SlideShare una empresa de Scribd logo
1 de 25
Descargar para leer sin conexión
El Cerebro Social
Aproximación de las neurociencias al estudio de la habilidades
sociales
Pablo Billeke
División de Neurociencia
CICS – UDD
Presentación
•  Introducción
•  ¿Por qué estudiar el cerebro social?
•  Métodos de investigación
•  ¿Cómo estudiar el cerebral social?
•  Redes cerebrales sociales
•  ¿Cuáles son los componentes del cerebro social?
•  Investigación de toma de decisión sociales
•  ¿Qué aplicación puede tener el estudio del cerebro social?
Introdución
¿Por qué estudiar el cerebro social ?
Neocorteza en primates
Hipótesis del cerebro
social:
Encefalización y tamaño del
grupo
Inteligencia Social
•  Tempranamente en el desarrollo (2.5ª), el dominio de
las habilidades sociales nos diferencian del resto de
los primates
1. Herrmann, E., Call, J., Hernàndez-Lloreda, M. V., Hare, B. & Tomasello, M. Humans have evolved specialized skills of social
cognition: the cultural intelligence hypothesis. Science 317, 1360–1366 (2007).
of the tasks, a human experimenter
d a table facing the subject through
ndow (children and some apes) or a
apes only). The window had three
ferent positions, through which
d insert a finger to indicate their
necessary (figs. S1 and S2). On all
ways waited until the subject was
efore beginning a trial. For trials
oice, the position of the reward was
ced across either two or three
ending on the task) but the reward
den for more than two consecutive
ame place. In a few tasks, subjects
other setups, requiring them to do
s to use a simple tool, follow gaze
esture to E1 (25).
responses were initially coded live
for gaze-following trials, which E1
chance of success by guessing, and some tasks
had no possibility for guessing). Statistically, the
humans and chimpanzees did not differ from one
another in the physical domain, but they were
both more skillful than the orangutans (P < 0.001
in both cases). In the social domain, a very
different pattern emerged. Averaging across all
of the tasks in the social domain, the human
children were correct on ~74% of the trials,
whereas the two ape species were correct about
half as often (33 to 36% of the trials). Statistically,
the humans were more skillful than either of the
two ape species (P < 0.001 in both cases), which
did not differ from one another.
Figure 2 presents the results at the level of the
six scales. In the physical domain, there were no
differences among species on the quantities scale.
On both the space and causality scales, however,
humans and chimpanzees did not differ from
children and chimpanzees each were better at some
tasks than the other, with orangutans often repre-
senting an outlier. Within the four spatial tasks,
children were better than chimpanzees at one task
(object permanence), whereas the chimpanzees
outperformed the children at another task (trans-
position). In terms of quantities, all three species
were similar at judging which of two quantities is
larger, but chimpanzees were better than both of
the other species at combining quantities in order
to make a judgment. Children were better than
both ape species at the three causality tasks in
which a judgment must be made before manipu-
lation or choice, whereas chimpanzees were better
than children and orangutans at the one causality
task involving active tool use. Within the social
domain, again the pattern was very different. As
predicted, the human children were consistently
more skillful than both of the ape species (at five
cal domain (A) and
(B). The box plots
distribution of the
correct responses for
ocial domains of the
h species: median,
extreme values. Boxes
interquartile range
50% of values (range
to the 75th percent-
ross the box indicates
he whiskers represent
d minimum values,
tliers [indicated by
t 1.5 times the inter-
(i.e., 1.5 box lengths
r or lower edge of the
remes [indicated by
ast 3 times the inter-
(i.e., >3 box lengths from the edge)]. Statistical comparisons
in were made by multivariate analysis of variance (MANOVA),
nalysis of variance (ANOVA) tests for each domain. Post-hoc
nferroni correction was used when the equality of variances
domains: physical (F2,237 = 19.921, P < 0.001, h2
= 0.14) and social (F2,237 =
311.224, P < 0.001, h2
= 0.72). Univariate analyses for the interaction
between species and gender revealed that there was a significant interaction
for the physical domain (F2,237 = 5.451, P = 0.005, h2
= 0.04) but not for the
A Physical domain
proportionofcorrectresponses
0.00
0.20
0.40
0.60
0.80
1.00
B Social domain
proportionofcorrectresponses
human chimpanzee orangutan human chimpanzee orangutan
0.00
0.20
0.40
0.60
0.80
1.00
Flexibilidad Conductual
Integracion de diversas
fuentes de información
para adaptar la conducta
Habilidades Sociales
•  Representación de estados
mentales de otros
•  Participación en relaciones
triádicas
Métodos de Investigación
¿Cómo estudiar el cerebro social?
Métodos en Neurociencia Social
•  Comportamiento
•  Lenguaje
•  Toma de
decisiones
Conducta
MODELO
Procesos psíquicos
Procesos cognitivos
Estados mentales
Predisposiciones
morales
Actividad
Biológica
•  Activiadad
eléctrica cerebral
•  Activiadad
metabólica
cerebral
•  Movimientos
oculares
•  Dilatación
pupilar …
Medición de la actividad
cerebral
Actividad metabólica cerebral
(fMRI - BOLD)
Incremento de la actividad metabólica cerebral en relación
a procesos sociales
•  Identificar movimientos biológicos
•  Identificar la intensiones o creencias detrás de una acción
•  Identificar rasgos estables de personalidad o preferencias de otras personas
1. Koster-Hale J, Saxe R. Theory of Mind: A Neural Prediction Problem. Neuron (2013) 79:836–848. doi:10.1016/j.neuron.2013.08.020
Actividad eléctrica cerebral
(EEG - MEG)
Cambios en la actividad eléctrica al observar o saber que
otras personas sufren dolor
1. Riečanský I, Paul N, Kölble S, Stieger S, Lamm C. Beta oscillations reveal ethnicity ingroup bias in sensorimotor resonance to pain of
others. Soc Cogn Affect Neurosci (2015) 10:893–901. doi:10.1093/scan/nsu139
Actividad eléctrica cerebral
(Actividad evocada - ERP)
Cambios en la actividad eléctrica al observar o saber que
otros sufren dolor
1. Rutgen M, Seidel E-M, Rie ansky I, Lamm C. Reduction of Empathy for Pain by Placebo Analgesia Suggests Functional Equivalence of
Empathy and First-Hand Emotion Experience. J Neurosci (2015) 35:8938–8947. doi:10.1523/JNEUROSCI.3936-14.2015
Actividad eléctrica cerebral
(Actividad oscilatoria)
Cambios en la actividad eléctrica al observar o saber que
otros sufren dolor
1.  Riečanský I, Paul N, Kölble S, Stieger S, Lamm C. Beta oscillations reveal ethnicity ingroup bias in sensorimotor resonance to pain of
others. Soc Cogn Affect Neurosci (2015) 10:893–901. doi:10.1093/scan/nsu139
2.  Billeke P. Negociación social : cómo nuestro cerebro se anticipa a las decisiones de otras personas. Cienc Cogn (2015) 9:22–25.
Redes cerebrales implicadas
en los procesamientos
sociales
¿Cuáles son los componentes del cerebro
social?
El Cerebro social
Billeke	P,	Aboi,z	F.	2013.	Social	Cogni,on	in	Schizophrenia:	From	Social	S,muli	Processing	to	Social	Engagement.	Fron,ers	in	Psychiatry.	4:1–12.	
Percepción Social
Atribución de “mundo
interno” a los agentes sociales
1. Soto-Icaza P, Aboitiz F, Billeke P. Development of social skills in children: neural and behavioral evidence for the elaboration of
cognitive models. Front Neurosci (2015) 9:1–16. doi:10.3389/fnins.2015.00333
Unión temporo-parietal y la perspectiva
del otro: intenciones y preferencias
•  Seguimiento preferencias de otros en grupos
•  El “peso” o importancia de la ganancia de otros en
decisiones altruistas
t motion (Power et al., 2011). Third, as
elwise graphs are dominated at higher
ance relationships, which are logically
on the above considerations. Modified
presented in which all ties terminating
Top right: For both cohorts, plots are shown of the areal
assignments into subgraphs (colors) at tie densities from
10% down to 2% in 1% steps. ROI ordering is identical,
and all subgraphs with fewer than four members are
colored white. The standard measure of subgraph
similarity, normalized mutual information, between node
assignments of the cohorts at identical tie densities
ranged from 0.86 to 0.92, indicating highly similar patterns
across cohorts (1 = identical assignments, 0 = no infor-
mation shared between assignments).
Bottom: subgraphs from three thresholds are shown
for the areal (spheres) and modified voxelwise graphs
(surfaces). Note the similarity of subgraph assignments
between networks, despite the great difference in network
size and cortical coverage, even in different subjects (main
versus replication cohorts). All areal subgraphs with fewer
than four members are colored white, and all modified
voxelwise subgraphs with fewer than 100 voxels are
colored white. Areal networks are shown at 10%, 3%, and
2% tie density (r > 0.16, 0.30, and 0.33), and modified
voxelwise networks are shown at 5%, 2%, and 0.5% tie
density (r > 0.16, 0.23, and 0.31).
shorten addresses of individual nodes). Other
algorithms were tested and yielded similar
results (Figure S2).
Figure 1 illustrates our methodology and high-
lights several important results. The first panel
depicts the areal graph in a spring embedded layout and maps
subgraphs onto nodes using colors, visibly demonstrating the
basis for subgraphs. In spring embedded layouts, ties act as
springs to position nodes in space such that well-connected
groups of nodes are pulled together, providing an intuitive and
1.  Hutcherson CA, Bushong B, Rangel A. A Neurocomputational Model of Altruistic Choice and
Its Implications. Neuron (2015) 87:451–462. doi:10.1016/j.neuron.2015.06.0312.
2.  Suzuki S, Adachi R, Dunne S, Bossaerts P, O’Doherty JP. Neural Mechanisms Underlying
Human Consensus Decision-Making. Neuron (2015) 86:591–602. doi:10.1016/j.neuron.
2015.03.019
Corteza pre-Frontal Medial:
Integración de Perspectivas y Preferencias
•  Evaluación de intenciones y comportamiento tanto las de
otras personas, como las propias
•  Integración de la ganancia de otros y de uno en
decisiones sociales económicas
t motion (Power et al., 2011). Third, as
elwise graphs are dominated at higher
ance relationships, which are logically
on the above considerations. Modified
presented in which all ties terminating
Top right: For both cohorts, plots are shown of the areal
assignments into subgraphs (colors) at tie densities from
10% down to 2% in 1% steps. ROI ordering is identical,
and all subgraphs with fewer than four members are
colored white. The standard measure of subgraph
similarity, normalized mutual information, between node
assignments of the cohorts at identical tie densities
ranged from 0.86 to 0.92, indicating highly similar patterns
across cohorts (1 = identical assignments, 0 = no infor-
mation shared between assignments).
Bottom: subgraphs from three thresholds are shown
for the areal (spheres) and modified voxelwise graphs
(surfaces). Note the similarity of subgraph assignments
between networks, despite the great difference in network
size and cortical coverage, even in different subjects (main
versus replication cohorts). All areal subgraphs with fewer
than four members are colored white, and all modified
voxelwise subgraphs with fewer than 100 voxels are
colored white. Areal networks are shown at 10%, 3%, and
2% tie density (r > 0.16, 0.30, and 0.33), and modified
voxelwise networks are shown at 5%, 2%, and 0.5% tie
density (r > 0.16, 0.23, and 0.31).
shorten addresses of individual nodes). Other
algorithms were tested and yielded similar
results (Figure S2).
Figure 1 illustrates our methodology and high-
lights several important results. The first panel
depicts the areal graph in a spring embedded layout and maps
subgraphs onto nodes using colors, visibly demonstrating the
basis for subgraphs. In spring embedded layouts, ties act as
springs to position nodes in space such that well-connected
groups of nodes are pulled together, providing an intuitive and
1.  Mitchell JP, Macrae CN, Banaji MR. 2006. Dissociable medial prefrontal contributions to judgments of similar and dissimilar others.
Neuron. 50:655–663.
parametric modulation option integrated in SPM5. Subse-
quently, random effects analyses were performed on the
parameter estimate of the parametric regressor for the be-
havioral response. We used the results of the one-sample
t test ( p = .05) reflecting activity modulated by reliving or
understanding as an inclusive mask to determine whether
the regions showing activation differences in self versus
other self-projection were also sensitive to behavior.
Task-related Functional Connectivity Analysis
SeedvoxelsinventralversusdorsalmPFCthatwereidentified
in our previous analysis on self versus other self-projection
were further interrogated to examine the task-related net-
work of brain regions functionally connected with disso-
ciable mPFC regions. We should note that in the present
article we refer to dorsal mPFC (z-axis on Talairach atlas:
>20 mm) and ventral mPFC (z-axis on Talairach atlas:
<20 mm to >−15 mm; e.g., Krueger et al., 2009; Van
Overwalle, 2009), however, the particular naming conven-
tion may differ among authors (e.g., Buckner, Andrews-
Hanna, & Schacter, 2008; Northoff & Bermpohl, 2004).
To find these functional connectivity maps, we employed
a second analysis based on individual trial activity (Rissman,
Gazzaley, & DʼEsposito, 2004). Specifically, we first created
a GLM in which each individual trial was modeled by a
separate covariate, thus yielding different parameter esti-
mates for each individual trial and for each individual
subject. The resulting correlation maps were Fisher trans-
formed to allow for statistical comparison. Then, to exam-
ine differences in functional connectivity of ventral versus
dorsal mPFC regions associated with temporal versus men-
tal self-projection, we conducted a two-sample t test in
SPM5 using an FDR-corrected threshold of p = .05, and a
two-voxel extent threshold.
RESULTS
Behavioral
SPS was associated with a mean reliving rating of 5.04 (SD =
0.56; RT = 1.42 sec, SD = 0.67), and SPO was associated
with a mean understanding rating of 4.50 (SD = 0.86; RT =
1.35 sec, SD = 0.61). There were no significant differ-
encesin the reaction time acrossthetwoconditions(Cohenʼs
d = 0.11). The behavioral results suggest that the Sense-
Cam images evoked a strong ability to re-experience the
personal past and to comprehend another individualʼs
perspective.
Figure 2. Self-projection of self versus other. There was a dorsal (A) versus ventral (B) distinction in the recruitment of mPFC during self versus
other self-projection. BA = Brodmannʼs area.
St. Jacques et al. 1279
In contrast, activation in dorsal mPFC (peak voxel: 29,
45, 42) was greater during judgments of the target with
whom participants less strongly associated themselves
(Figure 2B). That is, participants in the ‘‘similar to liberal’’
group demonstrated greater engagement of dorsal
mPFC while making judgments of the conservative tar-
get, whereas participants in the ‘‘dissimilar from liberal’’
group demonstrated greater dorsal mPFC engagement
while judging the liberal target. This region of dorsal
mPFC was the only area that showed greater activation
for dissimilar than similar targets. Confirming that these
target (liberal, conse
ilar to liberal, dissim
p < 0.0002.
These findings wer
analyses that capitali
participants’ IAT res
activation in ventral
eral target (relative to
icantly correlated wit
associated self with
ning IAT, r(14) = 0.54,
Fig
tai
Int
Lib
era
(A)
ac
wh
to
so
of
wa
ba
red
jud
the
wh
(rig
mP
era
for
tar
(B)
po
va
wh
to
Mentalizing about Similar and Dissimilar Others
657
In contrast, activation in dorsal mPFC (peak voxel
45, 42) was greater during judgments of the target
whom participants less strongly associated themse
(Figure 2B). That is, participants in the ‘‘similar to lib
group demonstrated greater engagement of d
mPFC while making judgments of the conservative
get, whereas participants in the ‘‘dissimilar from lib
group demonstrated greater dorsal mPFC engagem
while judging the liberal target. This region of d
mPFC was the only area that showed greater activa
for dissimilar than similar targets. Confirming that t
two mPFC regions responded differently as a functi
target similarity, we observed a highly significant th
way interaction for region (ventral mPFC, dorsal mPF
Table 1. Coordinates of Peak Activations and Percent Signal
Change for Regions Demonstrating a Significantly Different BO
Mentalizing about Similar and Dissimilar Others
657
Corteza pre-Frontal Lateral:
Control de la Integración de Información
de Diversas Fuentes
t motion (Power et al., 2011). Third, as
elwise graphs are dominated at higher
ance relationships, which are logically
on the above considerations. Modified
presented in which all ties terminating
Top right: For both cohorts, plots are shown of the areal
assignments into subgraphs (colors) at tie densities from
10% down to 2% in 1% steps. ROI ordering is identical,
and all subgraphs with fewer than four members are
colored white. The standard measure of subgraph
similarity, normalized mutual information, between node
assignments of the cohorts at identical tie densities
ranged from 0.86 to 0.92, indicating highly similar patterns
across cohorts (1 = identical assignments, 0 = no infor-
mation shared between assignments).
Bottom: subgraphs from three thresholds are shown
for the areal (spheres) and modified voxelwise graphs
(surfaces). Note the similarity of subgraph assignments
between networks, despite the great difference in network
size and cortical coverage, even in different subjects (main
versus replication cohorts). All areal subgraphs with fewer
than four members are colored white, and all modified
voxelwise subgraphs with fewer than 100 voxels are
colored white. Areal networks are shown at 10%, 3%, and
2% tie density (r > 0.16, 0.30, and 0.33), and modified
voxelwise networks are shown at 5%, 2%, and 0.5% tie
density (r > 0.16, 0.23, and 0.31).
shorten addresses of individual nodes). Other
algorithms were tested and yielded similar
results (Figure S2).
Figure 1 illustrates our methodology and high-
lights several important results. The first panel
depicts the areal graph in a spring embedded layout and maps
subgraphs onto nodes using colors, visibly demonstrating the
basis for subgraphs. In spring embedded layouts, ties act as
springs to position nodes in space such that well-connected
groups of nodes are pulled together, providing an intuitive and
•  Integrar información diversa, por ejemplo: aspectos
morales y normativos
•  Se relaciona con integración de información abstracta y
estrategias a largo plazo
Baumgartner T, Knoch D, Hotz P, Eisenegger C, Fehr E. 2011. Dorsolateral and ventromedial prefrontal cortex orchestrate normative
choice. Nat Neurosci. 14:1468–1474.
Investigación en toma de
decisión sociales
¿Qué aplicación puede tener el estudio del cerebro social?
Juego del ultimátum
Billeke P, Zamorano F, Cosmelli D,
Aboitiz F. 2013. Oscillatory Brain
Activity Correlates with Risk
Perception and Predicts Social
Decisions. Cereb Cortex. 23:2872–
2883.
Estudio de Pacientes con
Esquizofrenia
•  Alteración en la activación cerebral durante la anticipación
de las conductas de otras personas
Billeke P, Armijo A, Castillo D,
López T, Zamorano F, Cosmelli D,
Aboitiz F. 2015. Paradoxical
Expectation: Oscillatory Brain
Activity Reveals Social Interaction
Impairment in Schizophrenia. Biol
Psychiatry. 78:421–431.
Conclusiones
•  La implementación de las habilidades sociales y de flexibilidad
conductual son fundamentales durante nuestro desarrollo
filogenético y ontológico
•  Investigaciones en neurociencia han mostrado que la actividad de
diversas áreas cerebrales se relaciona con nuestras conductas
sociales
•  Algunas de ellas relacionada a procesos específicamente sociales,
por ejemplo identificar las preferencias de otras personas (unión
temporo-pariental)
•  Otras, relacionada a la integración de diversa información (social y
no social) en conductas complejas (prefrontal dorsolateral)
•  Investigaciones en esta área pueden ser aplicadas al estudio del
déficit social evidenciado en enfermedades neurológicas y
psiquiátricas, y de esta forma ayudar a elaborar terapias de
rehabilitación

Más contenido relacionado

La actualidad más candente (20)

Modelos y teorias de la psicologia laboral
Modelos  y  teorias de la psicologia laboralModelos  y  teorias de la psicologia laboral
Modelos y teorias de la psicologia laboral
 
consignas Wisc-IV
consignas Wisc-IVconsignas Wisc-IV
consignas Wisc-IV
 
Alexia neuropsicologia Psicofisiologia
Alexia  neuropsicologia Psicofisiologia Alexia  neuropsicologia Psicofisiologia
Alexia neuropsicologia Psicofisiologia
 
Attention
Attention Attention
Attention
 
Neuropsi
NeuropsiNeuropsi
Neuropsi
 
Asimetría Cerebral
Asimetría CerebralAsimetría Cerebral
Asimetría Cerebral
 
Handedness
HandednessHandedness
Handedness
 
Test De Rorschach
Test De RorschachTest De Rorschach
Test De Rorschach
 
hermann von helmholtz
hermann von helmholtzhermann von helmholtz
hermann von helmholtz
 
Diferncias2d p
Diferncias2d pDiferncias2d p
Diferncias2d p
 
Capacitación inicial para psicólogos de nuevo ingreso a la educación
Capacitación inicial para psicólogos de nuevo ingreso a la educaciónCapacitación inicial para psicólogos de nuevo ingreso a la educación
Capacitación inicial para psicólogos de nuevo ingreso a la educación
 
Neuropsychology compiled report
Neuropsychology compiled reportNeuropsychology compiled report
Neuropsychology compiled report
 
Modelo de examen mental
Modelo de examen mentalModelo de examen mental
Modelo de examen mental
 
Caso WISC IV
Caso WISC IVCaso WISC IV
Caso WISC IV
 
NEUROPSICOLOGIA: la lateralidad
NEUROPSICOLOGIA: la lateralidadNEUROPSICOLOGIA: la lateralidad
NEUROPSICOLOGIA: la lateralidad
 
Introduction to working memory
Introduction to working memoryIntroduction to working memory
Introduction to working memory
 
Chapter 10 ap psych- Thinking and Language
Chapter 10 ap psych- Thinking and LanguageChapter 10 ap psych- Thinking and Language
Chapter 10 ap psych- Thinking and Language
 
Amnesias
Amnesias Amnesias
Amnesias
 
Linea de tiempo psicometria grpo403016 91
Linea de tiempo psicometria grpo403016 91Linea de tiempo psicometria grpo403016 91
Linea de tiempo psicometria grpo403016 91
 
TDAH: Casos clínicos
TDAH: Casos clínicosTDAH: Casos clínicos
TDAH: Casos clínicos
 

Destacado

Mapa de empatía de alumno con TDAH
Mapa de empatía de alumno con TDAHMapa de empatía de alumno con TDAH
Mapa de empatía de alumno con TDAHEzequiel Parra
 
Mapa de empatía de un alumno
Mapa de empatía de un alumnoMapa de empatía de un alumno
Mapa de empatía de un alumnomanolitoforever
 
Las neurociencias entran en el aula - Encuentro presencial
Las neurociencias entran en el aula - Encuentro presencialLas neurociencias entran en el aula - Encuentro presencial
Las neurociencias entran en el aula - Encuentro presencialLaura Sz
 
Técnicas y estrategias para ayudar al niño hiperactivo
Técnicas y estrategias para ayudar al niño hiperactivoTécnicas y estrategias para ayudar al niño hiperactivo
Técnicas y estrategias para ayudar al niño hiperactivocamilapazopazoluna
 
UD con AC para alumno con TDAH
UD con AC para alumno con TDAHUD con AC para alumno con TDAH
UD con AC para alumno con TDAHCristinajilo
 
ESTRATEGIAS Y TÉCNICAS PARA EL NIÑO HIPERACTIVO EN EL AULA
ESTRATEGIAS Y TÉCNICAS PARA EL NIÑO HIPERACTIVO EN EL AULAESTRATEGIAS Y TÉCNICAS PARA EL NIÑO HIPERACTIVO EN EL AULA
ESTRATEGIAS Y TÉCNICAS PARA EL NIÑO HIPERACTIVO EN EL AULAMerida Santos
 
Capacitacion manejo de problemas de aprendizaje
Capacitacion  manejo de problemas de aprendizajeCapacitacion  manejo de problemas de aprendizaje
Capacitacion manejo de problemas de aprendizajeClaudia Amador Matute
 
Entrevista alumno TDAH y mapa de empatía
Entrevista alumno TDAH y mapa de empatíaEntrevista alumno TDAH y mapa de empatía
Entrevista alumno TDAH y mapa de empatíaCristinajilo
 
Mapa de empatía
Mapa de empatíaMapa de empatía
Mapa de empatíacanelou
 
Aportes de La Neurociencia a la Educacion
Aportes de La Neurociencia a la EducacionAportes de La Neurociencia a la Educacion
Aportes de La Neurociencia a la EducacionJOANIEANGELY
 
Student Journey Maps
 Student Journey Maps Student Journey Maps
Student Journey MapsJP Rains, MBA
 
Pensamiento de Diseño (design thinking)
Pensamiento de Diseño (design thinking)Pensamiento de Diseño (design thinking)
Pensamiento de Diseño (design thinking)Giselle Della Mea
 
Entender y atender al alumnado con déficit de atención e hiperactividad (TDAH...
Entender y atender al alumnado con déficit de atención e hiperactividad (TDAH...Entender y atender al alumnado con déficit de atención e hiperactividad (TDAH...
Entender y atender al alumnado con déficit de atención e hiperactividad (TDAH...Fundación CADAH TDAH
 
Trastorno por Déficit de Atención con Hiperactividad (TDAH)
Trastorno por Déficit de Atención con Hiperactividad (TDAH)Trastorno por Déficit de Atención con Hiperactividad (TDAH)
Trastorno por Déficit de Atención con Hiperactividad (TDAH)José Luis JM
 

Destacado (20)

Mapa mental tdah
Mapa mental tdahMapa mental tdah
Mapa mental tdah
 
Mapa de empatía de alumno con TDAH
Mapa de empatía de alumno con TDAHMapa de empatía de alumno con TDAH
Mapa de empatía de alumno con TDAH
 
Mapa de empatía de un alumno
Mapa de empatía de un alumnoMapa de empatía de un alumno
Mapa de empatía de un alumno
 
Las neurociencias entran en el aula - Encuentro presencial
Las neurociencias entran en el aula - Encuentro presencialLas neurociencias entran en el aula - Encuentro presencial
Las neurociencias entran en el aula - Encuentro presencial
 
Técnicas y estrategias para ayudar al niño hiperactivo
Técnicas y estrategias para ayudar al niño hiperactivoTécnicas y estrategias para ayudar al niño hiperactivo
Técnicas y estrategias para ayudar al niño hiperactivo
 
UD con AC para alumno con TDAH
UD con AC para alumno con TDAHUD con AC para alumno con TDAH
UD con AC para alumno con TDAH
 
ESTRATEGIAS Y TÉCNICAS PARA EL NIÑO HIPERACTIVO EN EL AULA
ESTRATEGIAS Y TÉCNICAS PARA EL NIÑO HIPERACTIVO EN EL AULAESTRATEGIAS Y TÉCNICAS PARA EL NIÑO HIPERACTIVO EN EL AULA
ESTRATEGIAS Y TÉCNICAS PARA EL NIÑO HIPERACTIVO EN EL AULA
 
Aprendizaje mediado
Aprendizaje mediadoAprendizaje mediado
Aprendizaje mediado
 
Como trabajar con niños hiperactivos
Como trabajar con niños hiperactivosComo trabajar con niños hiperactivos
Como trabajar con niños hiperactivos
 
Capacitacion manejo de problemas de aprendizaje
Capacitacion  manejo de problemas de aprendizajeCapacitacion  manejo de problemas de aprendizaje
Capacitacion manejo de problemas de aprendizaje
 
Entrevista alumno TDAH y mapa de empatía
Entrevista alumno TDAH y mapa de empatíaEntrevista alumno TDAH y mapa de empatía
Entrevista alumno TDAH y mapa de empatía
 
Mapa de empatía
Mapa de empatíaMapa de empatía
Mapa de empatía
 
Aportes de La Neurociencia a la Educacion
Aportes de La Neurociencia a la EducacionAportes de La Neurociencia a la Educacion
Aportes de La Neurociencia a la Educacion
 
Student Journey Maps
 Student Journey Maps Student Journey Maps
Student Journey Maps
 
Pensamiento de Diseño (design thinking)
Pensamiento de Diseño (design thinking)Pensamiento de Diseño (design thinking)
Pensamiento de Diseño (design thinking)
 
Entender y atender al alumnado con déficit de atención e hiperactividad (TDAH...
Entender y atender al alumnado con déficit de atención e hiperactividad (TDAH...Entender y atender al alumnado con déficit de atención e hiperactividad (TDAH...
Entender y atender al alumnado con déficit de atención e hiperactividad (TDAH...
 
Tdah
TdahTdah
Tdah
 
Power point tdah
Power point tdahPower point tdah
Power point tdah
 
Powerpoint tdah
Powerpoint tdahPowerpoint tdah
Powerpoint tdah
 
Trastorno por Déficit de Atención con Hiperactividad (TDAH)
Trastorno por Déficit de Atención con Hiperactividad (TDAH)Trastorno por Déficit de Atención con Hiperactividad (TDAH)
Trastorno por Déficit de Atención con Hiperactividad (TDAH)
 

Similar a El Cerebro Social por Pablo Billeke

Mc intosh 2003
Mc intosh 2003Mc intosh 2003
Mc intosh 2003Jacob Sheu
 
Using STELLA to Explore Dynamic Single Species Models: The Magic of Making Hu...
Using STELLA to Explore Dynamic Single Species Models: The Magic of Making Hu...Using STELLA to Explore Dynamic Single Species Models: The Magic of Making Hu...
Using STELLA to Explore Dynamic Single Species Models: The Magic of Making Hu...Lisa Jensen
 
Examination of Sexually Dimorphic Behavior on the Novel-Image Novel-Location ...
Examination of Sexually Dimorphic Behavior on the Novel-Image Novel-Location ...Examination of Sexually Dimorphic Behavior on the Novel-Image Novel-Location ...
Examination of Sexually Dimorphic Behavior on the Novel-Image Novel-Location ...Brian Piper
 
Sex differences in brain activation elicited by humor
Sex differences in brain activation elicited by humorSex differences in brain activation elicited by humor
Sex differences in brain activation elicited by humorUTPL
 
Joel Yancey Poster (Buonomano-Blair).compressed
Joel Yancey Poster (Buonomano-Blair).compressedJoel Yancey Poster (Buonomano-Blair).compressed
Joel Yancey Poster (Buonomano-Blair).compressedJoel Yancey
 
Sana Chintamen-SICB poster
Sana Chintamen-SICB posterSana Chintamen-SICB poster
Sana Chintamen-SICB posterSana Chintamen
 
A walk in the black forest - during which I explain the fundamental problem o...
A walk in the black forest - during which I explain the fundamental problem o...A walk in the black forest - during which I explain the fundamental problem o...
A walk in the black forest - during which I explain the fundamental problem o...Richard Gill
 
How to quantify hierarchy?
How to quantify hierarchy?How to quantify hierarchy?
How to quantify hierarchy?Dániel Czégel
 
Emotional Interactions in Human Decision-Making using EEG Hyperscanning
Emotional Interactions in Human Decision-Making using EEG HyperscanningEmotional Interactions in Human Decision-Making using EEG Hyperscanning
Emotional Interactions in Human Decision-Making using EEG HyperscanningKyongsik Yun
 
A monkey model of auditory scene analysis
A monkey model of auditory scene analysisA monkey model of auditory scene analysis
A monkey model of auditory scene analysisPradeepD32
 
Tognoli & Kelso, Society for Neuroscience 2009, diversity of 10Hz rhythms in ...
Tognoli & Kelso, Society for Neuroscience 2009, diversity of 10Hz rhythms in ...Tognoli & Kelso, Society for Neuroscience 2009, diversity of 10Hz rhythms in ...
Tognoli & Kelso, Society for Neuroscience 2009, diversity of 10Hz rhythms in ...EmmanuelleTognoli
 
Seminar presentation
Seminar presentationSeminar presentation
Seminar presentationKyle Stevens
 
Cerebral Asymmetry: A Quantitative, Multifactorial and Plastic Brain Phenotype
Cerebral Asymmetry: A Quantitative, Multifactorial and Plastic Brain PhenotypeCerebral Asymmetry: A Quantitative, Multifactorial and Plastic Brain Phenotype
Cerebral Asymmetry: A Quantitative, Multifactorial and Plastic Brain PhenotypeMiguel E. Rentería, PhD
 
A statistical physics approach to system biology
A statistical physics approach to system biologyA statistical physics approach to system biology
A statistical physics approach to system biologySamir Suweis
 
Using High-Density Electrophysiological Recordings to Investigate Neural Mech...
Using High-Density Electrophysiological Recordings to Investigate Neural Mech...Using High-Density Electrophysiological Recordings to Investigate Neural Mech...
Using High-Density Electrophysiological Recordings to Investigate Neural Mech...InsideScientific
 
[DSC Europe 23][DigiHealth] Ilya Zakharov - NETWORK NEUROSCIENCE WHERE THE BR...
[DSC Europe 23][DigiHealth] Ilya Zakharov - NETWORK NEUROSCIENCE WHERE THE BR...[DSC Europe 23][DigiHealth] Ilya Zakharov - NETWORK NEUROSCIENCE WHERE THE BR...
[DSC Europe 23][DigiHealth] Ilya Zakharov - NETWORK NEUROSCIENCE WHERE THE BR...DataScienceConferenc1
 

Similar a El Cerebro Social por Pablo Billeke (20)

Mc intosh 2003
Mc intosh 2003Mc intosh 2003
Mc intosh 2003
 
Examen talk
Examen talkExamen talk
Examen talk
 
FinalFinalOralPresentation
FinalFinalOralPresentationFinalFinalOralPresentation
FinalFinalOralPresentation
 
Using STELLA to Explore Dynamic Single Species Models: The Magic of Making Hu...
Using STELLA to Explore Dynamic Single Species Models: The Magic of Making Hu...Using STELLA to Explore Dynamic Single Species Models: The Magic of Making Hu...
Using STELLA to Explore Dynamic Single Species Models: The Magic of Making Hu...
 
Primacy of categorical levels
Primacy of categorical levelsPrimacy of categorical levels
Primacy of categorical levels
 
Examination of Sexually Dimorphic Behavior on the Novel-Image Novel-Location ...
Examination of Sexually Dimorphic Behavior on the Novel-Image Novel-Location ...Examination of Sexually Dimorphic Behavior on the Novel-Image Novel-Location ...
Examination of Sexually Dimorphic Behavior on the Novel-Image Novel-Location ...
 
Sex differences in brain activation elicited by humor
Sex differences in brain activation elicited by humorSex differences in brain activation elicited by humor
Sex differences in brain activation elicited by humor
 
Joel Yancey Poster (Buonomano-Blair).compressed
Joel Yancey Poster (Buonomano-Blair).compressedJoel Yancey Poster (Buonomano-Blair).compressed
Joel Yancey Poster (Buonomano-Blair).compressed
 
Sana Chintamen-SICB poster
Sana Chintamen-SICB posterSana Chintamen-SICB poster
Sana Chintamen-SICB poster
 
A walk in the black forest - during which I explain the fundamental problem o...
A walk in the black forest - during which I explain the fundamental problem o...A walk in the black forest - during which I explain the fundamental problem o...
A walk in the black forest - during which I explain the fundamental problem o...
 
How to quantify hierarchy?
How to quantify hierarchy?How to quantify hierarchy?
How to quantify hierarchy?
 
Emotional Interactions in Human Decision-Making using EEG Hyperscanning
Emotional Interactions in Human Decision-Making using EEG HyperscanningEmotional Interactions in Human Decision-Making using EEG Hyperscanning
Emotional Interactions in Human Decision-Making using EEG Hyperscanning
 
A monkey model of auditory scene analysis
A monkey model of auditory scene analysisA monkey model of auditory scene analysis
A monkey model of auditory scene analysis
 
Tognoli & Kelso, Society for Neuroscience 2009, diversity of 10Hz rhythms in ...
Tognoli & Kelso, Society for Neuroscience 2009, diversity of 10Hz rhythms in ...Tognoli & Kelso, Society for Neuroscience 2009, diversity of 10Hz rhythms in ...
Tognoli & Kelso, Society for Neuroscience 2009, diversity of 10Hz rhythms in ...
 
Seminar presentation
Seminar presentationSeminar presentation
Seminar presentation
 
Cerebral Asymmetry: A Quantitative, Multifactorial and Plastic Brain Phenotype
Cerebral Asymmetry: A Quantitative, Multifactorial and Plastic Brain PhenotypeCerebral Asymmetry: A Quantitative, Multifactorial and Plastic Brain Phenotype
Cerebral Asymmetry: A Quantitative, Multifactorial and Plastic Brain Phenotype
 
A statistical physics approach to system biology
A statistical physics approach to system biologyA statistical physics approach to system biology
A statistical physics approach to system biology
 
Using High-Density Electrophysiological Recordings to Investigate Neural Mech...
Using High-Density Electrophysiological Recordings to Investigate Neural Mech...Using High-Density Electrophysiological Recordings to Investigate Neural Mech...
Using High-Density Electrophysiological Recordings to Investigate Neural Mech...
 
[DSC Europe 23][DigiHealth] Ilya Zakharov - NETWORK NEUROSCIENCE WHERE THE BR...
[DSC Europe 23][DigiHealth] Ilya Zakharov - NETWORK NEUROSCIENCE WHERE THE BR...[DSC Europe 23][DigiHealth] Ilya Zakharov - NETWORK NEUROSCIENCE WHERE THE BR...
[DSC Europe 23][DigiHealth] Ilya Zakharov - NETWORK NEUROSCIENCE WHERE THE BR...
 
Is neocortex essentially multisensory?
Is neocortex essentially multisensory?Is neocortex essentially multisensory?
Is neocortex essentially multisensory?
 

Último

Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 

Último (20)

Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 

El Cerebro Social por Pablo Billeke

  • 1. El Cerebro Social Aproximación de las neurociencias al estudio de la habilidades sociales Pablo Billeke División de Neurociencia CICS – UDD
  • 2. Presentación •  Introducción •  ¿Por qué estudiar el cerebro social? •  Métodos de investigación •  ¿Cómo estudiar el cerebral social? •  Redes cerebrales sociales •  ¿Cuáles son los componentes del cerebro social? •  Investigación de toma de decisión sociales •  ¿Qué aplicación puede tener el estudio del cerebro social?
  • 3. Introdución ¿Por qué estudiar el cerebro social ?
  • 4.
  • 7. Inteligencia Social •  Tempranamente en el desarrollo (2.5ª), el dominio de las habilidades sociales nos diferencian del resto de los primates 1. Herrmann, E., Call, J., Hernàndez-Lloreda, M. V., Hare, B. & Tomasello, M. Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science 317, 1360–1366 (2007). of the tasks, a human experimenter d a table facing the subject through ndow (children and some apes) or a apes only). The window had three ferent positions, through which d insert a finger to indicate their necessary (figs. S1 and S2). On all ways waited until the subject was efore beginning a trial. For trials oice, the position of the reward was ced across either two or three ending on the task) but the reward den for more than two consecutive ame place. In a few tasks, subjects other setups, requiring them to do s to use a simple tool, follow gaze esture to E1 (25). responses were initially coded live for gaze-following trials, which E1 chance of success by guessing, and some tasks had no possibility for guessing). Statistically, the humans and chimpanzees did not differ from one another in the physical domain, but they were both more skillful than the orangutans (P < 0.001 in both cases). In the social domain, a very different pattern emerged. Averaging across all of the tasks in the social domain, the human children were correct on ~74% of the trials, whereas the two ape species were correct about half as often (33 to 36% of the trials). Statistically, the humans were more skillful than either of the two ape species (P < 0.001 in both cases), which did not differ from one another. Figure 2 presents the results at the level of the six scales. In the physical domain, there were no differences among species on the quantities scale. On both the space and causality scales, however, humans and chimpanzees did not differ from children and chimpanzees each were better at some tasks than the other, with orangutans often repre- senting an outlier. Within the four spatial tasks, children were better than chimpanzees at one task (object permanence), whereas the chimpanzees outperformed the children at another task (trans- position). In terms of quantities, all three species were similar at judging which of two quantities is larger, but chimpanzees were better than both of the other species at combining quantities in order to make a judgment. Children were better than both ape species at the three causality tasks in which a judgment must be made before manipu- lation or choice, whereas chimpanzees were better than children and orangutans at the one causality task involving active tool use. Within the social domain, again the pattern was very different. As predicted, the human children were consistently more skillful than both of the ape species (at five cal domain (A) and (B). The box plots distribution of the correct responses for ocial domains of the h species: median, extreme values. Boxes interquartile range 50% of values (range to the 75th percent- ross the box indicates he whiskers represent d minimum values, tliers [indicated by t 1.5 times the inter- (i.e., 1.5 box lengths r or lower edge of the remes [indicated by ast 3 times the inter- (i.e., >3 box lengths from the edge)]. Statistical comparisons in were made by multivariate analysis of variance (MANOVA), nalysis of variance (ANOVA) tests for each domain. Post-hoc nferroni correction was used when the equality of variances domains: physical (F2,237 = 19.921, P < 0.001, h2 = 0.14) and social (F2,237 = 311.224, P < 0.001, h2 = 0.72). Univariate analyses for the interaction between species and gender revealed that there was a significant interaction for the physical domain (F2,237 = 5.451, P = 0.005, h2 = 0.04) but not for the A Physical domain proportionofcorrectresponses 0.00 0.20 0.40 0.60 0.80 1.00 B Social domain proportionofcorrectresponses human chimpanzee orangutan human chimpanzee orangutan 0.00 0.20 0.40 0.60 0.80 1.00
  • 8. Flexibilidad Conductual Integracion de diversas fuentes de información para adaptar la conducta Habilidades Sociales •  Representación de estados mentales de otros •  Participación en relaciones triádicas
  • 9. Métodos de Investigación ¿Cómo estudiar el cerebro social?
  • 10. Métodos en Neurociencia Social •  Comportamiento •  Lenguaje •  Toma de decisiones Conducta MODELO Procesos psíquicos Procesos cognitivos Estados mentales Predisposiciones morales Actividad Biológica •  Activiadad eléctrica cerebral •  Activiadad metabólica cerebral •  Movimientos oculares •  Dilatación pupilar …
  • 11. Medición de la actividad cerebral
  • 12. Actividad metabólica cerebral (fMRI - BOLD) Incremento de la actividad metabólica cerebral en relación a procesos sociales •  Identificar movimientos biológicos •  Identificar la intensiones o creencias detrás de una acción •  Identificar rasgos estables de personalidad o preferencias de otras personas 1. Koster-Hale J, Saxe R. Theory of Mind: A Neural Prediction Problem. Neuron (2013) 79:836–848. doi:10.1016/j.neuron.2013.08.020
  • 13. Actividad eléctrica cerebral (EEG - MEG) Cambios en la actividad eléctrica al observar o saber que otras personas sufren dolor 1. Riečanský I, Paul N, Kölble S, Stieger S, Lamm C. Beta oscillations reveal ethnicity ingroup bias in sensorimotor resonance to pain of others. Soc Cogn Affect Neurosci (2015) 10:893–901. doi:10.1093/scan/nsu139
  • 14. Actividad eléctrica cerebral (Actividad evocada - ERP) Cambios en la actividad eléctrica al observar o saber que otros sufren dolor 1. Rutgen M, Seidel E-M, Rie ansky I, Lamm C. Reduction of Empathy for Pain by Placebo Analgesia Suggests Functional Equivalence of Empathy and First-Hand Emotion Experience. J Neurosci (2015) 35:8938–8947. doi:10.1523/JNEUROSCI.3936-14.2015
  • 15. Actividad eléctrica cerebral (Actividad oscilatoria) Cambios en la actividad eléctrica al observar o saber que otros sufren dolor 1.  Riečanský I, Paul N, Kölble S, Stieger S, Lamm C. Beta oscillations reveal ethnicity ingroup bias in sensorimotor resonance to pain of others. Soc Cogn Affect Neurosci (2015) 10:893–901. doi:10.1093/scan/nsu139 2.  Billeke P. Negociación social : cómo nuestro cerebro se anticipa a las decisiones de otras personas. Cienc Cogn (2015) 9:22–25.
  • 16. Redes cerebrales implicadas en los procesamientos sociales ¿Cuáles son los componentes del cerebro social?
  • 18. Atribución de “mundo interno” a los agentes sociales 1. Soto-Icaza P, Aboitiz F, Billeke P. Development of social skills in children: neural and behavioral evidence for the elaboration of cognitive models. Front Neurosci (2015) 9:1–16. doi:10.3389/fnins.2015.00333
  • 19. Unión temporo-parietal y la perspectiva del otro: intenciones y preferencias •  Seguimiento preferencias de otros en grupos •  El “peso” o importancia de la ganancia de otros en decisiones altruistas t motion (Power et al., 2011). Third, as elwise graphs are dominated at higher ance relationships, which are logically on the above considerations. Modified presented in which all ties terminating Top right: For both cohorts, plots are shown of the areal assignments into subgraphs (colors) at tie densities from 10% down to 2% in 1% steps. ROI ordering is identical, and all subgraphs with fewer than four members are colored white. The standard measure of subgraph similarity, normalized mutual information, between node assignments of the cohorts at identical tie densities ranged from 0.86 to 0.92, indicating highly similar patterns across cohorts (1 = identical assignments, 0 = no infor- mation shared between assignments). Bottom: subgraphs from three thresholds are shown for the areal (spheres) and modified voxelwise graphs (surfaces). Note the similarity of subgraph assignments between networks, despite the great difference in network size and cortical coverage, even in different subjects (main versus replication cohorts). All areal subgraphs with fewer than four members are colored white, and all modified voxelwise subgraphs with fewer than 100 voxels are colored white. Areal networks are shown at 10%, 3%, and 2% tie density (r > 0.16, 0.30, and 0.33), and modified voxelwise networks are shown at 5%, 2%, and 0.5% tie density (r > 0.16, 0.23, and 0.31). shorten addresses of individual nodes). Other algorithms were tested and yielded similar results (Figure S2). Figure 1 illustrates our methodology and high- lights several important results. The first panel depicts the areal graph in a spring embedded layout and maps subgraphs onto nodes using colors, visibly demonstrating the basis for subgraphs. In spring embedded layouts, ties act as springs to position nodes in space such that well-connected groups of nodes are pulled together, providing an intuitive and 1.  Hutcherson CA, Bushong B, Rangel A. A Neurocomputational Model of Altruistic Choice and Its Implications. Neuron (2015) 87:451–462. doi:10.1016/j.neuron.2015.06.0312. 2.  Suzuki S, Adachi R, Dunne S, Bossaerts P, O’Doherty JP. Neural Mechanisms Underlying Human Consensus Decision-Making. Neuron (2015) 86:591–602. doi:10.1016/j.neuron. 2015.03.019
  • 20. Corteza pre-Frontal Medial: Integración de Perspectivas y Preferencias •  Evaluación de intenciones y comportamiento tanto las de otras personas, como las propias •  Integración de la ganancia de otros y de uno en decisiones sociales económicas t motion (Power et al., 2011). Third, as elwise graphs are dominated at higher ance relationships, which are logically on the above considerations. Modified presented in which all ties terminating Top right: For both cohorts, plots are shown of the areal assignments into subgraphs (colors) at tie densities from 10% down to 2% in 1% steps. ROI ordering is identical, and all subgraphs with fewer than four members are colored white. The standard measure of subgraph similarity, normalized mutual information, between node assignments of the cohorts at identical tie densities ranged from 0.86 to 0.92, indicating highly similar patterns across cohorts (1 = identical assignments, 0 = no infor- mation shared between assignments). Bottom: subgraphs from three thresholds are shown for the areal (spheres) and modified voxelwise graphs (surfaces). Note the similarity of subgraph assignments between networks, despite the great difference in network size and cortical coverage, even in different subjects (main versus replication cohorts). All areal subgraphs with fewer than four members are colored white, and all modified voxelwise subgraphs with fewer than 100 voxels are colored white. Areal networks are shown at 10%, 3%, and 2% tie density (r > 0.16, 0.30, and 0.33), and modified voxelwise networks are shown at 5%, 2%, and 0.5% tie density (r > 0.16, 0.23, and 0.31). shorten addresses of individual nodes). Other algorithms were tested and yielded similar results (Figure S2). Figure 1 illustrates our methodology and high- lights several important results. The first panel depicts the areal graph in a spring embedded layout and maps subgraphs onto nodes using colors, visibly demonstrating the basis for subgraphs. In spring embedded layouts, ties act as springs to position nodes in space such that well-connected groups of nodes are pulled together, providing an intuitive and 1.  Mitchell JP, Macrae CN, Banaji MR. 2006. Dissociable medial prefrontal contributions to judgments of similar and dissimilar others. Neuron. 50:655–663. parametric modulation option integrated in SPM5. Subse- quently, random effects analyses were performed on the parameter estimate of the parametric regressor for the be- havioral response. We used the results of the one-sample t test ( p = .05) reflecting activity modulated by reliving or understanding as an inclusive mask to determine whether the regions showing activation differences in self versus other self-projection were also sensitive to behavior. Task-related Functional Connectivity Analysis SeedvoxelsinventralversusdorsalmPFCthatwereidentified in our previous analysis on self versus other self-projection were further interrogated to examine the task-related net- work of brain regions functionally connected with disso- ciable mPFC regions. We should note that in the present article we refer to dorsal mPFC (z-axis on Talairach atlas: >20 mm) and ventral mPFC (z-axis on Talairach atlas: <20 mm to >−15 mm; e.g., Krueger et al., 2009; Van Overwalle, 2009), however, the particular naming conven- tion may differ among authors (e.g., Buckner, Andrews- Hanna, & Schacter, 2008; Northoff & Bermpohl, 2004). To find these functional connectivity maps, we employed a second analysis based on individual trial activity (Rissman, Gazzaley, & DʼEsposito, 2004). Specifically, we first created a GLM in which each individual trial was modeled by a separate covariate, thus yielding different parameter esti- mates for each individual trial and for each individual subject. The resulting correlation maps were Fisher trans- formed to allow for statistical comparison. Then, to exam- ine differences in functional connectivity of ventral versus dorsal mPFC regions associated with temporal versus men- tal self-projection, we conducted a two-sample t test in SPM5 using an FDR-corrected threshold of p = .05, and a two-voxel extent threshold. RESULTS Behavioral SPS was associated with a mean reliving rating of 5.04 (SD = 0.56; RT = 1.42 sec, SD = 0.67), and SPO was associated with a mean understanding rating of 4.50 (SD = 0.86; RT = 1.35 sec, SD = 0.61). There were no significant differ- encesin the reaction time acrossthetwoconditions(Cohenʼs d = 0.11). The behavioral results suggest that the Sense- Cam images evoked a strong ability to re-experience the personal past and to comprehend another individualʼs perspective. Figure 2. Self-projection of self versus other. There was a dorsal (A) versus ventral (B) distinction in the recruitment of mPFC during self versus other self-projection. BA = Brodmannʼs area. St. Jacques et al. 1279 In contrast, activation in dorsal mPFC (peak voxel: 29, 45, 42) was greater during judgments of the target with whom participants less strongly associated themselves (Figure 2B). That is, participants in the ‘‘similar to liberal’’ group demonstrated greater engagement of dorsal mPFC while making judgments of the conservative tar- get, whereas participants in the ‘‘dissimilar from liberal’’ group demonstrated greater dorsal mPFC engagement while judging the liberal target. This region of dorsal mPFC was the only area that showed greater activation for dissimilar than similar targets. Confirming that these target (liberal, conse ilar to liberal, dissim p < 0.0002. These findings wer analyses that capitali participants’ IAT res activation in ventral eral target (relative to icantly correlated wit associated self with ning IAT, r(14) = 0.54, Fig tai Int Lib era (A) ac wh to so of wa ba red jud the wh (rig mP era for tar (B) po va wh to Mentalizing about Similar and Dissimilar Others 657 In contrast, activation in dorsal mPFC (peak voxel 45, 42) was greater during judgments of the target whom participants less strongly associated themse (Figure 2B). That is, participants in the ‘‘similar to lib group demonstrated greater engagement of d mPFC while making judgments of the conservative get, whereas participants in the ‘‘dissimilar from lib group demonstrated greater dorsal mPFC engagem while judging the liberal target. This region of d mPFC was the only area that showed greater activa for dissimilar than similar targets. Confirming that t two mPFC regions responded differently as a functi target similarity, we observed a highly significant th way interaction for region (ventral mPFC, dorsal mPF Table 1. Coordinates of Peak Activations and Percent Signal Change for Regions Demonstrating a Significantly Different BO Mentalizing about Similar and Dissimilar Others 657
  • 21. Corteza pre-Frontal Lateral: Control de la Integración de Información de Diversas Fuentes t motion (Power et al., 2011). Third, as elwise graphs are dominated at higher ance relationships, which are logically on the above considerations. Modified presented in which all ties terminating Top right: For both cohorts, plots are shown of the areal assignments into subgraphs (colors) at tie densities from 10% down to 2% in 1% steps. ROI ordering is identical, and all subgraphs with fewer than four members are colored white. The standard measure of subgraph similarity, normalized mutual information, between node assignments of the cohorts at identical tie densities ranged from 0.86 to 0.92, indicating highly similar patterns across cohorts (1 = identical assignments, 0 = no infor- mation shared between assignments). Bottom: subgraphs from three thresholds are shown for the areal (spheres) and modified voxelwise graphs (surfaces). Note the similarity of subgraph assignments between networks, despite the great difference in network size and cortical coverage, even in different subjects (main versus replication cohorts). All areal subgraphs with fewer than four members are colored white, and all modified voxelwise subgraphs with fewer than 100 voxels are colored white. Areal networks are shown at 10%, 3%, and 2% tie density (r > 0.16, 0.30, and 0.33), and modified voxelwise networks are shown at 5%, 2%, and 0.5% tie density (r > 0.16, 0.23, and 0.31). shorten addresses of individual nodes). Other algorithms were tested and yielded similar results (Figure S2). Figure 1 illustrates our methodology and high- lights several important results. The first panel depicts the areal graph in a spring embedded layout and maps subgraphs onto nodes using colors, visibly demonstrating the basis for subgraphs. In spring embedded layouts, ties act as springs to position nodes in space such that well-connected groups of nodes are pulled together, providing an intuitive and •  Integrar información diversa, por ejemplo: aspectos morales y normativos •  Se relaciona con integración de información abstracta y estrategias a largo plazo Baumgartner T, Knoch D, Hotz P, Eisenegger C, Fehr E. 2011. Dorsolateral and ventromedial prefrontal cortex orchestrate normative choice. Nat Neurosci. 14:1468–1474.
  • 22. Investigación en toma de decisión sociales ¿Qué aplicación puede tener el estudio del cerebro social?
  • 23. Juego del ultimátum Billeke P, Zamorano F, Cosmelli D, Aboitiz F. 2013. Oscillatory Brain Activity Correlates with Risk Perception and Predicts Social Decisions. Cereb Cortex. 23:2872– 2883.
  • 24. Estudio de Pacientes con Esquizofrenia •  Alteración en la activación cerebral durante la anticipación de las conductas de otras personas Billeke P, Armijo A, Castillo D, López T, Zamorano F, Cosmelli D, Aboitiz F. 2015. Paradoxical Expectation: Oscillatory Brain Activity Reveals Social Interaction Impairment in Schizophrenia. Biol Psychiatry. 78:421–431.
  • 25. Conclusiones •  La implementación de las habilidades sociales y de flexibilidad conductual son fundamentales durante nuestro desarrollo filogenético y ontológico •  Investigaciones en neurociencia han mostrado que la actividad de diversas áreas cerebrales se relaciona con nuestras conductas sociales •  Algunas de ellas relacionada a procesos específicamente sociales, por ejemplo identificar las preferencias de otras personas (unión temporo-pariental) •  Otras, relacionada a la integración de diversa información (social y no social) en conductas complejas (prefrontal dorsolateral) •  Investigaciones en esta área pueden ser aplicadas al estudio del déficit social evidenciado en enfermedades neurológicas y psiquiátricas, y de esta forma ayudar a elaborar terapias de rehabilitación