SlideShare una empresa de Scribd logo
1 de 15
1 | P á g i n a
UNIVERSIDAD CATÓLICA DE LA SANTÍSIMA CONCEPCIÓN
FACULTAD DE INGENIERÍA
INGENIERÍA CIVIL INDUSTRIAL
Seminario integrador: Procesos Químicos y Térmicos
“Proceso producción de acero”
Integrantes:
Cecilia Anguita B.
Pablo Cáceres V.
Dino isla
Camila Quiroga E.
Jonathan Rebolledo.
Profesor:
Patricio Méndez
CONCEPCIÓN, 22 de noviembre de 2016
2 | P á g i n a
Introduccion
En la actualidad miremos donde miremos podemos notar la fuerte presencia del acero, Este material es
ampliamente utilizado en multitud de aplicaciones tanto industriales como cotidianas, por su alta
resistencia, su bajo costo y ventajas frente a otros materiales de similares características.
A lo largo de este informe explicaremos el proceso de producción de acero que conlleva una serie de
etapas, las cuales se diferencian por el tipo de operaciones realizadas y el paso de la materia prima por
subprocesos secuenciales, para obtener diferentes productos.
Descripcion del producto y su mercado
La mezcla de hierro, con carbono concentrado en el intervalo de 0,03 % y el 2,14 % de composición, da
origen al acero. Este conserva las características metálicas del hierro en estado puro, pero la adición de
carbono y de otros elementos tanto metálicos comono metálicos mejora sus propiedades físico-químicas.
El acero es el metal más común, barato y versátil usado en la industria, posee excelente ductilidad, lo que
permite obtener muchas configuraciones de estructura en frío. Es el material más utilizado en industrias,
a pesar de su limitada resistencia a la corrosión. También se utiliza para contener la mayoría de químicos
orgánicos y soluciones acuosas a temperaturas moderadas.
Por su disponibilidad, bajo costo y facilidad de fabricación el acero es muy versátil, por lo cual es utilizado
en diferentes rubros como constructoras, industria automotriz, electrónica, etc.
Actualmente en el mundo la producción de acero es del orden de las 1500 millones de toneladas/año,
donde el mayor productor mundial es China, con aproximadamente un 50% de la producción mundial,
siendo también el mayor exportador de este material. En Chile la producción anual de CAP acero, es del
orden de los 700 mil toneladas de acero en bruto anuales.
3 | P á g i n a
Descripcion de los procesos y Tecnologías de
produccion
El acero se puede obtener a partir de dos materias primas fundamentales:
1) El arrabio, obtenido a partir de mineral en instalaciones dotadas de alto horno (proceso integral).
2) Las chatarras tanto férricas como inoxidables.
El tipo de materia prima condiciona el proceso de fabricación, donde a partir del arrabio, se utiliza el
convertidor con oxígeno, mientras que a partir de la chatarra se utiliza un horno de arco eléctrico.
Obtencion de acero mediante arrabio
El arrabio es un producto intermedio del proceso de fundición de las menas del hierro tratadas con coque
como combustible y caliza como fundente, y es procesado en altos hornos. Tomando como ejemplo el
proceso que realiza CAP acero, el cual se compone de las siguientes etapas:
1. Preparación de Materias Primas
Esta etapa incluye la descarga, clasificación, pesaje y almacenamiento de las materias primas necesarias
para la fabricación del acero, que básicamente son:
Carbones Metalúrgicos: Que se convierte en Coque, se importa desde países como Australia, Canadá
y Estados Unidos.
Mineral de Hierro: Pellets desde Huasco y Los Colorados (III Región) y Granzas producidos en Mina El
Romeral (IV Región)
Caliza: Esta materia prima se extrae desde Isla Guarello
2. Planta de Coque
En una batería de 58 hornos el carbón mineral es sometido a un proceso de destilación seca para
conseguir coque metalúrgico, como subproducto de este proceso se obtiene un gas de alto poder
calorífico, que se reutiliza como combustible en el resto de la planta.
3. Altos Hornos
La reducción del mineral para obtener arrabio, se realiza en los Altos Hornos. Por el tragante (parte
superior del horno) se cargan por capas los minerales de hierro, la caliza y el coque.
La inyección de aire precalentado a 1.000 ºC, aproximadamente, facilita la combustión del coque,
generando elevadas temperaturas y gases reductores que actúan sobre el mineral y la caliza,
transformándolos en arrabio (hierro líquido) y en escoria, respectivamente.
4 | P á g i n a
La colada, que consiste en extraer estos elementos acumulados en el crisol (parte inferior de los altos
hornos), se efectúa aproximadamente cada dos horas. El arrabio es recibido en carros torpedo para ser
transportado a la Acería de Convertidores al Oxígeno; la escoria, separada del arrabio por su menor
densidad.
La escoria es una salida del proceso de producción de acero pero tiene muchos usos comerciales y rara
vez se desecha. A menudo se vuelve a procesar para separar algún otro metal que contenga. Los restos
de esta recuperación se pueden utilizar comobalasto para el ferrocarril y comofertilizante. Se ha utilizado
como metal para pavimentación y como una forma barata y duradera de fortalecer las paredes inclinadas
de los rompeolas para frenar el movimiento de las olas.
FIGURA1. Diagrama de bloques que grafica el paso 1, 2 y 3 del proceso de producción de arrabio
4. Desulfurización
Al transportar a la Acería, el arrabio es vaciado a un recipiente, donde se le realiza la desulfuración, esto
significa que se elimina el azufre, mediante la inyección de cal y magnesio.
El azufre queda retenido en la escoria resultante y las emisiones son capturadas por un sistema limpiador
de gases.
5 | P á g i n a
5. Acería de Convertidores al Oxígeno (CONOX)
En esta etapa se refina el arrabio inyectando oxígeno de alta pureza, se ajusta el contenido de carbono y
se agregan ferroaleaciones que aportan las características básicas de cada tipo de acero.
FIGURA2.diagramas de bloques que grafica el paso 4 y 5 del proceso de fabricación del acero
6. Colada Continua
Previamente se realiza el proceso de Ajuste Metalúrgico para la obtención de acero limpio de impurezas,
ajustar la colabilidad y por último obtener una temperatura óptima. Para así dar paso a las máquinas de
Colado continua. A través de moles de cobre y enfriamiento directo por agua, se solidifica y enfría, para
obtener planchones y palanquillas, productos semiterminados que se procesan en las fases de
laminación.
6 | P á g i n a
FIGURA 3.diagrama de bloques que muestra el paso 6 del proceso de producción de acero colada
continua
7. Laminación
Desde las palanquillas se inicia el proceso final de laminación, de la cual se obtiene una amplia variedad
de productos largos. Las palanquillas son procesadas en los laminadores de barras, donde son sometidas
a sucesivas etapas de laminación. Los productos finales son barras rectas y en rollos, lisas y con resaltes,
según el uso final se requiera.
7 | P á g i n a
Obtencion de acero mediante chatarra
Los procesos en horno de arco eléctrico pueden usar casi un 100% de chatarra metálica como primera
materia. La fabricación del acero en horno eléctrico se basa en la fusión de las chatarras por medio de
una corriente eléctrica, y al afino posterior del baño fundido.
El horno eléctrico consiste en un gran recipiente cilíndrico de chapa gruesa (15 a 30 mm de espesor)
forrado de material refractario que forma la solera y alberga el baño de acero líquido y escoria. El resto
del horno está formado por paneles refrigerados por agua. La bóveda es desplazable para permitir la
carga de la chatarra a través de unas cestas adecuadas.
Fabricación del acero en Horno Eléctrico
1) Fase de fusión: Una vez introducida la chatarra en el horno y los agentes reactivos y escorificantes
(principalmente cal) se desplaza la bóveda hasta cerrar el horno y se bajan los electrodos hasta la
distancia apropiada, haciéndose saltar el arco hasta fundir completamente los materiales cargados. El
proceso se repite hasta completar la capacidad del horno, constituyendo este acero una colada
2) Fase de afino: El afino se lleva a cabo en dos etapas. La primera en el propio horno y la segunda en un
horno cuchara.En el primerafino seanaliza la composicióndel baño fundido y se procede a la eliminación
de impurezas, y realizar un primer ajuste de la composición química por medio de la adición de
ferroaleaciones que contienen los elementos necesarios (cromo, níquel, molibdeno, vanadio o titanio). El
acero obtenido se vacía en una cuchara de colada, revestida de material refractario, que hace la función
de cuba de un segundo horno de afino en el que termina de ajustarse la composición del acero y de
dársele la temperatura adecuada para la siguiente fase en el proceso de fabricación.
3) La colada continua: Finalizado el afino, la cuchara de colada se lleva hasta la artesa receptora de la
colada continua donde vacía su contenido en una artesa receptora dispuesta al efecto. La colada continua
es un procedimiento siderúrgico en el que el acero se vierte directamente en un molde de fondo
desplazable, cuya sección transversal tiene la forma geométrica del semiproducto que se desea fabricar;
en este caso la palanquilla. La artesa receptora tiene un orificio de fondo, o buza, por el que distribuye el
acero líquido en varias líneas de colada, cada una de las cuales dispone de su lingotera o molde,
generalmente de cobre y paredes huecas para permitir su refrigeración con agua, que sirve para dar forma
al producto. Posteriormente se aplica un sistemade enfriamiento controlado por medio de duchas de agua
fría primero, y al aire después, cortándose el semiproducto en las longitudes deseadas mediante sopletes
que se desplazan durante el corte.
4) La laminación: De forma simple, podríamos describir la laminación como un proceso en el que se hace
pasar al semiproducto (palanquilla) entre dos rodillos o cilindros, que giran a la misma velocidad y en
sentidos contrarios, reduciendo su sección transversal gracias a la presión ejercida por éstos. En este
proceso se aprovecha la ductilidad del acero, es decir, su capacidad de deformarse, tanto mayor cuanto
8 | P á g i n a
mayor es su temperatura. De ahí que la laminación en caliente se realice a temperaturas comprendidas
entre 1.250ºC, al inicio del proceso, y 800ºC al final del mismo. Alcanzada la temperatura deseada en
toda la masa de la palanquilla, ésta es conducida a través de un camino de rodillos hasta el tren de
laminación. Este tren está formado por parejas de cilindros que van reduciendo la sección de la
palanquilla. A medida que disminuye la sección, aumenta la longitud del producto transformado y, por
tanto, la velocidad de laminación. Las barras ya laminadas se depositan en una gran placa o lecho de
enfriamiento. De ahí, son trasladadas a las líneas de corte a medida y empaquetado y posteriormente
pasan a la zona de almacenamiento y expedición.
FIGURA4. Diagrama de bloques que muestra el proceso de fabricación del acero mediante un horno de
arco eléctrico.
9 | P á g i n a
Comparacion de los procesos
Luego de estudiar los principales procesos para la fabricación del acero, podemos hacer una comparación
y de esta formaentender las razones que explican la rápida expansión del método del horno arco eléctrico
en los últimos años.
El reciclado de chatarra ahorra consumo de materias primas vírgenes y de energía, lo cual es muy
beneficioso desde el punto de vista económico como del medio ambiente
El proceso es de alta eficiencia y permite una sencilla extracción de la escoria y además es muy flexible;
ya que es un proceso adecuado para la producción de acero de alta como de baja aleación y por tanto
permite la obtención de una amplia gama de productos.
Balance de masa
Figura 5. Diagrama del balance de materia: Producción de una tonelada de Arrabio en un Alto
Horno.
10 | P á g i n a
El arrabio es la principal materia prima utilizada hoy en día para la producción de acero. En la figura 5
se presenta el diagrama de balance de materia general para un alto horno, para una producción de 1
tonelada de arrabio.
Se consideran un total de 2 entradas y 2 salidas, manteniendo el supuesto de estado estacionario. Para
obtener el hierro a partir de sus minerales, es necesario liberar el oxígeno que contienen los minerales
mediante un proceso de reducción. El carbono cumple este rol, el cual se encuentra contenido
principalmente en el coque y el carbón pulverizado. Además, el hierro entra en forma de mineral
sinterizado (el sínter actúa como fundente), mineral granulado y pellets. Por último, es necesario una
inyección constante de aire precalentado y presurizado, el cual reacciona con el coque y el carbón para
formar una mezcla de monóxido de carbono y nitrógeno.
Como resultado, se obtienen 1000 kg de arrabio, el cual se ubica en el fondo del horno. Sobre éste, se
forma escoria, la cual posee una masa aproximada del 30% del arrabio producido.
Los gases de salida consideran la principal fuente de emisión, con altas concentraciones de Nitrógeno,
monóxido de carbono y dióxido de carbono.
Balance de Materia General para el proceso.
ENTRADAS
Entrada 1 = Coque 380 kg + Mineral Sinterizado 1160 kg + Mineral Granular 280 kg + Pellets 190 kg
Masa total Entrada Sólidos 1 = 2010 kg.
Xe1= 18,9% Coque
Xe2= 57,7% Mineral
Xe3= 13,9% Granular
Xe4= 9,5% Pelets
Entrada 2:
Volumen inyectado de aire: 995 Nm3/Ton arrabio
Temperatura: 1453 K = 1180 °C
Densidad: 2,9155 kg/m3.
Masa = 2901,01 kg de aire.
147 Kg Carbón pulverizado.
Entrada 2= masa kg aire 2901,01 kg + Carbón pulverizado 147 kg = 3048,01 kg
Xe2.1= 95,177 % aire
Xe2.2= 4,823 % carbón pulverizado
11 | P á g i n a
SALIDAS
Salida 1:
Emisiones de Gas: 3758,08 kg de gas (incluyendo CO+ CO2+N2) / ton arrabio.
Masa total salida 1: 3774,08 kg.
Xs1.1=100% de gases
Salida 2:
Masa total salida 2 = 1000 kg Metal Caliente + 300 kg escoria = 1300 kg.
Xs2.1= 23% en peso de Escoria
Xs2.2= 77% en peso de Metal Caliente
Reacciones presentes en el proceso.
Fe2O3 + 3C => 2Fe + 3CO (Reacción de reducción directa).
Fe2O3 + 3CO => 2Fe + 3CO2 (Reacción de reducción indirecta).
Reacciones consideradas para el balance.
C + 0,5O2 = CO……………....(1)
CaCO3 = CaO + CO2 ………....(2)
Fe2O3 + 3CO = 2Fe + 3CO2 ....(3)
Fe2O3 alimentación = (1000/55.85) * (159,7/2) = 1429,722 kg
Mineral Alimentación = Mineral Sinterizado + Mineral Granulado + Pellets = 1630 kg
C Alimentación = 165 kg + 342 kg = 507 kg Carbono.
O2 Salida = (507/12)*0,5= 21,125 kg-mol
N2 Salida = 21,125* (79/21) = 79,47 kg-mol = 2225,16 kg
Aire = 79,47 *(100/79)= 100,59 kg-mol= 2901,01 kg
CO producido = (507/12) = 42,25 kg-mol
CO reacciona= (507/55,85)*(3/2)= 13,62 kg-mol
CO en gases = 42,25-13,62= 28,63 kg-mol = 801,64 kg
12 | P á g i n a
CO2 en gases = CO2 en (2) + CO2 en (3)
CO2 en gases = 13,62 + 3 = 16,62 kg-mol= 731,28 kg.
Resumen del Balance
Con un margen de error mínimo del 0,00001%, se cumple el supuesto de estado estacionario para la
producción de una tonelada de arrabio. Notar la gran cantidad de masa emitida por los gases, los cuales
alcanzan en conjunto las 3,7 toneladas. Estos gases son recuperados para ser reutilizados como
combustible en la planta siderúrgica.
SALIDA Masa (
Kg )
CO 801,64
CO2 731,28
N2 2225,16
Escoria 300
Hierro 1000
TOTAL
Salida
5058,08
ENTRADA Masa ( Kg )
Mineral 1630
Coque 380
Carbón
Pulverizado
147
Aire 2901,01
TOTAL
Entrada
5058,01
13 | P á g i n a
Alternativas de equipos en las operaciones unitarias
Proceso Purofer
Una de las alternativas de equipo para el proceso de alto horno es el proceso de Purofer que consiste en
lo siguiente:
Procedimiento:
A diferencia del alto horno, este utiliza para su proceso en general combustible que consiste en petróleo
pesado.
Se carga mineral en granos de alta calidad por medio de un elevador inclinado a un horno de cuba lo que
se considera como una de las entradas, por debajo entra una corriente de gas reductor al horno como
una inyección de mezclade CO Y H2 presurizado lo que podemos considerar comouna segunda entrada,
atraviesa el mineral y lo calienta a temperatura de la reacción (900 a 1050°C) reduciendo el contenido.
El producto de todo este proceso es el hierro con un contenido como tal del 92 al 96%, luego este por
medio del horno de arco eléctrico se transforma en acero.
14 | P á g i n a
Desempeno, rendimiento y productividad
El desempeño del proceso de producción de arrabio en los altos hornos, está definido principalmente por
las capacidades del horno, el tipo y calidad de las materias primas utilizadas, y la cantidad de arrabio que
se puede producir por día.
En la actualidad los altos hornos más grandes tienen alrededor de una altura total de 80 m, con una altura
del cuerpo del horno de 35 m y un diámetro interno máximo de alrededor de 16m, y un volumen interno
de alrededor de 5,200 m3. Un horno de este tamaño puede producir aproximadamente 10,000 toneladas
de arrabio por día
Utilizando este dato, para un horno de similares características, se puede definir el rendimiento con
referencia a 10,000 toneladas de arrabio por día.
Rendimiento =
𝑡𝑜𝑛𝑒𝑙𝑎𝑑𝑎𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑑𝑎𝑠 𝑝𝑜𝑟 𝑑𝑖𝑎
10.000 𝑡𝑜𝑛𝑒𝑙𝑎𝑑𝑎𝑠 𝑝𝑜𝑟 𝑑𝑖𝑎
Para obtener una tonelada de arrabio, existen multitud de combinaciones de materias primas que logran
el mismo resultado, a la vez que se comprende que la calidad de éstas varía dependiendo de la pureza y
los grados de concentración de los elementos, de ésta manera se puede definir la productividad de una
tonelada de arrabio como:
Productividad=
𝑡𝑜𝑛𝑒𝑙𝑎𝑑𝑎 𝑑𝑒 𝑎𝑟𝑟𝑎𝑏𝑖𝑜
𝑘𝑔 𝑑𝑒 𝑖𝑛𝑠𝑢𝑚𝑜
De esta manera, separando los insumos como las 3 principales materias primas y considerando su costo
por kilo, tenemos:
Productividad=
𝑡𝑜𝑛𝑒𝑙𝑎𝑑𝑎 𝑑𝑒 𝑎𝑟𝑟𝑎𝑏𝑖𝑜
(𝑘𝑔 𝑑𝑒 𝑚𝑖𝑛𝑒𝑟𝑎𝑙 ∗𝑝𝑟𝑒𝑐𝑖𝑜 𝑑𝑒𝑙 𝑘𝑔 𝑚𝑖𝑛𝑒𝑟𝑎𝑙 )+( 𝑘𝑔 𝑐𝑜𝑞𝑢𝑒∗𝑝𝑟𝑒𝑐𝑖𝑜 𝑘𝑔 𝑑𝑒 𝑐𝑜𝑞𝑢𝑒)+(𝑘𝑔 𝑐𝑎𝑙𝑖𝑧𝑎∗𝑝𝑟𝑒𝑐𝑖𝑜 𝑑𝑒 𝑘𝑔 𝑐𝑎𝑙𝑖𝑧𝑎)
Se obtiene la cantidad de toneladas de arrabio por cada peso gastado en insumos, lo que nos indicaría
el rendimiento de nuestra inversión en materias primas respecto a lo producido.
Si incluimos la totalidad de los costos incluyendo la mano de obra y los costos de preparación de la
caldera, así como la utilización de las máquinas la productividad total quedaría.
𝑡𝑜𝑛𝑒𝑙𝑎𝑑𝑎 𝑑𝑒 𝑎𝑟𝑟𝑎𝑏𝑖𝑜
( 𝑘𝑔 𝑑𝑒 𝑖𝑛𝑠𝑢𝑚𝑜∗ $ 𝑘𝑔 𝑖𝑛𝑠𝑢𝑚𝑜) + (𝑡𝑖𝑒𝑚𝑝𝑜 𝑚𝑎𝑞𝑢𝑖𝑛𝑎𝑠 (
ℎ𝑟
𝑡𝑜𝑛
) ∗ $ ℎ𝑜𝑟𝑎 𝑚𝑎𝑞𝑢𝑖𝑛𝑎) + (𝑚𝑎𝑛𝑜 𝑜𝑏𝑟𝑎 (
ℎ𝑟
𝑡𝑜𝑛
) ∗ $ℎ𝑟 ℎ𝑜𝑚𝑏𝑟𝑒) + (𝐾𝑤ℎ 𝑐𝑜𝑛𝑠𝑢𝑚𝑖𝑑𝑜𝑠 ∗ $ 𝐾𝑤ℎ)
Es decir, con esta medida se puede obtener la cantidad de toneladas de arrabio, por cada peso invertido
en los costos totales de producción.
15 | P á g i n a

Más contenido relacionado

La actualidad más candente (20)

La tostación en pirometalurgia
La tostación en pirometalurgiaLa tostación en pirometalurgia
La tostación en pirometalurgia
 
Proceso siderúrgico
Proceso siderúrgicoProceso siderúrgico
Proceso siderúrgico
 
Diagrama fe c
Diagrama fe cDiagrama fe c
Diagrama fe c
 
1 aceros inequilibrio
1 aceros inequilibrio1 aceros inequilibrio
1 aceros inequilibrio
 
TIPOS DE HORNOS DE FUNDICION
TIPOS DE HORNOS DE FUNDICIONTIPOS DE HORNOS DE FUNDICION
TIPOS DE HORNOS DE FUNDICION
 
ALTO HORNO
ALTO HORNOALTO HORNO
ALTO HORNO
 
Proceso de Obtención del Acero
Proceso de Obtención del AceroProceso de Obtención del Acero
Proceso de Obtención del Acero
 
Proceso de fundicion y moldeo
Proceso de fundicion y moldeoProceso de fundicion y moldeo
Proceso de fundicion y moldeo
 
Hornos de fundicion
Hornos de fundicionHornos de fundicion
Hornos de fundicion
 
Importancia de los tratamientos térmicos
Importancia de los tratamientos térmicosImportancia de los tratamientos térmicos
Importancia de los tratamientos térmicos
 
Alto horno
Alto hornoAlto horno
Alto horno
 
Tratamientos térmicos
Tratamientos térmicosTratamientos térmicos
Tratamientos térmicos
 
Horno de arco voltaico
Horno de arco voltaico Horno de arco voltaico
Horno de arco voltaico
 
Alto horno diapositiva
Alto horno diapositiva Alto horno diapositiva
Alto horno diapositiva
 
Pirometalurgia del Cobre
Pirometalurgia del CobrePirometalurgia del Cobre
Pirometalurgia del Cobre
 
Informe ensayo jominy
Informe ensayo jominy Informe ensayo jominy
Informe ensayo jominy
 
LATONES
LATONESLATONES
LATONES
 
aceros y fundiciones
aceros y fundicionesaceros y fundiciones
aceros y fundiciones
 
Endurecimiento por deformación y recocido
Endurecimiento por deformación y recocidoEndurecimiento por deformación y recocido
Endurecimiento por deformación y recocido
 
Proceso de afinacion del acero
Proceso de afinacion del aceroProceso de afinacion del acero
Proceso de afinacion del acero
 

Similar a produccion acero

PROCESO DE OBTENCION DEL HIERRO Y EL ACERO.pptx
PROCESO DE OBTENCION DEL HIERRO Y EL ACERO.pptxPROCESO DE OBTENCION DEL HIERRO Y EL ACERO.pptx
PROCESO DE OBTENCION DEL HIERRO Y EL ACERO.pptxManuelGomezFernandez4
 
Microsoft Word - Primera s...doc.pdf
Microsoft Word - Primera s...doc.pdfMicrosoft Word - Primera s...doc.pdf
Microsoft Word - Primera s...doc.pdfLuzLedezma6
 
Obtencion acero procesindustrial_trabajo
Obtencion acero procesindustrial_trabajoObtencion acero procesindustrial_trabajo
Obtencion acero procesindustrial_trabajoJesus Fuentes
 
Grupo 3 aceros arequipa admin 2do semestre
Grupo 3   aceros arequipa admin 2do semestreGrupo 3   aceros arequipa admin 2do semestre
Grupo 3 aceros arequipa admin 2do semestredavid coa
 
UNIDAD_I_PROCESO_DE_OBTENCION_DEL_HIERRO - copia.pptx
UNIDAD_I_PROCESO_DE_OBTENCION_DEL_HIERRO - copia.pptxUNIDAD_I_PROCESO_DE_OBTENCION_DEL_HIERRO - copia.pptx
UNIDAD_I_PROCESO_DE_OBTENCION_DEL_HIERRO - copia.pptxObed Vargas
 
fabricacion del acero 10859274.ppt
fabricacion del acero 10859274.pptfabricacion del acero 10859274.ppt
fabricacion del acero 10859274.pptOswaldo Gonzales
 
Transformacion del-arrabio-en-acero
Transformacion del-arrabio-en-aceroTransformacion del-arrabio-en-acero
Transformacion del-arrabio-en-aceroManuel Herrera Ruiz
 
Produccion Acero y hierro
Produccion Acero y hierroProduccion Acero y hierro
Produccion Acero y hierroahmedhidd
 
Tema 6(9) ampliación acero
Tema 6(9) ampliación aceroTema 6(9) ampliación acero
Tema 6(9) ampliación aceroFran Lausin
 
HOMEWORK 11 - HORNO DE ARCO ELECTRICO.pdf
HOMEWORK 11 - HORNO DE ARCO ELECTRICO.pdfHOMEWORK 11 - HORNO DE ARCO ELECTRICO.pdf
HOMEWORK 11 - HORNO DE ARCO ELECTRICO.pdfJULIODELPIERODIAZRUI
 
PRESENTACION VERDad.pptx
PRESENTACION VERDad.pptxPRESENTACION VERDad.pptx
PRESENTACION VERDad.pptxHaiseSasaki42
 
ProduccióN De Acero..
ProduccióN De Acero..ProduccióN De Acero..
ProduccióN De Acero..paulina
 
Combustión en hornos metalúrgicos final.docx
Combustión en hornos metalúrgicos final.docxCombustión en hornos metalúrgicos final.docx
Combustión en hornos metalúrgicos final.docxNicolOrdoezRosales1
 
Composicion quimica
Composicion quimicaComposicion quimica
Composicion quimicarider damian
 
6 materiales ferrosos (1)
6 materiales ferrosos (1)6 materiales ferrosos (1)
6 materiales ferrosos (1)dsconsultora
 
bibliografias de reduccion de metales
bibliografias de reduccion de metalesbibliografias de reduccion de metales
bibliografias de reduccion de metalesJorge Saldaña
 
Afino de acero presentacion
Afino de acero presentacionAfino de acero presentacion
Afino de acero presentacionyessklr
 

Similar a produccion acero (20)

55868 7
55868 755868 7
55868 7
 
PROCESO DE OBTENCION DEL HIERRO Y EL ACERO.pptx
PROCESO DE OBTENCION DEL HIERRO Y EL ACERO.pptxPROCESO DE OBTENCION DEL HIERRO Y EL ACERO.pptx
PROCESO DE OBTENCION DEL HIERRO Y EL ACERO.pptx
 
Siderurgia
SiderurgiaSiderurgia
Siderurgia
 
Microsoft Word - Primera s...doc.pdf
Microsoft Word - Primera s...doc.pdfMicrosoft Word - Primera s...doc.pdf
Microsoft Word - Primera s...doc.pdf
 
Obtencion acero procesindustrial_trabajo
Obtencion acero procesindustrial_trabajoObtencion acero procesindustrial_trabajo
Obtencion acero procesindustrial_trabajo
 
Grupo 3 aceros arequipa admin 2do semestre
Grupo 3   aceros arequipa admin 2do semestreGrupo 3   aceros arequipa admin 2do semestre
Grupo 3 aceros arequipa admin 2do semestre
 
UNIDAD_I_PROCESO_DE_OBTENCION_DEL_HIERRO - copia.pptx
UNIDAD_I_PROCESO_DE_OBTENCION_DEL_HIERRO - copia.pptxUNIDAD_I_PROCESO_DE_OBTENCION_DEL_HIERRO - copia.pptx
UNIDAD_I_PROCESO_DE_OBTENCION_DEL_HIERRO - copia.pptx
 
fabricacion del acero 10859274.ppt
fabricacion del acero 10859274.pptfabricacion del acero 10859274.ppt
fabricacion del acero 10859274.ppt
 
Transformacion del-arrabio-en-acero
Transformacion del-arrabio-en-aceroTransformacion del-arrabio-en-acero
Transformacion del-arrabio-en-acero
 
Produccion Acero y hierro
Produccion Acero y hierroProduccion Acero y hierro
Produccion Acero y hierro
 
Tema 6(9) ampliación acero
Tema 6(9) ampliación aceroTema 6(9) ampliación acero
Tema 6(9) ampliación acero
 
HOMEWORK 11 - HORNO DE ARCO ELECTRICO.pdf
HOMEWORK 11 - HORNO DE ARCO ELECTRICO.pdfHOMEWORK 11 - HORNO DE ARCO ELECTRICO.pdf
HOMEWORK 11 - HORNO DE ARCO ELECTRICO.pdf
 
PRESENTACION VERDad.pptx
PRESENTACION VERDad.pptxPRESENTACION VERDad.pptx
PRESENTACION VERDad.pptx
 
ProduccióN De Acero..
ProduccióN De Acero..ProduccióN De Acero..
ProduccióN De Acero..
 
Combustión en hornos metalúrgicos final.docx
Combustión en hornos metalúrgicos final.docxCombustión en hornos metalúrgicos final.docx
Combustión en hornos metalúrgicos final.docx
 
Composicion quimica
Composicion quimicaComposicion quimica
Composicion quimica
 
6 materiales ferrosos (1)
6 materiales ferrosos (1)6 materiales ferrosos (1)
6 materiales ferrosos (1)
 
bibliografias de reduccion de metales
bibliografias de reduccion de metalesbibliografias de reduccion de metales
bibliografias de reduccion de metales
 
Afino de acero presentacion
Afino de acero presentacionAfino de acero presentacion
Afino de acero presentacion
 
Hornodearcoelectrico
HornodearcoelectricoHornodearcoelectrico
Hornodearcoelectrico
 

Último

Topografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasTopografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasSegundo Silva Maguiña
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023ANDECE
 
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfCONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfErikNivor
 
Clase 1 Análisis Estructura. Para Arquitectura pptx
Clase 1 Análisis Estructura. Para Arquitectura pptxClase 1 Análisis Estructura. Para Arquitectura pptx
Clase 1 Análisis Estructura. Para Arquitectura pptxPaolaVillalba13
 
Trabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruanaTrabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruana5extraviado
 
Sistema de Base de Datos (Rubén Alberto)
Sistema de Base de Datos (Rubén Alberto)Sistema de Base de Datos (Rubén Alberto)
Sistema de Base de Datos (Rubén Alberto)mendezruben1901
 
Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCANDECE
 
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIACLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIAMayraOchoa35
 
trabajos en altura 2024, sistemas de contencion anticaidas
trabajos en altura 2024, sistemas de contencion anticaidastrabajos en altura 2024, sistemas de contencion anticaidas
trabajos en altura 2024, sistemas de contencion anticaidasNelsonQuispeQuispitu
 
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidasSOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidasLeonardoMendozaDvila
 
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdfS454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdffredyflores58
 
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptxNayeliZarzosa1
 
Fisiología del azufre en plantas S.S.pdf
Fisiología del azufre en plantas S.S.pdfFisiología del azufre en plantas S.S.pdf
Fisiología del azufre en plantas S.S.pdfJessLeonelVargasJimn
 
Sistema de Gestión de Freelancers (Base de Datos)
Sistema de Gestión de Freelancers (Base de Datos)Sistema de Gestión de Freelancers (Base de Datos)
Sistema de Gestión de Freelancers (Base de Datos)dianamateo1513
 
produccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxproduccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxEtse9
 
Electromagnetismo Fisica FisicaFisica.pdf
Electromagnetismo Fisica FisicaFisica.pdfElectromagnetismo Fisica FisicaFisica.pdf
Electromagnetismo Fisica FisicaFisica.pdfAnonymous0pBRsQXfnx
 
Fe_C_Tratamientos termicos_uap _3_.ppt
Fe_C_Tratamientos termicos_uap   _3_.pptFe_C_Tratamientos termicos_uap   _3_.ppt
Fe_C_Tratamientos termicos_uap _3_.pptVitobailon
 
Como de produjo la penicilina de manera masiva en plena guerra mundial Biotec...
Como de produjo la penicilina de manera masiva en plena guerra mundial Biotec...Como de produjo la penicilina de manera masiva en plena guerra mundial Biotec...
Como de produjo la penicilina de manera masiva en plena guerra mundial Biotec...ssuser646243
 
Biología molecular ADN recombinante.pptx
Biología molecular ADN recombinante.pptxBiología molecular ADN recombinante.pptx
Biología molecular ADN recombinante.pptxluisvalero46
 
Conservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaConservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaANDECE
 

Último (20)

Topografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasTopografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la Ingenierías
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
 
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfCONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
 
Clase 1 Análisis Estructura. Para Arquitectura pptx
Clase 1 Análisis Estructura. Para Arquitectura pptxClase 1 Análisis Estructura. Para Arquitectura pptx
Clase 1 Análisis Estructura. Para Arquitectura pptx
 
Trabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruanaTrabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruana
 
Sistema de Base de Datos (Rubén Alberto)
Sistema de Base de Datos (Rubén Alberto)Sistema de Base de Datos (Rubén Alberto)
Sistema de Base de Datos (Rubén Alberto)
 
Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRC
 
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIACLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIA
 
trabajos en altura 2024, sistemas de contencion anticaidas
trabajos en altura 2024, sistemas de contencion anticaidastrabajos en altura 2024, sistemas de contencion anticaidas
trabajos en altura 2024, sistemas de contencion anticaidas
 
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidasSOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
 
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdfS454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
 
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
 
Fisiología del azufre en plantas S.S.pdf
Fisiología del azufre en plantas S.S.pdfFisiología del azufre en plantas S.S.pdf
Fisiología del azufre en plantas S.S.pdf
 
Sistema de Gestión de Freelancers (Base de Datos)
Sistema de Gestión de Freelancers (Base de Datos)Sistema de Gestión de Freelancers (Base de Datos)
Sistema de Gestión de Freelancers (Base de Datos)
 
produccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxproduccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptx
 
Electromagnetismo Fisica FisicaFisica.pdf
Electromagnetismo Fisica FisicaFisica.pdfElectromagnetismo Fisica FisicaFisica.pdf
Electromagnetismo Fisica FisicaFisica.pdf
 
Fe_C_Tratamientos termicos_uap _3_.ppt
Fe_C_Tratamientos termicos_uap   _3_.pptFe_C_Tratamientos termicos_uap   _3_.ppt
Fe_C_Tratamientos termicos_uap _3_.ppt
 
Como de produjo la penicilina de manera masiva en plena guerra mundial Biotec...
Como de produjo la penicilina de manera masiva en plena guerra mundial Biotec...Como de produjo la penicilina de manera masiva en plena guerra mundial Biotec...
Como de produjo la penicilina de manera masiva en plena guerra mundial Biotec...
 
Biología molecular ADN recombinante.pptx
Biología molecular ADN recombinante.pptxBiología molecular ADN recombinante.pptx
Biología molecular ADN recombinante.pptx
 
Conservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaConservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de Almería
 

produccion acero

  • 1. 1 | P á g i n a UNIVERSIDAD CATÓLICA DE LA SANTÍSIMA CONCEPCIÓN FACULTAD DE INGENIERÍA INGENIERÍA CIVIL INDUSTRIAL Seminario integrador: Procesos Químicos y Térmicos “Proceso producción de acero” Integrantes: Cecilia Anguita B. Pablo Cáceres V. Dino isla Camila Quiroga E. Jonathan Rebolledo. Profesor: Patricio Méndez CONCEPCIÓN, 22 de noviembre de 2016
  • 2. 2 | P á g i n a Introduccion En la actualidad miremos donde miremos podemos notar la fuerte presencia del acero, Este material es ampliamente utilizado en multitud de aplicaciones tanto industriales como cotidianas, por su alta resistencia, su bajo costo y ventajas frente a otros materiales de similares características. A lo largo de este informe explicaremos el proceso de producción de acero que conlleva una serie de etapas, las cuales se diferencian por el tipo de operaciones realizadas y el paso de la materia prima por subprocesos secuenciales, para obtener diferentes productos. Descripcion del producto y su mercado La mezcla de hierro, con carbono concentrado en el intervalo de 0,03 % y el 2,14 % de composición, da origen al acero. Este conserva las características metálicas del hierro en estado puro, pero la adición de carbono y de otros elementos tanto metálicos comono metálicos mejora sus propiedades físico-químicas. El acero es el metal más común, barato y versátil usado en la industria, posee excelente ductilidad, lo que permite obtener muchas configuraciones de estructura en frío. Es el material más utilizado en industrias, a pesar de su limitada resistencia a la corrosión. También se utiliza para contener la mayoría de químicos orgánicos y soluciones acuosas a temperaturas moderadas. Por su disponibilidad, bajo costo y facilidad de fabricación el acero es muy versátil, por lo cual es utilizado en diferentes rubros como constructoras, industria automotriz, electrónica, etc. Actualmente en el mundo la producción de acero es del orden de las 1500 millones de toneladas/año, donde el mayor productor mundial es China, con aproximadamente un 50% de la producción mundial, siendo también el mayor exportador de este material. En Chile la producción anual de CAP acero, es del orden de los 700 mil toneladas de acero en bruto anuales.
  • 3. 3 | P á g i n a Descripcion de los procesos y Tecnologías de produccion El acero se puede obtener a partir de dos materias primas fundamentales: 1) El arrabio, obtenido a partir de mineral en instalaciones dotadas de alto horno (proceso integral). 2) Las chatarras tanto férricas como inoxidables. El tipo de materia prima condiciona el proceso de fabricación, donde a partir del arrabio, se utiliza el convertidor con oxígeno, mientras que a partir de la chatarra se utiliza un horno de arco eléctrico. Obtencion de acero mediante arrabio El arrabio es un producto intermedio del proceso de fundición de las menas del hierro tratadas con coque como combustible y caliza como fundente, y es procesado en altos hornos. Tomando como ejemplo el proceso que realiza CAP acero, el cual se compone de las siguientes etapas: 1. Preparación de Materias Primas Esta etapa incluye la descarga, clasificación, pesaje y almacenamiento de las materias primas necesarias para la fabricación del acero, que básicamente son: Carbones Metalúrgicos: Que se convierte en Coque, se importa desde países como Australia, Canadá y Estados Unidos. Mineral de Hierro: Pellets desde Huasco y Los Colorados (III Región) y Granzas producidos en Mina El Romeral (IV Región) Caliza: Esta materia prima se extrae desde Isla Guarello 2. Planta de Coque En una batería de 58 hornos el carbón mineral es sometido a un proceso de destilación seca para conseguir coque metalúrgico, como subproducto de este proceso se obtiene un gas de alto poder calorífico, que se reutiliza como combustible en el resto de la planta. 3. Altos Hornos La reducción del mineral para obtener arrabio, se realiza en los Altos Hornos. Por el tragante (parte superior del horno) se cargan por capas los minerales de hierro, la caliza y el coque. La inyección de aire precalentado a 1.000 ºC, aproximadamente, facilita la combustión del coque, generando elevadas temperaturas y gases reductores que actúan sobre el mineral y la caliza, transformándolos en arrabio (hierro líquido) y en escoria, respectivamente.
  • 4. 4 | P á g i n a La colada, que consiste en extraer estos elementos acumulados en el crisol (parte inferior de los altos hornos), se efectúa aproximadamente cada dos horas. El arrabio es recibido en carros torpedo para ser transportado a la Acería de Convertidores al Oxígeno; la escoria, separada del arrabio por su menor densidad. La escoria es una salida del proceso de producción de acero pero tiene muchos usos comerciales y rara vez se desecha. A menudo se vuelve a procesar para separar algún otro metal que contenga. Los restos de esta recuperación se pueden utilizar comobalasto para el ferrocarril y comofertilizante. Se ha utilizado como metal para pavimentación y como una forma barata y duradera de fortalecer las paredes inclinadas de los rompeolas para frenar el movimiento de las olas. FIGURA1. Diagrama de bloques que grafica el paso 1, 2 y 3 del proceso de producción de arrabio 4. Desulfurización Al transportar a la Acería, el arrabio es vaciado a un recipiente, donde se le realiza la desulfuración, esto significa que se elimina el azufre, mediante la inyección de cal y magnesio. El azufre queda retenido en la escoria resultante y las emisiones son capturadas por un sistema limpiador de gases.
  • 5. 5 | P á g i n a 5. Acería de Convertidores al Oxígeno (CONOX) En esta etapa se refina el arrabio inyectando oxígeno de alta pureza, se ajusta el contenido de carbono y se agregan ferroaleaciones que aportan las características básicas de cada tipo de acero. FIGURA2.diagramas de bloques que grafica el paso 4 y 5 del proceso de fabricación del acero 6. Colada Continua Previamente se realiza el proceso de Ajuste Metalúrgico para la obtención de acero limpio de impurezas, ajustar la colabilidad y por último obtener una temperatura óptima. Para así dar paso a las máquinas de Colado continua. A través de moles de cobre y enfriamiento directo por agua, se solidifica y enfría, para obtener planchones y palanquillas, productos semiterminados que se procesan en las fases de laminación.
  • 6. 6 | P á g i n a FIGURA 3.diagrama de bloques que muestra el paso 6 del proceso de producción de acero colada continua 7. Laminación Desde las palanquillas se inicia el proceso final de laminación, de la cual se obtiene una amplia variedad de productos largos. Las palanquillas son procesadas en los laminadores de barras, donde son sometidas a sucesivas etapas de laminación. Los productos finales son barras rectas y en rollos, lisas y con resaltes, según el uso final se requiera.
  • 7. 7 | P á g i n a Obtencion de acero mediante chatarra Los procesos en horno de arco eléctrico pueden usar casi un 100% de chatarra metálica como primera materia. La fabricación del acero en horno eléctrico se basa en la fusión de las chatarras por medio de una corriente eléctrica, y al afino posterior del baño fundido. El horno eléctrico consiste en un gran recipiente cilíndrico de chapa gruesa (15 a 30 mm de espesor) forrado de material refractario que forma la solera y alberga el baño de acero líquido y escoria. El resto del horno está formado por paneles refrigerados por agua. La bóveda es desplazable para permitir la carga de la chatarra a través de unas cestas adecuadas. Fabricación del acero en Horno Eléctrico 1) Fase de fusión: Una vez introducida la chatarra en el horno y los agentes reactivos y escorificantes (principalmente cal) se desplaza la bóveda hasta cerrar el horno y se bajan los electrodos hasta la distancia apropiada, haciéndose saltar el arco hasta fundir completamente los materiales cargados. El proceso se repite hasta completar la capacidad del horno, constituyendo este acero una colada 2) Fase de afino: El afino se lleva a cabo en dos etapas. La primera en el propio horno y la segunda en un horno cuchara.En el primerafino seanaliza la composicióndel baño fundido y se procede a la eliminación de impurezas, y realizar un primer ajuste de la composición química por medio de la adición de ferroaleaciones que contienen los elementos necesarios (cromo, níquel, molibdeno, vanadio o titanio). El acero obtenido se vacía en una cuchara de colada, revestida de material refractario, que hace la función de cuba de un segundo horno de afino en el que termina de ajustarse la composición del acero y de dársele la temperatura adecuada para la siguiente fase en el proceso de fabricación. 3) La colada continua: Finalizado el afino, la cuchara de colada se lleva hasta la artesa receptora de la colada continua donde vacía su contenido en una artesa receptora dispuesta al efecto. La colada continua es un procedimiento siderúrgico en el que el acero se vierte directamente en un molde de fondo desplazable, cuya sección transversal tiene la forma geométrica del semiproducto que se desea fabricar; en este caso la palanquilla. La artesa receptora tiene un orificio de fondo, o buza, por el que distribuye el acero líquido en varias líneas de colada, cada una de las cuales dispone de su lingotera o molde, generalmente de cobre y paredes huecas para permitir su refrigeración con agua, que sirve para dar forma al producto. Posteriormente se aplica un sistemade enfriamiento controlado por medio de duchas de agua fría primero, y al aire después, cortándose el semiproducto en las longitudes deseadas mediante sopletes que se desplazan durante el corte. 4) La laminación: De forma simple, podríamos describir la laminación como un proceso en el que se hace pasar al semiproducto (palanquilla) entre dos rodillos o cilindros, que giran a la misma velocidad y en sentidos contrarios, reduciendo su sección transversal gracias a la presión ejercida por éstos. En este proceso se aprovecha la ductilidad del acero, es decir, su capacidad de deformarse, tanto mayor cuanto
  • 8. 8 | P á g i n a mayor es su temperatura. De ahí que la laminación en caliente se realice a temperaturas comprendidas entre 1.250ºC, al inicio del proceso, y 800ºC al final del mismo. Alcanzada la temperatura deseada en toda la masa de la palanquilla, ésta es conducida a través de un camino de rodillos hasta el tren de laminación. Este tren está formado por parejas de cilindros que van reduciendo la sección de la palanquilla. A medida que disminuye la sección, aumenta la longitud del producto transformado y, por tanto, la velocidad de laminación. Las barras ya laminadas se depositan en una gran placa o lecho de enfriamiento. De ahí, son trasladadas a las líneas de corte a medida y empaquetado y posteriormente pasan a la zona de almacenamiento y expedición. FIGURA4. Diagrama de bloques que muestra el proceso de fabricación del acero mediante un horno de arco eléctrico.
  • 9. 9 | P á g i n a Comparacion de los procesos Luego de estudiar los principales procesos para la fabricación del acero, podemos hacer una comparación y de esta formaentender las razones que explican la rápida expansión del método del horno arco eléctrico en los últimos años. El reciclado de chatarra ahorra consumo de materias primas vírgenes y de energía, lo cual es muy beneficioso desde el punto de vista económico como del medio ambiente El proceso es de alta eficiencia y permite una sencilla extracción de la escoria y además es muy flexible; ya que es un proceso adecuado para la producción de acero de alta como de baja aleación y por tanto permite la obtención de una amplia gama de productos. Balance de masa Figura 5. Diagrama del balance de materia: Producción de una tonelada de Arrabio en un Alto Horno.
  • 10. 10 | P á g i n a El arrabio es la principal materia prima utilizada hoy en día para la producción de acero. En la figura 5 se presenta el diagrama de balance de materia general para un alto horno, para una producción de 1 tonelada de arrabio. Se consideran un total de 2 entradas y 2 salidas, manteniendo el supuesto de estado estacionario. Para obtener el hierro a partir de sus minerales, es necesario liberar el oxígeno que contienen los minerales mediante un proceso de reducción. El carbono cumple este rol, el cual se encuentra contenido principalmente en el coque y el carbón pulverizado. Además, el hierro entra en forma de mineral sinterizado (el sínter actúa como fundente), mineral granulado y pellets. Por último, es necesario una inyección constante de aire precalentado y presurizado, el cual reacciona con el coque y el carbón para formar una mezcla de monóxido de carbono y nitrógeno. Como resultado, se obtienen 1000 kg de arrabio, el cual se ubica en el fondo del horno. Sobre éste, se forma escoria, la cual posee una masa aproximada del 30% del arrabio producido. Los gases de salida consideran la principal fuente de emisión, con altas concentraciones de Nitrógeno, monóxido de carbono y dióxido de carbono. Balance de Materia General para el proceso. ENTRADAS Entrada 1 = Coque 380 kg + Mineral Sinterizado 1160 kg + Mineral Granular 280 kg + Pellets 190 kg Masa total Entrada Sólidos 1 = 2010 kg. Xe1= 18,9% Coque Xe2= 57,7% Mineral Xe3= 13,9% Granular Xe4= 9,5% Pelets Entrada 2: Volumen inyectado de aire: 995 Nm3/Ton arrabio Temperatura: 1453 K = 1180 °C Densidad: 2,9155 kg/m3. Masa = 2901,01 kg de aire. 147 Kg Carbón pulverizado. Entrada 2= masa kg aire 2901,01 kg + Carbón pulverizado 147 kg = 3048,01 kg Xe2.1= 95,177 % aire Xe2.2= 4,823 % carbón pulverizado
  • 11. 11 | P á g i n a SALIDAS Salida 1: Emisiones de Gas: 3758,08 kg de gas (incluyendo CO+ CO2+N2) / ton arrabio. Masa total salida 1: 3774,08 kg. Xs1.1=100% de gases Salida 2: Masa total salida 2 = 1000 kg Metal Caliente + 300 kg escoria = 1300 kg. Xs2.1= 23% en peso de Escoria Xs2.2= 77% en peso de Metal Caliente Reacciones presentes en el proceso. Fe2O3 + 3C => 2Fe + 3CO (Reacción de reducción directa). Fe2O3 + 3CO => 2Fe + 3CO2 (Reacción de reducción indirecta). Reacciones consideradas para el balance. C + 0,5O2 = CO……………....(1) CaCO3 = CaO + CO2 ………....(2) Fe2O3 + 3CO = 2Fe + 3CO2 ....(3) Fe2O3 alimentación = (1000/55.85) * (159,7/2) = 1429,722 kg Mineral Alimentación = Mineral Sinterizado + Mineral Granulado + Pellets = 1630 kg C Alimentación = 165 kg + 342 kg = 507 kg Carbono. O2 Salida = (507/12)*0,5= 21,125 kg-mol N2 Salida = 21,125* (79/21) = 79,47 kg-mol = 2225,16 kg Aire = 79,47 *(100/79)= 100,59 kg-mol= 2901,01 kg CO producido = (507/12) = 42,25 kg-mol CO reacciona= (507/55,85)*(3/2)= 13,62 kg-mol CO en gases = 42,25-13,62= 28,63 kg-mol = 801,64 kg
  • 12. 12 | P á g i n a CO2 en gases = CO2 en (2) + CO2 en (3) CO2 en gases = 13,62 + 3 = 16,62 kg-mol= 731,28 kg. Resumen del Balance Con un margen de error mínimo del 0,00001%, se cumple el supuesto de estado estacionario para la producción de una tonelada de arrabio. Notar la gran cantidad de masa emitida por los gases, los cuales alcanzan en conjunto las 3,7 toneladas. Estos gases son recuperados para ser reutilizados como combustible en la planta siderúrgica. SALIDA Masa ( Kg ) CO 801,64 CO2 731,28 N2 2225,16 Escoria 300 Hierro 1000 TOTAL Salida 5058,08 ENTRADA Masa ( Kg ) Mineral 1630 Coque 380 Carbón Pulverizado 147 Aire 2901,01 TOTAL Entrada 5058,01
  • 13. 13 | P á g i n a Alternativas de equipos en las operaciones unitarias Proceso Purofer Una de las alternativas de equipo para el proceso de alto horno es el proceso de Purofer que consiste en lo siguiente: Procedimiento: A diferencia del alto horno, este utiliza para su proceso en general combustible que consiste en petróleo pesado. Se carga mineral en granos de alta calidad por medio de un elevador inclinado a un horno de cuba lo que se considera como una de las entradas, por debajo entra una corriente de gas reductor al horno como una inyección de mezclade CO Y H2 presurizado lo que podemos considerar comouna segunda entrada, atraviesa el mineral y lo calienta a temperatura de la reacción (900 a 1050°C) reduciendo el contenido. El producto de todo este proceso es el hierro con un contenido como tal del 92 al 96%, luego este por medio del horno de arco eléctrico se transforma en acero.
  • 14. 14 | P á g i n a Desempeno, rendimiento y productividad El desempeño del proceso de producción de arrabio en los altos hornos, está definido principalmente por las capacidades del horno, el tipo y calidad de las materias primas utilizadas, y la cantidad de arrabio que se puede producir por día. En la actualidad los altos hornos más grandes tienen alrededor de una altura total de 80 m, con una altura del cuerpo del horno de 35 m y un diámetro interno máximo de alrededor de 16m, y un volumen interno de alrededor de 5,200 m3. Un horno de este tamaño puede producir aproximadamente 10,000 toneladas de arrabio por día Utilizando este dato, para un horno de similares características, se puede definir el rendimiento con referencia a 10,000 toneladas de arrabio por día. Rendimiento = 𝑡𝑜𝑛𝑒𝑙𝑎𝑑𝑎𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑑𝑎𝑠 𝑝𝑜𝑟 𝑑𝑖𝑎 10.000 𝑡𝑜𝑛𝑒𝑙𝑎𝑑𝑎𝑠 𝑝𝑜𝑟 𝑑𝑖𝑎 Para obtener una tonelada de arrabio, existen multitud de combinaciones de materias primas que logran el mismo resultado, a la vez que se comprende que la calidad de éstas varía dependiendo de la pureza y los grados de concentración de los elementos, de ésta manera se puede definir la productividad de una tonelada de arrabio como: Productividad= 𝑡𝑜𝑛𝑒𝑙𝑎𝑑𝑎 𝑑𝑒 𝑎𝑟𝑟𝑎𝑏𝑖𝑜 𝑘𝑔 𝑑𝑒 𝑖𝑛𝑠𝑢𝑚𝑜 De esta manera, separando los insumos como las 3 principales materias primas y considerando su costo por kilo, tenemos: Productividad= 𝑡𝑜𝑛𝑒𝑙𝑎𝑑𝑎 𝑑𝑒 𝑎𝑟𝑟𝑎𝑏𝑖𝑜 (𝑘𝑔 𝑑𝑒 𝑚𝑖𝑛𝑒𝑟𝑎𝑙 ∗𝑝𝑟𝑒𝑐𝑖𝑜 𝑑𝑒𝑙 𝑘𝑔 𝑚𝑖𝑛𝑒𝑟𝑎𝑙 )+( 𝑘𝑔 𝑐𝑜𝑞𝑢𝑒∗𝑝𝑟𝑒𝑐𝑖𝑜 𝑘𝑔 𝑑𝑒 𝑐𝑜𝑞𝑢𝑒)+(𝑘𝑔 𝑐𝑎𝑙𝑖𝑧𝑎∗𝑝𝑟𝑒𝑐𝑖𝑜 𝑑𝑒 𝑘𝑔 𝑐𝑎𝑙𝑖𝑧𝑎) Se obtiene la cantidad de toneladas de arrabio por cada peso gastado en insumos, lo que nos indicaría el rendimiento de nuestra inversión en materias primas respecto a lo producido. Si incluimos la totalidad de los costos incluyendo la mano de obra y los costos de preparación de la caldera, así como la utilización de las máquinas la productividad total quedaría. 𝑡𝑜𝑛𝑒𝑙𝑎𝑑𝑎 𝑑𝑒 𝑎𝑟𝑟𝑎𝑏𝑖𝑜 ( 𝑘𝑔 𝑑𝑒 𝑖𝑛𝑠𝑢𝑚𝑜∗ $ 𝑘𝑔 𝑖𝑛𝑠𝑢𝑚𝑜) + (𝑡𝑖𝑒𝑚𝑝𝑜 𝑚𝑎𝑞𝑢𝑖𝑛𝑎𝑠 ( ℎ𝑟 𝑡𝑜𝑛 ) ∗ $ ℎ𝑜𝑟𝑎 𝑚𝑎𝑞𝑢𝑖𝑛𝑎) + (𝑚𝑎𝑛𝑜 𝑜𝑏𝑟𝑎 ( ℎ𝑟 𝑡𝑜𝑛 ) ∗ $ℎ𝑟 ℎ𝑜𝑚𝑏𝑟𝑒) + (𝐾𝑤ℎ 𝑐𝑜𝑛𝑠𝑢𝑚𝑖𝑑𝑜𝑠 ∗ $ 𝐾𝑤ℎ) Es decir, con esta medida se puede obtener la cantidad de toneladas de arrabio, por cada peso invertido en los costos totales de producción.
  • 15. 15 | P á g i n a