SlideShare una empresa de Scribd logo
1 de 79
Lic. Juan Carlos Ugas
Octubre de 2022
CONTENIDOS DE ACTIVIDADES DE CAPACITACIÓN
TEMAS ACTIVIDADES
Sistemas convencionales de unidades.
Vectores y Escalares.
Álgebra vectorial.
Aplicaciones vectoriales.
Revisión de contenidos teóricos y resolución de ejercicios prácticos
Velocidad.
Aceleración.
Movimientos uniformes y uniformemente variados.
Gráficos de d v/s t y v v/s t.
Revisión de contenidos teóricos y resolución de ejercicios prácticos
Leyes de Newton.
Movimiento e impulso, conservación de la energía.
Revisión de contenidos teóricos y resolución de ejercicios prácticos
Trabajo, Potencia y Energía.
Energía cinética y Potencial.
Energía potencial en un resorte (ley de Hooke)
Coeficiente de roce estático y cinético.
Conservación de la energía.
Revisión de contenidos teóricos y resolución de ejercicios prácticos
Movimiento circular, el radián, velocidad angular.
Movimiento circular el plano, fuerza centrífuga y centrípeta.
Movimiento armónico simple (sin aplicar cálculo diferencial)
Revisión de contenidos teóricos y resolución de ejercicios prácticos
Densidad, densidad relativa, peso específico, presión.
Principio de Arquímedes.
Flotabilidad.
Presión en el interior de un líquido.
Revisión de contenidos teóricos y resolución de ejercicios prácticos
Naturaleza del calor.
Calor como forma de energía.
Escalas termo-matrices.
Equivalente mecánico del calor.
Dilatación térmica en sólidos, líquidos y gases.
Calor específico.
Cambios de estado, calor latente.
Primera ley de termodinámica.
Segunda ley de la termodinámica.
Revisión de contenidos teóricos y resolución de ejercicios prácticos
Campos eléctricos.
Ley de COULOMB.
Intensidad de campo.
Potencial eléctrico.
Revisión de contenidos teóricos y resolución de ejercicios prácticos
Revisión conceptual de ecuaciones y conceptos Recopilación clases teóricas
Revisión de aplicaciones de ecuaciones y conceptos Ejercicios resueltos tipo prueba
Prueba Prueba
TRABAJO MECÁNICO
Trabajo Mecánico
• Es el realizado por alguna Fuerzas.
• Es una Magnitud Escalar.
• El trabajo efectuado por una fuerza aplicada durante
un cierto desplazamiento se define como el producto
escalar del vector fuerza por el vector
desplazamiento.
T W F d
  
Unidades
• En el Sistema Internacional, es el JOULE (newton
por metro).
1Joule Newton metro
 
• Donde 1 Joule (J) es el trabajo realizado por
una fuerza de 1 newton para provocar el
desplazamiento de un cuerpo igual a 1 metro en
la misma dirección de la fuerza.
Unidades
• En el C.G.S, es el Ergio (dina por centímetro).
1Ergio dina centímetro
 
• Donde 1 Ergio (erg) es…
Conversión de Unidades
1Joule Newton metro
 
5 2 7
5 2 7
1 Joule 10 dina 10 centímetro 10 erg
1Ergio 10 N 10 metro 10 J
  
  
  
1Ergio dina centímetro
 
Trabajo Mecánico
• Condiciones Necesarias:
• Debe haber una fuerza aplicada.
• La Fuerza debe actuar en la misma dirección en que se
desplaza el cuerpo.
• La fuerza debe tener una componente a lo largo del
desplazamiento.
Trabajo Mecánico
• Entonces trabajo es: Cantidad escalar igual el
producto de las magnitudes del desplazamiento
y de la componente de la fuerza en la dirección
del desplazamiento.
W componente de la fuerza desplazamiento
F cos d
 
  
Trabajo Mecánico
• Siendo  el ángulo entre los vectores fuerza y
desplazamiento.
W componente de la fuerza desplazamiento
F cos d
 
  
W F cos d
   
W F cos d
    Fuerza
Desplazamiento
• Si el cuerpo se desplaza horizontalmente (1 metro) y se
ejerce una fuerza perpendicular a ella (100 newton), el
trabajo realizado por esta fuerza es:
W F cos d
W 100N cos90º 1m
W 100N 0 1m 0
   
  
   
• O sea el cargar el peso de la
mochila horizontalmente, no se
hace trabajo, porque la fuerza (el
peso) y el desplazamiento son
perpendiculares.
Fuerza
Desplazamiento
Fuerza
Desplazamiento
Trabajo Resultante
• Cuando varias fuerzas ejercen trabajo, hay que
distinguir entre trabajo positivo y negativo.
• Si la Fuerza y desplazamiento son en el mismo sentido, el
trabajo es positivo.
• Si se ejercen en sentido contrario, el trabajo es negativo.
• Trabajo Resultante es la suma algebraica de los
trabajos individuales que se ejercen por varias fuerzas
en un mismo cuerpo. (Es igual al trabajo de la
fuerza neta).
Gráficos Trabajo
• Fuerza v/s desplazamiento
El área es el trabajo
W = F x d
W = F x d
W = 5 x 10 = 50 J
0
d (m)
Fuerza
(newton)
5
W = F x d
1
0
La Fuerza es constante
Gráficos Trabajo
• Fuerza v/s desplazamiento
0
d (m)
Fuerza
(newton
)
La Fuerza varía
El área es el trabajo
W = F x d
2
Trabajo y Energía
• Mientras se realiza trabajo sobre el cuerpo, se produce
una transferencia de energía al mismo, por lo que puede
decirse que el trabajo es energía en movimiento.
• El concepto de trabajo está ligado íntimamente al
concepto de energía y ambas magnitudes se miden
en la misma unidad: Joule.
ENERGÍA
Energía
• Cantidad inmaterial globalmente constante en un
sistema.
• Durante la evolución de dicho sistema la energía toma
formas diversas por el intermedio del trabajo de las
fuerzas involucradas.
• La energía puede materializarse en masa y la masa
transformarse en energía en ciertos procesos físicos.
Energía
• Capacidad para realizar un trabajo.
• Se mide en JOULE
• Se suele representar por la letra E.
• Ejemplo:
Cuando un arquero realiza trabajo al tender un arco, el arco
adquiere la capacidad de realizar la misma cantidad de trabajo
sobre la flecha
Tipos de Energía
• Existen muchos tipos:
– E. Mecánica: estado de movimiento.
• E. Cinética: en movimiento
• E. Potencial: en reposo
– E. Calórica
– E. Eléctrica
– E. Química
– E. Eólica
– E. Solar
– E. Hidráulica
– E. Lumínica, etc.
ENERGÍA
ENERGÍA MECÁNICA
Energía Mecánica
• Es la energía que se debe a la posición o al movimiento
de un objeto (estado de movimiento de un objeto).
• Se denota: Em
• Es una magnitud Escalar.
• Existen 2 tipos:
– E. Cinética: cuerpo en movimiento.
– E. Potencial: cuerpo en reposo, energía de posición.
Energía Mecánica
• Todo cuerpo en movimiento o reposo posee energía
mecánica.
• Matemáticamente es la suma de todas las energías.
m c pg pe
E E E E
  
2
c
m v
E
2

pg
E mgh

2
pg
k X
E
2

ENERGÍA POTENCIAL
Energía Potencial
• Un objeto puede almacenar energía en virtud de su
posición.
• Es la energía que se almacena en espera de ser utilizada,
porque en ese estado tiene el potencial para realizar
trabajo.
• Se denota: Ep
• Es una magnitud Escalar.
• Existen 2 tipos:
– Ep Gravitacional: posición en la tierra.
– Ep Elástica: tiene que ver con resortes y fuerza elástica.
Energía Potencial Gravitacional
• Para elevar objetos contra la gravedad terrestre se
requiere trabajo.
• Se define como: la Energía potencial debido a que
un objeto se encuentra en una posición elevada.
• La cantidad de ella que posee un objeto elevado es igual
al trabajo realizado contra la gravedad para llevarlo a
esa posición. (W = F  d)
Energía Potencial Gravitacional
• Si el objeto se mueve con velocidad constante, se debe
ejercer una fuerza igual a su peso (fuerza neta = 0), y el
peso es igual a: m  g
• Por lo tanto para elevarlo una altura (h), se requiere
una energía potencial gravitacional igual al trabajo.
Ep m g h mgh
   
Energía Potencial Gravitacional = peso x altura
Energía Potencial Gravitacional
• Es mayor a mayor masa y a mayor altura se encuentre.
• El cuerpo debe estar en reposo
Trabajo y Energía Potencial
W mgh

• El trabajo que puede realizar un objeto debido a su
posición, requiere una energía igual a la Epg de este
objeto.
pg
W E

• A mayor altura, mayor trabajo.
• La altura depende del sistema de referencia que se
ocupe (no es lo mismo el trabajo que puede realizar
un avión respecto a la cima de una montaña, un
edificio o a nivel del mar, porque cambia la altura)
Ejemplo Energía potencial
• Ejemplo: Salto con garrocha
• En el salto con garrocha el atleta usa la garrrocha para
transformar la energía cinética de su carrera en energía
potencial gravitacional. Un atleta alcanza una rapidez de 10
m/s. ¿A qué altura puede elevar un atleta su centro de
gravedad?.
• No hay fuerzas aplicadas.
• La conservación de energía mecánica total da
0+mgh=mv2/2+0.
• Por lo tanto, se obtiene h=v2/(2g).
• Reemplazando los valores se llega a h=5,1 m.
ENERGÍA CINÉTICA
Energía Cinética
• Es la energía que posee un cuerpo en virtud de
su movimiento.
• Se denota: Ec
• Es una magnitud Escalar.
• Es igual al trabajo requerido para llevarlo desde
el reposo al movimiento o al revés.
• Depende de la masa del cuerpo y la rapidez que lleva.
2
c
m v
E
2

Energía Cinética
2
c
m v
E
2

• Significa que:
– al duplicarse la rapidez de un objeto, se cuadriplica su energía
cinética.
– Se requiere un trabajo cuatro veces mayor para detener dicho
objeto.
• La energía cinética es mayor, mientras mayor masa
posea un cuerpo y mayor rapidez alcance.
Trabajo y Energía Cinética
2 2
f i
m V m V
W
2 2
 
• El trabajo que realiza una fuerza neta sobre un objeto
es igual al cambio de la energía cinética del objeto.
c
W E
 
• Un trabajo positivo, aumenta la energía cinética del
objeto (Vf > Vi)
• Un trabajo negativo, disminuye la energía cinética
del objeto (Vf < Vi)
CONSERVACIÓN DE LA
ENERGÍA
Conservación de la Energía
“En cualquier proceso, la energía no se crea
ni se destruye, sólo se transforma en otras
modalidades.
La energía total de un sistema es constante”
m c pg
E E E
 
2
c
m v
E
2

pg
E mgh

Transformación de Energía
Potencial a Cinética
pg
E mgh

2
c
m v
E
2

m pg c
E E E
 
Conservación de la Energía
m pg
E E

m c
E E

m pg c
E E E
 
2
c
m v
E 0
2
 
2
c
m v
E Máx.
2
 
pg
E mgh 0
 
pg
E mgh Máx.
 
Conservación de la Energía
m pg c
E E E
 
LA ENERGÍA TOTAL ES CONSTANTE
Ejemplo
m pg c
E E E
 
• Si un cuerpo de 5 kg de masa, se encuentra a una
altura de 40 metros, y se suelta. Calcula:
• el tiempo que se demora en llegar al suelo
• la energía mecánica
•La energía potencial y la cinética al segundo
•La rapidez que llevaba al segundo
Ejemplo
•Datos
• m = 5 kg
• h = 40 m
•el tiempo que se demora en llegar al suelo:
 
 
 
 
2
2
2
2
2
d = Vi t + a t
40 = 0 t + 10 t
40 = 10 t
40
= t
10
4 = t t 2s
 
 

 
Ejemplo
m pg
m
m
m
E E máxima
E mgh
E 5 10 40(J)
E 2000J


  

•Datos
• m = 5 kg
• h = 40 m
• t = 2 s
• la energía mecánica
Ejemplo
•Datos
• m = 5 kg
• h = 40 m
•La energía potencial y la cinética al segundo
 
2
2
a t
d = Vi t +
2
10 1
h =
2
h = 5 m



Ejemplo
pg
pg
pg
E mgh
E 5 10 5(J)
E 250 J

  

2
c
2
c
c
E (mv )/ 2
5 (
10)
E
2
500
E 250 J
2



 
f i
1s
1s
V at V
V 10 1(m / s)
V 10 (m / s)
 
 

•Datos
• m = 5 kg
• h = 40 m
•La energía potencial y la cinética al segundo
POTENCIA MECÁNICA
Potencia Mecánica
• Es la rapidez con la que se realiza un trabajo.
• Se denota: P
• Es una magnitud Escalar.
Trabajo W
P
tiempo t
 
• Esto es equivalente a la velocidad de cambio de
energía en un sistema o al tiempo empleado en
realizar un trabajo.
Unidades
• En el Sistema Internacional, es el WATT
Joule
1Watt
segundo

• Donde 1 Watt es la potencia gastada al realizar
un trabajo de un Joule en 1 segundo.
Otras Unidades
• 1 kw = 1 kilowatt = 103 watts = 103 W
• 1 MW = 1 megawatt = 106 watts = 106 W
• 1 GW = 1 gigawatt = 109 watts = 109 W
• En el sistema C.G.S. es el Ergio/seg.
• En el sistema inglés se usa:
– Caballo de vapor (hp ó cv): la potencia necesaria
para elevar verticalmente una masa de 75 kg a la
velocidad de 1 m/s. Y equivale a 746 W
Potencia Mecánica
• Un motor de alta potencia realiza trabajo con
rapidez.
• Si un motor de auto tiene el doble de potencia que la de
otro,
• No Significa que:
– realice el doble de trabajo que otro.
• Significa que:
– Realiza el mismo trabajo en la mitad del tiempo.
• Un motor potente puede incrementar le rapidez
de un auto hasta cierto valor en menos tiempo
que un motor menos potente.
Potencia Mecánica
• La potencia en términos generales, expresa la capacidad
para ejecutar un trabajo en el menor tiempo posible.
• Una fuente de energía, que puede mover 1 kg de peso por
una distancia de 1 metro en un sólo segundo de tiempo,
se considera más potente que otra capaz de desplazar el
mismo peso en 2 segundos.
Gráfico Potencia
• Potencia v/s Tiempo
El área mide la
Energía mecánica
Á = P  t
Á = W  t =W = E
t
Ejemplo
• Una central hidroeléctrica posee caídas de agua, las
cuales son utilizadas para movilizar los generadores
que producirán energía eléctrica. Consideremos una
caída de agua de altura h = 20 metros cuyo flujo es de
3000 litros por segundo.
• Supongamos g = 10 m/s2. ¿Cuál es la potencia máxima
que podrá ser generada?
Ejemplo
• Supongamos que antes de caer el agua (de masa M), está en
reposo (Vi =0), por lo tanto en ese momento su energía
cinética será nula. Y en ese punto su Em estará dada por su
Epg.
• Cuando esa agua llegue abajo, tendrá una energía cinética
máxima igual a la Em.
• Es esta energía cinética la que se transformará en eléctrica.
Si la transformación es total:
2
5
3000 (l) m
P= 10( ) 20 (m)= 600000 W
1(s) s
P= 6 10 W
 

energia mgh m
P= = = g h
tiempo t t
 
 
 
 
 
Ejercicio esquiador
• Um esquiador de massa 60 kg desliza de uma encosta,
partindo do repouso, de uma altura de 50 m. Sabendo
que sua velocidade ao chegar no fim da encosta é de 20
m/s, calcule a perda de energia mecânica devido ao
atrito. Adote g = 10 m/s2.
Ejercicio esquiador
• En
Ejercicio resbalin
• No escorregador mostrado na figura, uma criança com 30 kg de
massa, partindo do repouso em A, desliza até B.
• Desprezando as perdas de energia e admitindo g = 10 m/s2, calcule
a velocidade da criança ao chegar a B.
Ejercicio carrito
• Um carrinho situado no ponto A (veja a figura), parte do repouso e alcança o
ponto B.
• Calcule a velocidade do carrinho em B, sabendo que 50% de sua energia mecânica
inicial é dissipada pelo atrito no trajeto.
• Qual foi o trabalho do atrito entre A e B?
e –20J
Ejercicio carrito 2
• Uma esfera parte do repouso em A e percorre o caminho
representado sem nenhum atrito ou resistência. Determine sua
velocidade no ponto B.
10 m/s
Ejemplo Energia Mecánica
• Uma pedra é libertada de uma altura de 15 m
em relação ao solo. Sabendo que sua massa vale
5 kg e g = 10 m/ss, determine sua energia
cinética ao atingir o solo.
Ejemplo Energia Mecánica
• Um carro é abandonado de uma certa altura, como mostra a
figura acima, num local onde g = 10 m/s2. Determine: a) a
velocidade do carro ao atingir o solo; b) a altura de onde foi
abandonado.
Ejercicio E Mecánica 1
• Um corpo de massa 3 kg é abandonado do repouso e
atinge o solo com velocidade de 40 m/s. Determine a
altura de que o corpo foi abandonado.
Ejercicio E Mecánica 1
• Um esquiador desce uma pista de esqui a partir
do repouso. Qual a sua velocidade ao chegar no
ponto B?
Ejercicio E Mecánica 2
• Um carrinho está em movimento sobre uma montanha
russa, como indica a figura acima. Qual a velocidade do
carrinho no ponto C?
Ejercicio E Mecánica 3
• O carrinho foi abandonado em (a). Compare a
energia cinética e potencial em cada ponto.
Ejercicio ascensor
• Una persona está parada sobre una balanza
ubicada sobre el piso de un ascensor que se
mueve hacia arriba con velocidad constante; en
esas condiciones la balanza indica 80 kilos.
¿Cuál será la indicación de la balanza (en
kilogramos) cuando el ascensor comienza a
frenar, para detenerse, con una aceleración de 2
m/seg.2?
• Solución: Consideramos que el peso de la persona es 80
kilogramos ya que al moverse con velocidad constante
la sumatoria de fuerzas sobre el sistema hombre –
ascensor es nula; de esa forma es lícito pensar que el
peso (que es lo que marca la balanza) es contrarrestado
por la reacción del piso (tercer principio de dinámica).
P = m . g ® m = P/g
Ejercicio ascensor
• En el momento en que empieza a frenar el sistema, el
cuerpo tiende a seguir en movimiento ya que frena el
ascensor pero no la persona (principio de inercia). La
fuerza supuesta "impulsora" del hombre está
determinada por su masa y la aceleración de frenado.
Este fenómeno se percibe en la balanza "pareciendo" que
la persona "pesa" menos, siendo el valor que aparece en
el aparato la "resta" entre ambas fuerzas.
• F balanza = P – Fac. ® Fb = P – m ac ® Fb = P – P/g ac
• F b = 80 Kgf – 16 Kgf = 64 Kgf.
Ejercicio plano inclinado
• Un bloque de masa 0.2 kg inicia su movimiento hacia arriba, sobre
un plano de 30º de inclinación, con una velocidad inicial de 12 m/s.
Si el coeficiente de rozamiento entre el bloque y el plano es 0.16.
Determinar:
• la longitud x que recorre el bloque a lo largo del plano hasta que se
para
• la velocidad v que tendrá el bloque al regresar a la base del plano
Ejercicio plano inclinado
• Cuando el cuerpo asciende por el plano inclinado
• La energía del cuerpo en A es EA=½0.2·122=14.4 J
• La energía del cuerpo en B es EB=0.2·9.8·h=1.96·h =0.98·x J
• El trabajo de la fuerza de rozamiento cuando el cuerpo se desplaza de A a B es
• W=-Fr·x=-μ·mg·cosθ·x=-0.16·0.2·9.8·cos30·x=-0.272·x J
• De la ecuación del balance energético W=EB-EA, despejamos x=11.5 m,
h=x·sen30º=5.75 m
Ejercicio plano inclinado
• Cuando el cuerpo desciende
• La energía del cuerpo en B es EB=0.2·9.8·h=1.96·h =0.98·x=0.98·11.5=11.28 J
• La energía del cuerpo en la base del plano EA==½0.2·v2
• El trabajo de la fuerza de rozamiento cuando el cuerpo se desplaza de A a B es
• W=-Fr·x=-μ·mg·cosθ·x=-0.16·0.2·9.8·cos30·11.5=-3.12 J
• De la ecuación del balance energético W=EA-EB, despejamos v=9.03 m/s.
Clase 4. Trabajo__Potencia-.ppt

Más contenido relacionado

Similar a Clase 4. Trabajo__Potencia-.ppt (20)

Energía y trabajo pilco to b
Energía y trabajo pilco to bEnergía y trabajo pilco to b
Energía y trabajo pilco to b
 
Trabajo, Energía y Potencia
Trabajo, Energía y PotenciaTrabajo, Energía y Potencia
Trabajo, Energía y Potencia
 
F03 energia
F03 energiaF03 energia
F03 energia
 
Trabajo y energía
Trabajo y energíaTrabajo y energía
Trabajo y energía
 
5.trabajo energia
5.trabajo energia5.trabajo energia
5.trabajo energia
 
Trabajo
TrabajoTrabajo
Trabajo
 
Energía y trabajo
Energía y trabajoEnergía y trabajo
Energía y trabajo
 
trabajo y energia.pptx
trabajo y energia.pptxtrabajo y energia.pptx
trabajo y energia.pptx
 
Grupo 2-trabajo y energia-teoria
Grupo 2-trabajo y energia-teoriaGrupo 2-trabajo y energia-teoria
Grupo 2-trabajo y energia-teoria
 
Modulo 1
Modulo 1 Modulo 1
Modulo 1
 
Trabajo potencia-energia
Trabajo potencia-energiaTrabajo potencia-energia
Trabajo potencia-energia
 
Unidad V - Conservación de la energia.pdf
Unidad V - Conservación de la energia.pdfUnidad V - Conservación de la energia.pdf
Unidad V - Conservación de la energia.pdf
 
Exposicion fisica i
Exposicion fisica iExposicion fisica i
Exposicion fisica i
 
Teorias_capítulo 2_2020.pdf
Teorias_capítulo 2_2020.pdfTeorias_capítulo 2_2020.pdf
Teorias_capítulo 2_2020.pdf
 
Teorias Fisica.pdf
Teorias Fisica.pdfTeorias Fisica.pdf
Teorias Fisica.pdf
 
Trabajo
TrabajoTrabajo
Trabajo
 
Trabajo
TrabajoTrabajo
Trabajo
 
Fisica mecanica
Fisica mecanica Fisica mecanica
Fisica mecanica
 
Trabajo energia
Trabajo  energiaTrabajo  energia
Trabajo energia
 
Energia
EnergiaEnergia
Energia
 

Más de JuanUgas2

Grupos Funcionales. Clase 2.ppt
Grupos Funcionales. Clase 2.pptGrupos Funcionales. Clase 2.ppt
Grupos Funcionales. Clase 2.pptJuanUgas2
 
Clase 5 reglamento.ppt
Clase 5 reglamento.pptClase 5 reglamento.ppt
Clase 5 reglamento.pptJuanUgas2
 
Clase 3. leyes newton 2.ppt
Clase 3. leyes newton 2.pptClase 3. leyes newton 2.ppt
Clase 3. leyes newton 2.pptJuanUgas2
 
Clase 8. Electricidad.ppt
Clase 8. Electricidad.pptClase 8. Electricidad.ppt
Clase 8. Electricidad.pptJuanUgas2
 
Clase 1. Vectores.pptx
Clase 1. Vectores.pptxClase 1. Vectores.pptx
Clase 1. Vectores.pptxJuanUgas2
 
Clase 1. Matematica. 07-06-2022.pptx
Clase 1. Matematica. 07-06-2022.pptxClase 1. Matematica. 07-06-2022.pptx
Clase 1. Matematica. 07-06-2022.pptxJuanUgas2
 
primera ley. clase 3.pptx
primera ley. clase 3.pptxprimera ley. clase 3.pptx
primera ley. clase 3.pptxJuanUgas2
 
segunda ley. Clase 4 29-06.pdf
segunda ley. Clase 4 29-06.pdfsegunda ley. Clase 4 29-06.pdf
segunda ley. Clase 4 29-06.pdfJuanUgas2
 
segunda ley. Clase 4.ppt
segunda ley. Clase 4.pptsegunda ley. Clase 4.ppt
segunda ley. Clase 4.pptJuanUgas2
 

Más de JuanUgas2 (9)

Grupos Funcionales. Clase 2.ppt
Grupos Funcionales. Clase 2.pptGrupos Funcionales. Clase 2.ppt
Grupos Funcionales. Clase 2.ppt
 
Clase 5 reglamento.ppt
Clase 5 reglamento.pptClase 5 reglamento.ppt
Clase 5 reglamento.ppt
 
Clase 3. leyes newton 2.ppt
Clase 3. leyes newton 2.pptClase 3. leyes newton 2.ppt
Clase 3. leyes newton 2.ppt
 
Clase 8. Electricidad.ppt
Clase 8. Electricidad.pptClase 8. Electricidad.ppt
Clase 8. Electricidad.ppt
 
Clase 1. Vectores.pptx
Clase 1. Vectores.pptxClase 1. Vectores.pptx
Clase 1. Vectores.pptx
 
Clase 1. Matematica. 07-06-2022.pptx
Clase 1. Matematica. 07-06-2022.pptxClase 1. Matematica. 07-06-2022.pptx
Clase 1. Matematica. 07-06-2022.pptx
 
primera ley. clase 3.pptx
primera ley. clase 3.pptxprimera ley. clase 3.pptx
primera ley. clase 3.pptx
 
segunda ley. Clase 4 29-06.pdf
segunda ley. Clase 4 29-06.pdfsegunda ley. Clase 4 29-06.pdf
segunda ley. Clase 4 29-06.pdf
 
segunda ley. Clase 4.ppt
segunda ley. Clase 4.pptsegunda ley. Clase 4.ppt
segunda ley. Clase 4.ppt
 

Último

5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptxNayeliZarzosa1
 
SOUDAL: Soluciones de sellado, pegado y hermeticidad
SOUDAL: Soluciones de sellado, pegado y hermeticidadSOUDAL: Soluciones de sellado, pegado y hermeticidad
SOUDAL: Soluciones de sellado, pegado y hermeticidadANDECE
 
produccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxproduccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxEtse9
 
Biología molecular ADN recombinante.pptx
Biología molecular ADN recombinante.pptxBiología molecular ADN recombinante.pptx
Biología molecular ADN recombinante.pptxluisvalero46
 
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBRQUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBRyanimarca23
 
Fisiología del azufre en plantas S.S.pdf
Fisiología del azufre en plantas S.S.pdfFisiología del azufre en plantas S.S.pdf
Fisiología del azufre en plantas S.S.pdfJessLeonelVargasJimn
 
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Francisco Javier Mora Serrano
 
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIACLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIAMayraOchoa35
 
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinaciónEstacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinaciónAlexisHernandez885688
 
Conservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaConservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaANDECE
 
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidasSOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidasLeonardoMendozaDvila
 
Edificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaEdificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaANDECE
 
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...humberto espejo
 
SEMANA 6 MEDIDAS DE TENDENCIA CENTRAL.pdf
SEMANA  6 MEDIDAS DE TENDENCIA CENTRAL.pdfSEMANA  6 MEDIDAS DE TENDENCIA CENTRAL.pdf
SEMANA 6 MEDIDAS DE TENDENCIA CENTRAL.pdffredyflores58
 
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdfS454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdffredyflores58
 
Peligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionPeligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionOsdelTacusiPancorbo
 
Sistema de gestión de turnos para negocios
Sistema de gestión de turnos para negociosSistema de gestión de turnos para negocios
Sistema de gestión de turnos para negociosfranchescamassielmor
 
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfCONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfErikNivor
 
NOM-002-STPS-2010, combate contra incendio.pptx
NOM-002-STPS-2010, combate contra incendio.pptxNOM-002-STPS-2010, combate contra incendio.pptx
NOM-002-STPS-2010, combate contra incendio.pptxJairReyna1
 

Último (20)

5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
 
SOUDAL: Soluciones de sellado, pegado y hermeticidad
SOUDAL: Soluciones de sellado, pegado y hermeticidadSOUDAL: Soluciones de sellado, pegado y hermeticidad
SOUDAL: Soluciones de sellado, pegado y hermeticidad
 
produccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxproduccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptx
 
Biología molecular ADN recombinante.pptx
Biología molecular ADN recombinante.pptxBiología molecular ADN recombinante.pptx
Biología molecular ADN recombinante.pptx
 
MATPEL COMPLETO DESDE NIVEL I AL III.pdf
MATPEL COMPLETO DESDE NIVEL I AL III.pdfMATPEL COMPLETO DESDE NIVEL I AL III.pdf
MATPEL COMPLETO DESDE NIVEL I AL III.pdf
 
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBRQUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
 
Fisiología del azufre en plantas S.S.pdf
Fisiología del azufre en plantas S.S.pdfFisiología del azufre en plantas S.S.pdf
Fisiología del azufre en plantas S.S.pdf
 
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
 
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIACLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIA
 
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinaciónEstacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
 
Conservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaConservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de Almería
 
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidasSOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
 
Edificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaEdificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes Granada
 
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
 
SEMANA 6 MEDIDAS DE TENDENCIA CENTRAL.pdf
SEMANA  6 MEDIDAS DE TENDENCIA CENTRAL.pdfSEMANA  6 MEDIDAS DE TENDENCIA CENTRAL.pdf
SEMANA 6 MEDIDAS DE TENDENCIA CENTRAL.pdf
 
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdfS454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
 
Peligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionPeligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacion
 
Sistema de gestión de turnos para negocios
Sistema de gestión de turnos para negociosSistema de gestión de turnos para negocios
Sistema de gestión de turnos para negocios
 
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfCONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
 
NOM-002-STPS-2010, combate contra incendio.pptx
NOM-002-STPS-2010, combate contra incendio.pptxNOM-002-STPS-2010, combate contra incendio.pptx
NOM-002-STPS-2010, combate contra incendio.pptx
 

Clase 4. Trabajo__Potencia-.ppt

  • 1. Lic. Juan Carlos Ugas Octubre de 2022
  • 2. CONTENIDOS DE ACTIVIDADES DE CAPACITACIÓN TEMAS ACTIVIDADES Sistemas convencionales de unidades. Vectores y Escalares. Álgebra vectorial. Aplicaciones vectoriales. Revisión de contenidos teóricos y resolución de ejercicios prácticos Velocidad. Aceleración. Movimientos uniformes y uniformemente variados. Gráficos de d v/s t y v v/s t. Revisión de contenidos teóricos y resolución de ejercicios prácticos Leyes de Newton. Movimiento e impulso, conservación de la energía. Revisión de contenidos teóricos y resolución de ejercicios prácticos Trabajo, Potencia y Energía. Energía cinética y Potencial. Energía potencial en un resorte (ley de Hooke) Coeficiente de roce estático y cinético. Conservación de la energía. Revisión de contenidos teóricos y resolución de ejercicios prácticos Movimiento circular, el radián, velocidad angular. Movimiento circular el plano, fuerza centrífuga y centrípeta. Movimiento armónico simple (sin aplicar cálculo diferencial) Revisión de contenidos teóricos y resolución de ejercicios prácticos Densidad, densidad relativa, peso específico, presión. Principio de Arquímedes. Flotabilidad. Presión en el interior de un líquido. Revisión de contenidos teóricos y resolución de ejercicios prácticos Naturaleza del calor. Calor como forma de energía. Escalas termo-matrices. Equivalente mecánico del calor. Dilatación térmica en sólidos, líquidos y gases. Calor específico. Cambios de estado, calor latente. Primera ley de termodinámica. Segunda ley de la termodinámica. Revisión de contenidos teóricos y resolución de ejercicios prácticos Campos eléctricos. Ley de COULOMB. Intensidad de campo. Potencial eléctrico. Revisión de contenidos teóricos y resolución de ejercicios prácticos Revisión conceptual de ecuaciones y conceptos Recopilación clases teóricas Revisión de aplicaciones de ecuaciones y conceptos Ejercicios resueltos tipo prueba Prueba Prueba
  • 4. Trabajo Mecánico • Es el realizado por alguna Fuerzas. • Es una Magnitud Escalar. • El trabajo efectuado por una fuerza aplicada durante un cierto desplazamiento se define como el producto escalar del vector fuerza por el vector desplazamiento. T W F d   
  • 5. Unidades • En el Sistema Internacional, es el JOULE (newton por metro). 1Joule Newton metro   • Donde 1 Joule (J) es el trabajo realizado por una fuerza de 1 newton para provocar el desplazamiento de un cuerpo igual a 1 metro en la misma dirección de la fuerza.
  • 6. Unidades • En el C.G.S, es el Ergio (dina por centímetro). 1Ergio dina centímetro   • Donde 1 Ergio (erg) es…
  • 7. Conversión de Unidades 1Joule Newton metro   5 2 7 5 2 7 1 Joule 10 dina 10 centímetro 10 erg 1Ergio 10 N 10 metro 10 J          1Ergio dina centímetro  
  • 8. Trabajo Mecánico • Condiciones Necesarias: • Debe haber una fuerza aplicada. • La Fuerza debe actuar en la misma dirección en que se desplaza el cuerpo. • La fuerza debe tener una componente a lo largo del desplazamiento.
  • 9. Trabajo Mecánico • Entonces trabajo es: Cantidad escalar igual el producto de las magnitudes del desplazamiento y de la componente de la fuerza en la dirección del desplazamiento. W componente de la fuerza desplazamiento F cos d     
  • 10. Trabajo Mecánico • Siendo  el ángulo entre los vectores fuerza y desplazamiento. W componente de la fuerza desplazamiento F cos d     
  • 11. W F cos d    
  • 12. W F cos d     Fuerza Desplazamiento
  • 13. • Si el cuerpo se desplaza horizontalmente (1 metro) y se ejerce una fuerza perpendicular a ella (100 newton), el trabajo realizado por esta fuerza es: W F cos d W 100N cos90º 1m W 100N 0 1m 0            • O sea el cargar el peso de la mochila horizontalmente, no se hace trabajo, porque la fuerza (el peso) y el desplazamiento son perpendiculares. Fuerza Desplazamiento Fuerza Desplazamiento
  • 14. Trabajo Resultante • Cuando varias fuerzas ejercen trabajo, hay que distinguir entre trabajo positivo y negativo. • Si la Fuerza y desplazamiento son en el mismo sentido, el trabajo es positivo. • Si se ejercen en sentido contrario, el trabajo es negativo. • Trabajo Resultante es la suma algebraica de los trabajos individuales que se ejercen por varias fuerzas en un mismo cuerpo. (Es igual al trabajo de la fuerza neta).
  • 15. Gráficos Trabajo • Fuerza v/s desplazamiento El área es el trabajo W = F x d W = F x d W = 5 x 10 = 50 J 0 d (m) Fuerza (newton) 5 W = F x d 1 0 La Fuerza es constante
  • 16. Gráficos Trabajo • Fuerza v/s desplazamiento 0 d (m) Fuerza (newton ) La Fuerza varía El área es el trabajo W = F x d 2
  • 17. Trabajo y Energía • Mientras se realiza trabajo sobre el cuerpo, se produce una transferencia de energía al mismo, por lo que puede decirse que el trabajo es energía en movimiento. • El concepto de trabajo está ligado íntimamente al concepto de energía y ambas magnitudes se miden en la misma unidad: Joule.
  • 19. Energía • Cantidad inmaterial globalmente constante en un sistema. • Durante la evolución de dicho sistema la energía toma formas diversas por el intermedio del trabajo de las fuerzas involucradas. • La energía puede materializarse en masa y la masa transformarse en energía en ciertos procesos físicos.
  • 20. Energía • Capacidad para realizar un trabajo. • Se mide en JOULE • Se suele representar por la letra E. • Ejemplo: Cuando un arquero realiza trabajo al tender un arco, el arco adquiere la capacidad de realizar la misma cantidad de trabajo sobre la flecha
  • 21. Tipos de Energía • Existen muchos tipos: – E. Mecánica: estado de movimiento. • E. Cinética: en movimiento • E. Potencial: en reposo – E. Calórica – E. Eléctrica – E. Química – E. Eólica – E. Solar – E. Hidráulica – E. Lumínica, etc.
  • 24. Energía Mecánica • Es la energía que se debe a la posición o al movimiento de un objeto (estado de movimiento de un objeto). • Se denota: Em • Es una magnitud Escalar. • Existen 2 tipos: – E. Cinética: cuerpo en movimiento. – E. Potencial: cuerpo en reposo, energía de posición.
  • 25. Energía Mecánica • Todo cuerpo en movimiento o reposo posee energía mecánica. • Matemáticamente es la suma de todas las energías. m c pg pe E E E E    2 c m v E 2  pg E mgh  2 pg k X E 2 
  • 27. Energía Potencial • Un objeto puede almacenar energía en virtud de su posición. • Es la energía que se almacena en espera de ser utilizada, porque en ese estado tiene el potencial para realizar trabajo. • Se denota: Ep • Es una magnitud Escalar. • Existen 2 tipos: – Ep Gravitacional: posición en la tierra. – Ep Elástica: tiene que ver con resortes y fuerza elástica.
  • 28. Energía Potencial Gravitacional • Para elevar objetos contra la gravedad terrestre se requiere trabajo. • Se define como: la Energía potencial debido a que un objeto se encuentra en una posición elevada. • La cantidad de ella que posee un objeto elevado es igual al trabajo realizado contra la gravedad para llevarlo a esa posición. (W = F  d)
  • 29. Energía Potencial Gravitacional • Si el objeto se mueve con velocidad constante, se debe ejercer una fuerza igual a su peso (fuerza neta = 0), y el peso es igual a: m  g • Por lo tanto para elevarlo una altura (h), se requiere una energía potencial gravitacional igual al trabajo. Ep m g h mgh     Energía Potencial Gravitacional = peso x altura
  • 30. Energía Potencial Gravitacional • Es mayor a mayor masa y a mayor altura se encuentre. • El cuerpo debe estar en reposo
  • 31. Trabajo y Energía Potencial W mgh  • El trabajo que puede realizar un objeto debido a su posición, requiere una energía igual a la Epg de este objeto. pg W E  • A mayor altura, mayor trabajo. • La altura depende del sistema de referencia que se ocupe (no es lo mismo el trabajo que puede realizar un avión respecto a la cima de una montaña, un edificio o a nivel del mar, porque cambia la altura)
  • 32. Ejemplo Energía potencial • Ejemplo: Salto con garrocha • En el salto con garrocha el atleta usa la garrrocha para transformar la energía cinética de su carrera en energía potencial gravitacional. Un atleta alcanza una rapidez de 10 m/s. ¿A qué altura puede elevar un atleta su centro de gravedad?. • No hay fuerzas aplicadas. • La conservación de energía mecánica total da 0+mgh=mv2/2+0. • Por lo tanto, se obtiene h=v2/(2g). • Reemplazando los valores se llega a h=5,1 m.
  • 34. Energía Cinética • Es la energía que posee un cuerpo en virtud de su movimiento. • Se denota: Ec • Es una magnitud Escalar. • Es igual al trabajo requerido para llevarlo desde el reposo al movimiento o al revés. • Depende de la masa del cuerpo y la rapidez que lleva. 2 c m v E 2 
  • 35. Energía Cinética 2 c m v E 2  • Significa que: – al duplicarse la rapidez de un objeto, se cuadriplica su energía cinética. – Se requiere un trabajo cuatro veces mayor para detener dicho objeto. • La energía cinética es mayor, mientras mayor masa posea un cuerpo y mayor rapidez alcance.
  • 36.
  • 37. Trabajo y Energía Cinética 2 2 f i m V m V W 2 2   • El trabajo que realiza una fuerza neta sobre un objeto es igual al cambio de la energía cinética del objeto. c W E   • Un trabajo positivo, aumenta la energía cinética del objeto (Vf > Vi) • Un trabajo negativo, disminuye la energía cinética del objeto (Vf < Vi)
  • 39. Conservación de la Energía “En cualquier proceso, la energía no se crea ni se destruye, sólo se transforma en otras modalidades. La energía total de un sistema es constante” m c pg E E E   2 c m v E 2  pg E mgh 
  • 40. Transformación de Energía Potencial a Cinética pg E mgh  2 c m v E 2  m pg c E E E  
  • 41. Conservación de la Energía m pg E E  m c E E  m pg c E E E   2 c m v E 0 2   2 c m v E Máx. 2   pg E mgh 0   pg E mgh Máx.  
  • 42. Conservación de la Energía m pg c E E E   LA ENERGÍA TOTAL ES CONSTANTE
  • 43. Ejemplo m pg c E E E   • Si un cuerpo de 5 kg de masa, se encuentra a una altura de 40 metros, y se suelta. Calcula: • el tiempo que se demora en llegar al suelo • la energía mecánica •La energía potencial y la cinética al segundo •La rapidez que llevaba al segundo
  • 44. Ejemplo •Datos • m = 5 kg • h = 40 m •el tiempo que se demora en llegar al suelo:         2 2 2 2 2 d = Vi t + a t 40 = 0 t + 10 t 40 = 10 t 40 = t 10 4 = t t 2s       
  • 45. Ejemplo m pg m m m E E máxima E mgh E 5 10 40(J) E 2000J       •Datos • m = 5 kg • h = 40 m • t = 2 s • la energía mecánica
  • 46. Ejemplo •Datos • m = 5 kg • h = 40 m •La energía potencial y la cinética al segundo   2 2 a t d = Vi t + 2 10 1 h = 2 h = 5 m   
  • 47. Ejemplo pg pg pg E mgh E 5 10 5(J) E 250 J      2 c 2 c c E (mv )/ 2 5 ( 10) E 2 500 E 250 J 2      f i 1s 1s V at V V 10 1(m / s) V 10 (m / s)      •Datos • m = 5 kg • h = 40 m •La energía potencial y la cinética al segundo
  • 48.
  • 49.
  • 51. Potencia Mecánica • Es la rapidez con la que se realiza un trabajo. • Se denota: P • Es una magnitud Escalar. Trabajo W P tiempo t   • Esto es equivalente a la velocidad de cambio de energía en un sistema o al tiempo empleado en realizar un trabajo.
  • 52. Unidades • En el Sistema Internacional, es el WATT Joule 1Watt segundo  • Donde 1 Watt es la potencia gastada al realizar un trabajo de un Joule en 1 segundo.
  • 53. Otras Unidades • 1 kw = 1 kilowatt = 103 watts = 103 W • 1 MW = 1 megawatt = 106 watts = 106 W • 1 GW = 1 gigawatt = 109 watts = 109 W • En el sistema C.G.S. es el Ergio/seg. • En el sistema inglés se usa: – Caballo de vapor (hp ó cv): la potencia necesaria para elevar verticalmente una masa de 75 kg a la velocidad de 1 m/s. Y equivale a 746 W
  • 54.
  • 55. Potencia Mecánica • Un motor de alta potencia realiza trabajo con rapidez. • Si un motor de auto tiene el doble de potencia que la de otro, • No Significa que: – realice el doble de trabajo que otro. • Significa que: – Realiza el mismo trabajo en la mitad del tiempo. • Un motor potente puede incrementar le rapidez de un auto hasta cierto valor en menos tiempo que un motor menos potente.
  • 56. Potencia Mecánica • La potencia en términos generales, expresa la capacidad para ejecutar un trabajo en el menor tiempo posible. • Una fuente de energía, que puede mover 1 kg de peso por una distancia de 1 metro en un sólo segundo de tiempo, se considera más potente que otra capaz de desplazar el mismo peso en 2 segundos.
  • 57. Gráfico Potencia • Potencia v/s Tiempo El área mide la Energía mecánica Á = P  t Á = W  t =W = E t
  • 58. Ejemplo • Una central hidroeléctrica posee caídas de agua, las cuales son utilizadas para movilizar los generadores que producirán energía eléctrica. Consideremos una caída de agua de altura h = 20 metros cuyo flujo es de 3000 litros por segundo. • Supongamos g = 10 m/s2. ¿Cuál es la potencia máxima que podrá ser generada?
  • 59. Ejemplo • Supongamos que antes de caer el agua (de masa M), está en reposo (Vi =0), por lo tanto en ese momento su energía cinética será nula. Y en ese punto su Em estará dada por su Epg. • Cuando esa agua llegue abajo, tendrá una energía cinética máxima igual a la Em. • Es esta energía cinética la que se transformará en eléctrica. Si la transformación es total: 2 5 3000 (l) m P= 10( ) 20 (m)= 600000 W 1(s) s P= 6 10 W    energia mgh m P= = = g h tiempo t t          
  • 60.
  • 61. Ejercicio esquiador • Um esquiador de massa 60 kg desliza de uma encosta, partindo do repouso, de uma altura de 50 m. Sabendo que sua velocidade ao chegar no fim da encosta é de 20 m/s, calcule a perda de energia mecânica devido ao atrito. Adote g = 10 m/s2.
  • 63. Ejercicio resbalin • No escorregador mostrado na figura, uma criança com 30 kg de massa, partindo do repouso em A, desliza até B. • Desprezando as perdas de energia e admitindo g = 10 m/s2, calcule a velocidade da criança ao chegar a B.
  • 64. Ejercicio carrito • Um carrinho situado no ponto A (veja a figura), parte do repouso e alcança o ponto B. • Calcule a velocidade do carrinho em B, sabendo que 50% de sua energia mecânica inicial é dissipada pelo atrito no trajeto. • Qual foi o trabalho do atrito entre A e B? e –20J
  • 65. Ejercicio carrito 2 • Uma esfera parte do repouso em A e percorre o caminho representado sem nenhum atrito ou resistência. Determine sua velocidade no ponto B. 10 m/s
  • 66. Ejemplo Energia Mecánica • Uma pedra é libertada de uma altura de 15 m em relação ao solo. Sabendo que sua massa vale 5 kg e g = 10 m/ss, determine sua energia cinética ao atingir o solo.
  • 67. Ejemplo Energia Mecánica • Um carro é abandonado de uma certa altura, como mostra a figura acima, num local onde g = 10 m/s2. Determine: a) a velocidade do carro ao atingir o solo; b) a altura de onde foi abandonado.
  • 68.
  • 69. Ejercicio E Mecánica 1 • Um corpo de massa 3 kg é abandonado do repouso e atinge o solo com velocidade de 40 m/s. Determine a altura de que o corpo foi abandonado.
  • 70. Ejercicio E Mecánica 1 • Um esquiador desce uma pista de esqui a partir do repouso. Qual a sua velocidade ao chegar no ponto B?
  • 71. Ejercicio E Mecánica 2 • Um carrinho está em movimento sobre uma montanha russa, como indica a figura acima. Qual a velocidade do carrinho no ponto C?
  • 72. Ejercicio E Mecánica 3 • O carrinho foi abandonado em (a). Compare a energia cinética e potencial em cada ponto.
  • 73. Ejercicio ascensor • Una persona está parada sobre una balanza ubicada sobre el piso de un ascensor que se mueve hacia arriba con velocidad constante; en esas condiciones la balanza indica 80 kilos. ¿Cuál será la indicación de la balanza (en kilogramos) cuando el ascensor comienza a frenar, para detenerse, con una aceleración de 2 m/seg.2? • Solución: Consideramos que el peso de la persona es 80 kilogramos ya que al moverse con velocidad constante la sumatoria de fuerzas sobre el sistema hombre – ascensor es nula; de esa forma es lícito pensar que el peso (que es lo que marca la balanza) es contrarrestado por la reacción del piso (tercer principio de dinámica).
  • 74. P = m . g ® m = P/g
  • 75. Ejercicio ascensor • En el momento en que empieza a frenar el sistema, el cuerpo tiende a seguir en movimiento ya que frena el ascensor pero no la persona (principio de inercia). La fuerza supuesta "impulsora" del hombre está determinada por su masa y la aceleración de frenado. Este fenómeno se percibe en la balanza "pareciendo" que la persona "pesa" menos, siendo el valor que aparece en el aparato la "resta" entre ambas fuerzas. • F balanza = P – Fac. ® Fb = P – m ac ® Fb = P – P/g ac • F b = 80 Kgf – 16 Kgf = 64 Kgf.
  • 76. Ejercicio plano inclinado • Un bloque de masa 0.2 kg inicia su movimiento hacia arriba, sobre un plano de 30º de inclinación, con una velocidad inicial de 12 m/s. Si el coeficiente de rozamiento entre el bloque y el plano es 0.16. Determinar: • la longitud x que recorre el bloque a lo largo del plano hasta que se para • la velocidad v que tendrá el bloque al regresar a la base del plano
  • 77. Ejercicio plano inclinado • Cuando el cuerpo asciende por el plano inclinado • La energía del cuerpo en A es EA=½0.2·122=14.4 J • La energía del cuerpo en B es EB=0.2·9.8·h=1.96·h =0.98·x J • El trabajo de la fuerza de rozamiento cuando el cuerpo se desplaza de A a B es • W=-Fr·x=-μ·mg·cosθ·x=-0.16·0.2·9.8·cos30·x=-0.272·x J • De la ecuación del balance energético W=EB-EA, despejamos x=11.5 m, h=x·sen30º=5.75 m
  • 78. Ejercicio plano inclinado • Cuando el cuerpo desciende • La energía del cuerpo en B es EB=0.2·9.8·h=1.96·h =0.98·x=0.98·11.5=11.28 J • La energía del cuerpo en la base del plano EA==½0.2·v2 • El trabajo de la fuerza de rozamiento cuando el cuerpo se desplaza de A a B es • W=-Fr·x=-μ·mg·cosθ·x=-0.16·0.2·9.8·cos30·11.5=-3.12 J • De la ecuación del balance energético W=EA-EB, despejamos v=9.03 m/s.