SlideShare una empresa de Scribd logo
1 de 35
Descargar para leer sin conexión
CONTENIDOS
1.  Procesos Estocásticos y de Markov
2.  Cadenas de Markov en Tiempo Discreto (CMTD)
3.  Comportamiento de Transición de las CMTD
4.  Comportamiento Estacionario de las CMTD
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
1. Procesos Estocásticos y de Markov
1.1. Definición de Proceso Estocástico
Un fenómeno aleatorio es un fenómeno empírico que obedece a leyes
probabilísticas en lugar de determinísticas.
Un proceso estocástico es un fenómeno aleatorio que surge en un proceso que se
desarrolla en el tiempo de una manera controlada por medio de leyes
probabilísticas.
Así, un proceso estocástico es una familia de variables aleatorias que
proporcionan una descripción de la evolución de un determinado fenómeno
físico a través del tiempo.
estado del proceso en el instante t conjunto de índices del proceso
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Proceso estocástico
Numerable
Proceso estocástico en tiempo discreto
Intervalo de la recta real
Proceso estocástico en tiempo continuo
Espacio de estados del proceso es el conjunto de todos los valores posibles que puede
tomar la variable aleatoria
Tiempo discreto y espacio de
estados discreto.
Tiempo discreto y espacio de
estados continuo.
Tiempo continuo y espacio de
estados discreto.
Tiempo continuo y espacio de
estados continuo.
Ejemplo: Cantidad de agua almacenada en un pantano
cada hora.
Ejemplo: Jugador con 3 € y en cada jugada puede
ganar o perder 1 € con probabilidad p y 1-p. Deja de
jugar cuando tenga 0 o 6 €.
Ejemplo: Número de ordenadores ocupados.
Ejemplo: m3 de agua almacenada en un pantano en
cada instante.
Clasificación de Procesos Estocásticos:
1.2. Clasificación de los Procesos Estocásticos
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
La Teoría de la Probabilidad se ha centrado fundamentalmente en el estudio
de la independencia y sus consecuencias
Un Proceso de Markov es un proceso estocástico que verifica
Interpretación de un Proceso de Markov:
Futuro Presente
PasadoFuturo Presente
Las predicciones del futuro del proceso, una vez conocido el estado actual,
no pueden mejorar con conocimiento adicional del pasado.
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Cadena es un proceso estocástico con espacio de estados discreto.
Cadena en tiempo discreto es un proceso estocástico en tiempo discreto con
espacio de estados discreto
Cadena en tiempo continuo un proceso estocástico en tiempo continuo con
espacio de estados discreto
2 Definición de Cadena de Markov en Tiempo Discreto
Un proceso estocástico {Xn, n = 0, 1, 2,…}es una Cadena de Markov en
Tiempo Discreto (CMTD) si para cada n y xj, j=0,…,n+1, se verifica
La probabilidad de transición en un paso del estado xn al xn+1 en el instante n+1 es:
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Sin pérdida de generalidad y para simplificar la notación, escribiremos la
probabilidad de transición en un paso del estado i al estado j en el instante n+1
como
La CMTD se denomina homogénea si pij(n) no depende de n, es decir,
En tales casos escribiremos pij en lugar de pij(n).
La matriz formada por las probabilidades de transición en un paso se denomina
matriz de transición o matriz de probabilidades de transición y toma la forma
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
P es una matriz cuadrada no negativa cuyas
filas suman la unidad, es decir, 0 ≤ pij ≤ 1 y
∑j pij = 1 para cada i ∈ S. Por lo tanto, P es
una matriz estocástica.
Gráficamente, una CMTD con espacio de estados finito se puede representar
mediante un diagrama de transición, es decir, mediante un grafo dirigido finito,
donde cada nodo representa un estado de la cadena, los arcos representan las
posibles transiciones entre estados y sobre los arcos se indican las probabilidades
de transición entre los estados representados por los nodos unidos por cada arco.
Ejemplo (Sistema de comunicaciones) Consideremos un sistema de
comunicaciones que transmite dígitos 0 y1. Cada dígito debe pasar por varias fases,
en cada una de las cuales hay una probabilidad p de que el dígito que entra coincida
con el que sale. Las fases son independientes entre sí.
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Ejemplo (Fiabilidad de un sistema) Se sabe que un sistema fallará o no dependiendo
de si ha fallado o no el día anterior. La probabilidad de que falle un día sabiendo que
ha fallado el día anterior es de 0.7, pero si no ha fallado el día anterior es de 0.2.
Ejemplo (Transformando un proceso en una cadena de Markov) Consideremos de
nuevo el ejemplo de fiabilidad de un sistema en el que ahora suponemos que el
estado en el que se encuentra el sistema un día depende de lo que ha ocurrido los dos
días anteriores. Concretamente, supongamos que si falló ayer y falla hoy, fallará
mañana con probabilidad 0.8; si está fallando hoy pero no ayer, entonces fallará
mañana con probabilidad 0.6; si falló ayer pero no hoy, entonces fallará mañana con
probabilidad 0.4; si no ha fallado ni hoy ni ayer, entonces fallará mañana con
probabilidad 0.1.
Estados: 0 (falló ayer y hoy),
1 (falló ayer pero no hoy),
2 (no falló ayer pero sí hoy),
3 (no falló ni ayer ni hoy).
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
La distribución de probabilidad inicial de X0 es
Una cadena de Markov queda determinada si se conocen las probabilidades de
transición, pij, y la distribució de probabilidad inicial, π0.
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
3 Comportamiento de transición
Comencemos esta sección estudiando los tiempos de permanencia de la cadena
en cada estado. Supongamos que la cadena está en el estado i. Entonces,
permanecerá en el estado i en el próximo paso con probabilidad pij y dejará el
estado i con probabilidad 1-pii. Por lo tanto, la probabilidad de que la cadena
permanezca en el estado i exactamente m pasos, supuesto que hemos
comenzado ese estado es pii
m(1-pii), es decir, el tiempo de permanencia en el
estado i se distribuye geométricamente.
Las probabilidades de transición en n pasos son las probabilidades de
transición del estado i al estado j en n pasos y se denotan como
Por lo tanto,
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Ecuaciones de Chapman-Kolmogorov:
Si denotamos con P(n) la matriz de transición en n pasos, lo que nos están
diciendo las ecuaciones de Chapman-Kolmogorov es que
P(n+m) = P(n) P(m).
Por lo tanto, P(2) = P(1) P(1) = PP
P(3) = P(2) P(1) = P3
…
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Una vez conocidas las probabilidades de transición en n pasos calculemos la
distribución marginal del paso n-ésimo
Dentemos la distribución de probabilidad en n pasos como:
Entonces ! n
= ! 0
Pn
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Ejemplo (Continuación del ejemplo de Fiabilidad de un sistema)
1.  ¿Cuál es la probabilidad de que el sistema falle dentro de cuatro días
sabiendo que hoy no ha fallado?
2.  ¿Cuál es la probabilidad de que el sistema falle el cuarto día sabiendo que
inicialmente la probabilidad de fallar es de 0.4 y la de no fallar es de 0.6?
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Estado esperado en el instante n suponiendo que se parte del estado i:
Estado esperado en el instante n:
Ejemplo (Continuación del ejemplo de Fiabilidad de un sistema)
1.  ¿Cuál es el estado esperado dentro de cuatro días sabiendo que hoy no ha
fallado?
2.  ¿Cuál es el estado esperado para el cuarto día sabiendo que la distribución de
probabilidad inicial es (0.4, 0.6)?
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Cálculo de la matriz Pn de forma eficiente:
H matriz de autovectores D matriz de autovalores
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
3 Comportamiento Estacionario
Ejemplo (Continuación del ejemplo de Fiabilidad de un sistema)
Ejemplo. Consideremos la CMTD con matriz de transición
Pn no tiene límite.
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Ejemplo. Consideremos la CMTD con matriz de transición
3.1 Clasificación de estados
El estado j es accesible desde el estado i, i ! j si pij
(n) > 0 para algún n ≥ 0.
Dos estados i y j comunican, denotado como i ! j si son accesibles entre sí.
Denotemos
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Proposición. La relación de comunicación es una relación de equivalencia,
es decir, verifica las propiedades reflexiva, simétrica y transitiva.
Por lo tanto podemos considerar clases de equivalencias con respecto a la
relación de comunicación: dos estados que comunican están en una misma clase
de comunicación.
Si todos los estados de una cadena de Markov comunican entre sí, es decir si la
cadena consta de una sola clase de equivalencia, se dice que es irreducible.
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Ejemplo. La cadena de Markov con matriz y diagrama de transición
es irreducible.
Ejemplo. La cadena de Markov con matriz y diagrama de transición
no es irreducible, al tener tres clases de equivalencia: {0,1}, {2} y {3,4}.
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
El estado i es recurrente si fi = 1, siendo fi la probabilidad de que
comenzando en el estado i, el proceso vuelva a entrar alguna vez en él.
El estado i es transitorio si fi < 1, siendo fi la probabilidad de que
comenzando en el estado i, el proceso vuelva a entrar alguna vez en él.
Proposición. El estado i es recurrente si y sólo si
El estado i es transitorio si y sólo si
Corolario. El estado i es recurrente si y sólo si comenzando en el estado i, el
número esperado de instantes que la cadena está en i es infinito.
Definamos
Entonces, el número de instantes que la cadena
está en el estado i es
y el número esperado de instantes que la cadena está en i es
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Corolario. El estado i es transitorio si y sólo si comenzando en el estado i, el
número esperado de instantes que la cadena está en i es finito.
Corolario. En una cadena de Markov con espacio de estados finito no todos los
estados pueden ser transitorios.
Corolario. El estado i es recurrente y j comunica con i, entonces j es recurrente, es
decir, la recurrencia es una propiedad de clase.
Corolario. El estado i es transitorio y j comunica con i, entonces j es transitorio, es
decir, ser transitorio es una propiedad de clase.
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Corolario. Todos los estados de una CMTD irreducible finita son recurrentes.
Ejemplo. Consideremos la CMTD con matriz y diagrama de transición.
Ejemplo. Consideremos la CMTD con matriz y diagrama de transición.
Cadena finita, irreducible y todos los estados recurrentes.
Tres clases de equivalencia: {0,1} transitoria, {2,3} recurrente y {4} transitoria.
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Un estado recurrente i se dice que es recurrente positivo si comenzando en i,
el tiempo esperado hasta que la cadena vuelva al estado i es finito. Por el
contrario, si el tiempo esperado hasta que la cadena vuelva al estado i es finito,
se dice que es recurrente nulo.
Proposición. Si el estado i es recurrente positivo y j comunica con i, entonces j es
recurrente positivo, es decir, la recurrencia positiva es una propiedad de clase.
Corolario. En una cadena de Markov con espacio de estados finito, todos los
estados recurrentes son recurrentes positivos.
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Corolario. Todos los estados de una cadena de Markov irreducible pertenecen a la
misma clase, es decir, o bien todos son de transición, o todos son recurrentes nulos
o todos son recurrentes positivos. En particular, si la cadena de Markov es finita
todos los estados son recurrentes positivos.
El estado i tiene periodo d si Pii
(n) = 0 cuando n no es divisible por d y d es el
mayor entero con esa propiedad, es decir, d es el máximo común divisor del
conjunto
Un estado con periodo 1 se dice aperiódico. Es decir, el periodo de un estado i de
una cadena de Markov es el máximo común divisor del número de pasos
necesarios para volver al estado i supuesto se ha partido de él.
Proposición. Si el estado i tiene periodo d y j comunica con i, entonces j tiene
periodo d, es decir, la periodicidad es una propiedad de clase.
Ejemplo. Consideremos la CMTD con matriz y diagrama de transición.
Todos los estados son
periódicos con periodo 4.
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
El estado i es absorbente si y sólo si ningún otro estado de la cadena es accesible
desde él, es decir, si Pii = 1.
El estado i es ergódico si es aperiódico y recurrente positivo.
Una cadena es ergódica si todos sus estados son ergódicos.
3.2 Teoremas Límite
El vector de probabilidades de una CMTD se dice estacionario si cualquier
transición de acuerdo con la matriz P no tiene efecto sobre esas probabilidades, es
decir, se verifica
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Ejemplo (Continuación del ejemplo de Sistema de comunicaciones)
Consideremos el Ejemplo
Entonces, el vector de probabilidad estacionario se obtiene resolviendo
El vector de probabilidades de una CMTD se dice límite si
El vector de probabilidades de una CMTD se dice el único vector de
probabilidades de equilibrio de la cadena si Pn y πn convergen
independientemente de la distribución inicial π0, cada probabilidad es mayor
estrictamente que cero.
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Ejemplo (Continuación del ejemplo de Sistema de comunicaciones)
Consideremos el Ejemplo
Existe el único vector de probabilidades de equilibrio.
Si la distribución límite es independiente de π0 es porque se verifica:
Si el único vector de probabilidad de equilibrio existe, puede obtener como:
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Ejemplo
Existe un único vector de probabilidades estacionario π = (0.5, 0.5).
Pn no tiene límite. Por lo tanto, las probabilidades límite no existen.
No existe un único vector de probabilidades de equilibrio.
Ejemplo
Existe un número infinito de vectores de probabilidades estacionarios.
Pn tiene límite
No existe un único vector de probabilidades de equilibrio.
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Ejemplo
Existe un único vector de probabilidades estacionario π = (0.5, 0.5).
Pn tiene límite
Existe la distribución límite y es independiente de la distribución inicial
Existe un único vector de probabilidades de equilibrio.
Ejemplo
Existe un único vector de probabilidades estacionario π = (0, 1).
Pn tiene límite
Existe la distribución límite y es independiente de la distribución inicial
No existe un único vector de probabilidades de equilibrio.
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Teorema. Si P es la matriz de transición de una cadena de Markov finita,
irreducible y aperiódica, este una única distribución de probabilidad de
equilibrio, es decir, existe una única distribución que satisface
Además, para cualquier distribución inicial π0, tiene
Teorema. Para una cadena de Markov ergódica e irreducible existe límnè∞ pij
(n) y
es independiente de i. Además, haciendo πj = límnè∞ pij
(n) , entonces πj es la única
solución no negativa de
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Ejemplo
La cadena es finita, irreducible y aperiódica. Por lo tanto, existe la distribución de
equilibrio que es obtiene resolviendo
Ahora veremos qué ocurre cuando algunas de las condiciones de los teoremas
anteriores no se verifican, es decir, cuando las cadenas no son irreducibles y
aperiódicas.
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
En primer lugar, supongamos que P es reducible con clases recurrentes R1, R2,…,
RR y las clases de transición T1, T2,…, Tt. Cada clase recurrente se comporta como
una subcadena de Markov.
Ejemplo
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Supongamos ahora que P es irreducible, pero tiene periodo d > 1.
Proposición. Sea una cadena de Markov irreducible, recurrente positiva y periódica
con periodo d >1. Entonces, existe solución única no negativa del sistema
y para cualquier distribución inicial π0
πj representa la fracción de tiempo a largo plazo que la cadena está en el estado j.
mi representa el número esperado de pasos hasta volver a i.
Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
Ejemplo. Consideremos la CMTD con matriz y diagrama de transición.
1.  ¿Cuál es la proporción de tiempo, a largo plazo, que la cadena está en cada
uno de los estados?
2.  ¿Cuál es el número medio de iteraciones para que la cadena vuelva al estado i
supuesto que ha partido del estado i?

Más contenido relacionado

La actualidad más candente

Análisis de Sistemas y Señales I
Análisis de Sistemas y Señales I Análisis de Sistemas y Señales I
Análisis de Sistemas y Señales I MariannN1
 
Metodo de asigancion milagros
Metodo de asigancion milagrosMetodo de asigancion milagros
Metodo de asigancion milagrosmilagros mercado
 
427168331 calculo-vectorial-unidad-2
427168331 calculo-vectorial-unidad-2427168331 calculo-vectorial-unidad-2
427168331 calculo-vectorial-unidad-2fghffffg
 
Algebra Vectorial
Algebra VectorialAlgebra Vectorial
Algebra Vectorialalgvctse10
 
Ecuaciones diferenciales lineales
Ecuaciones diferenciales linealesEcuaciones diferenciales lineales
Ecuaciones diferenciales linealesfernandamendozadt
 
Método de gauss seidel
Método de gauss seidelMétodo de gauss seidel
Método de gauss seidelmariacadena
 
4 resptrans
4 resptrans4 resptrans
4 resptransUNEFA
 
Enfoque de la optimización en el campo de la ingeniería.
Enfoque de la optimización en el campo de la ingeniería.Enfoque de la optimización en el campo de la ingeniería.
Enfoque de la optimización en el campo de la ingeniería.pertuzm
 
Presentacion 2 - Maquinas de Estado Finito
Presentacion 2 - Maquinas de Estado FinitoPresentacion 2 - Maquinas de Estado Finito
Presentacion 2 - Maquinas de Estado Finitojunito86
 
Metodos de Programacion no lineal
Metodos de Programacion no linealMetodos de Programacion no lineal
Metodos de Programacion no linealluisatero
 
Transformada Directa de Laplace
Transformada Directa de LaplaceTransformada Directa de Laplace
Transformada Directa de LaplaceEdwin_Jack
 
tipos de campos vectoriales y los mas comunes en electricidad
tipos de campos vectoriales y los mas comunes en electricidadtipos de campos vectoriales y los mas comunes en electricidad
tipos de campos vectoriales y los mas comunes en electricidad20_masambriento
 
Unidad III: Polos y Ceros de una función de transferencia.
Unidad III: Polos y Ceros de una función de transferencia.Unidad III: Polos y Ceros de una función de transferencia.
Unidad III: Polos y Ceros de una función de transferencia.Mayra Peña
 
Algoritmos Voraces (Greedy)
Algoritmos Voraces (Greedy)Algoritmos Voraces (Greedy)
Algoritmos Voraces (Greedy)luzenith_g
 

La actualidad más candente (20)

Cadenas marko
Cadenas markoCadenas marko
Cadenas marko
 
Análisis de Sistemas y Señales I
Análisis de Sistemas y Señales I Análisis de Sistemas y Señales I
Análisis de Sistemas y Señales I
 
Metodo de asigancion milagros
Metodo de asigancion milagrosMetodo de asigancion milagros
Metodo de asigancion milagros
 
G1 transformada de laplace
G1 transformada de laplaceG1 transformada de laplace
G1 transformada de laplace
 
427168331 calculo-vectorial-unidad-2
427168331 calculo-vectorial-unidad-2427168331 calculo-vectorial-unidad-2
427168331 calculo-vectorial-unidad-2
 
Algebra Vectorial
Algebra VectorialAlgebra Vectorial
Algebra Vectorial
 
Cadena de markov
Cadena de markovCadena de markov
Cadena de markov
 
Ecuaciones diferenciales lineales
Ecuaciones diferenciales linealesEcuaciones diferenciales lineales
Ecuaciones diferenciales lineales
 
Método de gauss seidel
Método de gauss seidelMétodo de gauss seidel
Método de gauss seidel
 
4 resptrans
4 resptrans4 resptrans
4 resptrans
 
Enfoque de la optimización en el campo de la ingeniería.
Enfoque de la optimización en el campo de la ingeniería.Enfoque de la optimización en el campo de la ingeniería.
Enfoque de la optimización en el campo de la ingeniería.
 
Sistemas Lineales
Sistemas LinealesSistemas Lineales
Sistemas Lineales
 
Series de taylor
Series de taylorSeries de taylor
Series de taylor
 
Presentacion 2 - Maquinas de Estado Finito
Presentacion 2 - Maquinas de Estado FinitoPresentacion 2 - Maquinas de Estado Finito
Presentacion 2 - Maquinas de Estado Finito
 
Metodos de Programacion no lineal
Metodos de Programacion no linealMetodos de Programacion no lineal
Metodos de Programacion no lineal
 
Transformada Directa de Laplace
Transformada Directa de LaplaceTransformada Directa de Laplace
Transformada Directa de Laplace
 
tipos de campos vectoriales y los mas comunes en electricidad
tipos de campos vectoriales y los mas comunes en electricidadtipos de campos vectoriales y los mas comunes en electricidad
tipos de campos vectoriales y los mas comunes en electricidad
 
Unidad III: Polos y Ceros de una función de transferencia.
Unidad III: Polos y Ceros de una función de transferencia.Unidad III: Polos y Ceros de una función de transferencia.
Unidad III: Polos y Ceros de una función de transferencia.
 
06 - Variables aleatorias conjuntas
06 - Variables aleatorias conjuntas06 - Variables aleatorias conjuntas
06 - Variables aleatorias conjuntas
 
Algoritmos Voraces (Greedy)
Algoritmos Voraces (Greedy)Algoritmos Voraces (Greedy)
Algoritmos Voraces (Greedy)
 

Similar a Matriz transicion

Similar a Matriz transicion (20)

Cmtd
CmtdCmtd
Cmtd
 
Final grupo markov
Final grupo markovFinal grupo markov
Final grupo markov
 
Cadenas de markov
Cadenas de markovCadenas de markov
Cadenas de markov
 
Procesos estocasticos blog
Procesos estocasticos blogProcesos estocasticos blog
Procesos estocasticos blog
 
Procesos estocasticos blog
Procesos estocasticos blogProcesos estocasticos blog
Procesos estocasticos blog
 
Cadenas markov (1)
Cadenas markov (1)Cadenas markov (1)
Cadenas markov (1)
 
Cadenas de Markov_BLOG_UNEXPO
Cadenas de Markov_BLOG_UNEXPOCadenas de Markov_BLOG_UNEXPO
Cadenas de Markov_BLOG_UNEXPO
 
Cadenas de markov
Cadenas de markovCadenas de markov
Cadenas de markov
 
Trabajo final
Trabajo finalTrabajo final
Trabajo final
 
Cadenas de markov
Cadenas de markovCadenas de markov
Cadenas de markov
 
Cadenas de markov blog
Cadenas de markov blogCadenas de markov blog
Cadenas de markov blog
 
SESION4_CADENA_DE_MARKOV.pptx
SESION4_CADENA_DE_MARKOV.pptxSESION4_CADENA_DE_MARKOV.pptx
SESION4_CADENA_DE_MARKOV.pptx
 
Cadenas de markov io2
Cadenas de markov io2Cadenas de markov io2
Cadenas de markov io2
 
Estudio sobre el pronóstico de la tendencia del mercado de valores basado en ...
Estudio sobre el pronóstico de la tendencia del mercado de valores basado en ...Estudio sobre el pronóstico de la tendencia del mercado de valores basado en ...
Estudio sobre el pronóstico de la tendencia del mercado de valores basado en ...
 
Markov.pdf
Markov.pdfMarkov.pdf
Markov.pdf
 
cadenas de markov
cadenas de markovcadenas de markov
cadenas de markov
 
Cadenas de markov 1
Cadenas de markov 1Cadenas de markov 1
Cadenas de markov 1
 
cpfund10.pdf
cpfund10.pdfcpfund10.pdf
cpfund10.pdf
 
2 produccion
2 produccion2 produccion
2 produccion
 
markov (2).pdf
markov (2).pdfmarkov (2).pdf
markov (2).pdf
 

Último

2024 2024 202420242024PPT SESIÓN 03.pptx
2024 2024 202420242024PPT SESIÓN 03.pptx2024 2024 202420242024PPT SESIÓN 03.pptx
2024 2024 202420242024PPT SESIÓN 03.pptxccordovato
 
CUESTIONARIO A ADICCION A REDES SOCIALES.pdf
CUESTIONARIO A ADICCION A REDES SOCIALES.pdfCUESTIONARIO A ADICCION A REDES SOCIALES.pdf
CUESTIONARIO A ADICCION A REDES SOCIALES.pdfEDUARDO MAMANI MAMANI
 
PREGRADO-PRESENCIAL-FASE-C-202401 (1).pdf
PREGRADO-PRESENCIAL-FASE-C-202401 (1).pdfPREGRADO-PRESENCIAL-FASE-C-202401 (1).pdf
PREGRADO-PRESENCIAL-FASE-C-202401 (1).pdfluisccollana
 
SUNEDU - Superintendencia Nacional de Educación superior Universitaria
SUNEDU - Superintendencia Nacional de Educación superior UniversitariaSUNEDU - Superintendencia Nacional de Educación superior Universitaria
SUNEDU - Superintendencia Nacional de Educación superior Universitariachayananazcosimeon
 
REPORTE-HEMEROGRÁFICO-MARZO-2024-IRAPUATO-¿CÓMO VAMOS?.pdf
REPORTE-HEMEROGRÁFICO-MARZO-2024-IRAPUATO-¿CÓMO VAMOS?.pdfREPORTE-HEMEROGRÁFICO-MARZO-2024-IRAPUATO-¿CÓMO VAMOS?.pdf
REPORTE-HEMEROGRÁFICO-MARZO-2024-IRAPUATO-¿CÓMO VAMOS?.pdfIrapuatoCmovamos
 
17 PRACTICAS - MODALIDAAD FAMILIAAR.docx
17 PRACTICAS - MODALIDAAD FAMILIAAR.docx17 PRACTICAS - MODALIDAAD FAMILIAAR.docx
17 PRACTICAS - MODALIDAAD FAMILIAAR.docxmarthaarroyo16
 
LA LEY DE LAS XII TABLAS en el curso de derecho
LA LEY DE LAS XII TABLAS en el curso de derechoLA LEY DE LAS XII TABLAS en el curso de derecho
LA LEY DE LAS XII TABLAS en el curso de derechojuliosabino1
 
REPORTE DE INCIDENCIA DELICTIVA MARZO 2024.pdf
REPORTE DE INCIDENCIA DELICTIVA MARZO 2024.pdfREPORTE DE INCIDENCIA DELICTIVA MARZO 2024.pdf
REPORTE DE INCIDENCIA DELICTIVA MARZO 2024.pdfIrapuatoCmovamos
 
bases-cye-2024(2) una sola descarga en base de feria de
bases-cye-2024(2) una sola descarga en base de feria debases-cye-2024(2) una sola descarga en base de feria de
bases-cye-2024(2) una sola descarga en base de feria deCalet Cáceres Vergara
 
Data Warehouse.gestion de bases de datos
Data Warehouse.gestion de bases de datosData Warehouse.gestion de bases de datos
Data Warehouse.gestion de bases de datosssuser948499
 
El Teatro musical (qué es, cuál es su historia y trayectoria...)
El Teatro musical (qué es, cuál es su historia y trayectoria...)El Teatro musical (qué es, cuál es su historia y trayectoria...)
El Teatro musical (qué es, cuál es su historia y trayectoria...)estebancitoherrera
 
CAPACITACION_higiene_industrial (1).ppt...
CAPACITACION_higiene_industrial (1).ppt...CAPACITACION_higiene_industrial (1).ppt...
CAPACITACION_higiene_industrial (1).ppt...jhoecabanillas12
 
tipos de organización y sus objetivos y aplicación
tipos de organización y sus objetivos y aplicacióntipos de organización y sus objetivos y aplicación
tipos de organización y sus objetivos y aplicaciónJonathanAntonioMaldo
 
HABILESASAMBLEA Para negocios independientes.pdf
HABILESASAMBLEA Para negocios independientes.pdfHABILESASAMBLEA Para negocios independientes.pdf
HABILESASAMBLEA Para negocios independientes.pdfGEINER22
 
La importancia de las pruebas de producto para tu empresa
La importancia de las pruebas de producto para tu empresaLa importancia de las pruebas de producto para tu empresa
La importancia de las pruebas de producto para tu empresamerca6
 
que son los planes de ordenamiento predial POP.pptx
que son los planes de ordenamiento predial  POP.pptxque son los planes de ordenamiento predial  POP.pptx
que son los planes de ordenamiento predial POP.pptxSergiothaine2
 
Ivu- taller de diseño arquitectonico l , adicion y sustraccion de cubos,
Ivu- taller de diseño arquitectonico l , adicion y sustraccion de cubos,Ivu- taller de diseño arquitectonico l , adicion y sustraccion de cubos,
Ivu- taller de diseño arquitectonico l , adicion y sustraccion de cubos,juberrodasflores
 

Último (17)

2024 2024 202420242024PPT SESIÓN 03.pptx
2024 2024 202420242024PPT SESIÓN 03.pptx2024 2024 202420242024PPT SESIÓN 03.pptx
2024 2024 202420242024PPT SESIÓN 03.pptx
 
CUESTIONARIO A ADICCION A REDES SOCIALES.pdf
CUESTIONARIO A ADICCION A REDES SOCIALES.pdfCUESTIONARIO A ADICCION A REDES SOCIALES.pdf
CUESTIONARIO A ADICCION A REDES SOCIALES.pdf
 
PREGRADO-PRESENCIAL-FASE-C-202401 (1).pdf
PREGRADO-PRESENCIAL-FASE-C-202401 (1).pdfPREGRADO-PRESENCIAL-FASE-C-202401 (1).pdf
PREGRADO-PRESENCIAL-FASE-C-202401 (1).pdf
 
SUNEDU - Superintendencia Nacional de Educación superior Universitaria
SUNEDU - Superintendencia Nacional de Educación superior UniversitariaSUNEDU - Superintendencia Nacional de Educación superior Universitaria
SUNEDU - Superintendencia Nacional de Educación superior Universitaria
 
REPORTE-HEMEROGRÁFICO-MARZO-2024-IRAPUATO-¿CÓMO VAMOS?.pdf
REPORTE-HEMEROGRÁFICO-MARZO-2024-IRAPUATO-¿CÓMO VAMOS?.pdfREPORTE-HEMEROGRÁFICO-MARZO-2024-IRAPUATO-¿CÓMO VAMOS?.pdf
REPORTE-HEMEROGRÁFICO-MARZO-2024-IRAPUATO-¿CÓMO VAMOS?.pdf
 
17 PRACTICAS - MODALIDAAD FAMILIAAR.docx
17 PRACTICAS - MODALIDAAD FAMILIAAR.docx17 PRACTICAS - MODALIDAAD FAMILIAAR.docx
17 PRACTICAS - MODALIDAAD FAMILIAAR.docx
 
LA LEY DE LAS XII TABLAS en el curso de derecho
LA LEY DE LAS XII TABLAS en el curso de derechoLA LEY DE LAS XII TABLAS en el curso de derecho
LA LEY DE LAS XII TABLAS en el curso de derecho
 
REPORTE DE INCIDENCIA DELICTIVA MARZO 2024.pdf
REPORTE DE INCIDENCIA DELICTIVA MARZO 2024.pdfREPORTE DE INCIDENCIA DELICTIVA MARZO 2024.pdf
REPORTE DE INCIDENCIA DELICTIVA MARZO 2024.pdf
 
bases-cye-2024(2) una sola descarga en base de feria de
bases-cye-2024(2) una sola descarga en base de feria debases-cye-2024(2) una sola descarga en base de feria de
bases-cye-2024(2) una sola descarga en base de feria de
 
Data Warehouse.gestion de bases de datos
Data Warehouse.gestion de bases de datosData Warehouse.gestion de bases de datos
Data Warehouse.gestion de bases de datos
 
El Teatro musical (qué es, cuál es su historia y trayectoria...)
El Teatro musical (qué es, cuál es su historia y trayectoria...)El Teatro musical (qué es, cuál es su historia y trayectoria...)
El Teatro musical (qué es, cuál es su historia y trayectoria...)
 
CAPACITACION_higiene_industrial (1).ppt...
CAPACITACION_higiene_industrial (1).ppt...CAPACITACION_higiene_industrial (1).ppt...
CAPACITACION_higiene_industrial (1).ppt...
 
tipos de organización y sus objetivos y aplicación
tipos de organización y sus objetivos y aplicacióntipos de organización y sus objetivos y aplicación
tipos de organización y sus objetivos y aplicación
 
HABILESASAMBLEA Para negocios independientes.pdf
HABILESASAMBLEA Para negocios independientes.pdfHABILESASAMBLEA Para negocios independientes.pdf
HABILESASAMBLEA Para negocios independientes.pdf
 
La importancia de las pruebas de producto para tu empresa
La importancia de las pruebas de producto para tu empresaLa importancia de las pruebas de producto para tu empresa
La importancia de las pruebas de producto para tu empresa
 
que son los planes de ordenamiento predial POP.pptx
que son los planes de ordenamiento predial  POP.pptxque son los planes de ordenamiento predial  POP.pptx
que son los planes de ordenamiento predial POP.pptx
 
Ivu- taller de diseño arquitectonico l , adicion y sustraccion de cubos,
Ivu- taller de diseño arquitectonico l , adicion y sustraccion de cubos,Ivu- taller de diseño arquitectonico l , adicion y sustraccion de cubos,
Ivu- taller de diseño arquitectonico l , adicion y sustraccion de cubos,
 

Matriz transicion

  • 1.
  • 2. CONTENIDOS 1.  Procesos Estocásticos y de Markov 2.  Cadenas de Markov en Tiempo Discreto (CMTD) 3.  Comportamiento de Transición de las CMTD 4.  Comportamiento Estacionario de las CMTD Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa
  • 3. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa 1. Procesos Estocásticos y de Markov 1.1. Definición de Proceso Estocástico Un fenómeno aleatorio es un fenómeno empírico que obedece a leyes probabilísticas en lugar de determinísticas. Un proceso estocástico es un fenómeno aleatorio que surge en un proceso que se desarrolla en el tiempo de una manera controlada por medio de leyes probabilísticas. Así, un proceso estocástico es una familia de variables aleatorias que proporcionan una descripción de la evolución de un determinado fenómeno físico a través del tiempo. estado del proceso en el instante t conjunto de índices del proceso
  • 4. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa Proceso estocástico Numerable Proceso estocástico en tiempo discreto Intervalo de la recta real Proceso estocástico en tiempo continuo Espacio de estados del proceso es el conjunto de todos los valores posibles que puede tomar la variable aleatoria Tiempo discreto y espacio de estados discreto. Tiempo discreto y espacio de estados continuo. Tiempo continuo y espacio de estados discreto. Tiempo continuo y espacio de estados continuo. Ejemplo: Cantidad de agua almacenada en un pantano cada hora. Ejemplo: Jugador con 3 € y en cada jugada puede ganar o perder 1 € con probabilidad p y 1-p. Deja de jugar cuando tenga 0 o 6 €. Ejemplo: Número de ordenadores ocupados. Ejemplo: m3 de agua almacenada en un pantano en cada instante. Clasificación de Procesos Estocásticos: 1.2. Clasificación de los Procesos Estocásticos
  • 5. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa La Teoría de la Probabilidad se ha centrado fundamentalmente en el estudio de la independencia y sus consecuencias Un Proceso de Markov es un proceso estocástico que verifica Interpretación de un Proceso de Markov: Futuro Presente PasadoFuturo Presente Las predicciones del futuro del proceso, una vez conocido el estado actual, no pueden mejorar con conocimiento adicional del pasado.
  • 6. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa Cadena es un proceso estocástico con espacio de estados discreto. Cadena en tiempo discreto es un proceso estocástico en tiempo discreto con espacio de estados discreto Cadena en tiempo continuo un proceso estocástico en tiempo continuo con espacio de estados discreto 2 Definición de Cadena de Markov en Tiempo Discreto Un proceso estocástico {Xn, n = 0, 1, 2,…}es una Cadena de Markov en Tiempo Discreto (CMTD) si para cada n y xj, j=0,…,n+1, se verifica La probabilidad de transición en un paso del estado xn al xn+1 en el instante n+1 es:
  • 7. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa Sin pérdida de generalidad y para simplificar la notación, escribiremos la probabilidad de transición en un paso del estado i al estado j en el instante n+1 como La CMTD se denomina homogénea si pij(n) no depende de n, es decir, En tales casos escribiremos pij en lugar de pij(n). La matriz formada por las probabilidades de transición en un paso se denomina matriz de transición o matriz de probabilidades de transición y toma la forma
  • 8. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa P es una matriz cuadrada no negativa cuyas filas suman la unidad, es decir, 0 ≤ pij ≤ 1 y ∑j pij = 1 para cada i ∈ S. Por lo tanto, P es una matriz estocástica. Gráficamente, una CMTD con espacio de estados finito se puede representar mediante un diagrama de transición, es decir, mediante un grafo dirigido finito, donde cada nodo representa un estado de la cadena, los arcos representan las posibles transiciones entre estados y sobre los arcos se indican las probabilidades de transición entre los estados representados por los nodos unidos por cada arco. Ejemplo (Sistema de comunicaciones) Consideremos un sistema de comunicaciones que transmite dígitos 0 y1. Cada dígito debe pasar por varias fases, en cada una de las cuales hay una probabilidad p de que el dígito que entra coincida con el que sale. Las fases son independientes entre sí.
  • 9. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa Ejemplo (Fiabilidad de un sistema) Se sabe que un sistema fallará o no dependiendo de si ha fallado o no el día anterior. La probabilidad de que falle un día sabiendo que ha fallado el día anterior es de 0.7, pero si no ha fallado el día anterior es de 0.2. Ejemplo (Transformando un proceso en una cadena de Markov) Consideremos de nuevo el ejemplo de fiabilidad de un sistema en el que ahora suponemos que el estado en el que se encuentra el sistema un día depende de lo que ha ocurrido los dos días anteriores. Concretamente, supongamos que si falló ayer y falla hoy, fallará mañana con probabilidad 0.8; si está fallando hoy pero no ayer, entonces fallará mañana con probabilidad 0.6; si falló ayer pero no hoy, entonces fallará mañana con probabilidad 0.4; si no ha fallado ni hoy ni ayer, entonces fallará mañana con probabilidad 0.1. Estados: 0 (falló ayer y hoy), 1 (falló ayer pero no hoy), 2 (no falló ayer pero sí hoy), 3 (no falló ni ayer ni hoy).
  • 10. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa La distribución de probabilidad inicial de X0 es Una cadena de Markov queda determinada si se conocen las probabilidades de transición, pij, y la distribució de probabilidad inicial, π0.
  • 11. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa 3 Comportamiento de transición Comencemos esta sección estudiando los tiempos de permanencia de la cadena en cada estado. Supongamos que la cadena está en el estado i. Entonces, permanecerá en el estado i en el próximo paso con probabilidad pij y dejará el estado i con probabilidad 1-pii. Por lo tanto, la probabilidad de que la cadena permanezca en el estado i exactamente m pasos, supuesto que hemos comenzado ese estado es pii m(1-pii), es decir, el tiempo de permanencia en el estado i se distribuye geométricamente. Las probabilidades de transición en n pasos son las probabilidades de transición del estado i al estado j en n pasos y se denotan como Por lo tanto,
  • 12. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa Ecuaciones de Chapman-Kolmogorov: Si denotamos con P(n) la matriz de transición en n pasos, lo que nos están diciendo las ecuaciones de Chapman-Kolmogorov es que P(n+m) = P(n) P(m). Por lo tanto, P(2) = P(1) P(1) = PP P(3) = P(2) P(1) = P3 …
  • 13. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa Una vez conocidas las probabilidades de transición en n pasos calculemos la distribución marginal del paso n-ésimo Dentemos la distribución de probabilidad en n pasos como: Entonces ! n = ! 0 Pn
  • 14. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa Ejemplo (Continuación del ejemplo de Fiabilidad de un sistema) 1.  ¿Cuál es la probabilidad de que el sistema falle dentro de cuatro días sabiendo que hoy no ha fallado? 2.  ¿Cuál es la probabilidad de que el sistema falle el cuarto día sabiendo que inicialmente la probabilidad de fallar es de 0.4 y la de no fallar es de 0.6?
  • 15. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa Estado esperado en el instante n suponiendo que se parte del estado i: Estado esperado en el instante n: Ejemplo (Continuación del ejemplo de Fiabilidad de un sistema) 1.  ¿Cuál es el estado esperado dentro de cuatro días sabiendo que hoy no ha fallado? 2.  ¿Cuál es el estado esperado para el cuarto día sabiendo que la distribución de probabilidad inicial es (0.4, 0.6)?
  • 16. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa Cálculo de la matriz Pn de forma eficiente: H matriz de autovectores D matriz de autovalores
  • 17. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa 3 Comportamiento Estacionario Ejemplo (Continuación del ejemplo de Fiabilidad de un sistema) Ejemplo. Consideremos la CMTD con matriz de transición Pn no tiene límite.
  • 18. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa Ejemplo. Consideremos la CMTD con matriz de transición 3.1 Clasificación de estados El estado j es accesible desde el estado i, i ! j si pij (n) > 0 para algún n ≥ 0. Dos estados i y j comunican, denotado como i ! j si son accesibles entre sí. Denotemos
  • 19. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa Proposición. La relación de comunicación es una relación de equivalencia, es decir, verifica las propiedades reflexiva, simétrica y transitiva. Por lo tanto podemos considerar clases de equivalencias con respecto a la relación de comunicación: dos estados que comunican están en una misma clase de comunicación. Si todos los estados de una cadena de Markov comunican entre sí, es decir si la cadena consta de una sola clase de equivalencia, se dice que es irreducible.
  • 20. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa Ejemplo. La cadena de Markov con matriz y diagrama de transición es irreducible. Ejemplo. La cadena de Markov con matriz y diagrama de transición no es irreducible, al tener tres clases de equivalencia: {0,1}, {2} y {3,4}.
  • 21. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa El estado i es recurrente si fi = 1, siendo fi la probabilidad de que comenzando en el estado i, el proceso vuelva a entrar alguna vez en él. El estado i es transitorio si fi < 1, siendo fi la probabilidad de que comenzando en el estado i, el proceso vuelva a entrar alguna vez en él. Proposición. El estado i es recurrente si y sólo si El estado i es transitorio si y sólo si Corolario. El estado i es recurrente si y sólo si comenzando en el estado i, el número esperado de instantes que la cadena está en i es infinito. Definamos Entonces, el número de instantes que la cadena está en el estado i es y el número esperado de instantes que la cadena está en i es
  • 22. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa Corolario. El estado i es transitorio si y sólo si comenzando en el estado i, el número esperado de instantes que la cadena está en i es finito. Corolario. En una cadena de Markov con espacio de estados finito no todos los estados pueden ser transitorios. Corolario. El estado i es recurrente y j comunica con i, entonces j es recurrente, es decir, la recurrencia es una propiedad de clase. Corolario. El estado i es transitorio y j comunica con i, entonces j es transitorio, es decir, ser transitorio es una propiedad de clase.
  • 23. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa Corolario. Todos los estados de una CMTD irreducible finita son recurrentes. Ejemplo. Consideremos la CMTD con matriz y diagrama de transición. Ejemplo. Consideremos la CMTD con matriz y diagrama de transición. Cadena finita, irreducible y todos los estados recurrentes. Tres clases de equivalencia: {0,1} transitoria, {2,3} recurrente y {4} transitoria.
  • 24. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa Un estado recurrente i se dice que es recurrente positivo si comenzando en i, el tiempo esperado hasta que la cadena vuelva al estado i es finito. Por el contrario, si el tiempo esperado hasta que la cadena vuelva al estado i es finito, se dice que es recurrente nulo. Proposición. Si el estado i es recurrente positivo y j comunica con i, entonces j es recurrente positivo, es decir, la recurrencia positiva es una propiedad de clase. Corolario. En una cadena de Markov con espacio de estados finito, todos los estados recurrentes son recurrentes positivos.
  • 25. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa Corolario. Todos los estados de una cadena de Markov irreducible pertenecen a la misma clase, es decir, o bien todos son de transición, o todos son recurrentes nulos o todos son recurrentes positivos. En particular, si la cadena de Markov es finita todos los estados son recurrentes positivos. El estado i tiene periodo d si Pii (n) = 0 cuando n no es divisible por d y d es el mayor entero con esa propiedad, es decir, d es el máximo común divisor del conjunto Un estado con periodo 1 se dice aperiódico. Es decir, el periodo de un estado i de una cadena de Markov es el máximo común divisor del número de pasos necesarios para volver al estado i supuesto se ha partido de él. Proposición. Si el estado i tiene periodo d y j comunica con i, entonces j tiene periodo d, es decir, la periodicidad es una propiedad de clase. Ejemplo. Consideremos la CMTD con matriz y diagrama de transición. Todos los estados son periódicos con periodo 4.
  • 26. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa El estado i es absorbente si y sólo si ningún otro estado de la cadena es accesible desde él, es decir, si Pii = 1. El estado i es ergódico si es aperiódico y recurrente positivo. Una cadena es ergódica si todos sus estados son ergódicos. 3.2 Teoremas Límite El vector de probabilidades de una CMTD se dice estacionario si cualquier transición de acuerdo con la matriz P no tiene efecto sobre esas probabilidades, es decir, se verifica
  • 27. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa Ejemplo (Continuación del ejemplo de Sistema de comunicaciones) Consideremos el Ejemplo Entonces, el vector de probabilidad estacionario se obtiene resolviendo El vector de probabilidades de una CMTD se dice límite si El vector de probabilidades de una CMTD se dice el único vector de probabilidades de equilibrio de la cadena si Pn y πn convergen independientemente de la distribución inicial π0, cada probabilidad es mayor estrictamente que cero.
  • 28. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa Ejemplo (Continuación del ejemplo de Sistema de comunicaciones) Consideremos el Ejemplo Existe el único vector de probabilidades de equilibrio. Si la distribución límite es independiente de π0 es porque se verifica: Si el único vector de probabilidad de equilibrio existe, puede obtener como:
  • 29. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa Ejemplo Existe un único vector de probabilidades estacionario π = (0.5, 0.5). Pn no tiene límite. Por lo tanto, las probabilidades límite no existen. No existe un único vector de probabilidades de equilibrio. Ejemplo Existe un número infinito de vectores de probabilidades estacionarios. Pn tiene límite No existe un único vector de probabilidades de equilibrio.
  • 30. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa Ejemplo Existe un único vector de probabilidades estacionario π = (0.5, 0.5). Pn tiene límite Existe la distribución límite y es independiente de la distribución inicial Existe un único vector de probabilidades de equilibrio. Ejemplo Existe un único vector de probabilidades estacionario π = (0, 1). Pn tiene límite Existe la distribución límite y es independiente de la distribución inicial No existe un único vector de probabilidades de equilibrio.
  • 31. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa Teorema. Si P es la matriz de transición de una cadena de Markov finita, irreducible y aperiódica, este una única distribución de probabilidad de equilibrio, es decir, existe una única distribución que satisface Además, para cualquier distribución inicial π0, tiene Teorema. Para una cadena de Markov ergódica e irreducible existe límnè∞ pij (n) y es independiente de i. Además, haciendo πj = límnè∞ pij (n) , entonces πj es la única solución no negativa de
  • 32. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa Ejemplo La cadena es finita, irreducible y aperiódica. Por lo tanto, existe la distribución de equilibrio que es obtiene resolviendo Ahora veremos qué ocurre cuando algunas de las condiciones de los teoremas anteriores no se verifican, es decir, cuando las cadenas no son irreducibles y aperiódicas.
  • 33. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa En primer lugar, supongamos que P es reducible con clases recurrentes R1, R2,…, RR y las clases de transición T1, T2,…, Tt. Cada clase recurrente se comporta como una subcadena de Markov. Ejemplo
  • 34. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa Supongamos ahora que P es irreducible, pero tiene periodo d > 1. Proposición. Sea una cadena de Markov irreducible, recurrente positiva y periódica con periodo d >1. Entonces, existe solución única no negativa del sistema y para cualquier distribución inicial π0 πj representa la fracción de tiempo a largo plazo que la cadena está en el estado j. mi representa el número esperado de pasos hasta volver a i.
  • 35. Tema 1 Cadenas de Markov en Tiempo Discreto Investigación Operativa Ejemplo. Consideremos la CMTD con matriz y diagrama de transición. 1.  ¿Cuál es la proporción de tiempo, a largo plazo, que la cadena está en cada uno de los estados? 2.  ¿Cuál es el número medio de iteraciones para que la cadena vuelva al estado i supuesto que ha partido del estado i?