SlideShare una empresa de Scribd logo
1 de 5
Descargar para leer sin conexión
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/242605153
Activadid Bactericida del KMnO 4 en Agua Superficial para el Riego de Campos
Agrícolas
Article
CITATIONS
0
READS
522
5 authors, including:
Some of the authors of this publication are also working on these related projects:
Strengthening of the diagnostic capacity of the Sinaloa state health system through the incorporation of the CONACyT LANIIA-CIAD Laboratory as a SARS-COV-2 testing
unit View project
Detection of Coronavirus SARS-CoV2 in urban wastewater: evaluation of potential health risk View project
Cristóbal Chaidez-Quiroz
Research Center for Food and Development A.C.
132 PUBLICATIONS 1,540 CITATIONS
SEE PROFILE
Johana Marcela Soto Beltran
Universidad Autónoma de Sinaloa
30 PUBLICATIONS 640 CITATIONS
SEE PROFILE
Andres Aquiles Felix
Utah State University
3 PUBLICATIONS 9 CITATIONS
SEE PROFILE
All content following this page was uploaded by Johana Marcela Soto Beltran on 24 June 2014.
The user has requested enhancement of the downloaded file.
A G U A L A T I N O A M É R I C A
volumen 8, número 1
NIVEL III AIDIS
Resumen
El agua de uso agrícola puede constituir un factor importante de
contaminación de frutas y hortalizas, cuando es utilizada para la
irrigación, lo que hace necesario el control de su calidad microbiológica.
En México, el 42% del agua de uso agrícola es de fuentes superficiales.
Los compuestos elaborados a base de cloro son la alternativa química
más empleada para desinfectar el agua superficial, sin embargo ciertas
desventajas del cloro motivan la búsqueda de nuevas alternativas de
desinfección. La estabilidad en agua turbia y su capacidad oxidante
hacen del permanganato de potasio una alternativa de desinfección.
Actualmente el KMnO4
se emplea en la desinfección del agua superficial
sin sustento científico por lo tanto, el objetivo de la presente
investigación fue evaluar la actividad bactericida del KMnO4
contra
Escherichia coli y Bacillus subtilis, usando dos concentraciones de
desinfectante, tres tiempos de contacto y agua
turbia. Se utilizó la técnica de extensión en placa
y los datos fueron estadísticamente analizados
mediante análisis de varianza. Los resultados
demostraron la efectividad del KMnO4
contra
ambas bacterias. Se obtuvieron porcentajes de
reducción de 99.9999% y 99.99% para E. coli
y B. subtillis, respectivamente. Por lo tanto, el
KMnO4
puede considerarse como una
alternativa para la desinfección del agua
superficial. Palabras clave: Desinfección,
Escherichia coli, Bacillus subtilis, KMnO4
.
Introducción
La calidad microbiológica del agua
utilizada para irrigar cultivos agrícolas es de
vital importancia, ya que esto contribuye a
reducir la presencia de microorganismos
patógenos en frutas y hortalizas (FDA, 2001).
La principal fuente de contaminación son las
aguas residuales tratadas y no tratadas vertidas
en aguas de ríos y canales usadas para riego
de cultivos agrícolas (Thurston-Enriquez et al.,
2002; FAO, 2003, Craun y Castro, 1996) y con
menor frecuencia en el lavado y desinfección
de productos frescos.
El riesgo de infección aumenta cuando
patógenos, como Salmonella, Shigella, virus
de hepatitis A y Norovirus, están presentes en productos frescos
(Cifuentes et al., 2000). E. coli O157:H7 ha sido aislada de productos
frescos como manzana, melón, hojas de lechuga y espinacas (Solomon
et al., 2002; FDA, 2006), su presencia se ha asociado al uso de suelo
y agua de riego contaminada. Se estima que cada año se presenta en
EUA, 76 millones de enfermos y 5,000 muertes, asociados al consumo
de alimentos (DeWaal et al., 2000). Recientemente y debido a la
consistencia de brotes, existe la percepción que los microorganismos
presentes en frutas y hortalizas frescas son la principal causa de
enfermedades (Beuchat, 1996).
En los últimos años, se ha intensificado la búsqueda de
alternativas que permitan reducir o eliminar patógenos sobre la
superficie de productos frescos. Estudios previos han demostrado
que los métodos de desinfección solo reducen de manera parcial las
poblaciones microbianas presentes en las
superficie de los productos (Beuchat, 2001).
No existe un método estándar que
permita evaluar la efectividad de un
desinfectante sobre productos frescos
(Beuchat, 1998). Por el contrario existen
recomendaciones como las descrita por la
Agencia de Protección Ambiental de Estados
Unidos (USEPA, siglas en inglés) la cual
menciona una reducción de al menos 2 Log10
de la población bacteriana presente en la
superficie de los mismos (USEPA, 1997)
Bitton (1994) y Gelderich (1996) establecen
que un agente puede considerarse como un
desinfectante efectivo si logra reducir un
99.9999% (6 log10
). Mientras tanto el
“Método Oficial 960.09 de la AOAC, Acción
de Sanitización Germicida y Detergente de
Desinfectantes” sugiere que la evaluación de
sanitizantes para superficies pre-limpiadas,
no porosas que estén en contacto con
alimentos, debe reducir un 99.999% de
bacterias (5 Log10
) (Sapers, 2003).
La eficacia de la desinfección depende
del tipo de microorganismo, la temperatura,
nivel de pH del agua y tiempo de contacto,
así como la estructura de la superficie de
productos frescos (FDA, 1998).
Activadid Bactericida del KMnO4
en Agua Superficial para el Riego
de Campos Agrícolas
Por Cristobal Chaidez Quiroz*, Marcela Soto Beltrán, Celida Martínez Rodríguez, Andrés Medrano Félix
Tabla 1.
Características del suelo en estudio
Parámetro Resultado
pH (25ºC) 7.38
Conductividad eléctrica (ds/m) 0.39
Materia orgánica 2
2.07
Nitrógeno N-NO3
1
4.0
Fósforo P-PO4
1
38.5
Sodio 1
117.038
Potasio 1
403.534
Calcio 1
5194
Magnesio 1
1936.29
Fierro 1
49.03
Manganeso 1
177.66
Cinc 1
3.39
Cobre 1
2.27
ClC (meq/100g) 43.65
Textura Arcillosa
Arcilla 2
46.48
Limo 2
27.28
Arena 2
26.24
Tamaño de partícula 425µm
1
ppm; 2
%
volumen 8, número 1
A G U A L A T I N O A M É R I C A
El cloro es el desinfectante más utilizado en empaques agrícolas.
Su capacidad oxidante elimina rápidamente a los microorganismos,
sin embargo la materia orgánica limita su actividad oxidante, lo cual ha
motivado la búsqueda de alternativas de desinfección en aguas turbias
(Chaidez et al., 2007).
El KMnO4
, obtenido a partir del dióxido de manganeso (MnO2
) es
utilizado para control de olor y color, mejora el sabor e inactiva a
coliformes, Vibrio cholerae, Salmonella typhi, poliovirus y bacteriófagos
en el tratamiento de agua para consumo (EPA, 1999). El KMnO4
oxida
y/o destruye enzimas celulares, siendo el ión MnO4
el responsable de
esta acción (EPA, 1999). El KMnO4
también forma dióxido de
manganeso, el cual tiene una capa externa de grupos oxidrilos capaces
de fijar, por absorción, partículas neutras o cargadas, incluyendo
microorganismos que son fijados al precipitado coloidal para ser
inactivados (EPA, 1999).
Actualmente el permanganato de potasio se emplea en actividades
agrícolas para la desinfección del agua superficial, sin embargo, la
información científica que demuestre su eficacia como agente
desinfectante y lo respalde para su uso, resulta insuficiente. Por lo tanto,
el objetivo del presente trabajo fue evaluar la actividad bactericida in
vitro del permanganato de potasio en agua superficial de uso agrícola,
utilizando como microorganismos indicadores Escherichia coli y Bacillus
subtilis.
Materiales y Métodos
Purificación de la bacteria
Se seleccionaron E. coli (ATCC 15597) y B. subtilis, como
microorganismos indicadores debido a la incidencia de las mismas en
agua de uso agrícola (Cazarez Diarte et al., 2004). E. coli y B. subtilis,
fueron obtenidos del laboratorio de Microbiología Ambiental y de
Alimentos y del laboratorio de Fitopatología, ambos del Centro de
Investigación en Alimentación y Desarrollo, Unidad Culiacán
respectivamente.
Cada bacteria fue purificada
empleando la metodología descrita por
Ukuku y Sapers (2001).Una colonia por
separado, de cada bacteria, fue
inoculada en 5mL de caldo de soya y
tripticaseina (TSB, Difco; Detroit, MI),
e incubadas por 24h a 37°C.
Posteriormente se adicionó 1mL del
crecimiento bacteriano en 25mL de
caldo TSB, y se incubó por 24h a 37ºC.
La suspensión bacteriana fue
centrifugada a 13, 080 X g (Beckman,
J2-MI, USA) durante 10min a 4ºC. El
sedimento obtenido se lavó y
resuspendió en 25mL de solución buffer
estéril (PBS, 0.1M, pH de 7.2) y se
centrifugó nuevamente a las mismas
condiciones. El procedimiento de
lavado, se repitió dos veces. La bacteria
purificada se mantuvo a 4ºC antes de
ser utilizada.
La concentración inicial de la
suspensión bacteriana fue determinada
utilizando la técnica de extensión en
placa (APHA, 1998), diluciones
decimales por triplicado (10-2
,10-4
y 10-
6
), y 0.1mL de cada dilución decimal fue colocada en cajas petri
conteniendo agar selectivo mFC (DifcoTM
, Maryland, USA) y agar papa
dextrosa (Bioxon, México) e incubadas a 37°C durante 24h para E. coli
y B. subtilis, respectivamente. Finalmente, la concentración bacteriana
se cuantificó en base a las unidades formadoras de colonia observadas
en el medio y el resultado fue expresado en Log10
UFC/mL.
La concentración inicial de las bacterias fueron 3.4x107
UFC/mL y
3.3x107
UFC/mL para Escherichia coli y Bacillus subtilis,
respectivamente.
Preparación del KMnO4
El desinfectante se adquirió de manera comercial (CAS 7722-64-
7). El KMnO4
tiene como ingrediente activo el ión permanganato (MnO4
).
Las concentraciones utilizadas durante el experimento fueron de 1.5 y
3 mg/L para Escherichia coli y 3 y 4.5 mg/L para Bacillus subtilis. Estas
concentraciones fueron determinadas de acuerdo a las empleadas
empírica-mente en actividades agrícolas para la desinfección del agua
superficial. Dato proporcionado por los técnicos de empaques agrícolas.
Preparación de turbidez en el agua
Se utilizó una concentración de 170UNT, simulando la materia
orgánica presente en agua superficial de uso agrícola, la cual fue ajustada
con tierra estéril obtenida de la localidad de Culiacán, Sinaloa (Tabla
1). Para ajustar dicha turbidez se adicionaron 0.85g de tierra estéril en
un litro de agua purificada estéril. La muestra se homogenizó y se colocó
en una celda para ser leída utilizando un espectro-fotómetro marca
HACH modelo DR 2010, de acuerdo a la APHA (1998). Los valores de
turbidez se expresaron en unidades nefelométricas (UNT).
Evaluación del KMnO4
Se utilizó un recipiente de cuatro litros de capacidad, el cual fue
llenado con un litro de agua purificada estéril; se adicionaron 0.85g de
tierra estéril para ajustar la turbidez a
170UNT. Una vez ajustada la turbidez
se inoculó el agua con concentraciones
de 3.4x107
y 3.3x107
UFC/mL de E. coli
y B. subtilis respectivamente, adiciona-
das en recipientes separados, y se
aplicaron las concentraciones del
desinfectante KMnO4
, 1.5 y 3mg/L para
E. coli y 3 y 4.5mg/L para B. subtilis,
todo esto con agitación constante.
Se procedió a tomar alícuotas
después de transcurrir 1, 3 y 6h de
tiempo de contacto, simulando el tiempo
en el que se lleva acabo la desinfección
en el agua superficial de uso agrícola,
dato proporcionado por técnicos del
laboratorio de Microbiología Ambiental
y de Alimentos del Centro de Investiga-
ción en Alimentación y Desarrollo. La
reducción bacteriana por efecto del
permanganato de potasio se determinó
utilizando la técnica de extensión en
placa (APHA, 1998). Se realizaron
diluciones decimales por triplicado (10-
2
,10-4
y 10-6
), y 0.1mL de cada dilución
decimal fue colocada en cajas petri
conteniendo agar selectivo mFC (Difco™
,
Tabla 2. Porcentaje de reducción de Escherichia coli
con permanganato de potasio
Permanganato Tiempo de Porcentaje de
de potasio 1
contacto 2
Turbidez 3
reducción %
1 98.83 b
1.5 3 99.90 b
6 99.99 c
1 99.9999 a
3 3 99.9999 a
6 99.9999 a
170
Tabla 3. Porcentaje de reducción de Bacillus subtilis
con permanganato de potasio
Permanganato Tiempo de Porcentaje de
de potasio 1
contacto 2
Turbidez 3
reducción %
1 98.98 a
3 3 99.90 a
6 99.99 a
1 99.94 b
4.5 3 99.87 b
6 99.94 b
Letras diferentes indican diferencias significativas entre tratamientos
1
ppm; partes por millón; 2
horas; 3
Unidades Nefelométricas de turbidez
170
A G U A L A T I N O A M É R I C A
volumen 8, número 1
Maryland, USA) y agar papa dextrosa (Bioxon, México) e incubadas a
37°C durante 24h para E. coli y B. subtilis, respectivamente. Finalmente,
la concentración bacteriana se cuantificó en base a las unidades
formadoras de colonia observadas en el medio y el resultado fue expresado
en porcentaje de reducción.
Determinación del perfil fisicoquímico del agua
La medición del potencial de hidrógeno (pH), se realizó utilizando
un potenciómetro portátil marca Oakton wppH y un electrodo HgTaylor
21433. La temperatura se verificó a 25ºC mediante un termómetro de
vidrio previamente calibrado.
Análisis de datos
El diseño estadístico empleado fue de bloques con dos factores
totalmente al azar. Los factores fueron las concentraciones y el tiempo
de contacto, y los microorganismos fueron bloqueados. Al realizar los
análisis de varianza y encontrar diferencias significativas, se aplicó la
prueba de comparación de medias de Tukey con un a=0.05. Los
resultados se expresaron en porcentajes de reducción. El paquete
estadístico empleado fue Stata versión 8 (2003).
Resultados y disusción
Escherichia coli
El análisis de varianza mostró que la concentración del
desinfectante fue significativo (P=0.036) en la reducción de Escherichia
coli, mientras que el tiempo de contacto no mostró diferencias
significativas. El mejor tratamiento se obtuvo al utilizar la concentración
de 3mg/L donde se logró un porcentaje de reducción de 99.9999 (6
log10
) para cada tiempo de contacto analizado (Tabla 2). Los resultados
concuerdan con los criterios de reducción bacteriana descritos por
Bitton (1994) y Geldreich (1996), quienes establecen que un agente
químico es efectivo si logra una reducción de 99.9999% (6 log10
).
El menor porcentaje de reducción obtenido fue de 98.83%, el cual
se obtuvo al utilizar 1.5mg/L y 1h de tiempo de contacto, con un nivel
de significancia de P=0.05, seguido de 1.5mg/L y 3h de tiempo de
contacto (99.90%) y 1.5mg/L y 6h de tiempo de contacto (99.99%).
Chaidez et al., (2003), observaron que los desinfectantes reducen su
efectividad cuando se utilizan a bajas concentraciones y en presencia
de materia orgánica. Wei et al., (1995) y Karch y Loftis (1998), han
demostrado que la presencia de turbidez en el agua permite que los
microorganismos puedan adherirse a partículas del suelo y protegerse
del desinfectante. La EPA (1999), menciona que la presencia de materia
orgánica reduce la efectividad del permanganato de potasio debido a
que este puede ser consumido al oxidar la materia orgánica e inorgánica
presente en el agua. Un estudio realizado en 1976 en el Distrito Sur de
Las Vegas Nevada del lago Mead mostró que al utilizar bajas dosis de
permanganato (1, 2, 3, 4 y 5mg/L) era necesario tiempos de contacto
prolongados (30min), para reducir la presencia de coliformes, mientras
que solo fue necesario 10min de tiempo de contacto cuando se
emplearon 6mg/L (EPA, 1999).
Al comparar la concentración y tiempo de contacto, el tratamiento
de 3mg/L a 1, 3, 6h logró una reducción de 99.9999% con un nivel de
significancia de P=0.05, demostrando que el porcentaje de reducción
bacteriana es dependiente de la concentración del desinfectante y no
necesariamente del tiempo de contacto. Se requieren altas
concentraciones de permanganato para lograr una reducción total de
la bacteria en estudio, como lo muestra la EPA (1999), donde fue
necesario dosis de 2.5mg/L para obtener una reducción total de
coliformes, así mismo fueron necesarias dosis de 20mg/L con tiempo
de contacto de 24h para reducir Vibrio cholerae, Salmonella typhi y
Shigella flexneri. Por lo tanto, el permanganato de potasio a
concentraciones de 3mg/L y 1, 3 y 6h de tiempo de contacto, puede ser
utilizado como bactericida en agua superficial de uso agrícola, ya que
puede alcanzar una reducción del 99.9999% (6 log10
).
Bacillus subtilis
Los resultados obtenidos en la evaluación de KMnO4
contra B.
subtilis no mostraron diferencias significativas con el factor tiempo;
sin embargo, el análisis de varianza mostró diferencias significativas
con el factor concentración P=0.05 (Tabla 3). La concentración de 3mg/
L de KMnO4
resultó ser la más efectiva, alcanzando un porcentaje de
reducción de 99.99% (4 log10
). Mientras que la concentración de 4.5mg/
L de KMnO4
logró reducir un 99.9% de bacteria, equivalente a 3
logaritmos de reducción. De acuerdo a la EPA (1999), la actividad
bactericida del permanganato de potasio se ve favorecida en condiciones
ácidas (pH 5.9) a 20ºC. Los resultados obtenidos muestran que la
efectividad del KMnO4
se vio reducida al utilizar concentraciones de
4.5mg/L, debido a que el agua inoculada con B. subtilis a esta misma
concentración y una temperatura de 25°C, alcanzó un pH que osciló
entre 5.97 y 6.11, condiciones menos ácidas a las observadas al utilizar
3mg/L de KMnO4
, donde el pH osciló entre 5.89 y 6.09 a la misma
temperatura (Tabla 4 y 5).
Cuando se comparó el porcentaje de reducción de E. coli y B.
subtilis, a la concentración de 3mg/L, se observó una reducción del
99.9999% de Escherichia coli y un 99.99% para B. subtilis, demostrando
que Bacillus presenta una mayor resistencia a los procesos de
desinfección.
Conclusiones
La concentración de 3mg/L de KMnO4
resultó ser efectiva para E.
coli y B. subtilis, lográndose un porcentaje de reducción de 99.9999%
y 99.99%, respectivamente. Concentraciones de 1.5mg/L no fueron
suficientes para reducir Escherichia coli, al no alcanzar más de 3
logaritmos de reducción bacteriana, sin embargo, de acuerdo a las
recomendaciones descrita por la Agencia de Protección Ambiental de
Estados Unidos, una reducción de al menos 2 Log10
de la población de
bacteriana, son suficientes para considerarse buen desinfectante. La
efectividad del desinfectante contra B. subtilis se vio limitada al utilizar
concentraciones de 4.5mg/L de KMnO4,
debido al pH final del agua
Tabla 4. Determinación del perfil fisicoquímico del agua
turbia inoculada con Escherichia coli
Potencial
de hidrogeno Concentración
25°C KMnO4
1
Blanco 2
T1
3
T2
4
T3
5
pH
1.5 6.02 6.02 6.24 6.24
3 6.02 6.13 6.05 6.23
Tabla 5. Determinación del perfil fisicoquímico del agua
turbia inoculada con Bacillus subtilis
Potencial
de hidrogeno Concentración
25°C KMnO4
1
Blanco 2
T1
3
T2
4
T3
5
pH
3 6.02 5.83 6.15 6.09
4.5 6.02 5.97 6.30 6.11
1
Concentración de KMnO4
expresado en partes por millón (ppm):
2
Blanco: Muestra de agua con 170 UNT inoculada con bacteria, sin
aplicación de KMnO4
; 3
T1
1 hora de tiempo de contacto; 4
T2
3 horas de
tiempo de contacto; 5
T3
6 horas de tiempo de contacto
volumen 8, número 1
A G U A L A T I N O A M É R I C A
empleada durante la inoculación. Por lo tanto, se concluye que el KMnO4
puede considerarse como una alternativa en los procesos de
desinfección del agua superficial de uso agrícola, siempre y cuando se
tomen en cuenta consideraciones como el pH de la solución, el cual
debe oscilar entre 5.9 o menor, para tener mayor concentración del ión
MnO4
, el cual oxida y destruye las enzimas celulares de los
microorganismos, así mismo son necesarias temperaturas de 25ºC para
que la efectividad del permanganato de potasio se vea favorecida.
Finalmente, es importante hacer hincapié en la necesidad de generar
información científica sobre la acción del permanganato de potasio
contra otros grupos microbianos (bacteriófagos, virus entéricos, quistes
de protozoarios y bacterias patógenas) que generalmente se encuentran
presentes en aguas superficiales. Esta información permitirá darle un
uso más amplio al permanganato de potasio como agente desinfectante.
Agradecimientos
Los autores agradecen al Centro de Investigación en Alimentación
y Desarrollo, Unidad Culiacán, por las facilidades otorgadas en la
realización del presente trabajo de investigación.
Bibliografía
1. APHA (1998). Standard Methods for the Examination of Water and
Wastewater, 18th ed. Washington, DC. American Public Health Association.
2. Beuchat L. R. (1996) Pathogenic Microorganisms Associated with Fresh
Produce. Journal of Food Protection 59, 204-216.
3. Beuchat L. R. (1998) Surface Decontamination of Fruits and Vegetables
Eaten Raw: A Review. Food Safety Unit, World Health Organization, WHO/FSF/
FOS/98.2.
4. Beuchat L.R., Ward, T.E., and Pettigrew, C.A. (2001) Comparison of Chlorine
and a Prototype Produce Wash Product for Effectiveness in Killing Salmonella
and Escherichia coli O157:H7 on Alfalfa Seeds. Journal of Food Protection.
64, 152-158.
5. Bitton G. (1994) Wastewater Microbiology Gainesville, Florida. Wiley-Liss.
p. 97.
6. Cazarez Diarte G., Gortáres Moroyoqui P., Rubio Carrasco W., Martínez Rubio
C., Meza Astorga P., Chaidez Quiroz C. (2004). Presencia y Sobrevivencia de
Coliformes Fecales, Salmonella spp y Listeria spp en Agua de Uso Agrícola en
el Valle de Culiacán. Trabajo No. 15. XIV Congreso Nacional. Federación
Mexicana de Ingeniería Sanitaria y Ciencias Ambientales. Mazatlán, Sinaloa. .
7. Chaidez C., M. Moreno, W. Rubio, M. Ángulo, B. Valdez (2003) Comparison
of the Disinfection Efficacy of Chlorine-Based Products for Inactivation of Viral
Indicators and Pathogenic Bacteria in Produce Wash Water. International
Journal of Environmental Health Research 13, 295-302.
8. Chaidez C., J. López, N. Castro del campo (2007) Quaternary Ammonium
Compounds: an Alternative Disinfection Method for Fresh Produce Wash Water.
Journal of Water and Health. 5, 329 – 333.
9. Cifuentes E., M. Gomez, U. Blumenthal, M. M. Tellez-Rojo, I. Romieu, G.
Ruiz-Palacios, S. Ruiz-Velazco (2000) Risk Factors for Giardia intestinalis in
Agricultural Villages Practicing Wastewater Irrigation in México. American
Journal of Tropical Medicine and Hygiene 62, 388-392.
10. Craun G. F., R. Castro (1996) La Calidad del Agua Potable en América
Latina. Ponderación de los Riesgos Microbiológicos Contra los Riesgos de los
Subproductos de la Desinfección. Química ILSI press, Washington, D.C. pp.
50-62.
11. DeWaal. C.S., L. Alderton, M. F. Jacobson (2000). Outbreak Alert¡.
Washington, DC, Closing the Gaps, in our Federal Food Safety Net. Center for
Science in Public Interest.
12. Environmental Protection Agency (1997). A Set of Scientific Issues Being
Considered by the Agency in Connection with the Efficacy Testing Issues
Concerning Public Health Antimicrobial Pesticides. Scientific Advisory Panel
September 1997 Meeting Final Report. EPA Office of Science Coordination
and Policy, Washington, D.C. Sitio web: http://www.epa.gov/scipoly/sap/
1997september/finalsep.htm#3. Acceso: Marzo 20, 2007.
13. Environmental Protection Agency (1999) Guidance, Manual Alternative
Disinfectants and Oxidants. Chapter 5 Potassium Permanganate, p. 5-12.
14. Food and Drug Administration (1998) Center for Food Safety and Applied
Nutrition. Guide to Minimize Microbial Food Safety Hazards for Fresh Fruits
and Vegetable. http://www.foodsafety.gov/~dms/prodguid.html. Acceso: Marzo
21, 2007.
15. Food and Drug Administration (2001) Analysis and Evaluation of Preventive
Control Measures for the Control and Reduction/Elimination of Microbial
Hazards on Fresh and Fresh-cut Produce. Center for Food Safety and Applied
Nutrition. Cáp II. http://vm.cfsan.fda.gov/~comm/ift3-toc.html. Acceso: Marzo
20, 2007.
16. Food and Drug Administration (2006) Multi-State Outbreak of E. coli
O157:H7 Infections from Fresh Spinach.
17. FAO (2003) Guía de Buenas Prácticas de Higiene Agrícola y de Manufactura
para la Producción Primaria Cultivo-Cosecha, Acondicionamiento, Empaque,
Almacenamiento y Transporte de Frutas Frescas. http://ftp.fao.org/docrep/fao/
006/y48935/y4893sll.pdf. Acceso: Junio 14, 2007.
18. Geldreich E. (1996) Microbial Quality of Water Supply in Distribution
Systems. CRC. Lewis, p. 76-78.
19. Karch E., D. Loftis (1998). Disinfection Contact Time and Kinetics.
Environmental Information Management Civil Engineering Dept., Virginia Tech,
pp. 1-4.
20. Sapers G. M. (2003) Washing and Sanitizing Raw Materials for Minimally
Processed Fruit and Vegetable Products In J S Novak, G M Sapers, V K Juneja
(ed.), Microbial Safety of Minimally Processed Foods. CRC Press LLC, pp.
227-229.
21. Solomon E.B., S. Yaron, K. R. Matthews (2002) Transmission of Escherichia
coli 0157:H7 from Contaminated Manure and Irrigation Water to Lettuce Plant
Tissue and Its Subsequent Internalization. Applied and Environmental
Microbiology. 68, 397-400.
22. Sapers, G. M. 2003. Washing and Sanitizing Raw Materials for Minimally
Processed Fruit and Vegetable Products In J. S. Novak, Sapers, G. M. and V. K.
Juneja (ed.), Microbial Safety of Minimally Processed Foods. CRC Press LLC,
p. 227-229.
23. Thurston-Enriquez J. A., P. Watt, S. E. Dowd, R. Enriquez, I. L. Pepper, C. P.
Gerba (2002) Detection of Protozoan Parasites and Microsporidia in Irrigation
Waters Used for Crop Production. Journal of Food Protection 65, 378-382.
24. Ukuku D. O, M. G. Sapers (2001) Effect of Sanitizer Treatments on
Salmonella Stanley Attached to the Surface of Cantaloupe and Cell Transfer to
Fresh-Cut Tissues During Cutting Practices. Journal of Food Protection 64,
1286-1291.
25. Wei C. I, T. S. Huang, J. M. Kim, W. F. Lin, M. L. Tamplin, J. A. Bartz. (1995)
Growth and Survival of Salmonella Montevideo on Tomatoes and Disinfection
with Chlorinated Water. Journal of Food Protection 58, 829-836.
Correspondencia
Dr. Cristobal Chaidez Quiroz: Centro de investigación en Alimentación
y Desarrollo (CIAD), Unidad Culiacán. Carretera a Eldorado Km. 5.5,
C.P. 80129, Culiacán, Sinaloa. Tel/Fax: (667) 760-5536; chaqui@ciad.
View publication stats

Más contenido relacionado

Similar a Activadid_Bactericida_del_KMnO_4_en_Agua_Superfici.pdf

Documento colectivo wiki 1
Documento colectivo wiki 1Documento colectivo wiki 1
Documento colectivo wiki 1cos17245
 
V5 n2-18-tratamiento-biologico-del-agua-residual-procedente-de-una-industria-...
V5 n2-18-tratamiento-biologico-del-agua-residual-procedente-de-una-industria-...V5 n2-18-tratamiento-biologico-del-agua-residual-procedente-de-una-industria-...
V5 n2-18-tratamiento-biologico-del-agua-residual-procedente-de-una-industria-...sebastianrock
 
Biotecnología Ambiental
Biotecnología AmbientalBiotecnología Ambiental
Biotecnología AmbientalGloria Ramírez
 
Anderson muñoz act indiv_momento colectivo
Anderson muñoz act indiv_momento colectivoAnderson muñoz act indiv_momento colectivo
Anderson muñoz act indiv_momento colectivoAnderson Londoño
 
Dialnet evaluacion microbiologicadesuerocostenoy-valoracionh-4167608
Dialnet evaluacion microbiologicadesuerocostenoy-valoracionh-4167608Dialnet evaluacion microbiologicadesuerocostenoy-valoracionh-4167608
Dialnet evaluacion microbiologicadesuerocostenoy-valoracionh-4167608Hugo Roque
 
“Crecimiento y capacidad de biorremediación de Chlorella vulgaris cultivada e...
“Crecimiento y capacidad de biorremediación de Chlorella vulgaris cultivada e...“Crecimiento y capacidad de biorremediación de Chlorella vulgaris cultivada e...
“Crecimiento y capacidad de biorremediación de Chlorella vulgaris cultivada e...Tetrapygus Niger
 
Microbiología; Tratamiento de aguas
Microbiología; Tratamiento de aguas Microbiología; Tratamiento de aguas
Microbiología; Tratamiento de aguas jhonathan
 
Biotecnologia medioambiental
Biotecnologia medioambientalBiotecnologia medioambiental
Biotecnologia medioambientalGSMbio
 
Libro San Isidro Salud y Vida
Libro San Isidro Salud y VidaLibro San Isidro Salud y Vida
Libro San Isidro Salud y VidaNilzaCiriaco
 
Aislamiento y evaluación de bacterias (grupo n°1)
Aislamiento y evaluación de bacterias (grupo n°1)Aislamiento y evaluación de bacterias (grupo n°1)
Aislamiento y evaluación de bacterias (grupo n°1)RosalindaApazaapaza
 

Similar a Activadid_Bactericida_del_KMnO_4_en_Agua_Superfici.pdf (20)

PRESENTACION DE PASANTIAS.pptx
PRESENTACION DE PASANTIAS.pptxPRESENTACION DE PASANTIAS.pptx
PRESENTACION DE PASANTIAS.pptx
 
Proyecto
ProyectoProyecto
Proyecto
 
ROY ANTONIO GARAY SARAVIA
ROY ANTONIO GARAY SARAVIAROY ANTONIO GARAY SARAVIA
ROY ANTONIO GARAY SARAVIA
 
Documento colectivo wiki 1
Documento colectivo wiki 1Documento colectivo wiki 1
Documento colectivo wiki 1
 
Preinforme Microbiología.pdf
Preinforme Microbiología.pdfPreinforme Microbiología.pdf
Preinforme Microbiología.pdf
 
V5 n2-18-tratamiento-biologico-del-agua-residual-procedente-de-una-industria-...
V5 n2-18-tratamiento-biologico-del-agua-residual-procedente-de-una-industria-...V5 n2-18-tratamiento-biologico-del-agua-residual-procedente-de-una-industria-...
V5 n2-18-tratamiento-biologico-del-agua-residual-procedente-de-una-industria-...
 
Presentacion nadenka sañudo biotecnologia
Presentacion nadenka sañudo biotecnologiaPresentacion nadenka sañudo biotecnologia
Presentacion nadenka sañudo biotecnologia
 
Cultivo chlorella
Cultivo chlorellaCultivo chlorella
Cultivo chlorella
 
Biotecnología Ambiental
Biotecnología AmbientalBiotecnología Ambiental
Biotecnología Ambiental
 
ITEM8 (1).pdf
ITEM8 (1).pdfITEM8 (1).pdf
ITEM8 (1).pdf
 
Anderson muñoz act indiv_momento colectivo
Anderson muñoz act indiv_momento colectivoAnderson muñoz act indiv_momento colectivo
Anderson muñoz act indiv_momento colectivo
 
Articulo de bacteriocina
Articulo de bacteriocinaArticulo de bacteriocina
Articulo de bacteriocina
 
Dialnet evaluacion microbiologicadesuerocostenoy-valoracionh-4167608
Dialnet evaluacion microbiologicadesuerocostenoy-valoracionh-4167608Dialnet evaluacion microbiologicadesuerocostenoy-valoracionh-4167608
Dialnet evaluacion microbiologicadesuerocostenoy-valoracionh-4167608
 
Biorremediacion de suelos_contaminados_c
Biorremediacion de suelos_contaminados_cBiorremediacion de suelos_contaminados_c
Biorremediacion de suelos_contaminados_c
 
“Crecimiento y capacidad de biorremediación de Chlorella vulgaris cultivada e...
“Crecimiento y capacidad de biorremediación de Chlorella vulgaris cultivada e...“Crecimiento y capacidad de biorremediación de Chlorella vulgaris cultivada e...
“Crecimiento y capacidad de biorremediación de Chlorella vulgaris cultivada e...
 
Microbiología; Tratamiento de aguas
Microbiología; Tratamiento de aguas Microbiología; Tratamiento de aguas
Microbiología; Tratamiento de aguas
 
La microbiología de los alimentos - Parte 3
La microbiología de los alimentos - Parte 3La microbiología de los alimentos - Parte 3
La microbiología de los alimentos - Parte 3
 
Biotecnologia medioambiental
Biotecnologia medioambientalBiotecnologia medioambiental
Biotecnologia medioambiental
 
Libro San Isidro Salud y Vida
Libro San Isidro Salud y VidaLibro San Isidro Salud y Vida
Libro San Isidro Salud y Vida
 
Aislamiento y evaluación de bacterias (grupo n°1)
Aislamiento y evaluación de bacterias (grupo n°1)Aislamiento y evaluación de bacterias (grupo n°1)
Aislamiento y evaluación de bacterias (grupo n°1)
 

Último

RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxAna Fernandez
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxYadi Campos
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Lourdes Feria
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónLourdes Feria
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.José Luis Palma
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaDecaunlz
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxlclcarmen
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdfBaker Publishing Company
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdfgimenanahuel
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxzulyvero07
 
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxTECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxKarlaMassielMartinez
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdfDemetrio Ccesa Rayme
 

Último (20)

RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docx
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
Medición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptxMedición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptx
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 
Power Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptxPower Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptx
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
Sesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronósticoSesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronóstico
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativa
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
 
Unidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la InvestigaciónUnidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la Investigación
 
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxTECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdf
 

Activadid_Bactericida_del_KMnO_4_en_Agua_Superfici.pdf

  • 1. See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/242605153 Activadid Bactericida del KMnO 4 en Agua Superficial para el Riego de Campos Agrícolas Article CITATIONS 0 READS 522 5 authors, including: Some of the authors of this publication are also working on these related projects: Strengthening of the diagnostic capacity of the Sinaloa state health system through the incorporation of the CONACyT LANIIA-CIAD Laboratory as a SARS-COV-2 testing unit View project Detection of Coronavirus SARS-CoV2 in urban wastewater: evaluation of potential health risk View project Cristóbal Chaidez-Quiroz Research Center for Food and Development A.C. 132 PUBLICATIONS 1,540 CITATIONS SEE PROFILE Johana Marcela Soto Beltran Universidad Autónoma de Sinaloa 30 PUBLICATIONS 640 CITATIONS SEE PROFILE Andres Aquiles Felix Utah State University 3 PUBLICATIONS 9 CITATIONS SEE PROFILE All content following this page was uploaded by Johana Marcela Soto Beltran on 24 June 2014. The user has requested enhancement of the downloaded file.
  • 2. A G U A L A T I N O A M É R I C A volumen 8, número 1 NIVEL III AIDIS Resumen El agua de uso agrícola puede constituir un factor importante de contaminación de frutas y hortalizas, cuando es utilizada para la irrigación, lo que hace necesario el control de su calidad microbiológica. En México, el 42% del agua de uso agrícola es de fuentes superficiales. Los compuestos elaborados a base de cloro son la alternativa química más empleada para desinfectar el agua superficial, sin embargo ciertas desventajas del cloro motivan la búsqueda de nuevas alternativas de desinfección. La estabilidad en agua turbia y su capacidad oxidante hacen del permanganato de potasio una alternativa de desinfección. Actualmente el KMnO4 se emplea en la desinfección del agua superficial sin sustento científico por lo tanto, el objetivo de la presente investigación fue evaluar la actividad bactericida del KMnO4 contra Escherichia coli y Bacillus subtilis, usando dos concentraciones de desinfectante, tres tiempos de contacto y agua turbia. Se utilizó la técnica de extensión en placa y los datos fueron estadísticamente analizados mediante análisis de varianza. Los resultados demostraron la efectividad del KMnO4 contra ambas bacterias. Se obtuvieron porcentajes de reducción de 99.9999% y 99.99% para E. coli y B. subtillis, respectivamente. Por lo tanto, el KMnO4 puede considerarse como una alternativa para la desinfección del agua superficial. Palabras clave: Desinfección, Escherichia coli, Bacillus subtilis, KMnO4 . Introducción La calidad microbiológica del agua utilizada para irrigar cultivos agrícolas es de vital importancia, ya que esto contribuye a reducir la presencia de microorganismos patógenos en frutas y hortalizas (FDA, 2001). La principal fuente de contaminación son las aguas residuales tratadas y no tratadas vertidas en aguas de ríos y canales usadas para riego de cultivos agrícolas (Thurston-Enriquez et al., 2002; FAO, 2003, Craun y Castro, 1996) y con menor frecuencia en el lavado y desinfección de productos frescos. El riesgo de infección aumenta cuando patógenos, como Salmonella, Shigella, virus de hepatitis A y Norovirus, están presentes en productos frescos (Cifuentes et al., 2000). E. coli O157:H7 ha sido aislada de productos frescos como manzana, melón, hojas de lechuga y espinacas (Solomon et al., 2002; FDA, 2006), su presencia se ha asociado al uso de suelo y agua de riego contaminada. Se estima que cada año se presenta en EUA, 76 millones de enfermos y 5,000 muertes, asociados al consumo de alimentos (DeWaal et al., 2000). Recientemente y debido a la consistencia de brotes, existe la percepción que los microorganismos presentes en frutas y hortalizas frescas son la principal causa de enfermedades (Beuchat, 1996). En los últimos años, se ha intensificado la búsqueda de alternativas que permitan reducir o eliminar patógenos sobre la superficie de productos frescos. Estudios previos han demostrado que los métodos de desinfección solo reducen de manera parcial las poblaciones microbianas presentes en las superficie de los productos (Beuchat, 2001). No existe un método estándar que permita evaluar la efectividad de un desinfectante sobre productos frescos (Beuchat, 1998). Por el contrario existen recomendaciones como las descrita por la Agencia de Protección Ambiental de Estados Unidos (USEPA, siglas en inglés) la cual menciona una reducción de al menos 2 Log10 de la población bacteriana presente en la superficie de los mismos (USEPA, 1997) Bitton (1994) y Gelderich (1996) establecen que un agente puede considerarse como un desinfectante efectivo si logra reducir un 99.9999% (6 log10 ). Mientras tanto el “Método Oficial 960.09 de la AOAC, Acción de Sanitización Germicida y Detergente de Desinfectantes” sugiere que la evaluación de sanitizantes para superficies pre-limpiadas, no porosas que estén en contacto con alimentos, debe reducir un 99.999% de bacterias (5 Log10 ) (Sapers, 2003). La eficacia de la desinfección depende del tipo de microorganismo, la temperatura, nivel de pH del agua y tiempo de contacto, así como la estructura de la superficie de productos frescos (FDA, 1998). Activadid Bactericida del KMnO4 en Agua Superficial para el Riego de Campos Agrícolas Por Cristobal Chaidez Quiroz*, Marcela Soto Beltrán, Celida Martínez Rodríguez, Andrés Medrano Félix Tabla 1. Características del suelo en estudio Parámetro Resultado pH (25ºC) 7.38 Conductividad eléctrica (ds/m) 0.39 Materia orgánica 2 2.07 Nitrógeno N-NO3 1 4.0 Fósforo P-PO4 1 38.5 Sodio 1 117.038 Potasio 1 403.534 Calcio 1 5194 Magnesio 1 1936.29 Fierro 1 49.03 Manganeso 1 177.66 Cinc 1 3.39 Cobre 1 2.27 ClC (meq/100g) 43.65 Textura Arcillosa Arcilla 2 46.48 Limo 2 27.28 Arena 2 26.24 Tamaño de partícula 425µm 1 ppm; 2 %
  • 3. volumen 8, número 1 A G U A L A T I N O A M É R I C A El cloro es el desinfectante más utilizado en empaques agrícolas. Su capacidad oxidante elimina rápidamente a los microorganismos, sin embargo la materia orgánica limita su actividad oxidante, lo cual ha motivado la búsqueda de alternativas de desinfección en aguas turbias (Chaidez et al., 2007). El KMnO4 , obtenido a partir del dióxido de manganeso (MnO2 ) es utilizado para control de olor y color, mejora el sabor e inactiva a coliformes, Vibrio cholerae, Salmonella typhi, poliovirus y bacteriófagos en el tratamiento de agua para consumo (EPA, 1999). El KMnO4 oxida y/o destruye enzimas celulares, siendo el ión MnO4 el responsable de esta acción (EPA, 1999). El KMnO4 también forma dióxido de manganeso, el cual tiene una capa externa de grupos oxidrilos capaces de fijar, por absorción, partículas neutras o cargadas, incluyendo microorganismos que son fijados al precipitado coloidal para ser inactivados (EPA, 1999). Actualmente el permanganato de potasio se emplea en actividades agrícolas para la desinfección del agua superficial, sin embargo, la información científica que demuestre su eficacia como agente desinfectante y lo respalde para su uso, resulta insuficiente. Por lo tanto, el objetivo del presente trabajo fue evaluar la actividad bactericida in vitro del permanganato de potasio en agua superficial de uso agrícola, utilizando como microorganismos indicadores Escherichia coli y Bacillus subtilis. Materiales y Métodos Purificación de la bacteria Se seleccionaron E. coli (ATCC 15597) y B. subtilis, como microorganismos indicadores debido a la incidencia de las mismas en agua de uso agrícola (Cazarez Diarte et al., 2004). E. coli y B. subtilis, fueron obtenidos del laboratorio de Microbiología Ambiental y de Alimentos y del laboratorio de Fitopatología, ambos del Centro de Investigación en Alimentación y Desarrollo, Unidad Culiacán respectivamente. Cada bacteria fue purificada empleando la metodología descrita por Ukuku y Sapers (2001).Una colonia por separado, de cada bacteria, fue inoculada en 5mL de caldo de soya y tripticaseina (TSB, Difco; Detroit, MI), e incubadas por 24h a 37°C. Posteriormente se adicionó 1mL del crecimiento bacteriano en 25mL de caldo TSB, y se incubó por 24h a 37ºC. La suspensión bacteriana fue centrifugada a 13, 080 X g (Beckman, J2-MI, USA) durante 10min a 4ºC. El sedimento obtenido se lavó y resuspendió en 25mL de solución buffer estéril (PBS, 0.1M, pH de 7.2) y se centrifugó nuevamente a las mismas condiciones. El procedimiento de lavado, se repitió dos veces. La bacteria purificada se mantuvo a 4ºC antes de ser utilizada. La concentración inicial de la suspensión bacteriana fue determinada utilizando la técnica de extensión en placa (APHA, 1998), diluciones decimales por triplicado (10-2 ,10-4 y 10- 6 ), y 0.1mL de cada dilución decimal fue colocada en cajas petri conteniendo agar selectivo mFC (DifcoTM , Maryland, USA) y agar papa dextrosa (Bioxon, México) e incubadas a 37°C durante 24h para E. coli y B. subtilis, respectivamente. Finalmente, la concentración bacteriana se cuantificó en base a las unidades formadoras de colonia observadas en el medio y el resultado fue expresado en Log10 UFC/mL. La concentración inicial de las bacterias fueron 3.4x107 UFC/mL y 3.3x107 UFC/mL para Escherichia coli y Bacillus subtilis, respectivamente. Preparación del KMnO4 El desinfectante se adquirió de manera comercial (CAS 7722-64- 7). El KMnO4 tiene como ingrediente activo el ión permanganato (MnO4 ). Las concentraciones utilizadas durante el experimento fueron de 1.5 y 3 mg/L para Escherichia coli y 3 y 4.5 mg/L para Bacillus subtilis. Estas concentraciones fueron determinadas de acuerdo a las empleadas empírica-mente en actividades agrícolas para la desinfección del agua superficial. Dato proporcionado por los técnicos de empaques agrícolas. Preparación de turbidez en el agua Se utilizó una concentración de 170UNT, simulando la materia orgánica presente en agua superficial de uso agrícola, la cual fue ajustada con tierra estéril obtenida de la localidad de Culiacán, Sinaloa (Tabla 1). Para ajustar dicha turbidez se adicionaron 0.85g de tierra estéril en un litro de agua purificada estéril. La muestra se homogenizó y se colocó en una celda para ser leída utilizando un espectro-fotómetro marca HACH modelo DR 2010, de acuerdo a la APHA (1998). Los valores de turbidez se expresaron en unidades nefelométricas (UNT). Evaluación del KMnO4 Se utilizó un recipiente de cuatro litros de capacidad, el cual fue llenado con un litro de agua purificada estéril; se adicionaron 0.85g de tierra estéril para ajustar la turbidez a 170UNT. Una vez ajustada la turbidez se inoculó el agua con concentraciones de 3.4x107 y 3.3x107 UFC/mL de E. coli y B. subtilis respectivamente, adiciona- das en recipientes separados, y se aplicaron las concentraciones del desinfectante KMnO4 , 1.5 y 3mg/L para E. coli y 3 y 4.5mg/L para B. subtilis, todo esto con agitación constante. Se procedió a tomar alícuotas después de transcurrir 1, 3 y 6h de tiempo de contacto, simulando el tiempo en el que se lleva acabo la desinfección en el agua superficial de uso agrícola, dato proporcionado por técnicos del laboratorio de Microbiología Ambiental y de Alimentos del Centro de Investiga- ción en Alimentación y Desarrollo. La reducción bacteriana por efecto del permanganato de potasio se determinó utilizando la técnica de extensión en placa (APHA, 1998). Se realizaron diluciones decimales por triplicado (10- 2 ,10-4 y 10-6 ), y 0.1mL de cada dilución decimal fue colocada en cajas petri conteniendo agar selectivo mFC (Difco™ , Tabla 2. Porcentaje de reducción de Escherichia coli con permanganato de potasio Permanganato Tiempo de Porcentaje de de potasio 1 contacto 2 Turbidez 3 reducción % 1 98.83 b 1.5 3 99.90 b 6 99.99 c 1 99.9999 a 3 3 99.9999 a 6 99.9999 a 170 Tabla 3. Porcentaje de reducción de Bacillus subtilis con permanganato de potasio Permanganato Tiempo de Porcentaje de de potasio 1 contacto 2 Turbidez 3 reducción % 1 98.98 a 3 3 99.90 a 6 99.99 a 1 99.94 b 4.5 3 99.87 b 6 99.94 b Letras diferentes indican diferencias significativas entre tratamientos 1 ppm; partes por millón; 2 horas; 3 Unidades Nefelométricas de turbidez 170
  • 4. A G U A L A T I N O A M É R I C A volumen 8, número 1 Maryland, USA) y agar papa dextrosa (Bioxon, México) e incubadas a 37°C durante 24h para E. coli y B. subtilis, respectivamente. Finalmente, la concentración bacteriana se cuantificó en base a las unidades formadoras de colonia observadas en el medio y el resultado fue expresado en porcentaje de reducción. Determinación del perfil fisicoquímico del agua La medición del potencial de hidrógeno (pH), se realizó utilizando un potenciómetro portátil marca Oakton wppH y un electrodo HgTaylor 21433. La temperatura se verificó a 25ºC mediante un termómetro de vidrio previamente calibrado. Análisis de datos El diseño estadístico empleado fue de bloques con dos factores totalmente al azar. Los factores fueron las concentraciones y el tiempo de contacto, y los microorganismos fueron bloqueados. Al realizar los análisis de varianza y encontrar diferencias significativas, se aplicó la prueba de comparación de medias de Tukey con un a=0.05. Los resultados se expresaron en porcentajes de reducción. El paquete estadístico empleado fue Stata versión 8 (2003). Resultados y disusción Escherichia coli El análisis de varianza mostró que la concentración del desinfectante fue significativo (P=0.036) en la reducción de Escherichia coli, mientras que el tiempo de contacto no mostró diferencias significativas. El mejor tratamiento se obtuvo al utilizar la concentración de 3mg/L donde se logró un porcentaje de reducción de 99.9999 (6 log10 ) para cada tiempo de contacto analizado (Tabla 2). Los resultados concuerdan con los criterios de reducción bacteriana descritos por Bitton (1994) y Geldreich (1996), quienes establecen que un agente químico es efectivo si logra una reducción de 99.9999% (6 log10 ). El menor porcentaje de reducción obtenido fue de 98.83%, el cual se obtuvo al utilizar 1.5mg/L y 1h de tiempo de contacto, con un nivel de significancia de P=0.05, seguido de 1.5mg/L y 3h de tiempo de contacto (99.90%) y 1.5mg/L y 6h de tiempo de contacto (99.99%). Chaidez et al., (2003), observaron que los desinfectantes reducen su efectividad cuando se utilizan a bajas concentraciones y en presencia de materia orgánica. Wei et al., (1995) y Karch y Loftis (1998), han demostrado que la presencia de turbidez en el agua permite que los microorganismos puedan adherirse a partículas del suelo y protegerse del desinfectante. La EPA (1999), menciona que la presencia de materia orgánica reduce la efectividad del permanganato de potasio debido a que este puede ser consumido al oxidar la materia orgánica e inorgánica presente en el agua. Un estudio realizado en 1976 en el Distrito Sur de Las Vegas Nevada del lago Mead mostró que al utilizar bajas dosis de permanganato (1, 2, 3, 4 y 5mg/L) era necesario tiempos de contacto prolongados (30min), para reducir la presencia de coliformes, mientras que solo fue necesario 10min de tiempo de contacto cuando se emplearon 6mg/L (EPA, 1999). Al comparar la concentración y tiempo de contacto, el tratamiento de 3mg/L a 1, 3, 6h logró una reducción de 99.9999% con un nivel de significancia de P=0.05, demostrando que el porcentaje de reducción bacteriana es dependiente de la concentración del desinfectante y no necesariamente del tiempo de contacto. Se requieren altas concentraciones de permanganato para lograr una reducción total de la bacteria en estudio, como lo muestra la EPA (1999), donde fue necesario dosis de 2.5mg/L para obtener una reducción total de coliformes, así mismo fueron necesarias dosis de 20mg/L con tiempo de contacto de 24h para reducir Vibrio cholerae, Salmonella typhi y Shigella flexneri. Por lo tanto, el permanganato de potasio a concentraciones de 3mg/L y 1, 3 y 6h de tiempo de contacto, puede ser utilizado como bactericida en agua superficial de uso agrícola, ya que puede alcanzar una reducción del 99.9999% (6 log10 ). Bacillus subtilis Los resultados obtenidos en la evaluación de KMnO4 contra B. subtilis no mostraron diferencias significativas con el factor tiempo; sin embargo, el análisis de varianza mostró diferencias significativas con el factor concentración P=0.05 (Tabla 3). La concentración de 3mg/ L de KMnO4 resultó ser la más efectiva, alcanzando un porcentaje de reducción de 99.99% (4 log10 ). Mientras que la concentración de 4.5mg/ L de KMnO4 logró reducir un 99.9% de bacteria, equivalente a 3 logaritmos de reducción. De acuerdo a la EPA (1999), la actividad bactericida del permanganato de potasio se ve favorecida en condiciones ácidas (pH 5.9) a 20ºC. Los resultados obtenidos muestran que la efectividad del KMnO4 se vio reducida al utilizar concentraciones de 4.5mg/L, debido a que el agua inoculada con B. subtilis a esta misma concentración y una temperatura de 25°C, alcanzó un pH que osciló entre 5.97 y 6.11, condiciones menos ácidas a las observadas al utilizar 3mg/L de KMnO4 , donde el pH osciló entre 5.89 y 6.09 a la misma temperatura (Tabla 4 y 5). Cuando se comparó el porcentaje de reducción de E. coli y B. subtilis, a la concentración de 3mg/L, se observó una reducción del 99.9999% de Escherichia coli y un 99.99% para B. subtilis, demostrando que Bacillus presenta una mayor resistencia a los procesos de desinfección. Conclusiones La concentración de 3mg/L de KMnO4 resultó ser efectiva para E. coli y B. subtilis, lográndose un porcentaje de reducción de 99.9999% y 99.99%, respectivamente. Concentraciones de 1.5mg/L no fueron suficientes para reducir Escherichia coli, al no alcanzar más de 3 logaritmos de reducción bacteriana, sin embargo, de acuerdo a las recomendaciones descrita por la Agencia de Protección Ambiental de Estados Unidos, una reducción de al menos 2 Log10 de la población de bacteriana, son suficientes para considerarse buen desinfectante. La efectividad del desinfectante contra B. subtilis se vio limitada al utilizar concentraciones de 4.5mg/L de KMnO4, debido al pH final del agua Tabla 4. Determinación del perfil fisicoquímico del agua turbia inoculada con Escherichia coli Potencial de hidrogeno Concentración 25°C KMnO4 1 Blanco 2 T1 3 T2 4 T3 5 pH 1.5 6.02 6.02 6.24 6.24 3 6.02 6.13 6.05 6.23 Tabla 5. Determinación del perfil fisicoquímico del agua turbia inoculada con Bacillus subtilis Potencial de hidrogeno Concentración 25°C KMnO4 1 Blanco 2 T1 3 T2 4 T3 5 pH 3 6.02 5.83 6.15 6.09 4.5 6.02 5.97 6.30 6.11 1 Concentración de KMnO4 expresado en partes por millón (ppm): 2 Blanco: Muestra de agua con 170 UNT inoculada con bacteria, sin aplicación de KMnO4 ; 3 T1 1 hora de tiempo de contacto; 4 T2 3 horas de tiempo de contacto; 5 T3 6 horas de tiempo de contacto
  • 5. volumen 8, número 1 A G U A L A T I N O A M É R I C A empleada durante la inoculación. Por lo tanto, se concluye que el KMnO4 puede considerarse como una alternativa en los procesos de desinfección del agua superficial de uso agrícola, siempre y cuando se tomen en cuenta consideraciones como el pH de la solución, el cual debe oscilar entre 5.9 o menor, para tener mayor concentración del ión MnO4 , el cual oxida y destruye las enzimas celulares de los microorganismos, así mismo son necesarias temperaturas de 25ºC para que la efectividad del permanganato de potasio se vea favorecida. Finalmente, es importante hacer hincapié en la necesidad de generar información científica sobre la acción del permanganato de potasio contra otros grupos microbianos (bacteriófagos, virus entéricos, quistes de protozoarios y bacterias patógenas) que generalmente se encuentran presentes en aguas superficiales. Esta información permitirá darle un uso más amplio al permanganato de potasio como agente desinfectante. Agradecimientos Los autores agradecen al Centro de Investigación en Alimentación y Desarrollo, Unidad Culiacán, por las facilidades otorgadas en la realización del presente trabajo de investigación. Bibliografía 1. APHA (1998). Standard Methods for the Examination of Water and Wastewater, 18th ed. Washington, DC. American Public Health Association. 2. Beuchat L. R. (1996) Pathogenic Microorganisms Associated with Fresh Produce. Journal of Food Protection 59, 204-216. 3. Beuchat L. R. (1998) Surface Decontamination of Fruits and Vegetables Eaten Raw: A Review. Food Safety Unit, World Health Organization, WHO/FSF/ FOS/98.2. 4. Beuchat L.R., Ward, T.E., and Pettigrew, C.A. (2001) Comparison of Chlorine and a Prototype Produce Wash Product for Effectiveness in Killing Salmonella and Escherichia coli O157:H7 on Alfalfa Seeds. Journal of Food Protection. 64, 152-158. 5. Bitton G. (1994) Wastewater Microbiology Gainesville, Florida. Wiley-Liss. p. 97. 6. Cazarez Diarte G., Gortáres Moroyoqui P., Rubio Carrasco W., Martínez Rubio C., Meza Astorga P., Chaidez Quiroz C. (2004). Presencia y Sobrevivencia de Coliformes Fecales, Salmonella spp y Listeria spp en Agua de Uso Agrícola en el Valle de Culiacán. Trabajo No. 15. XIV Congreso Nacional. Federación Mexicana de Ingeniería Sanitaria y Ciencias Ambientales. Mazatlán, Sinaloa. . 7. Chaidez C., M. Moreno, W. Rubio, M. Ángulo, B. Valdez (2003) Comparison of the Disinfection Efficacy of Chlorine-Based Products for Inactivation of Viral Indicators and Pathogenic Bacteria in Produce Wash Water. International Journal of Environmental Health Research 13, 295-302. 8. Chaidez C., J. López, N. Castro del campo (2007) Quaternary Ammonium Compounds: an Alternative Disinfection Method for Fresh Produce Wash Water. Journal of Water and Health. 5, 329 – 333. 9. Cifuentes E., M. Gomez, U. Blumenthal, M. M. Tellez-Rojo, I. Romieu, G. Ruiz-Palacios, S. Ruiz-Velazco (2000) Risk Factors for Giardia intestinalis in Agricultural Villages Practicing Wastewater Irrigation in México. American Journal of Tropical Medicine and Hygiene 62, 388-392. 10. Craun G. F., R. Castro (1996) La Calidad del Agua Potable en América Latina. Ponderación de los Riesgos Microbiológicos Contra los Riesgos de los Subproductos de la Desinfección. Química ILSI press, Washington, D.C. pp. 50-62. 11. DeWaal. C.S., L. Alderton, M. F. Jacobson (2000). Outbreak Alert¡. Washington, DC, Closing the Gaps, in our Federal Food Safety Net. Center for Science in Public Interest. 12. Environmental Protection Agency (1997). A Set of Scientific Issues Being Considered by the Agency in Connection with the Efficacy Testing Issues Concerning Public Health Antimicrobial Pesticides. Scientific Advisory Panel September 1997 Meeting Final Report. EPA Office of Science Coordination and Policy, Washington, D.C. Sitio web: http://www.epa.gov/scipoly/sap/ 1997september/finalsep.htm#3. Acceso: Marzo 20, 2007. 13. Environmental Protection Agency (1999) Guidance, Manual Alternative Disinfectants and Oxidants. Chapter 5 Potassium Permanganate, p. 5-12. 14. Food and Drug Administration (1998) Center for Food Safety and Applied Nutrition. Guide to Minimize Microbial Food Safety Hazards for Fresh Fruits and Vegetable. http://www.foodsafety.gov/~dms/prodguid.html. Acceso: Marzo 21, 2007. 15. Food and Drug Administration (2001) Analysis and Evaluation of Preventive Control Measures for the Control and Reduction/Elimination of Microbial Hazards on Fresh and Fresh-cut Produce. Center for Food Safety and Applied Nutrition. Cáp II. http://vm.cfsan.fda.gov/~comm/ift3-toc.html. Acceso: Marzo 20, 2007. 16. Food and Drug Administration (2006) Multi-State Outbreak of E. coli O157:H7 Infections from Fresh Spinach. 17. FAO (2003) Guía de Buenas Prácticas de Higiene Agrícola y de Manufactura para la Producción Primaria Cultivo-Cosecha, Acondicionamiento, Empaque, Almacenamiento y Transporte de Frutas Frescas. http://ftp.fao.org/docrep/fao/ 006/y48935/y4893sll.pdf. Acceso: Junio 14, 2007. 18. Geldreich E. (1996) Microbial Quality of Water Supply in Distribution Systems. CRC. Lewis, p. 76-78. 19. Karch E., D. Loftis (1998). Disinfection Contact Time and Kinetics. Environmental Information Management Civil Engineering Dept., Virginia Tech, pp. 1-4. 20. Sapers G. M. (2003) Washing and Sanitizing Raw Materials for Minimally Processed Fruit and Vegetable Products In J S Novak, G M Sapers, V K Juneja (ed.), Microbial Safety of Minimally Processed Foods. CRC Press LLC, pp. 227-229. 21. Solomon E.B., S. Yaron, K. R. Matthews (2002) Transmission of Escherichia coli 0157:H7 from Contaminated Manure and Irrigation Water to Lettuce Plant Tissue and Its Subsequent Internalization. Applied and Environmental Microbiology. 68, 397-400. 22. Sapers, G. M. 2003. Washing and Sanitizing Raw Materials for Minimally Processed Fruit and Vegetable Products In J. S. Novak, Sapers, G. M. and V. K. Juneja (ed.), Microbial Safety of Minimally Processed Foods. CRC Press LLC, p. 227-229. 23. Thurston-Enriquez J. A., P. Watt, S. E. Dowd, R. Enriquez, I. L. Pepper, C. P. Gerba (2002) Detection of Protozoan Parasites and Microsporidia in Irrigation Waters Used for Crop Production. Journal of Food Protection 65, 378-382. 24. Ukuku D. O, M. G. Sapers (2001) Effect of Sanitizer Treatments on Salmonella Stanley Attached to the Surface of Cantaloupe and Cell Transfer to Fresh-Cut Tissues During Cutting Practices. Journal of Food Protection 64, 1286-1291. 25. Wei C. I, T. S. Huang, J. M. Kim, W. F. Lin, M. L. Tamplin, J. A. Bartz. (1995) Growth and Survival of Salmonella Montevideo on Tomatoes and Disinfection with Chlorinated Water. Journal of Food Protection 58, 829-836. Correspondencia Dr. Cristobal Chaidez Quiroz: Centro de investigación en Alimentación y Desarrollo (CIAD), Unidad Culiacán. Carretera a Eldorado Km. 5.5, C.P. 80129, Culiacán, Sinaloa. Tel/Fax: (667) 760-5536; chaqui@ciad. View publication stats