-COMPETENCIAS N°3.docx
TALLER DE DEMOCRACIA Y GOBIERNO ESCOLAR-COMPETENCIAS N°3.docxTALLER DE DEMOCRACIA Y GOBIERNO ESCOLAR-COMPETENCIAS N°3.docx
TALLER DE DEMOCRACIA Y GOBIERNO ESCOLAR-COMPETENCIAS N°3.docx
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
 
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
 
Tema 11. Dinámica de la hidrosfera 2024
Tema 11.  Dinámica de la hidrosfera 2024Tema 11.  Dinámica de la hidrosfera 2024
Tema 11. Dinámica de la hidrosfera 2024
 
Revista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdfRevista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdf
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptx
 
Interpretación de cortes geológicos 2024
Interpretación de cortes geológicos 2024Interpretación de cortes geológicos 2024
Interpretación de cortes geológicos 2024
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
 

Procesos de soldadura