SlideShare una empresa de Scribd logo
1 de 116
Descargar para leer sin conexión
lJNIVERSIDAD DE CHILE
. .FACULTAD DE,CIENCIAS FISICASYMATElVlATICAS
DEPARTAMENTO DE INGENIERIA CIV1L
ESTUDIO DE LA UTILIZACIÓN DE CAUCHO DE NEUMÁTICOS EN MEZCLAS
ASFÁLTICAS EN CALIENTE MEDIANTE PROCESO SECO
MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL
NÁYADE IRENE RAMÍREZ PALMA
PROFESOR GUÍA:
GABRIELA MUÑOZ ROJAS
MIEMBROS DE LA COMISIÓN:
DAVID CAMPUSANO BROWN
FEDERICO DELFÍN ARIZTÍA
SANTIAGO DE CHILE
DICIEMBRE 2006
i
CONTENIDO
Pág.
1. INTRODUCCIÓN 1
1.1 INTRODUCCIÓN GENERAL 1
1.2 OBJETIVOS 4
2. MARCO TEÓRICO 5
2.1 MEZCLAS ASFÁLTICAS EN CALIENTE 5
2.1.1 PROPIEDADES DE LAS MEZCLAS 5
2.2 MÉTODO DE DISEÑO 8
2.3 ASFALTOS MODIFICADOS 11
3. MODIFICACIÓN DE MEZCLAS ASFÁLTICAS MEDIANTE LA
INCORPORACIÓN DE CAUCHO DE NEUMÁTICOS DESECHADOS 12
3.1.1CARACTERISTICAS DE LOS NEUMÁTICOS 12
3.2 NEUMÁTICOS DESECHADOS 14
3.2.1 PROCESO AMBIENTAL 15
3.2.2 TRITURACIÓN CRIOGÉNICA 16
3.3 APLICACIÓN DE GRANOS DE CAUCHO EN LAS MEZCLAS
ASFÁLTICAS 18
3.3.1 PROCESO POR VÍA HÚMEDA 19
3.3.1.1 Modificación del ligante 20
3.3.1.2 Especificaciones para el proceso por vía húmeda según Dirección de
Vialidad 21
3.3.2 PROCESO POR VÍA SECA 25
3.3.2.1 Tecnologías para el uso de caucho reciclado mediante vía seca 27
3.4 CARACTERÍSTICAS DE LAS MEZCLAS ASFÁLTICAS EN CALIENTE
MODIFICADAS CON CAUCHO 29
3.5 EXPERIENCIAS EXTRANJERAS Y NACIONALES UTILIZANDO CAUCHO
RECICLADO 30
3.5.1 TRAMO EXPERIMENTAL I (Ruta X –65, km 22.270-22.770) 31
3.5.2 TRAMO EXPERIMENTAL II (Ruta 60 CH, km 66.000-67.500) 33
4. DESARROLLO EXPERIMENTAL 36
4.1 CARACTERIZACIÓN DE LOS MATERIALES 36
ii
4.1.1 AGREGADOS PÉTREOS 36
4.1.2 LIGANTE ASFÁLTICO 39
4.1.3 MEZCLA DE ÁRIDOS 41
4.2 DISEÑO MARSHALL DE LA MEZCLA PATRÓN 43
4.3 PREPARACIÓN DE LA MEZCLA MEDIANTE PROCESO POR VÍA
SECA 48
4.3.1 CAUCHO UTILIZADO 48
4.3.2 GRANULOMETRÍA DE LA MEZCLA MEJORADA CON CAUCHO 50
4.3.3 DETERMINACIÓN DEL PORCENTAJE ÓPTIMO DE CAUCHO 51
4.3.4 METODOLOGÍA PARA LA CONFECCIÓN DE LA MEZCLA
MEJORADA CON CAUCHO 51
4.4 DETERMINACIÓN DEL TIEMPO Y TEMPERATURA DE DIGESTIÓN 52
4.5 ESTUDIO DEL EFECTO DE LA TEMPERATURA Y TIEMPO DE
DIGESTIÓN EN LOS PARÁMETROS MARSHALL 59
4.5.1 DENSIDAD 59
4.5.2 ESTABILIDAD 61
4.5.3 FLUIDEZ 62
4.5.4 HUECOS EN LA MEZCLA TOTAL 64
4.5.5 VACÍOS EN EL AGREGADO MINERAL 66
4.6 DISEÑO FINAL 68
4.6.1 PARÁMETROS MARSHALL 69
4.6.2 DETERMINACIÓN DEL PORCENTAJE DE ASFALTO PARA EL
DISEÑO 75
4.7 VERIFICACIÓN DEL PORCENTAJE DE CAUCHO DE DISEÑO 77
4.7.1 RESISTENCIA A COMPRESION DIAMETRAL 77
4.7.2 MODULO RESILIENTE 80
4.7.2.1 Módulo Resiliente según Norma CEN 12697-26 82
4.7.2.2 Módulo Resiliente según Norma ASTM D4123-82 84
4.7.3 RESISTENCIA A LA FATIGA 89
4.7.4 RESULTADOS FINALES 92
5 CONCLUSIONES 93
5.1 GENERALES 93
5.2 ESPECÍFICAS 94
iii
6. RECOMENDACIONES 96
7. BIBLIOGRAFÍA Y REFERENCIAS 98
ANEXOS 102
iv
LISTA DE FIGURAS
Pág.
Figura 2.1. Martillo Marshall 9
Figura 2.2. Equipo Marshall 10
Figura 3.1. Acumulación de neumáticos a la orilla del camino 14
Figura 3.2. Esquema de fabricación de asfalto modificado con caucho mediante el proceso
por vía húmeda 20
Figura 3.3. Esquema de fabricación de la mezcla asfáltica con caucho por vía seca 26
Figura 4.1. Curva distribución granulométrica agregados 38
Figura 4.2. Curva distribución granulométrica mezcla IV-A-12 42
Figura 4.3. Probetas Marshall sin desmoldar 44
Figura 4.4. Variación de la Densidad respecto al porcentaje de cemento asfáltico, para
mezcla patrón 45
Figura 4.5. Variación de la Estabilidad respecto al porcentaje de cemento asfáltico, para
mezcla patrón 45
Figura 4.6. Variación de la Fluidez respecto al porcentaje de cemento asfáltico, para mezcla
patrón 46
Figura 4.7. Variación de los Huecos en la mezcla respecto al porcentaje de cemento
asfáltico, para mezcla patrón 46
Figura 4.8. Variación de Vacíos en el agregado mineral respecto al porcentaje de cemento
asfáltico, para mezcla patrón 47
Figura 4.9. Curva distribución granulométrica caucho 49
Figura 4.10. Conjunto de compactación 52
Figura 4.11. Resultados mezclas C1 y C2 55
Figura 4.12. Resultados mezclas C3 y C4 56
Figura 4.13. Resultados mezclas C5, C6 y C7 57
Figura 4.14. Resultados mezclas con 1% de caucho con tiempo de digestión de dos
horas 58
Figura 4.15. Variación de la densidad respecto al porcentaje de cemento asfáltico, para
mezclas con 0.5% de caucho, tiempo de digestión de dos horas y diferentes temperaturas de
digestión 60
v
Figura 4.16. Variación de la densidad respecto al porcentaje de cemento asfáltico, para
mezclas con temperatura de digestión de 150ºC por dos horas 61
Figura 4.17. Variación de la Estabilidad respecto al porcentaje de cemento asfáltico, para
mezclas con 0.5% de caucho, tiempo de digestión de dos horas y diferentes temperaturas de
digestión 62
Figura 4.18. Variación de la fluidez respecto al porcentaje de cemento asfáltico, para
mezclas con 0.5% de caucho, tiempo de digestión de dos horas y diferentes temperaturas de
digestión 63
Figura 4.19. Variación de los huecos en la mezcla respecto al porcentaje de cemento
asfáltico, para mezclas con 0.5% de caucho, tiempo de digestión de dos horas y diferentes
temperaturas de digestión 65
Figura 4.20. Variación de los huecos en la mezcla respecto al porcentaje de cemento
asfáltico, para mezclas con temperatura de digestión de 150ºC por dos horas 66
Figura 4.21. Variación de vacíos en el agregado mineral respecto al porcentaje de cemento
asfáltico, para mezclas con 0.5% de caucho, tiempo de digestión de dos horas y diferentes
temperaturas de digestión 67
Figura 4.22. Variación de vacíos en el agregado mineral respecto al porcentaje de cemento
asfáltico, para mezclas con temperatura de digestión de 150ºC por dos horas 68
Figura 4.23. Variación de la densidad respecto al porcentaje de cemento asfáltico, para
mezclas sin caucho y a 170º C por dos horas 70
Figura 4.24. Variación de la estabilidad respecto al porcentaje de cemento asfáltico, para
mezclas sin caucho y a 170º C por dos horas 71
Figura 4.25. Variación de la fluidez respecto al porcentaje de cemento asfáltico, para
mezclas sin caucho y a 170º C por dos horas 72
Figura 4.26. Variación de los huecos en la mezcla respecto al porcentaje de cemento
asfáltico, para mezclas sin caucho y a 170ºC por dos horas 74
Figura 4.27. Variación de vacíos en el agregado mineral respecto al porcentaje de cemento
asfáltico, para mezclas sin caucho y a 170º C por dos horas 75
Figura 4.28. Variación de la resistencia a la compresión diametral respecto al porcentaje de
caucho 76
Figura 4.29. Equipo Nottingham Asphalt Tester NU-10 81
Figura 4.30. Marco de Carga para Ensayes de Módulo Resiliente 81
vi
Figura 4.31. Variación del Módulos Resiliente a distintas temperaturas respecto al
porcentaje de caucho 83
Figura 4.32. Variación del Módulo Resiliente con relación a la frecuencia de aplicación de
carga a una temperatura de 25ºC 86
Figura 4.33. Variación del Módulo Resiliente con relación a la frecuencia de aplicación de
carga a una temperatura de 40ºC 86
Figura 4.34. Variación del Módulo Resiliente con relación al incremento en el porcentaje
de caucho, para una temperatura de 25ºC 88
Figura 4.35. Variación del Módulo Resiliente con relación al incremento en el porcentaje
de caucho, para una temperatura de 40ºC 88
Figura 4.36. Marco de Carga para Ensaye de Fatiga 90
Figura 4.37. Curva de Fatiga para mezclas con distinto porcentaje de adición de
caucho 91
vii
LISTA DE TABLAS
Pág.
Tabla 3.1. Terminología asociada con el uso del caucho en las mezclas asfálticas 18
Tabla 3.2. Granulometría SemiGap Graded 22
Tabla 3.3. Requerimientos del caucho triturado en migas 23
Tabla 3.4. Requisitos del ligante asfalto-caucho después de la reacción según ASTM 24
Tabla 3.5. Requisitos Mezcla con Asfalto-Caucho 24
Tabla 3.6. Granulometría del caucho usado en Ruta X-65 32
Tabla 4.1. Densidades y absorción del agregado pétreo 37
Tabla 4.2. Granulometría agregado pétreo 38
Tabla 4.3. Cubicidad de partículas agregado pétreo grueso 39
Tabla 4.4. Índice de Plasticidad agregado pétreo 39
Tabla 4.5. Resistencia al desgaste de agregado pétreo grueso 39
Tabla 4.6. Resultados cemento asfáltico 41
Tabla 4.7. Densidades y absorción de la mezcla de agregados 41
Tabla 4.8.Granulometría Semidensa según Manual de Carreteras Vol. 5 y mezcla de
trabajo 42
Tabla 4.9. Requisitos para Mezclas Asfálticas según especificaciones del M.C.-V.5 43
Tabla 4.10. Parámetros Marshall de la mezcla patrón 44
Tabla 4.11. Granulometría del caucho suministrado por PROBISA 49
Tabla 4.12. Granulometría del caucho utilizada 49
Tabla 4.13. Distribución Granulométrica en peso de mezclas con caucho 50
Tabla 4.14. Distribución Granulométrica en volumen de mezclas con caucho 50
Tabla 4.15. Resultados ensaye Inmersión-Compresión 54
Tabla 4.16. Resultados mezclas con 1% de caucho con tiempo de digestión de dos
horas 58
Tabla 4.17. Resultados de Densidad 59
Tabla 4.18. Resultados de Estabilidad Marshall 61
Tabla 4.19. Resultados de Fluidez Marshall 63
Tabla 4.20. Resultados de huecos en la mezcla total 64
Tabla 4.21. Resultados de vacíos en el agregado mineral 66
viii
Tabla 4.22. Resultados de Densidad para mezclas con temperatura de digestión
de 170ºC 69
Tabla 4.23. Resultados de Estabilidad Marshall para mezclas con temperatura de digestión
de 170ºC 71
Tabla 4.24. Resultados de Fluidez Marshall para mezclas con temperatura de digestión
de 170ºC 72
Tabla 4.25. Resultados de huecos en la mezcla total para mezclas con temperatura de
digestión de 170ºC 73
Tabla 4.26. Resultados de vacíos en el agregado mineral para mezclas con temperatura de
digestión de 170ºC 74
Tabla 4.27. Parámetros Marshall para evaluar el porcentaje de asfalto 76
Tabla 4.28. Resultados de las mezclas con 5.5% de cemento asfáltico 77
Tabla 4.29. Resultados mezclas con distinto porcentaje de caucho 78
Tabla 4.30. Resultados Módulo Resiliente a 25ºC según Norma CEN 12697-26 82
Tabla 4.31. Resultados Módulo Resiliente a 40ºC según Norma CEN 12697-26 82
Tabla 4.32. Resultados Módulo Resiliente según Norma ASTM D4123-82 85
Tabla 4.33. Resultados Ensaye de Fatiga 91
TABLA A.1: Resultados mezcla patrón (P1) 103
TABLA A.2: Resultados mezcla fabricada con temperatura de digestión de 150ºC por dos
horas con 1.0% de caucho (C1) 103
TABLA A.3: Resultados mezcla fabricada con temperatura de digestión de 150ºC por dos
horas con 1.5% de caucho (C2) 104
TABLA A.4: Resultados mezcla fabricada con temperatura de digestión de 160ºC por una
hora con 1.0% de caucho (C3) 104
TABLA A.5: Resultados mezcla fabricada con temperatura de digestión de 160ºC por dos
horas con 1.0% de caucho (C4) 105
TABLA A.6: Resultados mezcla fabricada con temperatura de digestión de 170ºC por dos
horas con 0.5% de caucho (C5) 105
TABLA A.7: Resultados mezcla fabricada con temperatura de digestión de 170ºC por dos
horas con 1.0% de caucho (C6) 106
TABLA A.8: Resultados mezcla fabricada con temperatura de digestión de 170ºC por dos
horas con 1.5% de caucho (C7) 106
1
1. INTRODUCCIÓN
1.1 INTRODUCCIÓN GENERAL
Los neumáticos desechados constituyen un grave problema medioambiental en
Chile y en el mundo. Las principales dificultades generadas por este residuo, tienen que ver
con su disposición final, dado que la mayoría de los neumáticos fuera de uso, se encuentran
botados a la orilla del camino, en sitios eriazos o en vertederos clandestinos, ocupando gran
espacio. La acumulación de neumáticos incrementa la posibilidad de incendios y la posible
emanación de gases tóxicos, además de contribuir a la proliferación de roedores, insectos y
otros posibles focos de infecciones.
La solución al problema que plantean los neumáticos fuera de uso, pasa
necesariamente por la búsqueda de vías capaces de valorizar adecuadamente este residuo
bajo condiciones económicas aceptables y en cantidades suficientes como para hacer frente
al elevado número de toneladas que se generan anualmente. Desde el punto de vista de la
reutilización como materia prima, se debe tener presente que en un neumático, alrededor de
un 60% de su composición son cauchos naturales o sintéticos, con posibilidades de ser
utilizados en otras aplicaciones.
El caucho granulado reciclado de neumáticos se obtiene a través de la trituración de
éstos y la separación de los componentes que los constituyen, principalmente el acero y las
fibras textiles. La trituración del neumático se realiza principalmente por dos métodos, uno
a temperatura ambiente y otro, criogénico. El primero de ellos, consiste en un proceso
puramente mecánico de trituración, donde los distintos tamaños de los granos de caucho
dependen de las etapas a las que se haya sometido. En segundo lugar, en la trituración
criogénica, los neumáticos se someten a baja temperatura, con lo cual el caucho se vuelve
frágil y fácil de destrozar en pequeñas partículas. A través de los procesos nombrados, se
obtiene migas de caucho con determinadas granulometrías para distintas aplicaciones.
En la actualidad, la instalación en el país de plantas recicladoras de neumáticos y
procesadoras del caucho, se encuentra por el momento sólo en etapa de proyecto, esperando
algún incentivo para realizar esta gran inversión. Esto implica que, desde un punto de vista
2
económico, los precios para obtener el caucho sean altos, pues sólo se consigue
importándolo desde países como Brasil o China.
Las mezclas asfálticas utilizadas en pavimentos, pueden incorporar una parte
importante del caucho de contenido en los neumáticos desechados. La adición de caucho
proveniente de neumáticos a las mezclas asfálticas es una forma de reciclar tales desechos y
mejorar las propiedades del pavimento. Las mezclas asfálticas modificadas con caucho
permiten obtener un pavimento con mejores respuestas a los cambios térmicos, así como
también se aumenta la resistencia a la fisuración por fatiga y al envejecimiento,
aumentando la vida útil del pavimento y disminuyendo los costos de mantenimiento. Por
otro lado, el incorporar caucho a las mezclas, reduce el nivel de ruido generado por el
tráfico al contacto con el pavimento y ayuda a la preservación del medio ambiente al
reciclar los neumáticos.
Las formas más comunes de incorporación de caucho de neumáticos en desuso
dentro de las mezclas asfálticas, son la vía húmeda y la vía seca. En la primera de ellas, el
caucho es mezclado directamente con el ligante, de igual forma que un asfalto modificado,
para añadir posteriormente los agregados. En la vía seca, los granos de caucho se añaden
como una fracción de áridos, sustituyendo parte de la fracción fina de la mezcla, antes de la
incorporación del ligante.
El grado de aporte de la incorporación del caucho molido en la mejora de las
propiedades de las mezclas, depende de varios factores, dentro de los cuales se pueden
incluir la tecnología de la incorporación (vía seca o húmeda), naturaleza del caucho, su
granulometría y el tamaño de las partículas, porcentaje de adición y el tiempo de reacción
para el proceso húmedo y para el caso de la incorporación por vía seca, el tiempo de
digestión.
La utilización de caucho en mezclas asfálticas no es reciente. Varios países, como
USA, Canadá, Brasil y España entre otros, han incorporado este tipo de mezclas en tareas
de conservación y construcción de pavimentos. En Chile, el estudio de las mezclas asfalto
caucho se ha venido investigando desde el año 1999. Con el apoyo del MOP y del Instituto
Chileno del Asfalto, la empresa Probisa realiza un estudio del mejoramiento del asfalto en
3
base a reciclados de neumáticos (2000) y en el año 2002, un memorista de la Universidad
de Chile efectúa un estudio en laboratorio acerca de la factibilidad técnica de las mezclas
asfálticas modificadas con caucho, utilizando el método húmedo. Cabe destacar la
existencia de dos tramos de prueba realizados por la Dirección de Vialidad utilizando
asfalto caucho a través del proceso húmedo, el primero de ellos es un tramo de la ruta X-65
en la XI región, realizado en el mes de mayo del 2004, y el segundo, en la rehabilitación de
la ruta 60-CH, en la V región, llevado a cabo en el mes de marzo del año 2005. (Ver
referencia Nº[1])
El presente trabajo se enmarca dentro de una iniciativa de investigación de parte del
Laboratorio Nacional de Vialidad y lo que se pretende es estudiar el efecto de la
incorporación de caucho de neumáticos desechados dentro de mezclas asfálticas en caliente
utilizando la vía seca, a través de ensayos en laboratorio, y compararlas con los estudios y
experiencias realizadas en Chile mediante el proceso húmedo y con mezclas asfálticas
tradicionales. Con este trabajo, se espera obtener una caracterización de las mezclas
asfálticas con caucho mediante proceso seco, lo que permitiría proponer normativas para la
Dirección de Vialidad, especialmente dentro del Manual de Carreteras.
4
1.2 OBJETIVOS
Objetivos generales
• Estudiar el comportamiento mecánico de las mezclas asfálticas a las cuales se les ha
incorporado caucho como material granular fino.
Objetivos específicos
• Tomar conocimiento de la realidad nacional e internacional acerca del tema y de los
proyectos ya realizados usando los distintos procesos de incorporación de caucho
dentro de las mezclas asfálticas.
• Caracterizar el caucho proveniente del reciclaje de neumáticos, para establecer
proporciones a usar dentro de la granulometría del árido de la mezcla.
• Realizar ensayos que permitan evaluar las propiedades de la mezcla en la cual será
utilizado el caucho como material granular fino.
• Proponer especificaciones para mezclas asfalto caucho mediante el proceso seco.
5
2. MARCO TEÓRICO
2.1 MEZCLAS ASFÁLTICAS EN CALIENTE
La mezcla asfáltica la constituye un material pétreo recubierto con una película de
asfalto, uniformemente combinados, en proporciones previamente especificadas. Las
cantidades relativas de estos materiales, determinan las propiedades y características de la
mezcla.
Las mezclas asfálticas pueden fabricarse en caliente o en frío, siendo más comunes
las primeras. Se denominan “mezclas en caliente”, pues para lograr que los áridos se
mezclen homogéneamente con el asfalto, ambos componentes se llevan a temperaturas
altas, sobre los 100ºC, para obtener una buena trabajabilidad de la mezcla. El proceso de
mezclado se realiza en una Planta Asfáltica, y luego se transporta la mezcla al sitio de
pavimentación y se coloca por medio de una pavimentadora o finisher, asegurándose que la
superficie se encuentre preparada correctamente. Una vez extendida, se somete a un
proceso de compactación, que hace que esta mezcla tenga propiedades resistentes al
desgaste producido por el paso de los vehículos, y a su vez, pueda traspasar la solicitación
del peso de ellos hacia las capas más profundas, absorbiendo una parte de esta solicitación.
A través de este proceso, se obtiene una superficie suave y bien consolidada.
2.1.1 PROPIEDADES DE LAS MEZCLAS
Las propiedades fundamentales que deben tener las mezclas asfálticas son las
siguientes:
Durabilidad, propiedad de la mezcla que hace que el pavimento sea capaz de
resistir la desintegración debido al tránsito y al clima. Éste último, afecta
principalmente al asfalto de la capa superficial por estar en contacto con el sol,
el aire y el agua, pues produce que este material, pierda las propiedades
aglutinantes, se oxide, se endurece y envejece, afectando la vida útil del
pavimento.
6
Estabilidad, se refiere a la capacidad de la mezcla asfáltica para resistir las
cargas de tránsito sin que se produzcan deformaciones. Esta propiedad depende
de la cohesión de la mezcla y de la fricción interna.
La fricción interna es aportada por el material pétreo y depende del tamaño del
árido y de la rugosidad de sus caras. Las mezclas con materiales más gruesos y
de caras angulosas tendrán mayor estabilidad que mezclas con materiales
finos.
La cohesión es la fuerza aglutinante de la mezcla que depende
fundamentalmente de la capacidad que tenga el asfalto de mantener unidas las
partículas del agregado. Esta propiedad varía inversamente con la temperatura y
aumenta con el contenido de asfalto hasta llegar a un óptimo, luego hace un
efecto lubricador.
La pérdida de estabilidad en un pavimento se traduce en ahuellamientos y
ondulaciones.
Flexibilidad, capacidad de la mezcla de adaptarse a las deformaciones por
asentamientos de la base y subrasante sin agrietarse.
Resistencia a la fatiga, capacidad del pavimento asfáltico de soportar esfuerzos
provocados por el tránsito en repetidas pasadas.
Impermeabilidad, las mezclas deben ser en lo posible totalmente
impermeables, de manera que el agua superficial no pueda atravesar hacia las
capas inferiores, evitando con ello que éstas puedan perder capacidad de
soporte.
Resistencia al deslizamiento, capacidad del pavimento asfáltico de ofrecer
resistencia al resbalamiento o deslizamiento, especialmente cuando está
húmedo.
Trabajabilidad, se refiere a la capacidad que tenga la mezcla de colocarse y
compactarse con facilidad.
7
El objetivo principal en el diseño de mezclas asfálticas es encontrar la combinación
más económica de agregados y asfalto, que le dé a la mezcla las propiedades antes vistas.
En resumen, podría decirse que lo que se busca con el diseño de las mezclas es
cumplir con lo siguiente:
1. Asfalto suficiente para asegurar un pavimento durable a través del total
recubrimiento de los agregados y trabazón de las partículas, bajo una adecuada
compactación.
2. Estabilidad suficiente de la mezcla para satisfacer los requerimientos de servicio
y las demandas del tráfico sin deformación o desplazamiento.
3. Porcentaje de huecos en la mezcla total compactada suficiente para absorber la
consolidación producto del amasado del tránsito.
4. Adecuada trabajabilidad para permitir una operación de construcción eficiente
en la colocación de la mezcla para pavimentación.
8
2.2 MÉTODO DE DISEÑO
El diseño de una mezcla asfáltica consiste básicamente en seleccionar una
granulometría y un porcentaje de asfalto de modo que, una vez fabricada y puesta en
terreno, cumpla las propiedades para la cual fue diseñada. Los métodos de dosificación
tienen como fin determinar el porcentaje de asfalto óptimo para una combinación
determinada de agregados de acuerdo a las propiedades seleccionadas.
Previo al diseño de la mezcla, es necesario que todos los materiales constituyentes,
agregados y asfaltos, sean analizados para decidir si son aptos o no para formar parte del
pavimento a construir.
El método de diseño más utilizado en Chile para las mezclas en caliente, es el
Método Marshall, el cual está basado en el empleo de ensayos mecánicos.
El Método Marshall es aplicable a mezclas en caliente con cementos asfálticos y
que contengan agregados con tamaño máximo igual o inferior a 25 mm. Este procedimiento
puede usarse tanto para el diseño en laboratorio como para el control de terreno.
El desarrollo del método implica la confección de una serie de probetas
normalizadas de 2½” de altura y 4” de diámetro, las cuales difieren en el porcentaje de
ligante. Suelen utilizarse al menos cinco contenidos de cemento asfáltico, variando entre
uno y otro en 0.5%, tratando de estar por encima y por debajo del óptimo esperado. Para
cada contenido de ligante, se fabrican al menos tres probetas.
Las probetas se preparan de acuerdo a un procedimiento específico de
calentamiento, mezclado y compactación. Las temperaturas de mezclado y de
compactación dependen del cemento asfáltico que se utilice para fabricar las probetas.
La compactación del material dentro de los moldes se realiza a través del martillo
Marshall, que es un dispositivo de acero, formado por una base plana y circular de 3 8
7 ” de
diámetro, equipado con un peso de 10 [lb] (4.54 [kg]) y construido de modo de obtener una
9
altura de caída de 18”. Las probetas se compactan con 75 golpes por cara, o como se
especifique según el tránsito de diseño.
Figura 2.1. Martillo Marshall
Las dos características principales de este método de diseño son el análisis
Densidad-Huecos y el ensaye de Fluidez y Estabilidad de las probetas.
La estabilidad de la probeta es el valor de la carga máxima en Newton que alcanzará
al ensayarla a compresión lateral en la máquina de ensaye Marshall, la cual está diseñada
para aplicar carga a las probetas a través de unas mordazas semicirculares a una velocidad
de deformación de 51 mm por minuto. La fluidez es la deformación, en cuartos de
milímetros, que ocurre desde el instante en que se aplica la carga hasta lograr la carga
máxima.
10
Figura 2.2. Equipo Marshall
Con los valores obtenidos, y en base a los criterios definidos en el Manual de
Carreteras en función del tipo de tránsito y el empleo de la mezcla, ya sea como carpeta de
rodado, carpeta intermedia o capa base, se obtiene el porcentaje óptimo de asfalto y la
mezcla de agregados pétreos que garantizan una buena estructura.
11
2.3 ASFALTOS MODIFICADOS
Existen situaciones en las cuales las mezclas asfálticas no son capaces de resistir la
acción conjunta del tránsito y clima, por lo cual se hace necesario desarrollar mezclas más
resistentes, mejorando sus propiedades mecánicas, haciendo énfasis en la durabilidad, el
ahuellamiento y la fatiga.
El asfalto es susceptible a la temperatura. Por ser un material viscoelástico, presenta
cambios continuos en sus características según el rango de temperaturas de operación: es
rígido a bajas temperaturas y fluido a altas. El principal objetivo al utilizar agentes
modificadores en el cemento asfáltico es lograr propiedades reológicas no obtenidas en los
asfaltos producidos con técnicas convencionales de refinación, principalmente las que
tienen que ver con la sensibilidad térmica.
Los beneficios que se pueden obtener al modificar el asfalto son:
Aumentar la durabilidad del pavimento.
Disminuir la susceptibilidad térmica, de modo que se aumente la rigidez a altas
temperaturas de servicio, mejorando la resistencia de las mezclas a la
deformación permanente y, por otro lado, se reduzca la fragilidad del asfalto
expuesto a bajas temperaturas, previniendo la fisuración térmica.
Aumentar la resistencia a fatiga de las mezclas.
Mejorar la adhesión del asfalto con los agregados pétreos.
Mejorar la cohesión, brindando mejor retención de los agregados.
Reducir el envejecimiento en servicio, ampliando la vida útil de las mezclas
asfálticas, ya que se mantienen las ventajas iniciales.
En general, la incorporación de polímeros en las mezclas asfálticas ha permitido
mejorar sus propiedades, como disminución de la deformabilidad y mayor resistencia a las
solicitaciones del tránsito. Los polímeros son sustancias orgánicas de alto peso molecular
que logran hidratarse e hincharse al interactuar con el betún asfáltico.
Los polímeros más utilizados son los plastómeros EVA (etileno acetato de vinilo),
los elastómeros SBS (estireno-butadieno-estireno) y el caucho molido.
12
3. MODIFICACIÓN DE MEZCLAS ASFÁLTICAS MEDIANTE LA
INCORPORACIÓN DE CAUCHO DE NEUMÁTICOS DESECHADOS
Uno de los polímeros utilizados para modificar el ligante y las mezclas asfálticas es
el caucho. Este puede ser especialmente fabricado o provenir de la recuperación de piezas
en desuso, como es el caso de los neumáticos.
3.1 CARACTERISTICAS DE LOS NEUMÁTICOS
Las principales componentes de los neumáticos son cauchos naturales y sintéticos
(SBS, SBR) y negro de humo. En menor cantidad, se encuentran el acero, textiles y
aditivos, entre los que se destacan aceites, óxido de zinc activado con cadmio, dióxido de
titanio, sulfuro, sílica, resinas fenólicas y ácidos grasos.
El caucho natural se elabora a partir del látex, que es una resina blanca lechosa que
se da en el árbol Hevea, más conocido como árbol del caucho, el cual se encuentra en
selvas húmedas tropicales de Brasil, Colombia o Tailandia. Este látex es una dispersión
acuosa que contiene entre un 25% a un 40% de caucho. Las cualidades que el caucho
natural aporta a los neumáticos son: la maleabilidad, gran resistencia mecánica y
adherencia de éstos sobre cualquier tipo de superficie, cualidades que hacen que en la
actualidad aún siga siendo un elemento indispensable para la industria de los neumáticos,
donde se consume aproximadamente el 70% de la producción mundial.
El caucho sintético fue desarrollado en los años 30, para contrarrestar la falta de
caucho natural. Las propiedades del caucho sintético son similares a las del natural, pero
tiene otras ventajas sobre éste, como por ejemplo, mayor resistencia a la abrasión, alta
adherencia al suelo y alta resistencia a la temperatura, más aún que el caucho natural.
En general, gran parte del caucho sintético es usado para la fabricación de los
neumáticos de automóviles, pero para los de camiones y buses, es necesaria una proporción
más grande de caucho natural, con el objeto de controlar mejor la generación de calor.
Como dato adicional, se tiene que las llantas de los automóviles contienen
aproximadamente 16% de caucho natural y 31% de sintético.
13
La combinación de cauchos naturales y sintéticos, se realiza de modo de que los
primeros, proporcionen elasticidad y los segundos, estabilidad térmica. Esta combinación
de efectos favorece la durabilidad y la capacidad de adaptarse a las nuevas exigencias del
tránsito.
El negro de humo es obtenido por combustión o descomposición térmica parcial de
gases naturales o hidrocarburos pesados. Este elemento en las llantas permite conseguir
unas mezclas más resistentes a la rotura y a la abrasión, dándoles el característico color
negro.
14
3.2 NEUMÁTICOS DESECHADOS
Cada año millones de neumáticos son desechados en todo el mundo. El principal
inconveniente con los neumáticos usados es su disposición final, dado que la mayoría de
ellos terminan en sitios eriazos o en vertederos clandestinos. El almacenamiento ocupa un
espacio considerable, aparte del peligro por la posibilidad de incendios y además por ser un
terreno ideal para la proliferación de roedores e insectos que a menudo son transmisores de
enfermedades. La quema directa provoca graves problemas ambientales ya que produce
emisión de gases que contienen partículas nocivas para el entorno. En los vertederos,
imposibilitan la compactación y ocasionan problemas de estabilidad por degradación
química parcial que sufren, generando inseguridad en los mismos.
Figura 3.1. Acumulación de neumáticos a la orilla del camino.
Se ha estimado que un 80% de los neumáticos desechados proceden de automóviles
o camionetas, un 20% de los vehículos pesados, y alrededor del 1% restante son
neumáticos especiales para motocicletas, aviones, equipos de construcción y vehículos
especiales.
15
En Chile no existe ningún método de reciclaje de los neumáticos. La única solución
que se ha dado a mayor escala, es el uso como combustible en los hornos de cementeras,
como reemplazo de parte del carbón necesario para la producción de clinker. En etapa de
estudio, se encuentra el proyecto de la instalación de una planta procesadora de neumáticos
en la planta de Codelco, ubicada en Calama.
En la actualidad, se utilizan diversos métodos para valorizar los neumáticos
desechados, a través de la obtención de granos de caucho, los cuales se usan como materia
prima en la elaboración de mezclas asfálticas. El caucho reciclado es obtenido a través de la
trituración de los neumáticos, separándolo de los demás componentes como el acero y las
fibras textiles.
Según el método utilizado para la producción de granos de caucho, se obtienen
diferentes características en cuanto a la forma y textura de ellos. Las técnicas de molienda
más comunes son el proceso ambiental y la trituración criogénica.
3.2.1 PROCESO AMBIENTAL
La trituración ambiental puede ser lograda de dos modos: por granulación y por
molienda. Este es un proceso puramente mecánico, donde el material entra en un molino o
granulador a temperatura ambiente, la cual aumenta considerablemente durante el proceso
debido a la fricción generada al ser desgarrado.
Los granuladores reducen el tamaño del caucho mediante corte por la acción de
cuchillas. El tamaño del producto es controlado por tamices ubicados dentro de la máquina,
los cuales pueden ser cambiados para variar el tamaño del producto final.
Otra forma es pasar el material por una serie de molinos, donde los primarios,
secundarios y finales son muy similares, y operan básicamente bajo el mismo principio,
estos usan dos rodillos grandes que van rotando, con dentaduras que cortan el material,
ubicadas en uno o ambos rodillos. La diferencia de los rodillos está en la configuración que
se les da; estos funcionan cara a cara, muy juntos y con distintas velocidades. El tamaño del
16
producto es controlado por el espacio libre entre los rodillos. El caucho, por lo general, es
pasado por 2 o 3 molinos para alcanzar varias reducciones de tamaño del grano, y así poder
separarlo de los otros componentes como fibras y acero que se encuentran en los
neumáticos. Las partículas de caucho producidas en molinos tienen formas típicas
alargadas, angostas y con una alta superficie de área.
El caucho obtenido por el proceso ambiental, se clasifica según el tamaño de las
partículas en Neumáticos cortados, Neumáticos triturados en astillas (Chips), caucho en
polvo y caucho en migas.
En general, los productos resultantes de este proceso son de alta calidad y limpio de
todo tipo de impurezas, facilitando la utilización de este material en nuevos procesos y
aplicaciones.
3.2.2 TRITURACIÓN CRIOGÉNICA
Este proceso se refiere al empleo de nitrógeno liquido u otros materiales o métodos
para congelar trozos de neumáticos o trozos de caucho antes de la reducción de tamaño,
volviéndolo frágil y quebradizo como un cristal a temperaturas por debajo de -62ºC.
El acero es separado mediante el empleo de imanes. La fibra textil es removida por
medio de aspiración y selección. El material resultante presenta aspecto brillante y limpio,
con superficies fracturadas y poco contenido de acero y fibra, debido a que la
fragmentación ocurre por las uniones entre estos materiales y el caucho.
El empleo de temperaturas criogénicas puede ser aplicado en cualquier etapa para la
reducción de tamaño de los trozos de neumáticos. Este método requiere instalaciones muy
complejas, lo que hace que sea poco rentable económicamente.
Al comparar los granos obtenidos por la trituración criogénica y ambiental, se
observa que las partículas para el primer método, son relativamente lisas y ovaladas, y para
el proceso ambiental, son irregulares en forma y textura superficial. En relación a este
17
aspecto, cabe destacar que la forma final obtenida de los granos de caucho influye en la
reacción con el cemento asfáltico, pues para partículas con alta superficie de área, como las
obtenidas con el proceso ambiental, la reacción con el ligante es rápida, en cambio, para las
partículas obtenidas a través de la trituración criogénica, al tener superficies planas y
limpias, se disminuye el nivel de reacción con el cemento asfáltico.
18
3.3 APLICACIÓN DE GRANOS DE CAUCHO EN LAS MEZCLAS
ASFÁLTICAS
El caucho proveniente de neumáticos desechados puede ser incorporado en las
mezclas asfálticas por medio de tres métodos diferentes denominados como Proceso por
Vía Húmeda, Proceso por Vía Seca y Proceso en Refinería.
En el Proceso Húmedo, el caucho actúa modificando el cemento asfáltico, mientras
que en el Proceso Seco, el caucho es usado como una porción de agregado fino. En el
Proceso en Refinería, la mezcla del caucho con el cemento asfáltico se realiza en la planta
productora de asfalto, para luego transportarlo a obra en donde se combina con los áridos
para producir la mezcla asfáltica. Cada proceso es utilizado dependiendo del producto que
se quiera obtener.
A continuación, se muestra la terminología asociada al uso de los granos de caucho
en mezclas asfálticas:
Tabla 3.1. Terminología asociada con el uso del caucho en las mezclas asfálticas.
MATERIAL VÍA PRODUCTO
Húmeda Asfalto modificado con caucho ó Asfalto-Caucho
GRANOS DE
CAUCHO
Seca Mezcla asfáltica mejorada con caucho
19
3.3.1 PROCESO POR VÍA HÚMEDA
En este proceso, se unen los granos de caucho con el cemento asfáltico para
producir una mezcla modificada llamada asfalto-caucho, que es usada de la misma manera
que un ligante modificado. Este proceso se encuentra definido en la norma ASTM D8-88.
La fabricación de asfalto-caucho consiste en la mezcla de los granos de caucho,
usualmente de tamaño máximo 0.85 mm, con el cemento asfáltico en un estanque con
agitación. Generalmente, el porcentaje de adición de caucho es entre 18-24% con respecto
al peso del ligante.
Para promover la unión del asfalto y el caucho, es necesario establecer una
temperatura y un tiempo de reacción dentro del estanque. Usualmente, la mezcla es
formulada a temperaturas entre 180-210º C por 1 a 4 horas.
Dentro de los requerimientos del proceso húmedo, se establece que el estanque
agitador debe estar en terreno, ubicado junto a la planta asfáltica.
Una vez que el asfalto-caucho alcance los parámetros requeridos, especialmente la
viscosidad de la mezcla, se incorpora, en un proceso continuo, al mezclador de la planta
asfáltica para unirse con los agregados pétreos.
20
En el siguiente esquema, se muestra la fabricación de las mezclas asfalto-caucho por
el proceso vía húmeda:
La interaccion del caucho con el ligante
Figura 3.2. Esquema de fabricación de asfalto modificado con caucho mediante el
proceso por vía húmeda.
Una vez terminado el mezclado del asfalto-caucho con los agregados pétreos, el
concreto asfáltico obtenido se transporta al sitio de pavimentación y se coloca por medio de
una finisher tradicional. Para la compactación, generalmente se utiliza un rodillo liso doble
tambor.
El ligante asfáltico modificado con granos de caucho mediante el proceso húmedo
también puede ser utilizado como riego. El más común es el llamado SAM (Stress
Absorbing Membrane) que evita la reflexión de grietas. Cuando el riego SAM es puesto
entre capas es llamado SAMI (Stress Absorbing Membrane Interlayer), este riego de liga es
recomendado cuando la mezcla asfalto-caucho se coloca sobre pavimento antiguo de
hormigón.
3.3.1.1 Modificación del ligante. Los granos de caucho al mezclarse con el cemento
asfáltico, reaccionan con éste, hinchándose y ablandándose por la absorción de aceites
aromáticos, los cuales son componentes químicos del asfalto que le dan la consistencia para
que sea trabajable. Las partículas hinchadas se vuelven pegajosas, desarrollando
21
propiedades adhesivas. Además, a medida que se reducen los aceites aromáticos que
lubrican la mezcla, se observa un aumento en la viscosidad.
El proceso de hinchamiento de las partículas de caucho, no es del tipo química, pues
las partículas no se funden en el asfalto. El proceso se asimila a lo que sucede con una
esponja seca y dura al sumergirla en agua, pues a medida que la esponja absorbe el agua, se
hincha y ablanda.
El grado de modificación del ligante depende de ciertos factores entre los cuales se
encuentran el tamaño, textura y proporción de los granos de caucho, tipo de cemento
asfáltico, tiempo y temperatura de mezclado, grado de agitación mecánica durante la
reacción de la mezcla y el componente aromático del cemento asfáltico.
La viscosidad de la mezcla es el principal parámetro usado para supervisar la
reacción, es por esto que debe ser chequeada a diferentes intervalos de tiempo durante el
mezclado y el tiempo de reacción, hasta obtener la viscosidad requerida.
3.3.1.2 Especificaciones para el Proceso por Vía Húmeda utilizadas Dirección de
Vialidad. La Dirección de Vialidad construyó dos tramos de prueba, utilizando
especificaciones exigidas a los trabajos de construcción de capas superficiales de
pavimento con mezcla asfáltica en caliente confeccionada con ligante asfalto-caucho,
incluyendo la provisión de materiales, el transporte, la confección, distribución y
compactación de la mezcla.
A continuación se muestran los requisitos exigidos a los materiales constituyentes
de la mezcla asfáltica, entre ellos los áridos, el ligante y el caucho; así como también los
requerimientos de mezclado para la fabricación del ligante modificado y la producción de
la mezcla asfáltica por vía húmeda.
22
a. Requisitos de los Materiales
• Áridos:
La fracción gruesa y fina, y el filler deben cumplir con los requisitos de una
mezcla asfáltica en caliente según la sección 5.408 del Manual de Carreteras
Volumen 5.
o Mezcla de áridos:
Los áridos combinados deberán cumplir con la banda granulométrica
denominada SemiGap Graded, que se indica en la Tabla 2.2., cuando el
objetivo del uso del asfalto caucho sea evitar la reflexión de grietas. En otros
casos, se usa granulometrías convencionales.
Tabla 3.2. Granulometría SemiGap Graded.
TAMICES
mm ASTM
PORCENTAJE QUE PASA,
%
20 3/4" 100
12,5 1/2" 80-95
10 3/8" 64-79
5 Nº 4 49-57
2,5 Nº 8 43-51
0,63 Nº 30 37-45
0,30 Nº 50 30-38
0,16 Nº 100 15-24
0,08 Nº 200 9-12
• Ligante asfalto-caucho:
Este ligante se compone de asfalto base y caucho de neumático triturado.
o Asfalto base:
Este material debe cumplir los requisitos del ítem 5.408.202 del Manual de
Carreteras Volumen 5.
23
o Caucho triturado:
Deberá provenir de la trituración de los neumáticos de vehículos corrientes
usando el método ambiental o criogénico, o una combinación de ambos. Los
requerimientos son los indicados en la Tabla 2.3.
Tabla 3.3. Requerimientos del caucho triturado en migas.
REQUERIMIENTOS DEL CAUCHO TRITURADO EN MIGAS
(1) Granulometría
Tamices
mm ASTM
Porcentaje que pasa, %
2 Nº 10 100
0,85 Nº 20 60 – 100
0,63 Nº 30 50 – 90
0,3 Nº 50 0 – 45
0,08 Nº 200 0 – 5
(2) Contenido de Caucho Natural Mín. 30%
(3) Densidad Relativa [kg/dm3
] 1,10 – 1,25
o Mezcla asfalto-caucho:
- Condiciones de preparación del ligante asfalto-caucho:
Porcentaje de caucho en masa c/r al ligante total : 18 – 24%
Temperatura de reacción de la mezcla : 180 – 210°C
Tiempo de reacción (a la temperatura de reacción) : 1 – 4 horas
- Características del Estanque Mezclador:
El estanque deberá tener un sistema de calentamiento que permita
mantener temperaturas entre 180°C y 210°C, agitadores tipo aspas para
mantener en permanente agitación la mezcla asfalto-caucho durante el
periodo de reacción y el lapso adicional según sea necesario, de acuerdo al
funcionamiento integral de la planta.
24
- Requisitos del Ligante asfalto-caucho después de la reacción:
Tabla 3.4. Requisitos del ligante asfalto-caucho después de la reacción según ASTM.
Propiedades Mín. Máx.
Viscosidad Brookfield a 175°C, [cP] 1.000 5.000
Penetración, 25°C, 100g, 5seg [1/10mm] 25 75
Penetración, 4°C, 200g, 60seg [1/10mm] 15
Resiliencia, 25°C [%] 20
Punto de Ablandamiento [°C] 55
PDR:
Penetración Retenida, 4°C [%] 75
b. Producción de la mezcla asfáltica según proceso húmedo
1a
Etapa: Preparación del ligante asfalto-caucho en un estanque provisto de un
sistema de agitación a la temperatura y tiempo necesario para lograr la
viscosidad especificada. Este estanque debe estar en terreno ubicado al lado de
la Planta de Mezcla en Caliente.
2a
Etapa: Luego, en un proceso continuo, se efectuará la mezcla con los áridos y
filler en una Planta de Mezcla Asfáltica convencional. La temperatura de los
áridos deberá estar entre 180ºC y 220°C, dependiendo de la formulación en
laboratorio.
• Requisitos para la dosificación Marshall:
Tabla 3.5. Requisitos Mezcla con Asfalto-Caucho.
Propiedades Mín. Máx.
Estabilidad Marshall [kN] 8
Fluencia [0,25 mm] 8 16
Huecos en la Mezcla [%] 3 6
Huecos en el Agregado Mineral (VAM) [%] 16
Huecos Llenos con Ligante [%] 70
Relación Filler / Ligante 1 1.5
25
3.3.2 PROCESO POR VÍA SECA
El proceso por vía seca es el método mediante el cual el caucho reciclado es
mezclado con los agregados, antes de adicionar el cemento asfáltico. En este proceso, se
usan los granos de caucho como un agregado en la mezcla asfáltica, los cuales pueden
sumarse como un árido más o como sustituto de una pequeña parte del agregado fino, el
cual puede estar entre el uno y tres por ciento del peso total de los agregados de la mezcla.
Si bien los granos de caucho son tratados como un árido, no pueden considerarse un
material inerte, pues interacciona con el ligante de la mezcla asfáltica. Este proceso de
interacción suele llamarse “digestión” del caucho. Mediante este proceso, el caucho pasa de
ser un árido elástico a ser un modificador del ligante en la mezcla asfáltica.
La digestión es un proceso que prolifera desde la superficie de la partícula de
caucho hacia su interior, por lo que será más rápida cuanto más fino sea el polvo de caucho,
menor su proporción dentro de la mezcla asfáltica y cuanto más elevada sea la temperatura
de la mezcla y el tiempo que se mantenga ésta caliente durante el proceso de fabricación y
puesta en obra. En laboratorio, la digestión puede simularse manteniendo la mezcla en
horno, a una temperatura en un rango 150-170° C y un tiempo de una a dos horas,
previamente a la compactación de la probeta.
Durante la digestión, no se producen reacciones importantes entre el caucho y
cemento asfáltico debido al corto tiempo de mezclado, donde éste no es suficiente para que
se produzca una reacción similar al proceso húmedo, por lo tanto, se asume que el efecto de
la reacción caucho-ligante en el proceso seco es menor y, asimismo, tiene un efecto
limitado en el comportamiento de la mezcla.
Sin el tiempo de digestión, no podría obtenerse la interacción entre el ligante y el
caucho, provocando que éste funcione como un árido elástico de granulometría muy
concentrada, lo que por un lado produce la apertura de huecos y por otro, impide la
compactación por su componente elástico. Este tiempo de curado de la mezcla es
fundamental, ya que en caso de no realizarlo correctamente, no solo no se provoca la
modificación del ligante, sino que se obtiene una mezcla de peores propiedades que una
26
tradicional. Sin digestión, se producen riesgos por deterioros prematuros de la mezcla
asfáltica en terreno. Se ha observado que el principal riesgo es por el ataque del agua a la
mezcla colocada, llevándola a desintegrarse progresivamente. Para evitar esta situación, es
necesario, durante el diseño de la mezcla asfáltica, estimar cual será la temperatura y el
tiempo de digestión mínimo para alcanzar el grado de digestión suficiente, esto puede hacer
a través del ensayo de Inmersión-Compresión, que mide el efecto del agua sobre la
cohesión de las mezclas asfálticas compactadas. (Ver referencia Nº [6])
En la siguiente figura, se muestra la fabricación de las mezclas asfálticas mejoradas
con caucho a través del proceso seco:
Figura 3.3. Esquema de fabricación de la mezcla asfáltica con caucho por vía seca.
Los granos de caucho son mezclados con los áridos, anteriormente calentados. El
cemento asfáltico es el mismo que se usa para mezclas convencionales, sin embargo, las
temperaturas de mezclado son más altas, por lo general entre 160° y 190° C, al igual que las
de compactación, que están entre 150° y 160° C.
A diferencia del proceso húmedo, este método no requiere de un equipo especial de
mezclado, solo un sistema de alimentación que proporcione la cantidad adecuada de caucho
27
y que sea suministrada en el momento indicado para que se mezcle con los agregados
cuando estos alcancen cierta temperatura y antes que el ligante sea adicionado.
Luego de mezclar el ligante con los agregados más el caucho, se le debe dar el
tiempo a esta mezcla para que suceda el proceso de digestión. Este tiempo en obra, la
mayoría de las veces está garantizado con el tiempo que toma el camión entre la planta, en
la que se elabora la mezcla y el lugar de colocación del concreto asfáltico utilizando una
extendedora tradicional.
3.3.2.1 Tecnologías para el uso de caucho reciclado mediante vía seca. Las
tecnologías más usadas en Estados Unidos para el uso de caucho reciclado mediante este
proceso, son la tecnología PlusRide y la tecnología Genérica o sistema TAK. Otra
tecnología muy popular es la desarrollada en España y es actualmente usada en muchos
países.
a. PlusRide. Esta tecnología fue originalmente desarrollada en Suecia a finales de
los años 1960, y registrada en los Estados Unidos bajo el nombre comercial
PlusRide por la firma EnviroTire. El caucho reciclado es agregado a la mezcla
en proporciones que van de 1 a 3 por ciento del peso total de los agregados. Los
granos de caucho utilizados son gruesos para sustituir algunos agregados de la
mezcla. Las partículas de caucho van desde 4.2 mm (1/4”) a 2.0 mm (tamiz
Nº10). El contenido de vacíos con aire en la mezcla asfáltica debe estar entre 2 y
4 por ciento, y por lo general son obtenidos con contenidos de ligante entre 7.5 a
9 por ciento.
b. Genérica. Este sistema fue desarrollado por el Dr. Barry Takallou a finales de
los años 1980 y a principio de los años 1990, para producir mezclas asfálticas en
calientes con granulometría densa. Este concepto emplea tanto el caucho
reciclado grueso como fino para compatibilizar la granulometría de los
agregados obteniendo una mezcla asfáltica mejorada. En este proceso, la
granulometría del caucho es ajustada para acomodar la granulometría de los
agregados. A diferencia de las mezclas PlusRide, la granulometría del caucho se
divide en dos fracciones en la que la parte fina se encarga de interactuar con el
28
cemento asfáltico mientras la parte gruesa entra a comportarse como un
agregado elástico en la mezclas asfáltica.
El caucho puede llegar a necesitar una pre-reacción o pre-tratamiento con un
catalizador para alcanzar un óptimo hinchazón de la partícula. En este sistema,
el contenido de caucho reciclado no debe exceder el 2 por ciento del peso total
de la mezcla para carpeta de rodadura.
c. Convencional. Esta tecnología fue desarrollada en España para usar el caucho
reciclado en la mejora de mezclas asfálticas empleando granulometrías
convencionales que no implican consumos elevados de cemento asfáltico, pero
que aportan menor cantidad de caucho, aproximadamente un dos por ciento del
peso total de los agregados. El caucho utilizado es generalmente de
granulometría fina, con tamaños de los granos no mayor a 0.5 mm. Estas
mezclas asfálticas han sido evaluadas dinámicamente en el laboratorio y
colocadas en la vía con buenos resultados.
29
3.4 CARACTERÍSTICAS DE LAS MEZCLAS ASFÁLTICAS EN CALIENTE
MODIFICADAS CON CAUCHO
Como se ha visto, existen distintas tecnologías de incorporación de caucho de
neumáticos en la mezcla asfáltica, pero existen ciertas ventajas que son comunes para
ambos casos. Entre estas ventajas, se encuentra la mejora en la resistencia a las
deformaciones plásticas.
En términos generales, puede decirse que cuanto más caucho se incorpora, es mayor
el contenido de ligante en la mezcla asfáltica y mayor es la resistencia a la fatiga y a la
reflexión de grietas.
Entre los principales beneficios que se obtienen usando asfalto-caucho como ligante
modificado mediante Vía Húmeda, está la reducción de la susceptibilidad térmica, además
de mejorar el comportamiento a fatiga y al envejecimiento debido a los altos contenidos de
ligante asfalto-caucho (entre 6.5 y 7.5% con respecto a los agregados), sin que se vea
perjudicada la resistencia a las deformaciones plásticas. Cabe destacar que al usar caucho
como modificador del ligante, aumenta la viscosidad, permitiendo mayor flexibilidad a
bajas temperaturas y mejor estabilidad a altas.
Dentro de las desventajas del método por Vía Húmeda, se tiene que posee un alto
costo inicial, debido a que es necesario incorporar equipos especiales en el proceso de
producción y de mezclado del ligante con el caucho. Por otro lado, el aumento de la
viscosidad produce dificultades en la manipulación y en la aplicación, junto con esto se
requieren mayores temperaturas de mezclado y de compactación.
Aunque en el proceso por Vía Seca, la reacción entre el caucho y el cemento
asfáltico es menor que para el ligante asfalto-caucho obtenido por Vía Húmeda, si se
encuentra la temperatura y tiempo de digestión adecuada, se obtendrán propiedades
similares en ambas mezclas.
Según literatura, el uso de partículas gruesas de caucho como un agregado en la
mezcla asfáltica puede mejorar el desempeño de la misma. Las partículas de caucho que
30
quedan expuestas en las superficie del pavimento tienen una función importante al impedir
que los neumáticos de los vehículos se deslicen sobre el pavimento, ofreciendo un mejor
agarre, y las que quedan dentro del cuerpo de la mezcla ayudan a retardar el fisuramiento
de ésta, por absorción de los esfuerzos, obstaculizando la propagación de la fisura.
3.5 EXPERIENCIAS EXTRANJERAS Y NACIONALES UTILIZANDO
CAUCHO RECICLADO
El caucho en las mezclas asfálticas ha sido utilizado desde principios del siglo
pasado. En 1920, empezaron los estudios y las primeras pruebas de la modificación del
asfalto con caucho molido, sin mucho éxito.
La primera tecnología en la cual se utilizó el proceso húmedo fue llamado el
proceso McDonald, debido a los estudios realizados en 1960, por Charles McDonald, quien
encontró una fórmula exitosa de tiempo/temperatura para la incorporación de caucho
reciclado para modificar el ligante.
En 1968, el “Arizona Department of Transportation” (ADOT), colocó la primera
membrana SAM y en 1972, la primera SAMI como retardadora de figuración.
Experiencias similares fueron llevadas a cabo por la Arizona Refinery Company
(ARCo) o la EnviroTire INC con su sistema PlusRide de incorporación de granos de
caucho de triturado de neumático al agregado, para fabricar una mezcla discontinua. Varios
estados de Estados Unidos, entre ellos California y Florida, se unieron a estas experiencias,
realizando tramos de prueba y colocando asfalto-caucho donde quiera que se presente
agrietamiento, con buenos resultados.
En España, los estudios comienzan en 1974 cuando el Centro de Investigaciones
Elpidio Sánchez Marcos trabajó en fórmulas de incorporación de caucho al ligante para
posteriormente fabricar mezclas asfálticas que fueron aplicadas en las calles de la ciudad de
Barcelona.
31
En los años 90, Juan Gallego Medina realiza su tesis doctoral en la Escuela de
Ingenieros de Caminos, Canales y Puertos de la Universidad Autónoma de Madrid. Este
trabajo ha sido un gran apoyo a la presente investigación sobre el uso del caucho tanto para
vía húmeda como seca.
Los estudios y las pruebas con caucho por vía seca, han sido más actuales. En
España, existen tramos de prueba en Madrid y en la provincia de Salamanca. Otros países
de Europa, que han experimentado con tramos de prueba con el proceso por vía seca son
Portugal, Italia y el Reino Unido.
En Sudamérica, también se ha experimentado con caucho. En Brasil, existen tramos
de prueba usando vía seca y húmeda, al igual que en México y en Colombia. En Argentina,
se realizó un tramo de prueba utilizando el proceso seco en el año 2002, en la ciudad de
Buenos Aires, en un sector de una de las avenidas más importantes de la ciudad, con alto
trafico de autobuses urbanos, con resultados bastantes alentadores.
En Chile, existen dos tramos experimentales utilizando el proceso húmedo
realizados por la Dirección de Vialidad. El primero de ellos, se realizó en la undécima
Región de Aysén en la Ruta X-65 en mayo del año 2004. El segundo tramo experimental
fue realizado en la V Región, en la provincia de Los Andes, en la Rehabilitación de la Ruta
60 CH, llevado a cabo en marzo del año 2005.
3.5.1 TRAMO EXPERIMENTAL I (Ruta X –65, km 22.270-22.770)
En la Región de Aysén, existe una importante variabilidad climática y térmica
durante todo el año, con temperaturas que oscilan entre -20° C en invierno y sobre 25º C
en verano. La Ruta X-65 une el sector de Villa Cerro Castillo con la ciudad de Puerto
Ibáñez, presentando solicitaciones de tránsito bajas. En esta zona las condiciones climáticas
son comparativamente más rigurosas que en el resto de la región, lo que produce que los
pavimentos asfálticos se vean enfrentados a un mayor riesgo de agrietamiento térmico y
deformaciones, por lo cual es necesario que su diseño considere este amplio rango de
prestaciones.
32
La Dirección Regional de Vialidad decidió pavimentar un tramo de prueba de 500
m de longitud, utilizando un pavimento con una mezcla asfáltica con ligante modificado
con migas de caucho, con el fin de evaluar posteriormente la posibilidad de aplicarlo con
mayor frecuencia en los programas de pavimentación.
Características del tramo experimental.
• Estructura del pavimento:
El pavimento colocado tiene la siguiente estructura:
-Carpeta asfalto caucho : 6 cm
-Base granular (CBR 80%) : 20 cm
-Subbase granular (CBR 50%) : 24 cm
• Características de la Mezcla Asfáltica:
Para la pavimentación, se empleó mezcla asfáltica de granulometría semi densa
tipo IV-A–12.
El asfalto empleado para producir el ligante asfalto-caucho fue un CA 60/80.
La granulometría del caucho utilizado es la mostrada en la tabla 2.6.
Tabla 3.6. Granulometría del caucho usado en Ruta X-65.
TAMICES
mm ASTM
PORCENTAJE QUE PASA,
%
2.0 N° 10 100
1.25 N° 16 98
0,63 Nº 30 52
0,3 Nº 50 12
0,16 Nº 100 2
0,08 Nº 200 0.5
• Preparación del Ligante:
El ligante asfalto-caucho fue preparado siguiendo el proceso por vía húmeda.
Fue confeccionado en terreno, para lo cual se empleó un estanque instalado
junto a la planta asfáltica. Este estanque digestor está provisto de un sistema de
calefacción y de agitación para mantener condiciones controladas de
temperatura, tiempo y agitación.
33
El ligante asfalto-caucho fue fabricado con 82 partes de cemento asfáltico CA
60/80 y 18 partes de caucho de trituración de neumático.
• Dosificación de la Mezcla en Caliente con ligante asfalto-caucho:
Porcentaje de asfalto-caucho (%) : 7.1 ± 0.3
Porcentaje de VAM (%) : 18.95
Estabilidad Marshall (N) : 8950
Densidad (kg/m3
) : 2177
Temperatura de mezclado (°C) : 180 ± 5
Temperatura de compactación (°C) : 165 ± 5
• Proceso Constructivo:
El proceso de mezclado con el árido se realizó en una Planta Asfáltica de
tambor.
El proceso de colocación se realizó con una finisher tradicional.
La compactación se realizó con un rodillo liso doble tambor, el cual para
obtener los niveles de densidad deseados utilizaba dos ciclos, además se ocupó
dos rodillos neumáticos.
3.5.2 TRAMO EXPERIMENTAL II (Ruta 60 CH, km 66.000-67.500)
La Ruta 60 CH es el Camino Internacional a Mendoza, con tránsito pesado y fuertes
variaciones térmicas. Las temperaturas promedio están entre 30º C y –4º C.
La Dirección de Vialidad decidió realizar un tramo de prueba, utilizando asfalto-
caucho sobre el hormigón existente, que tenia más de 20 años de vida. Se utiliza como
riego de liga un riego SAMI de ligante asfalto-caucho y la granulometría SemiGap Graded.
Se estudia esta aplicación de mezcla con asfalto-caucho en este contrato, como
solución alternativa para evitar la reflexión de grietas.
34
Características del tramo experimental.
• Estructura del pavimento sobre hormigón existente:
Pista izquierda (Pista 2)
km 66.000 al km 67.000:
-Carpeta asfalto / caucho : 5 cm
-Riego SAMI
-Base asfáltica abierta : 5 cm
-Hormigón existente
km 67.000 al km 67.500:
-Carpeta asfalto / caucho : 5 cm
-Riego SAMI
-Hormigón existente
Pista derecha (Pista 1)
km 66.020 al km 66.490:
-Carpeta asfalto CA 60/80 : 5 cm
-Riego emulsión 1:1
-Base asfáltica abierta : 5 cm
-Hormigón existente
km 66.490 al km 67.000:
-Carpeta asfalto / caucho : 5 cm
-Riego emulsión 1:1
-Base asfáltica abierta : 5 cm
-Hormigón existente
km 67.000 al km 67.500:
-Carpeta asfalto caucho : 5 cm
-Riego emulsión 1:1
-Hormigón existente
35
• Características de la Mezcla Asfáltica:
Se empleó la granulometría SemiGap Graded de acuerdo a la banda
granulométrica especificada en el Estudio sobre Asfalto - Caucho presentado
como Proyecto de Innovación Tecnológica en Vialidad y recomendada para
evitar la reflexión de grietas.
El asfalto empleado para producir el ligante modificado fue un CA 60/80.
• Preparación del Ligante:
El ligante asfalto-caucho fue confeccionado en la planta asfaltera ubicada en
Concón. Este ligante se transporta en camión, aproximadamente dos horas de
viaje, y se carga directo a la Planta mezcladora en Caliente en terreno.
En esta experiencia en terreno, se observó que la viscosidad del ligante tenía
gran dispersión al ser preparado en la planta asfaltera y no en faena, como lo
indica el proceso por Vía Húmeda.
• Dosificación de la Mezcla asfalto-caucho:
Porcentaje de asfalto / caucho (%) : 6.5 ± 0.3
Porcentaje de VAM (%) : 19.1
Estabilidad Marshall (N) : 12.658
Densidad (kg/m3
) : 2300
Temperatura de mezclado (°C) : 185 ± 5
Temperatura inicio compactación (°C) : 175 ± 5
• Proceso Constructivo:
La mezcla se realizó en una Planta Asfáltica de Tambor ubicada en terreno. El
proceso de colocación se realizó con una finisher tradicional.
La compactación se realiza con dos pasadas de rodillo liso vibratorio y luego
con rodillo neumático (un promedio de 30 ciclos). La compactación empezó con
una temperatura de 160º C y se terminó a los 60º C.
36
4. DESARROLLO EXPERIMENTAL
En este capítulo, se describe cómo se desarrolla el presente trabajo de investigación,
la metodología seguida, los procedimientos desarrollados en los cuales se especifican los
ensayos realizados, las características de los materiales utilizados, y los criterios de
selección de las mezclas asfálticas mejoradas con granos de caucho.
Para realizar el estudio de la incorporación de caucho mediante vía seca, es
necesario partir con una mezcla patrón, con el fin de comparar la variación de las
propiedades de esta mezcla al añadirle diferentes porcentajes de caucho. En este caso, la
mezcla patrón corresponde a una mezcla convencional del tipo Semidensa.
En la mezcla patrón y en las mejoradas con caucho, se utilizarán los mismos
materiales pétreos y cemento asfáltico.
4.1 CARACTERIZACIÓN DE LOS MATERIALES
4.1.1 AGREGADOS PÉTREOS
Se denomina agregado grueso a la porción del agregado retenida en el tamiz 2.5 mm
(N° 8) y agregado fino, a la porción que pasa el mismo tamiz. Si se requiere, puede
adicionarse filler de aportación, el cual está constituido por polvo mineral fino, tal como
cemento hidráulico, cal u otro material inerte, libre de materia orgánica y partículas de
arcilla.
Los agregados utilizados provienen de cantera de la Planta Puente Verde de la
Empresa Bitumix S.A. Se ocupan tres materiales: Gravilla ¾”, Gravilla ” y Polvo Roca.
A estos materiales, se les realizaron los siguientes ensayos de caracterización, de
acuerdo al Vol.8 del Manual de Carreteras.
• Determinación de la densidad real seca, densidad neta y absorción de los
agregados.
37
• Determinación cuantitativa de la distribución de los tamaños de las partículas de
los agregados gruesos y finos.
• Cubicidad de partículas.
• Índice de Plasticidad.
• Determinación de la resistencia al desgaste de los agregados, por medio de la
máquina de Los Ángeles.
a. Densidad real seca, densidad neta y absorción. Estos ensayos están descritos en la
sección 8.202.20 (LNV 68) y 8.202.21 (LNV 69).
Tabla 4.1. Densidades y absorción del agregado pétreo.
Ensayes Gravilla ¾” Gravilla ” Polvo Roca
Densidad Neta [kg/m³] 2.732 2.731 2.715
Densidad Real Seca [kg/m³] 2.650 2.629 2.658
Absorción 1.12 % 1.78 % 0.63 %
b. Análisis granulométrico. La granulometría está definida como la distribución
porcentual en masa de los distintos tamaños de partículas que constituyen el agregado
pétreo. Se determina mediante el análisis granulométrico, el cual consiste en separar
una muestra de agregado en fracciones de igual tamaño. La granulometría se expresa en
función de los porcentajes parciales retenidos en cada tamiz. A continuación, se
presenta el resultado del análisis granulométrico y la respectiva curva granulométrica.
Este ensayo se realizó de acuerdo a lo descrito en la sección 8.202.3 (LNV 65).
38
Tabla 4.2. Granulometría agregado pétreo.
Tamices Porcentaje que pasa, %
mm ASTM Gravilla ¾” Gravilla ” Polvo Roca
20 3/4" 100
12,5 1/2" 31
10 3/8" 19 100 100
5 Nº 4 2 10 97
2,5 Nº 8 1 1 76
0,63 Nº 30 43
0,315 Nº 50 30
0,16 Nº 100 21
0,08 Nº 200 15
DISTRIBUCIÓN GRANULOMÉTRICA AGREGADOS PÉTREOS
0
10
20
30
40
50
60
70
80
90
100
0,01 0,1 1 10 100
Tamaño de Partículas (mm)
Porcentajequepasa(%)
Gravilla 3/4 Gravilla 3/8 Polvo Roca
Figura 4.1. Curva distribución granulométrica agregados.
c. Cubicidad de partículas. A través de este ensaye, se determina el contenido
porcentual de partículas chancadas, rodadas y lajeadas de la fracción de un pétreo
retenida en el tamiz 5 mm. El procedimiento se describe en la sección 8.202.6 (LNV 3)
del Manual de Carreteras.
39
Tabla 4.3. Cubicidad de partículas agregado pétreo grueso.
Ensayes Gravilla ¾” Gravilla ” Exigencia Método
Partículas chancadas [%] 99 100 mín. 90 8.202.6 (LNV 3)
Partículas lajeadas [%] 1 1 máx. 10 8.202.6 (LNV 3)
d. Índice de Plasticidad. El método para la determinación de este índice está descrito en
la sección 8.102.4 (LNV 90).
Tabla 4.4. Índice de Plasticidad agregado pétreo.
Ensayes Gravilla ¾” Gravilla ” Polvo Roca Exigencia Método
Indice de Plasticidad NP NP NP NP 8.102.4 (LNV 90)
e. Resistencia al desgaste. El objetivo de este ensayo es medir la dureza del los pétreos
mayores a 2.5 mm, mediante la máquina de Los Ángeles. El procedimiento de este
ensaye se encuentra en la sección 8.202.11 (LNV 75).
Tabla 4.5. Resistencia al desgaste de agregado pétreo grueso.
Ensayes Gravilla ¾” Gravilla ” Exigencia Método
Desgaste de Los Angeles [%] 12,9 18,7 máx. 25 8.202.11 (LNV 75)
4.1.2 LIGANTE ASFÁLTICO
Los ligantes son constituidos por la fracción más pesada de la destilación del
petróleo. La mayor o menor dureza del asfalto depende de las condiciones de destilación,
tales como presión, temperatura y tiempo.
El uso principal del cemento asfáltico es en mezclas en caliente para la construcción
y conservación de vías. Actualmente, los cementos asfálticos se clasifican según el grado
de viscosidad absoluta medida a 60° C, siendo los más usados los asfaltos CA 14
(viscosidad entre 1400 y 2400 poise) y CA 24 (viscosidad mayor a 2400 poise).
40
Anteriormente, la clasificación era según el Grado de Penetración en base a la
dureza o consistencia que es medida mediante el ensayo de penetración. Este ensayo mide
las décimas de milímetros que una aguja penetra dentro de la masa de asfalto a 25º C, con
un peso de 100 gr en 5 segundos. En este caso, los cementos asfálticos más utilizados eran
los CA 60-80 y CA 80-100, donde las cifras indican los límites máximos y mínimos de la
penetración.
Para esta investigación, se decidió trabajar con un cemento asfáltico CA 60/80. La
razón de esta elección fue para relacionar y comparar con los estudios realizados
anteriormente con el proceso por vía húmeda, en laboratorio y en los tramos
experimentales.
El cemento asfáltico fue caracterizado según los siguientes ensayes:
• Viscosidad Brookfield a 60º y a 135º C.
• Ductilidad.
• Penetración.
• Punto de ablandamiento.
• Densidad.
Además, este cemento fue sometido al proceso de envejecimiento en el horno de
película delgada rotatoria (RTFO), realizándose los ensayes de:
• Pérdida por Calentamiento.
• Viscosidad Absoluta a 60º C.
• Ductilidad.
• Índice de Durabilidad.
A continuación, se muestran los resultados de los ensayes de caracterización
realizados al cemento asfáltico, además se muestran los resultados luego del envejecimiento
en el horno de película delgada rotatoria.
41
Tabla 4.6. Resultados cemento asfáltico.
Propiedades Valor Exigencia Método
Densidad, 25° C, [kg/m³] 1014 8.302.2 (LNV 16)
Penetración, 25° C, 100g, 5seg, [1/10mm] 73 60 - 80 8.302.3 (LNV 34)
Ductilidad 25º C, 5cm/ mín., [cm] 150 mín. 100 8.302.8 (LNV 35)
Punto de Ablandamiento, [°C] 46,8 8.302.16 (LNV 48)
Viscosidad Brookfield a 60º C, s29, 1rpm, 21% Torque, [P] 2100 8.302.24
Viscosidad Brookfield 135º C, s29, 120rpm, 5,1% Torque, [P] 4,3 8.302.24
PDR:
Pérdida por Calentamiento, [%] 0,3 máx. 0.8 8.302.33 (LNV 33)
Ductilidad 25º C, 5cm/ min, [cm] 150 mín. 100 8.302.8 (LNV 35)
Viscosidad absoluta a 60º C, [P] 6672 8.302.15 (LNV 41)
Índice de Durabilidad 3,2 máx. 3.5
De acuerdo a las especificaciones para los cementos asfálticos, que se muestran en
la Tabla 8.301.1A del Vol.8 del Manual de Carreteras, este ligante cumple con la
especificación de un CA 60/80.
4.1.3 MEZCLA DE ÁRIDOS
La mezcla de los áridos cumple con los requisitos de una mezcla asfáltica en
caliente, establecidos en la sección 5.408 del Vol.5 del Manual de Carreteras. Los
resultados de los ensayos de densidad y absorción de la mezcla de agregados, se muestran
en la tabla 3.7.
Tabla 4.7. Densidades y absorción de la mezcla de agregados.
Ensayes Mezcla
Densidad Neta [kg/m³] 2.736
Densidad Real Seca [kg/m³] 2.637
Absorción 1.7 %
La granulometría de la mezcla de agregados es de tipo Semidensa, la cual
comúnmente se usa para carpeta de rodadura. La granulometría utilizada y la banda IV-A-
12, se presentan en la siguiente tabla.
42
Tabla 4.8. Granulometría Semidensa según Manual de Carreteras Vol. 5 y mezcla de
trabajo.
Tamices Porcentaje que pasa, %
mm ASTM IV-A-12 Mezcla de trabajo
20 3/4" 100 100
12,5 1/2" 80-95 88
10 3/8" 70-85 78
5 Nº 4 43-58 51
2,5 Nº 8 28-42 35
0,63 Nº 30 13-24 13
0,3 Nº 50 8-17 8
0,16 Nº 100 6-12 6
0,08 Nº 200 4-8 4
Se trabaja por el centro de la banda IV-A-12 hasta la malla Nº8. Para los siguientes
tamaños, se adopta los valores mínimos del intervalo, esto para disminuir la cantidad de
finos en la mezcla.
DISTRIBUCIÓN GRANULOMÉTRICA MEZCLA IV -A-12
0
10
20
30
40
50
60
70
80
90
100
0,01 0,1 1 10 100
Tamaño de Partículas (mm)
Porcentajequepasa(%)
Especificación IV-A-12 (mín) Especificación IV-A-12 (máx) Mezcla de trabajo
Figura 4.2. Curva distribución granulométrica mezcla IV-A-12.
43
4.2 DISEÑO MARSHALL DE LA MEZCLA PATRÓN
La cantidad de cemento asfáltico requerida se determina con el procedimiento
Marshall, mediante la elaboración de probetas con distintos contenidos de ligante, con el
cual se obtienen los parámetros Marshall que permiten determinar el porcentaje óptimo de
ligante en la mezcla.
El Método de Diseño Marshall permite obtener un contenido óptimo de cemento
asfáltico para mezclas asfálticas en caliente. Los parámetros que se estudian durante el
diseño son la Estabilidad, Fluidez, Densidad, Vacíos de la mezcla asfáltica y Vacíos en el
agregado mineral. De acuerdo al criterio de diseño establecido, la determinación del
contenido óptimo de asfalto se obtiene principalmente con la densidad, estabilidad y vacíos
con aire en la mezcla asfáltica. Este método se encuentra descrito en 8.302.47 (LNV 47) del
M.C-V.8.
Los criterios aplicados en la evaluación de las mezclas asfálticas diseñadas
siguiendo el método Marshall son los especificados en el Manual de Carreteras, V.5,
sección 5.408.203, que trata sobre las propiedades de las mezclas asfálticas. Los requisitos
que deben cumplir las mezclas asfálticas se indican en la siguiente tabla.
Tabla 4.9. Requisitos para Mezclas Asfálticas según especificaciones del M.C.-V.5.
Estabilidad mín. Fluencia Huecos en la mezclaTIPO DE MEZCLA
ASFALTICA [N] [0,25 mm] [%]
Rodadura 9.000 8-16 4-6
Intermedia 8.000 8-16 3-8
Base Gruesa 6.000 8-16 5-10
Para la determinación del contenido óptimo de ligante en la mezcla patrón, se
elaboraron mezclas con cuatro contenidos diferentes de ligante. Los porcentajes utilizados
fueron de 4.5%, 5%, 5.5% y 6%.
Las diferentes probetas Marshall se preparan según el método descrito en 8.302.40
del M.C.-V.8. y se elaboran con 1100 g de peso, en moldes de 10.2 cm de diámetro, y con
una energía de compactación de 75 golpes por cada cara.
44
Los parámetros Marshall para cada contenido de asfalto, se obtienen del promedio
de los resultados obtenidos de tres probetas, cuyos valores no difieran demasiado entre
ellas.
Figura 4.3. Probetas Marshall sin desmoldar.
Los resultados del diseño Marshall de la mezcla patrón, se muestran a continuación:
Tabla 4.10. Parámetros Marshall de la mezcla patrón.
DISEÑO MARSHALL
Tªmezclado probetas 152 ºC
Tªcompactación probetas 143 ºC
UNIDAD RESULTADOS
ASFALTO 60-80 % ref. agr. 4,5 5,0 5,5 6,0
Densidad kg/m3
2271 2292 2288 2283
DMM kg/m3
2466 2449 2432 2416
Estabilidad N 9025 10933 9415 8274
Fluencia 0,01'' 12,5 13,5 14,5 16
Huecos % 7,9 6,4 5,9 5,5
Huecos en el agregado mineral
(VAM)
% 17,6 17,2 17,8 18,3
45
DENSIDAD Vs PORCENTAJE DE ASFALTO
2265
2270
2275
2280
2285
2290
2295
4 4,5 5 5,5 6 6,5
ASFALTO (%Pb)
DENSIDAD[kg/m^3]
Figura 4.4. Variación de la Densidad respecto al porcentaje de cemento asfáltico, para
mezcla patrón.
ESTABILIDAD Vs PORCENTAJE DE ASFALTO
7000
7500
8000
8500
9000
9500
10000
10500
11000
11500
4 4,5 5 5,5 6 6,5
ASFALTO (%Pb)
ESTABILIDAD[N]
Figura 4.5. Variación de la Estabilidad respecto al porcentaje de cemento asfáltico,
para mezcla patrón.
46
FLUIDEZ Vs PORCENTAJE DE ASFALTO
11
12
13
14
15
16
17
4 4,5 5 5,5 6 6,5
ASFALTO (%Pb)
FLUIDEZ[0,01'']
Figura 4.6. Variación de la Fluidez respecto al porcentaje de cemento asfáltico, para
mezcla patrón.
PORCENTAJE DE HUECOS EN LA MEZCLA Vs PORCENTAJE DE ASFALTO
4,0
5,0
6,0
7,0
8,0
9,0
4 4,5 5 5,5 6 6,5
ASFALTO (%Pb)
%HUECOSENLAMEZCLA
Figura 4.7. Variación de los Huecos en la mezcla respecto al porcentaje de cemento
asfáltico, para mezcla patrón.
47
PORCENTAJE DE VACIOS EN EL AGREGADO MINERAL Vs PORCENTAJE DE ASFALTO
17,0
17,2
17,4
17,6
17,8
18,0
18,2
18,4
18,6
4 4,5 5 5,5 6 6,5
ASFALTO (%Pb)
%VACIOSENELAGREGADOMINERAL
Figura 4.8. Variación de Vacíos en el agregado mineral respecto al porcentaje de
cemento asfáltico, para mezcla patrón.
La determinación del contenido óptimo de asfalto para una carpeta de rodado, se
realiza calculando el promedio entre los porcentajes de asfalto que entreguen la máxima
Estabilidad, la máxima Densidad y 5% de Huecos en la Mezcla. Al porcentaje de asfalto
óptimo obtenido se le aplica una tolerancia de ±0.3%.
Para esta mezcla, se obtiene que el máximo por Densidad se encuentra con 5.4% de
cemento asfáltico y el máximo por Estabilidad, con 5.1%. Con respecto a los huecos en la
mezcla, el mínimo que se tiene con los porcentajes de cemento utilizados, es de 5.5%.
Para esta mezcla, el porcentaje óptimo de asfalto, se estima que estaría cercano al
5.5%. Con este porcentaje, la Estabilidad y los huecos en la mezcla, se encuentran dentro
de las especificaciones para una carpeta de rodadura (Tabla 4.9).
48
4.3 PREPARACIÓN DE LA MEZCLA MEDIANTE PROCESO POR VIA SECA
Este proceso se desarrolla para estudiar el efecto del caucho al adicionarse como
una parte de los agregados finos en la elaboración de las mezclas asfálticas. La tecnología de
aplicación de la vía seca es la convencional, desarrollada en España, la cual usa porcentajes
de adición de hasta el 2% del peso total de los agregados.
En esta investigación, el caucho se adiciona en porcentajes de 0.5%, 1.0% y 1.5%
con respecto al peso del árido y se utiliza una granulometría Semidensa IV-A-12, según la
Tabla 5.408.201.F del Vol. 5 del Manual de Carreteras.
4.3.1 CAUCHO UTILIZADO
El caucho lo suministra la Empresa PROBISA. Este caucho es similar al usado en el
tramo experimental en la Ruta X-65, es importado y proviene de triturado de neumáticos
usando el método ambiental, descrito anteriormente.
La densidad del caucho utilizado es de 1.139 kg/m3
, bastante baja si se compara con
la de los agregados, que es cercana a los 2.600 kg/m3
. Esto debe tenerse en cuenta pues al
incorporar el caucho por peso, existe una modificación importante en términos de volumen
de la mezcla.
La granulometría del caucho importado se muestra en la Tabla 4.11. Se decide
trabajar con tamaños inferiores al tamiz Nº 30 (0.63 mm), ya que la forma de las partículas
superiores a este tamaño son alargadas debido al proceso de molienda utilizado, por lo que
se prefirió no considerarlas y así tener un polvo de caucho más homogéneo. La
granulometría del caucho usado para realizar esta experiencia se indica en la Tabla 4.12.
49
Tabla 4.11. Granulometría del caucho suministrado por PROBISA.
TAMICES
mm ASTM
PORCENTAJE QUE PASA,
%
2 Nº 10 100
1,25 Nº 16 99
0,63 Nº 30 95
0,30 Nº 50 37
0,16 Nº 100 7
0,08 Nº 200 0,5
Tabla 4.12. Granulometría del caucho utilizada.
TAMICES
mm ASTM
PORCENTAJE QUE PASA,
%
0,63 Nº 30 100
0,30 Nº 50 40
0,16 Nº 100 10
0,08 Nº 200 1
Cabe destacar que la granulometría del caucho utilizado en este trabajo, es diferente
a la usada en el método por vía húmeda según la Tabla 3.3.
DISTRIBUCIÓN GRANULOMÉTRICA CAUCHO
0
10
20
30
40
50
60
70
80
90
100
0,01 0,1 1 10
Tamaño de Partículas (mm)
Porcentajequepasa(%)
Caucho suministrado por PROBISA Caucho utilizado
Figura 4.9. Curva distribución granulométrica caucho.
50
4.3.2 GRANULOMETRÍA DE LA MEZCLA MEJORADA CON CAUCHO
La granulometría de la mezcla se ve afectada al incorporar el caucho a los áridos en
los distintos porcentajes, pues existe mayor cantidad de finos. La curva granulométrica de
los agregados con el caucho incorporado, tiene una variación mínima y sólo en las mallas
Nº 8 y Nº 30, cuando ésta se realiza en peso. En la tabla siguiente, se muestran las
granulometrías en peso de las mezclas con distinto contenido de caucho.
Tabla 4.13. Distribución Granulométrica en peso de mezclas con caucho.
Tamices Porcentaje que pasa, %
mm ASTM 0,0% 0,5% 1,0% 1,5%
20 3/4" 100 100 100 100
12,5 1/2" 88 88 88 88
10 3/8" 78 78 78 78
5 Nº 4 51 51 51 51
2,5 Nº 8 35 35 36 36
0,63 Nº 30 13 13 14 14
0,30 Nº 50 8 8 8 8
0,16 Nº 100 6 6 6 6
0,08 Nº 200 4 4 4 4
Considerando que el caucho tiene menor densidad que los agregados, se presenta a
continuación, la distribución granulométrica en volumen.
Tabla 4.14. Distribución Granulométrica en volumen de mezclas con caucho.
Tamices Porcentaje que pasa, %
mm ASTM 0,0% 0,5% 1,0% 1,5%
20 3/4" 100 100 100 100
12,5 1/2" 88 88 88 88
10 3/8" 78 78 78 78
5 Nº 4 51 51 52 52
2,5 Nº 8 35 35 36 36
0,63 Nº 30 13 14 14 15
0,30 Nº 50 8 8 8 8
0,16 Nº 100 6 6 5 5
0,08 Nº 200 4 3 3 2
51
4.3.3 DETERMINACIÓN DEL PORCENTAJE ÓPTIMO DE CAUCHO
El porcentaje óptimo de caucho se determina mediante el ensaye de Inmersión-
Compresión y del análisis de los parámetros Marshall. Para su verificación, se realizan los
ensayes de tracción indirecta, Módulo Resiliente y resistencia a la fatiga.
4.3.4 METODOLOGÍA PARA LA CONFECCIÓN DE LA MEZCLA
MEJORADA CON CAUCHO
El procedimiento para la confección de la mezcla con caucho en laboratorio, no
difiere en gran medida del método empleado para una mezcla convencional sin caucho,
salvo la determinación previa del tiempo y temperatura de digestión, que requiere este tipo
de mezcla asfáltica antes de la compactación. Los pasos son los siguientes:
1. Preparar la granulometría de los agregados pétreos.
2. Calentar los agregados en horno a temperatura entre 170° y 210º C.
3. Establecer la proporción de caucho a utilizar, relacionada con el peso de los
áridos.
4. Mezclar los agregados calientes con la cantidad de caucho que corresponda, y
colocarlos en horno entre 150 y 190° C por aproximadamente 2 min para que el
caucho aumente su temperatura.
5. Adicionar el asfalto, previamente calentado a la temperatura de mezclado, a la
mezcla de agregados con caucho y mezclar por 2 a 3 min.
6. Colocar la mezcla asfáltica por un periodo de digestión en horno, cuyo tiempo y
temperatura se han definido con anterioridad mediante el ensayo de Inmersión-
Compresión.
7. Retirar la mezcla del horno y remover el material.
8. Compactar la mezcla caliente en moldes Marshall precalentados. La
compactación se lleva a cabo a una temperatura 10º C más baja que la de
digestión, con 75 golpes del martillo Marshall, por ambos lados de la probeta.
9. Dejar reposar por 24 horas antes de extraer la probeta del molde.
10. Remover la probeta a temperatura ambiente.
52
4.4 DETERMINACIÓN DEL TIEMPO Y TEMPERATURA DE DIGESTIÓN
Para las mezclas asfálticas mejoradas con caucho, se requiere en primer lugar,
determinar la temperatura y el tiempo de digestión, mediante el ensaye de Inmersión-
Compresión. (Ver referencia Nº[6])
El ensaye de Inmersión-Compresión se realiza de acuerdo a las normas españolas
NLT-161 y NLT-162, y se utiliza para determinar la pérdida de cohesión de las mezclas
asfálticas, debido a la acción del agua. Para este ensayo, se ocupan probetas cilíndricas de
altura igual a su diámetro (101.6 mm), cuya compactación no es por golpes, sino que por
presión, asimismo el equipo de compactación consta de moldes de diámetro interior de
101.6 mm y altura de 178 mm, pistones cilíndricos de acero y soportes para mantener
eventualmente el molde por encima de la base de sustentación del pistón inferior.
Figura 4.10. Conjunto de compactación.
MOLDE
PISTÓN
SUPERIOR
BASE Y
SOPORTES
53
Mediante este ensayo, se obtiene un índice numérico (Resistencia Conservada) al
comparar las resistencias a compresión simple obtenidas entre dos juegos de probetas con
distinto acondicionamiento; las primeras, se mantienen al aire por veinticuatro horas y
luego en un baño de agua a 25ºC durante dos horas; el segundo juego, se sumerge en agua a
una temperatura de 60ºC durante veinticuatro horas, después se sacan del baño y se
mantienen dos horas a temperatura ambiente, para finalmente sumergirlas en agua a 25ºC
por dos horas. Ambos grupos de probetas, son evaluados en compresión axial, sin soporte
lateral, con una velocidad de deformación de constante 5.08 mm/min, a temperatura de
25ºC.
La resistencia a compresión simple del primer grupo, probetas en seco, es R1 y la del
segundo, probetas sumergidas, es R2. La resistencia conservada (R) se calcula como:
[ ]%100
1
2
×=
R
R
R
Para definir el tiempo y la temperatura de digestión, se preparan probetas a
diferentes temperaturas, 150º,160º y 170º C, y a tiempos de 1 y 2 horas con distintos
porcentajes de caucho y con un único porcentaje de ligante igual a 5.5%, correspondiente al
óptimo de la mezcla patrón. Estas probetas son comparadas con la mezcla patrón, sin
caucho y no sometida a tiempo y temperatura en hormo, antes de la compactación.
Para la estimación del tiempo y la temperatura de digestión, se toma como
parámetro de comparación entre mezclas, la resistencia conservada. Las mezclas se
fabrican siguiendo el procedimiento anteriormente descrito en la sección 4.3.4, salvo la
compactación de las probetas, mediante presión. Se realizan tres probetas por cada grupo,
R1 y R2, y se utiliza la misma prensa para compactarlas y para realizar el ensayo a
compresión.
54
Las distintas mezclas realizadas se muestran en la siguiente tabla:
Tabla 4.15. Resultados ensaye Inmersión-Compresión.
Tª digestión tiempo digestión Densidad R1 R2 R
Mezcla
[ºC] [hr]
%
caucho [kg/m3
] [MPa] [MPa] [%]
P1 0 0 0 2272 3,85 2,22 57,5
C1 150 2 1,0 2230 4,93 1,52 30,9
C2 150 2 1,5 2250 4,89 1,17 23,9
C3 160 1 1,0 2236 3,80 1,48 39,0
C4 160 2 1,0 2254 4,56 1,98 43,4
C5 170 2 0,5 2252 4,96 3,38 68,0
C6 170 2 1,0 2246 4,28 2,88 67,3
C7 170 2 1,5 2262 5,26 2,07 39,3
Debido a que este ensayo pretende obtener la susceptibilidad de la mezcla cuando
está sometida a la acción del agua, solo interesa saber la diferencia porcentual entre los dos
grupos, no las magnitudes de sus resistencias.
Caso 1 Tª digestión=150ºC
Para las mezclas fabricadas con temperatura de digestión de 150ºC por dos horas
(mezclas C1 y C2), se varía el porcentaje de adición de caucho, con lo que puede obtenerse
la evolución del parámetro resistencia conservada, con respecto a esta variable.
55
INMERSIÓN-COMPRESIÓN
en función del contenido de caucho, para temperatura de digestión de 150ºC
0,00
1,00
2,00
3,00
4,00
5,00
6,00
0 1,0 1,5
% Caucho
Tensiónderotura[MPa]
Probetas en seco
Probetas sumergidas
31%
24%
% Resistencia
Conservada
58%
P1 C1 C2
Figura 4.11. Resultados mezclas C1 y C2.
Se observa que la resistencia conservada disminuye notablemente al agregar
caucho. La cohesión de la mezcla se ve perjudicada por efecto del agua cuando contiene
caucho, cuando la temperatura de digestión es 150ºC, esto se debe a que a esta temperatura,
no está ocurriendo completamente el proceso de digestión, es decir, el caucho no está
interactuando con el ligante. Las resistencias en seco son más altas que las de mezclas sin
caucho, no así la resistencia de probetas sumergidas que disminuyen al agregar caucho. Por
otro lado, se tiene que al agregar caucho, la densidad de las probetas disminuye, esto se
puede deber a la falta de digestión y al dosificar el caucho en peso, resulta mayor volumen,
pues este material es menos denso que los agregados.
Caso 2 Tª digestión=160ºC
Si se aumenta la temperatura de digestión a 160ºC, manteniendo el porcentaje de
caucho en 1% y se varía el tiempo de digestión, se obtienen los resultados para las mezclas
C3 y C4, mostrados a continuación.
56
INMERSIÓN COMPRESIÓN
en función del tiempo de digestión, para temperatura de digestión de 160ºC
0,00
0,50
1,00
1,50
2,00
2,50
3,00
3,50
4,00
4,50
5,00
0 1 2
Tiempo de Digestión [horas]
Tensiónderotura[MPa]
Probetas en seco
Probetas sumergidas
39%
43%
% Resistencia
Conservada
58%
P1 C3 C4
Figura 4.12. Resultados mezclas C3 y C4.
Al aumentar la temperatura de digestión a 160ºC, se obtienen mejores valores de la
resistencia conservada, debido a que el caucho comienza a interactuar con el ligante y el
efecto del agua está disminuyendo. Mientras más tiempo se tenga la mezcla en el horno, se
tiene que aumenta la densidad de las probetas, al igual que R1 y R2, esto provoca un mayor
valor de la resistencia conservada. Por otro lado, se observa que los valores de resistencia
conservada siguen estando por debajo del valor de la mezcla patrón.
Caso 3 Tª digestión=170ºC
Las mezclas C5, C6 y C7 se fabrican con temperatura de digestión de 170º C y un
tiempo de digestión de 2 horas, variando el porcentaje de caucho desde 0.5% hasta 1.5%.
Los resultados obtenidos para estas mezclas, se grafican a continuación.
57
INMERSIÓN-COMPRESIÓN
en función del contenido de caucho, para temperatura de digestión de 170º C
0,00
1,00
2,00
3,00
4,00
5,00
6,00
0,0 0,5 1,0 1,5
% Caucho
TensióndeRotura[MPa]
Probetas en seco
Probetas sumergidas
68%
67%
39% % Resistencia
Conservada
58%
P1 C5 C6 C7
Figura 4.13. Resultados mezclas C5, C6 y C7.
Con esta temperatura de digestión, se observa que al agregar caucho hasta en 1% a
las mezclas, es menor la pérdida de cohesión por efecto del agua, lo que se traduce en
mayores valores de la resistencia conservada. También se observa que la resistencia para
probetas sumergidas disminuye, pero no hay una clara tendencia para la resistencia en seco.
Comparados con los resultados obtenidos con los ensayos anteriores a 150º y 160º C, se
obtienen mejores valores de resistencia conservada con esta temperatura, salvo para el
porcentaje de 1.5% de caucho.
A modo de resumen, se presenta a continuación una tabla con los distintos valores
de resistencia conservada para una mezcla con dotación de caucho de 1%, aumentando la
temperatura de digestión, y manteniendo el tiempo en dos horas en cada caso.
58
Tabla 4.16. Resultados mezclas con 1% de caucho con tiempo de digestión de dos
horas.
Tª digestión tiempo digestión Densidad R1 R2 R
Mezcla
[ºC] [hr]
%
caucho [kg/m3
] [MPa] [MPa] [%]
C1 150 2 1,0 2230 4,93 1,52 30,9
C3 160 2 1,0 2254 4,56 1,98 43,4
C6 170 2 1,0 2246 4,28 2,88 67,3
RESISTENCIA CONSERVADA (%) Vs TEMPERATURA DE DIGESTIÓN
R
2
= 0,97
0,0
10,0
20,0
30,0
40,0
50,0
60,0
70,0
80,0
145 150 155 160 165 170 175
Temperatura de digestión [ºC]
Resistenciaconservada(%)
tiempo de digestion de 2 hrs Lineal (tiempo de digestion de 2 hrs)
Figura 4.14. Resultados mezclas con 1% de caucho con tiempo de digestión de dos
horas.
En este gráfico, se observa el comportamiento del indicador resistencia conservada
al aumentar la temperatura de digestión de la mezcla. Se observa que al aumentar la
temperatura, mejora la eficacia del proceso de adición de caucho a la mezcla, facilitando la
digestión del caucho, por parte del ligante, lográndose mediante este proceso térmico, un
importante mejoramiento en la resistencia a la humedad de las mezclas mejoradas con
caucho. El valor alcanzado para la resistencia conservada, después de dos horas de
digestión a 170ºC, se encuentra sobre el valor correspondiente para mezclas sin caucho.
Como conclusión, se tiene que mientras más alta la temperatura de digestión y más
largo el tiempo en horno, el proceso de digestión mejora. En este caso, los mejores valores
59
de resistencia conservada para esta mezcla, se encuentran para la temperatura de 170º C por
dos horas, con contenidos de caucho de hasta el 1%.
4.5 ESTUDIO DEL EFECTO DE LA TEMPERATURA Y TIEMPO DE
DIGESTIÓN EN LOS PARÁMETROS MARSHALL
Para realizar el estudio, se confeccionan las mezclas mejoradas con caucho, con tres
contenidos de cemento asfáltico, partiendo del porcentaje de ligante de la mezcla Patrón sin
caucho de 5.5%.
A continuación, se comparan los valores de los parámetros Marshall de mezclas
preparadas con tiempo de digestión de dos horas, para las diferentes temperaturas de
digestión de 150º, 160º y 170ºC y distintos porcentajes de adición de caucho.
4.5.1 DENSIDAD
Este ensayo se realiza de acuerdo a la sección 8.302.38 (LNV 13) del M.C.-V.8. A
continuación se muestran los resultados obtenidos de densidad para las mezclas asfálticas
mejoradas con caucho.
Tabla 4.17. Resultados de Densidad.
% asfalto 4,5 5,0 5,5 6,0 6,5
Mezclas Densidad [kg/m3
]
150º C/ 2 hr
0,5% - - 2273 2292 2316
1,0% - - 2270 2291 2310
1,5% - - 2263 2269 2285
160º C/ 2 hr
0,5% - - 2301 2313 2353
170º C/ 2 hr
0,5% - - 2290 2304 2298
60
DENSIDAD Vs PORCENTAJE DE ASFALTO
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
5 5,5 6 6,5 7
ASFALTO (%Pb)
DENSIDAD[kg/m^3]
0.5%/ 150ºC/ 2hrs 0.5%/ 160ºC/ 2hrs 0.5%/ 170ºC/ 2hrs
Figura 4.15. Variación de la densidad respecto al porcentaje de cemento asfáltico,
para mezclas con 0.5% de caucho, tiempo de digestión de dos horas y diferentes
temperaturas de digestión.
Los valores de densidad obtenidos para las mezclas fabricadas a 160ºC por dos
horas con 0.5% de caucho, son ligeramente superiores a los conseguidos a 170º y a 150ºC.
La curva de las mezclas a 170ºC, tienen un máximo a diferencia de las otras temperaturas
En la Figura 4.16. se observa que para las mezclas realizadas con una temperatura
de digestión de 150º C por dos horas, la densidad disminuye a medida que la proporción de
caucho se incrementa. Esto se debe a que al no ocurrir la digestión y dosificar el caucho por
peso, resulta mayor volumen respecto de la mezcla original, debido a que el caucho es
menos denso que los agregados.
61
DENSIDAD Vs PORCENTAJE DE ASFALTO
2260
2270
2280
2290
2300
2310
2320
5 5,5 6 6,5 7
ASFALTO (%Pb)
DENSIDAD[kg/m^3]
0.5%/ 150ºC/ 2hrs 1.0%/ 150ºC/ 2hrs 1.5%/ 150ºC/ 2hrs
Figura 4.16. Variación de la densidad respecto al porcentaje de cemento asfáltico,
para mezclas con temperatura de digestión de 150ºC por dos horas.
4.5.2 ESTABILIDAD
Este ensayo se realiza de acuerdo a la sección 8.302.47 (LNV 47) del M.C.-V.8. A
continuación se muestran los resultados obtenidos de estabilidad para las mezclas asfálticas
mejoradas con caucho.
Tabla 4.18. Resultados de Estabilidad Marshall.
% asfalto 4,5 5,0 5,5 6,0 6,5
Mezclas Estabilidad [N]
150ºC/ 2 hr
0,5% - - 10995 9737 11476
1,0% - - 10234 11576 12829
1,5% - - 10981 11179 11028
160ºC/ 2 hr
0,5% - - 12267 13774 13673
170ºC/ 2 hr
0,5% - - 16459 14405 13920
62
ESTABILIDAD Vs PORCENTAJE DE ASFALTO
8000
9000
10000
11000
12000
13000
14000
15000
16000
17000
5 5,5 6 6,5 7
ASFALTO (%Pb)
ESTABILIDAD[N]
0.5%/ 150ºC/ 2hrs 0.5%/ 160ºC/ 2hrs 0.5%/ 170ºC/ 2hrs
Figura 4.17. Variación de la Estabilidad respecto al porcentaje de cemento asfáltico,
para mezclas con 0.5% de caucho, tiempo de digestión de dos horas y diferentes
temperaturas de digestión.
Los valores de Estabilidad más altos son los obtenidos para las mezclas fabricadas a
170ºC por dos horas con 0.5% de caucho. Para las mezclas con temperatura de digestión de
150ºC, la curva de Estabilidad no tiene la forma esperada.
4.5.3 FLUIDEZ
Este ensayo se realiza de acuerdo a la sección 8.302.47 (LNV 47) del M.C.-V.8. A
continuación se muestran los resultados obtenidos de fluidez para las mezclas asfálticas
mejoradas con caucho.
63
Tabla 4.19. Resultados de Fluidez Marshall.
% asfalto 4,5 5,0 5,5 6,0 6,5
Mezclas Fluidez [0,01"]
150ºC/ 2 hr
0,5% - - 14,0 12,8 13,0
1,0% - - 13,5 13,7 14,0
1,5% - - 13,3 13,0 14,3
160ºC/ 2 hr
0,5% - - 12,3 14,0 16,0
170ºC/ 2 hr
0,5% - - 12,0 13,3 16,0
FLUIDEZ Vs PORCENTAJE DE ASFALTO
10
11
12
13
14
15
16
17
5 5,5 6 6,5 7
ASFALTO (%Pb)
FLUIDEZ[0,01'']
0.5%/ 150ºC/ 2hrs 0.5%/ 160ºC/ 2hrs 0.5%/ 170ºC/ 2hrs
Figura 4.18. Variación de la fluidez respecto al porcentaje de cemento asfáltico, para
mezclas con 0.5% de caucho, tiempo de digestión de dos horas y diferentes
temperaturas de digestión.
Los valores de fluidez obtenidos para las mezclas fabricadas a 160ºC por dos horas
con 0.5% de caucho también siguen la tendencia esperada, al igual que para las mezclas a
170ºC. No ocurre lo mismo para la curva a 150ºC, donde los valores de fluidez inicialmente
son altos para 5.5% de ligante, y disminuye hasta un cierto contenido de asfalto a partir del
cual vuelve a aumentar. Esto podría deberse a que bajos contenidos de ligante en una
mezcla mejorada con caucho son insuficientes para proporcionar una buena cohesión, junto
64
a esto hay que decir que el caucho a esta temperatura, posiblemente no interactúa con el
ligante, por lo que es más relevante el comportamiento elástico del caucho.
4.5.4 HUECOS EN LA MEZCLA TOTAL
A continuación se muestran los resultados obtenidos de huecos en la mezcla total
para las mezclas asfálticas mejoradas con caucho.
Tabla 4.20. Resultados de huecos en la mezcla total.
% asfalto 4,5 5,0 5,5 6,0 6,5
Mezclas % huecos en la mezcla
150º C/ 2 hr
0,5% - - 6,1 4,7 3,1
1,0% - - 5,6 4,1 2,7
1,5% - - 5,5 4,6 3,3
160º C/ 2 hr
0,5% - - 5,0 3,8 1,6
170º C/ 2 hr
0,5% - - 5,4 4,2 3,8
En la Figura 4.19, se observa que a medida que aumenta el porcentaje de asfalto, los
huecos disminuyen para cualquier temperatura de digestión. Los valores de huecos más
bajos obtenidos, se tienen en la mezcla con temperatura de digestión de 160ºC.
65
PORCENTAJE DE HUECOS EN LA MEZCLA Vs PORCENTAJE DE ASFALTO
1,0
2,0
3,0
4,0
5,0
6,0
7,0
5 5,5 6 6,5 7
ASFALTO (%Pb)
%HUECOSENLAMEZCLA
0.5%/ 150ºC/ 2hrs 0.5%/ 160ºC /2hrs 0.5%/ 170ºC/ 2hrs
Figura 4.19. Variación de los huecos en la mezcla respecto al porcentaje de cemento
asfáltico, para mezclas con 0.5% de caucho, tiempo de digestión de dos horas y
diferentes temperaturas de digestión.
En la Figura 4.20, se analiza el efecto del porcentaje de caucho sobre el contenido
de huecos a 150ºC, donde se observa que para 1.5%, se genera un “efecto rebote” debido a
que a esta temperatura no reacciona todo el caucho con el cemento asfáltico, dificultando la
compactación debido a la característica elástica de este material.
66
PORCENTAJE DE HUECOS EN LA MEZCLA Vs PORCENTAJE DE ASFALTO
1,0
2,0
3,0
4,0
5,0
6,0
7,0
5 5,5 6 6,5 7
ASFALTO (%Pb)
%HUECOSENLAMEZCLA
0.5%/ 150ºC/ 2hrs 1.0%/ 150ºC/ 2hrs 1.5%/ 150ºC/ 2hrs
Figura 4.20. Variación de los huecos en la mezcla respecto al porcentaje de cemento
asfáltico, para mezclas con temperatura de digestión de 150ºC por dos horas.
4.5.5 VACÍOS EN EL AGREGADO MINERAL
A continuación se muestran los resultados obtenidos de vacíos en el agregado
mineral en la mezcla total para las mezclas asfálticas mejoradas con caucho.
Tabla 4.21. Resultados de vacíos en el agregado mineral.
% asfalto 4,5 5,0 5,5 6,0 6,5
Mezclas % vacíos en el agregado mineral
150ºC/ 2 hr
0,5% - - 17,8 17,5 17,0
1,0% - - 17,4 17,0 16,7
1,5% - - 18,7 18,8 18,6
160ºC/ 2 hr
0,5% - - 16,8 16,7 15,7
170ºC/ 2 hr
0,5% - - 17,2 17,0 17,6
67
PORCENTAJE DE VACIOS EN EL AGREGADO MINERAL Vs PORCENTAJE DE ASFALTO
15,6
16,1
16,6
17,1
17,6
18,1
5 5,5 6 6,5 7
ASFALTO (%Pb)
%VACIOSENELAGREGADOMINERAL
0.5%/ 150ºC/ 2hrs 0.5%/ 160ºC /2hrs 0.5%/ 170ºC/ 2hrs
Figura 4.21. Variación de vacíos en el agregado mineral respecto al porcentaje de
cemento asfáltico, para mezclas con 0.5% de caucho, tiempo de digestión de dos horas
y diferentes temperaturas de digestión.
Analizando las curvas de la Figura 4.21, puede decirse que la curva que se acerca
más a lo esperado es la de las mezclas fabricadas a 170ºC. Para las mezclas elaboradas a
150º y 160ºC, los vacíos en el agregado mineral disminuyen al incrementar el contenido de
cemento asfáltico.
En la Figura 4.22, donde se analizan las mezclas fabricadas a temperatura de
digestión de 150ºC, se observa que los vacíos en el agregado mineral se incrementan al
aumentar la cantidad de caucho.
68
PORCENTAJE DE VACIOS EN EL AGREGADO MINERAL Vs PORCENTAJE DE ASFALTO
15,6
16,1
16,6
17,1
17,6
18,1
18,6
19,1
5 5,5 6 6,5 7
ASFALTO (%Pb)
%VACIOSENELAGREGADOMINERAL
0.5%/ 150ºC /2hrs 1.0%/ 150ºC /2hrs 1.5%/ 150ºC /2hrs
Figura 4.22. Variación de vacíos en el agregado mineral respecto al porcentaje de
cemento asfáltico, para mezclas con temperatura de digestión de 150ºC por dos horas.
En base a los parámetros Marshall, puede decirse que la temperatura de digestión
que otorga mejores resultados de las mezclas es 170ºC. En las mezclas elaboradas a 150ºC,
no ocurre completamente el proceso de digestión y los granos de caucho sin reaccionar,
desmejoran las características de la mezcla. Con temperatura de digestión de 160ºC, las
características de la mezcla son buenas, salvo que tiene valores altos de densidad, lo que
provoca que los porcentajes de huecos en la mezcla y vacíos en el agregado mineral sean
bajos, los que podrían estar fuera de las especificaciones para una carpeta de rodadura.
4.6 DISEÑO FINAL
Del estudio anterior, se determina que la temperatura de digestión que otorga
mejores resultados para las mezclas con caucho es a la máxima posible, en este caso a
170ºC. Es por esto que se analizan los parámetros Marshall, para determinar el valor
óptimo de asfalto para los diseños con esta temperatura y los distintos porcentajes de
adición de caucho.
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas
estudio de la utilización de caucho de neumáticos en mezclas asfalticas

Más contenido relacionado

La actualidad más candente

Resumen astm c-127
Resumen astm c-127Resumen astm c-127
Resumen astm c-127Jaya Gupta
 
Curado del concreto
Curado del concretoCurado del concreto
Curado del concretosikamexicana
 
Análisis comparativo de los métodos marshall y superpave (pavimentos)
Análisis comparativo de los métodos marshall y superpave  (pavimentos)Análisis comparativo de los métodos marshall y superpave  (pavimentos)
Análisis comparativo de los métodos marshall y superpave (pavimentos)Yohan Tovar
 
Método aashto 93 para el diseño de pavimentos rigidos
Método aashto 93 para el diseño de pavimentos rigidosMétodo aashto 93 para el diseño de pavimentos rigidos
Método aashto 93 para el diseño de pavimentos rigidosJonathan Fuentes
 
Articulo asfalto caucho
Articulo   asfalto cauchoArticulo   asfalto caucho
Articulo asfalto cauchoalexa842003
 
Manual ensayo de materiales
Manual ensayo de materialesManual ensayo de materiales
Manual ensayo de materialesJuan Soto
 
METODO DEL AGREGADO GLOBAL PARA EL DISEÑO DE MEZCLAS DE CONCRETO.pdf
METODO DEL AGREGADO GLOBAL PARA EL DISEÑO DE MEZCLAS DE CONCRETO.pdfMETODO DEL AGREGADO GLOBAL PARA EL DISEÑO DE MEZCLAS DE CONCRETO.pdf
METODO DEL AGREGADO GLOBAL PARA EL DISEÑO DE MEZCLAS DE CONCRETO.pdfyonnier valencia
 
Topicos de tecnologia del concreto en el peru
Topicos de tecnologia del concreto en el peruTopicos de tecnologia del concreto en el peru
Topicos de tecnologia del concreto en el perumanu Hermoza Atausinchi
 
Diseno de-mezclas-enrrique-rivva-lopez
Diseno de-mezclas-enrrique-rivva-lopezDiseno de-mezclas-enrrique-rivva-lopez
Diseno de-mezclas-enrrique-rivva-lopezFredrafu Enrifer
 
Porcentaje de Absorción en árido fino
Porcentaje de Absorción en árido finoPorcentaje de Absorción en árido fino
Porcentaje de Absorción en árido finolaboensayoysuelos
 

La actualidad más candente (20)

Resumen astm c-127
Resumen astm c-127Resumen astm c-127
Resumen astm c-127
 
Curado del concreto
Curado del concretoCurado del concreto
Curado del concreto
 
Contenido optimo de asfalto
Contenido optimo de asfaltoContenido optimo de asfalto
Contenido optimo de asfalto
 
Porcentaje De ExtraccióN Del Asfalto...
Porcentaje De ExtraccióN Del Asfalto...Porcentaje De ExtraccióN Del Asfalto...
Porcentaje De ExtraccióN Del Asfalto...
 
Análisis comparativo de los métodos marshall y superpave (pavimentos)
Análisis comparativo de los métodos marshall y superpave  (pavimentos)Análisis comparativo de los métodos marshall y superpave  (pavimentos)
Análisis comparativo de los métodos marshall y superpave (pavimentos)
 
Ensayo marshall
Ensayo marshallEnsayo marshall
Ensayo marshall
 
DISEÑO DE MEZCLAS MÉTODO MARSHALL
DISEÑO DE MEZCLAS MÉTODO MARSHALLDISEÑO DE MEZCLAS MÉTODO MARSHALL
DISEÑO DE MEZCLAS MÉTODO MARSHALL
 
RICE
RICERICE
RICE
 
Método aashto 93 para el diseño de pavimentos rigidos
Método aashto 93 para el diseño de pavimentos rigidosMétodo aashto 93 para el diseño de pavimentos rigidos
Método aashto 93 para el diseño de pavimentos rigidos
 
Articulo asfalto caucho
Articulo   asfalto cauchoArticulo   asfalto caucho
Articulo asfalto caucho
 
Manual ensayo de materiales
Manual ensayo de materialesManual ensayo de materiales
Manual ensayo de materiales
 
METODO DEL AGREGADO GLOBAL PARA EL DISEÑO DE MEZCLAS DE CONCRETO.pdf
METODO DEL AGREGADO GLOBAL PARA EL DISEÑO DE MEZCLAS DE CONCRETO.pdfMETODO DEL AGREGADO GLOBAL PARA EL DISEÑO DE MEZCLAS DE CONCRETO.pdf
METODO DEL AGREGADO GLOBAL PARA EL DISEÑO DE MEZCLAS DE CONCRETO.pdf
 
Informe # 4 abrasión
Informe # 4 abrasiónInforme # 4 abrasión
Informe # 4 abrasión
 
Ensayo CBR
Ensayo CBREnsayo CBR
Ensayo CBR
 
Penetracion de asfalto
Penetracion de asfaltoPenetracion de asfalto
Penetracion de asfalto
 
laboratorio de pavimentos
laboratorio de pavimentos laboratorio de pavimentos
laboratorio de pavimentos
 
Topicos de tecnologia del concreto en el peru
Topicos de tecnologia del concreto en el peruTopicos de tecnologia del concreto en el peru
Topicos de tecnologia del concreto en el peru
 
Diseno de-mezclas-enrrique-rivva-lopez
Diseno de-mezclas-enrrique-rivva-lopezDiseno de-mezclas-enrrique-rivva-lopez
Diseno de-mezclas-enrrique-rivva-lopez
 
Porcentaje de Absorción en árido fino
Porcentaje de Absorción en árido finoPorcentaje de Absorción en árido fino
Porcentaje de Absorción en árido fino
 
Diseño de mezclas
Diseño de mezclasDiseño de mezclas
Diseño de mezclas
 

Destacado

Análisis granulométrico del agregado fino
Análisis granulométrico del agregado finoAnálisis granulométrico del agregado fino
Análisis granulométrico del agregado finoAnthony Vega
 
Mezclas asfalticas (2)
Mezclas asfalticas (2)Mezclas asfalticas (2)
Mezclas asfalticas (2)leonel321
 
APLICACION DEL METODO MARSHALL Y GRANULOMETRIA SUPERPAVE EN EL DISEÑO DE MEZC...
APLICACION DEL METODO MARSHALL Y GRANULOMETRIA SUPERPAVE EN EL DISEÑO DE MEZC...APLICACION DEL METODO MARSHALL Y GRANULOMETRIA SUPERPAVE EN EL DISEÑO DE MEZC...
APLICACION DEL METODO MARSHALL Y GRANULOMETRIA SUPERPAVE EN EL DISEÑO DE MEZC...DANIEL ALARCON
 
Métodos de proyección de la demanda
Métodos de proyección de la demandaMétodos de proyección de la demanda
Métodos de proyección de la demandaSandra Torreglosa
 
guia-basica-construccion-canchas-de-futbol
guia-basica-construccion-canchas-de-futbolguia-basica-construccion-canchas-de-futbol
guia-basica-construccion-canchas-de-futbolKaren Cerdo Conejo
 

Destacado (7)

VENTAJAS DE LOS ASFALTOS CON CAUCHO DE NEUMÁTICOS EJEMPLOS DE OBRAS EN ESPAÑA...
VENTAJAS DE LOS ASFALTOS CON CAUCHO DE NEUMÁTICOS EJEMPLOS DE OBRAS EN ESPAÑA...VENTAJAS DE LOS ASFALTOS CON CAUCHO DE NEUMÁTICOS EJEMPLOS DE OBRAS EN ESPAÑA...
VENTAJAS DE LOS ASFALTOS CON CAUCHO DE NEUMÁTICOS EJEMPLOS DE OBRAS EN ESPAÑA...
 
Castillo Li Proyecto de Investigacion
Castillo Li Proyecto de Investigacion Castillo Li Proyecto de Investigacion
Castillo Li Proyecto de Investigacion
 
Análisis granulométrico del agregado fino
Análisis granulométrico del agregado finoAnálisis granulométrico del agregado fino
Análisis granulométrico del agregado fino
 
Mezclas asfalticas (2)
Mezclas asfalticas (2)Mezclas asfalticas (2)
Mezclas asfalticas (2)
 
APLICACION DEL METODO MARSHALL Y GRANULOMETRIA SUPERPAVE EN EL DISEÑO DE MEZC...
APLICACION DEL METODO MARSHALL Y GRANULOMETRIA SUPERPAVE EN EL DISEÑO DE MEZC...APLICACION DEL METODO MARSHALL Y GRANULOMETRIA SUPERPAVE EN EL DISEÑO DE MEZC...
APLICACION DEL METODO MARSHALL Y GRANULOMETRIA SUPERPAVE EN EL DISEÑO DE MEZC...
 
Métodos de proyección de la demanda
Métodos de proyección de la demandaMétodos de proyección de la demanda
Métodos de proyección de la demanda
 
guia-basica-construccion-canchas-de-futbol
guia-basica-construccion-canchas-de-futbolguia-basica-construccion-canchas-de-futbol
guia-basica-construccion-canchas-de-futbol
 

Similar a estudio de la utilización de caucho de neumáticos en mezclas asfalticas (20)

Tesis simulacion de yacimientos
Tesis simulacion de yacimientosTesis simulacion de yacimientos
Tesis simulacion de yacimientos
 
EXPO MEZCLADO.pptx
EXPO MEZCLADO.pptxEXPO MEZCLADO.pptx
EXPO MEZCLADO.pptx
 
Tapia mks
Tapia mksTapia mks
Tapia mks
 
ladriile
ladriileladriile
ladriile
 
Asfaltitas,
Asfaltitas,Asfaltitas,
Asfaltitas,
 
Caracterizacion de morteros
Caracterizacion de morterosCaracterizacion de morteros
Caracterizacion de morteros
 
Diseno asfalto
Diseno asfaltoDiseno asfalto
Diseno asfalto
 
asfalto.pdf
asfalto.pdfasfalto.pdf
asfalto.pdf
 
Pt246
Pt246Pt246
Pt246
 
Mezclas Asfalticas
Mezclas AsfalticasMezclas Asfalticas
Mezclas Asfalticas
 
TESIS DE MEZCLA ASFALTICA EN CALIENTE
TESIS DE MEZCLA ASFALTICA EN CALIENTETESIS DE MEZCLA ASFALTICA EN CALIENTE
TESIS DE MEZCLA ASFALTICA EN CALIENTE
 
Preparacion del safalto
Preparacion del safaltoPreparacion del safalto
Preparacion del safalto
 
null.pdf
null.pdfnull.pdf
null.pdf
 
125451
125451125451
125451
 
Laboratorio no 21_ductilidad_de_los_mate
Laboratorio no 21_ductilidad_de_los_mateLaboratorio no 21_ductilidad_de_los_mate
Laboratorio no 21_ductilidad_de_los_mate
 
000142292
000142292000142292
000142292
 
Secado del nopal
Secado del nopalSecado del nopal
Secado del nopal
 
Estudio concentracion de-espumante
Estudio concentracion de-espumanteEstudio concentracion de-espumante
Estudio concentracion de-espumante
 
Baldosas ceramicas
Baldosas ceramicasBaldosas ceramicas
Baldosas ceramicas
 
Hormigon con vidrio
Hormigon con vidrioHormigon con vidrio
Hormigon con vidrio
 

Último

ECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdfECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdfmatepura
 
Seleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSeleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSaulSantiago25
 
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdfCristhianZetaNima
 
clases de dinamica ejercicios preuniversitarios.pdf
clases de dinamica ejercicios preuniversitarios.pdfclases de dinamica ejercicios preuniversitarios.pdf
clases de dinamica ejercicios preuniversitarios.pdfDanielaVelasquez553560
 
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaSesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaXimenaFallaLecca1
 
Flujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxFlujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxEduardoSnchezHernnde5
 
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaProyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaXjoseantonio01jossed
 
Rendimiento-de-Maquinaria y precios unitarios para la construcción de una ma...
Rendimiento-de-Maquinaria y precios unitarios  para la construcción de una ma...Rendimiento-de-Maquinaria y precios unitarios  para la construcción de una ma...
Rendimiento-de-Maquinaria y precios unitarios para la construcción de una ma...RichardRivas28
 
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptxguillermosantana15
 
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptxPPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptxSergioGJimenezMorean
 
tema05 estabilidad en barras mecanicas.pdf
tema05 estabilidad en barras mecanicas.pdftema05 estabilidad en barras mecanicas.pdf
tema05 estabilidad en barras mecanicas.pdfvictoralejandroayala2
 
Magnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principiosMagnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principiosMarceloQuisbert6
 
aCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.pptaCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.pptCRISTOFERSERGIOCANAL
 
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kVEl proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kVSebastianPaez47
 
nom-028-stps-2012-nom-028-stps-2012-.pdf
nom-028-stps-2012-nom-028-stps-2012-.pdfnom-028-stps-2012-nom-028-stps-2012-.pdf
nom-028-stps-2012-nom-028-stps-2012-.pdfDiegoMadrigal21
 
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdfECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdffredyflores58
 
Elaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfElaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfKEVINYOICIAQUINOSORI
 
Comite Operativo Ciberseguridad 012020.pptx
Comite Operativo Ciberseguridad 012020.pptxComite Operativo Ciberseguridad 012020.pptx
Comite Operativo Ciberseguridad 012020.pptxClaudiaPerez86192
 
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.pptARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.pptMarianoSanchez70
 
Sesión N°2_Curso_Ingeniería_Sanitaria.pdf
Sesión N°2_Curso_Ingeniería_Sanitaria.pdfSesión N°2_Curso_Ingeniería_Sanitaria.pdf
Sesión N°2_Curso_Ingeniería_Sanitaria.pdfannavarrom
 

Último (20)

ECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdfECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdf
 
Seleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSeleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusibles
 
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
 
clases de dinamica ejercicios preuniversitarios.pdf
clases de dinamica ejercicios preuniversitarios.pdfclases de dinamica ejercicios preuniversitarios.pdf
clases de dinamica ejercicios preuniversitarios.pdf
 
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaSesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
 
Flujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxFlujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptx
 
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaProyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
 
Rendimiento-de-Maquinaria y precios unitarios para la construcción de una ma...
Rendimiento-de-Maquinaria y precios unitarios  para la construcción de una ma...Rendimiento-de-Maquinaria y precios unitarios  para la construcción de una ma...
Rendimiento-de-Maquinaria y precios unitarios para la construcción de una ma...
 
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
 
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptxPPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
 
tema05 estabilidad en barras mecanicas.pdf
tema05 estabilidad en barras mecanicas.pdftema05 estabilidad en barras mecanicas.pdf
tema05 estabilidad en barras mecanicas.pdf
 
Magnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principiosMagnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principios
 
aCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.pptaCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.ppt
 
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kVEl proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
 
nom-028-stps-2012-nom-028-stps-2012-.pdf
nom-028-stps-2012-nom-028-stps-2012-.pdfnom-028-stps-2012-nom-028-stps-2012-.pdf
nom-028-stps-2012-nom-028-stps-2012-.pdf
 
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdfECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
 
Elaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfElaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdf
 
Comite Operativo Ciberseguridad 012020.pptx
Comite Operativo Ciberseguridad 012020.pptxComite Operativo Ciberseguridad 012020.pptx
Comite Operativo Ciberseguridad 012020.pptx
 
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.pptARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
 
Sesión N°2_Curso_Ingeniería_Sanitaria.pdf
Sesión N°2_Curso_Ingeniería_Sanitaria.pdfSesión N°2_Curso_Ingeniería_Sanitaria.pdf
Sesión N°2_Curso_Ingeniería_Sanitaria.pdf
 

estudio de la utilización de caucho de neumáticos en mezclas asfalticas

  • 1. lJNIVERSIDAD DE CHILE . .FACULTAD DE,CIENCIAS FISICASYMATElVlATICAS DEPARTAMENTO DE INGENIERIA CIV1L ESTUDIO DE LA UTILIZACIÓN DE CAUCHO DE NEUMÁTICOS EN MEZCLAS ASFÁLTICAS EN CALIENTE MEDIANTE PROCESO SECO MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL NÁYADE IRENE RAMÍREZ PALMA PROFESOR GUÍA: GABRIELA MUÑOZ ROJAS MIEMBROS DE LA COMISIÓN: DAVID CAMPUSANO BROWN FEDERICO DELFÍN ARIZTÍA SANTIAGO DE CHILE DICIEMBRE 2006
  • 2. i CONTENIDO Pág. 1. INTRODUCCIÓN 1 1.1 INTRODUCCIÓN GENERAL 1 1.2 OBJETIVOS 4 2. MARCO TEÓRICO 5 2.1 MEZCLAS ASFÁLTICAS EN CALIENTE 5 2.1.1 PROPIEDADES DE LAS MEZCLAS 5 2.2 MÉTODO DE DISEÑO 8 2.3 ASFALTOS MODIFICADOS 11 3. MODIFICACIÓN DE MEZCLAS ASFÁLTICAS MEDIANTE LA INCORPORACIÓN DE CAUCHO DE NEUMÁTICOS DESECHADOS 12 3.1.1CARACTERISTICAS DE LOS NEUMÁTICOS 12 3.2 NEUMÁTICOS DESECHADOS 14 3.2.1 PROCESO AMBIENTAL 15 3.2.2 TRITURACIÓN CRIOGÉNICA 16 3.3 APLICACIÓN DE GRANOS DE CAUCHO EN LAS MEZCLAS ASFÁLTICAS 18 3.3.1 PROCESO POR VÍA HÚMEDA 19 3.3.1.1 Modificación del ligante 20 3.3.1.2 Especificaciones para el proceso por vía húmeda según Dirección de Vialidad 21 3.3.2 PROCESO POR VÍA SECA 25 3.3.2.1 Tecnologías para el uso de caucho reciclado mediante vía seca 27 3.4 CARACTERÍSTICAS DE LAS MEZCLAS ASFÁLTICAS EN CALIENTE MODIFICADAS CON CAUCHO 29 3.5 EXPERIENCIAS EXTRANJERAS Y NACIONALES UTILIZANDO CAUCHO RECICLADO 30 3.5.1 TRAMO EXPERIMENTAL I (Ruta X –65, km 22.270-22.770) 31 3.5.2 TRAMO EXPERIMENTAL II (Ruta 60 CH, km 66.000-67.500) 33 4. DESARROLLO EXPERIMENTAL 36 4.1 CARACTERIZACIÓN DE LOS MATERIALES 36
  • 3. ii 4.1.1 AGREGADOS PÉTREOS 36 4.1.2 LIGANTE ASFÁLTICO 39 4.1.3 MEZCLA DE ÁRIDOS 41 4.2 DISEÑO MARSHALL DE LA MEZCLA PATRÓN 43 4.3 PREPARACIÓN DE LA MEZCLA MEDIANTE PROCESO POR VÍA SECA 48 4.3.1 CAUCHO UTILIZADO 48 4.3.2 GRANULOMETRÍA DE LA MEZCLA MEJORADA CON CAUCHO 50 4.3.3 DETERMINACIÓN DEL PORCENTAJE ÓPTIMO DE CAUCHO 51 4.3.4 METODOLOGÍA PARA LA CONFECCIÓN DE LA MEZCLA MEJORADA CON CAUCHO 51 4.4 DETERMINACIÓN DEL TIEMPO Y TEMPERATURA DE DIGESTIÓN 52 4.5 ESTUDIO DEL EFECTO DE LA TEMPERATURA Y TIEMPO DE DIGESTIÓN EN LOS PARÁMETROS MARSHALL 59 4.5.1 DENSIDAD 59 4.5.2 ESTABILIDAD 61 4.5.3 FLUIDEZ 62 4.5.4 HUECOS EN LA MEZCLA TOTAL 64 4.5.5 VACÍOS EN EL AGREGADO MINERAL 66 4.6 DISEÑO FINAL 68 4.6.1 PARÁMETROS MARSHALL 69 4.6.2 DETERMINACIÓN DEL PORCENTAJE DE ASFALTO PARA EL DISEÑO 75 4.7 VERIFICACIÓN DEL PORCENTAJE DE CAUCHO DE DISEÑO 77 4.7.1 RESISTENCIA A COMPRESION DIAMETRAL 77 4.7.2 MODULO RESILIENTE 80 4.7.2.1 Módulo Resiliente según Norma CEN 12697-26 82 4.7.2.2 Módulo Resiliente según Norma ASTM D4123-82 84 4.7.3 RESISTENCIA A LA FATIGA 89 4.7.4 RESULTADOS FINALES 92 5 CONCLUSIONES 93 5.1 GENERALES 93 5.2 ESPECÍFICAS 94
  • 4. iii 6. RECOMENDACIONES 96 7. BIBLIOGRAFÍA Y REFERENCIAS 98 ANEXOS 102
  • 5. iv LISTA DE FIGURAS Pág. Figura 2.1. Martillo Marshall 9 Figura 2.2. Equipo Marshall 10 Figura 3.1. Acumulación de neumáticos a la orilla del camino 14 Figura 3.2. Esquema de fabricación de asfalto modificado con caucho mediante el proceso por vía húmeda 20 Figura 3.3. Esquema de fabricación de la mezcla asfáltica con caucho por vía seca 26 Figura 4.1. Curva distribución granulométrica agregados 38 Figura 4.2. Curva distribución granulométrica mezcla IV-A-12 42 Figura 4.3. Probetas Marshall sin desmoldar 44 Figura 4.4. Variación de la Densidad respecto al porcentaje de cemento asfáltico, para mezcla patrón 45 Figura 4.5. Variación de la Estabilidad respecto al porcentaje de cemento asfáltico, para mezcla patrón 45 Figura 4.6. Variación de la Fluidez respecto al porcentaje de cemento asfáltico, para mezcla patrón 46 Figura 4.7. Variación de los Huecos en la mezcla respecto al porcentaje de cemento asfáltico, para mezcla patrón 46 Figura 4.8. Variación de Vacíos en el agregado mineral respecto al porcentaje de cemento asfáltico, para mezcla patrón 47 Figura 4.9. Curva distribución granulométrica caucho 49 Figura 4.10. Conjunto de compactación 52 Figura 4.11. Resultados mezclas C1 y C2 55 Figura 4.12. Resultados mezclas C3 y C4 56 Figura 4.13. Resultados mezclas C5, C6 y C7 57 Figura 4.14. Resultados mezclas con 1% de caucho con tiempo de digestión de dos horas 58 Figura 4.15. Variación de la densidad respecto al porcentaje de cemento asfáltico, para mezclas con 0.5% de caucho, tiempo de digestión de dos horas y diferentes temperaturas de digestión 60
  • 6. v Figura 4.16. Variación de la densidad respecto al porcentaje de cemento asfáltico, para mezclas con temperatura de digestión de 150ºC por dos horas 61 Figura 4.17. Variación de la Estabilidad respecto al porcentaje de cemento asfáltico, para mezclas con 0.5% de caucho, tiempo de digestión de dos horas y diferentes temperaturas de digestión 62 Figura 4.18. Variación de la fluidez respecto al porcentaje de cemento asfáltico, para mezclas con 0.5% de caucho, tiempo de digestión de dos horas y diferentes temperaturas de digestión 63 Figura 4.19. Variación de los huecos en la mezcla respecto al porcentaje de cemento asfáltico, para mezclas con 0.5% de caucho, tiempo de digestión de dos horas y diferentes temperaturas de digestión 65 Figura 4.20. Variación de los huecos en la mezcla respecto al porcentaje de cemento asfáltico, para mezclas con temperatura de digestión de 150ºC por dos horas 66 Figura 4.21. Variación de vacíos en el agregado mineral respecto al porcentaje de cemento asfáltico, para mezclas con 0.5% de caucho, tiempo de digestión de dos horas y diferentes temperaturas de digestión 67 Figura 4.22. Variación de vacíos en el agregado mineral respecto al porcentaje de cemento asfáltico, para mezclas con temperatura de digestión de 150ºC por dos horas 68 Figura 4.23. Variación de la densidad respecto al porcentaje de cemento asfáltico, para mezclas sin caucho y a 170º C por dos horas 70 Figura 4.24. Variación de la estabilidad respecto al porcentaje de cemento asfáltico, para mezclas sin caucho y a 170º C por dos horas 71 Figura 4.25. Variación de la fluidez respecto al porcentaje de cemento asfáltico, para mezclas sin caucho y a 170º C por dos horas 72 Figura 4.26. Variación de los huecos en la mezcla respecto al porcentaje de cemento asfáltico, para mezclas sin caucho y a 170ºC por dos horas 74 Figura 4.27. Variación de vacíos en el agregado mineral respecto al porcentaje de cemento asfáltico, para mezclas sin caucho y a 170º C por dos horas 75 Figura 4.28. Variación de la resistencia a la compresión diametral respecto al porcentaje de caucho 76 Figura 4.29. Equipo Nottingham Asphalt Tester NU-10 81 Figura 4.30. Marco de Carga para Ensayes de Módulo Resiliente 81
  • 7. vi Figura 4.31. Variación del Módulos Resiliente a distintas temperaturas respecto al porcentaje de caucho 83 Figura 4.32. Variación del Módulo Resiliente con relación a la frecuencia de aplicación de carga a una temperatura de 25ºC 86 Figura 4.33. Variación del Módulo Resiliente con relación a la frecuencia de aplicación de carga a una temperatura de 40ºC 86 Figura 4.34. Variación del Módulo Resiliente con relación al incremento en el porcentaje de caucho, para una temperatura de 25ºC 88 Figura 4.35. Variación del Módulo Resiliente con relación al incremento en el porcentaje de caucho, para una temperatura de 40ºC 88 Figura 4.36. Marco de Carga para Ensaye de Fatiga 90 Figura 4.37. Curva de Fatiga para mezclas con distinto porcentaje de adición de caucho 91
  • 8. vii LISTA DE TABLAS Pág. Tabla 3.1. Terminología asociada con el uso del caucho en las mezclas asfálticas 18 Tabla 3.2. Granulometría SemiGap Graded 22 Tabla 3.3. Requerimientos del caucho triturado en migas 23 Tabla 3.4. Requisitos del ligante asfalto-caucho después de la reacción según ASTM 24 Tabla 3.5. Requisitos Mezcla con Asfalto-Caucho 24 Tabla 3.6. Granulometría del caucho usado en Ruta X-65 32 Tabla 4.1. Densidades y absorción del agregado pétreo 37 Tabla 4.2. Granulometría agregado pétreo 38 Tabla 4.3. Cubicidad de partículas agregado pétreo grueso 39 Tabla 4.4. Índice de Plasticidad agregado pétreo 39 Tabla 4.5. Resistencia al desgaste de agregado pétreo grueso 39 Tabla 4.6. Resultados cemento asfáltico 41 Tabla 4.7. Densidades y absorción de la mezcla de agregados 41 Tabla 4.8.Granulometría Semidensa según Manual de Carreteras Vol. 5 y mezcla de trabajo 42 Tabla 4.9. Requisitos para Mezclas Asfálticas según especificaciones del M.C.-V.5 43 Tabla 4.10. Parámetros Marshall de la mezcla patrón 44 Tabla 4.11. Granulometría del caucho suministrado por PROBISA 49 Tabla 4.12. Granulometría del caucho utilizada 49 Tabla 4.13. Distribución Granulométrica en peso de mezclas con caucho 50 Tabla 4.14. Distribución Granulométrica en volumen de mezclas con caucho 50 Tabla 4.15. Resultados ensaye Inmersión-Compresión 54 Tabla 4.16. Resultados mezclas con 1% de caucho con tiempo de digestión de dos horas 58 Tabla 4.17. Resultados de Densidad 59 Tabla 4.18. Resultados de Estabilidad Marshall 61 Tabla 4.19. Resultados de Fluidez Marshall 63 Tabla 4.20. Resultados de huecos en la mezcla total 64 Tabla 4.21. Resultados de vacíos en el agregado mineral 66
  • 9. viii Tabla 4.22. Resultados de Densidad para mezclas con temperatura de digestión de 170ºC 69 Tabla 4.23. Resultados de Estabilidad Marshall para mezclas con temperatura de digestión de 170ºC 71 Tabla 4.24. Resultados de Fluidez Marshall para mezclas con temperatura de digestión de 170ºC 72 Tabla 4.25. Resultados de huecos en la mezcla total para mezclas con temperatura de digestión de 170ºC 73 Tabla 4.26. Resultados de vacíos en el agregado mineral para mezclas con temperatura de digestión de 170ºC 74 Tabla 4.27. Parámetros Marshall para evaluar el porcentaje de asfalto 76 Tabla 4.28. Resultados de las mezclas con 5.5% de cemento asfáltico 77 Tabla 4.29. Resultados mezclas con distinto porcentaje de caucho 78 Tabla 4.30. Resultados Módulo Resiliente a 25ºC según Norma CEN 12697-26 82 Tabla 4.31. Resultados Módulo Resiliente a 40ºC según Norma CEN 12697-26 82 Tabla 4.32. Resultados Módulo Resiliente según Norma ASTM D4123-82 85 Tabla 4.33. Resultados Ensaye de Fatiga 91 TABLA A.1: Resultados mezcla patrón (P1) 103 TABLA A.2: Resultados mezcla fabricada con temperatura de digestión de 150ºC por dos horas con 1.0% de caucho (C1) 103 TABLA A.3: Resultados mezcla fabricada con temperatura de digestión de 150ºC por dos horas con 1.5% de caucho (C2) 104 TABLA A.4: Resultados mezcla fabricada con temperatura de digestión de 160ºC por una hora con 1.0% de caucho (C3) 104 TABLA A.5: Resultados mezcla fabricada con temperatura de digestión de 160ºC por dos horas con 1.0% de caucho (C4) 105 TABLA A.6: Resultados mezcla fabricada con temperatura de digestión de 170ºC por dos horas con 0.5% de caucho (C5) 105 TABLA A.7: Resultados mezcla fabricada con temperatura de digestión de 170ºC por dos horas con 1.0% de caucho (C6) 106 TABLA A.8: Resultados mezcla fabricada con temperatura de digestión de 170ºC por dos horas con 1.5% de caucho (C7) 106
  • 10. 1 1. INTRODUCCIÓN 1.1 INTRODUCCIÓN GENERAL Los neumáticos desechados constituyen un grave problema medioambiental en Chile y en el mundo. Las principales dificultades generadas por este residuo, tienen que ver con su disposición final, dado que la mayoría de los neumáticos fuera de uso, se encuentran botados a la orilla del camino, en sitios eriazos o en vertederos clandestinos, ocupando gran espacio. La acumulación de neumáticos incrementa la posibilidad de incendios y la posible emanación de gases tóxicos, además de contribuir a la proliferación de roedores, insectos y otros posibles focos de infecciones. La solución al problema que plantean los neumáticos fuera de uso, pasa necesariamente por la búsqueda de vías capaces de valorizar adecuadamente este residuo bajo condiciones económicas aceptables y en cantidades suficientes como para hacer frente al elevado número de toneladas que se generan anualmente. Desde el punto de vista de la reutilización como materia prima, se debe tener presente que en un neumático, alrededor de un 60% de su composición son cauchos naturales o sintéticos, con posibilidades de ser utilizados en otras aplicaciones. El caucho granulado reciclado de neumáticos se obtiene a través de la trituración de éstos y la separación de los componentes que los constituyen, principalmente el acero y las fibras textiles. La trituración del neumático se realiza principalmente por dos métodos, uno a temperatura ambiente y otro, criogénico. El primero de ellos, consiste en un proceso puramente mecánico de trituración, donde los distintos tamaños de los granos de caucho dependen de las etapas a las que se haya sometido. En segundo lugar, en la trituración criogénica, los neumáticos se someten a baja temperatura, con lo cual el caucho se vuelve frágil y fácil de destrozar en pequeñas partículas. A través de los procesos nombrados, se obtiene migas de caucho con determinadas granulometrías para distintas aplicaciones. En la actualidad, la instalación en el país de plantas recicladoras de neumáticos y procesadoras del caucho, se encuentra por el momento sólo en etapa de proyecto, esperando algún incentivo para realizar esta gran inversión. Esto implica que, desde un punto de vista
  • 11. 2 económico, los precios para obtener el caucho sean altos, pues sólo se consigue importándolo desde países como Brasil o China. Las mezclas asfálticas utilizadas en pavimentos, pueden incorporar una parte importante del caucho de contenido en los neumáticos desechados. La adición de caucho proveniente de neumáticos a las mezclas asfálticas es una forma de reciclar tales desechos y mejorar las propiedades del pavimento. Las mezclas asfálticas modificadas con caucho permiten obtener un pavimento con mejores respuestas a los cambios térmicos, así como también se aumenta la resistencia a la fisuración por fatiga y al envejecimiento, aumentando la vida útil del pavimento y disminuyendo los costos de mantenimiento. Por otro lado, el incorporar caucho a las mezclas, reduce el nivel de ruido generado por el tráfico al contacto con el pavimento y ayuda a la preservación del medio ambiente al reciclar los neumáticos. Las formas más comunes de incorporación de caucho de neumáticos en desuso dentro de las mezclas asfálticas, son la vía húmeda y la vía seca. En la primera de ellas, el caucho es mezclado directamente con el ligante, de igual forma que un asfalto modificado, para añadir posteriormente los agregados. En la vía seca, los granos de caucho se añaden como una fracción de áridos, sustituyendo parte de la fracción fina de la mezcla, antes de la incorporación del ligante. El grado de aporte de la incorporación del caucho molido en la mejora de las propiedades de las mezclas, depende de varios factores, dentro de los cuales se pueden incluir la tecnología de la incorporación (vía seca o húmeda), naturaleza del caucho, su granulometría y el tamaño de las partículas, porcentaje de adición y el tiempo de reacción para el proceso húmedo y para el caso de la incorporación por vía seca, el tiempo de digestión. La utilización de caucho en mezclas asfálticas no es reciente. Varios países, como USA, Canadá, Brasil y España entre otros, han incorporado este tipo de mezclas en tareas de conservación y construcción de pavimentos. En Chile, el estudio de las mezclas asfalto caucho se ha venido investigando desde el año 1999. Con el apoyo del MOP y del Instituto Chileno del Asfalto, la empresa Probisa realiza un estudio del mejoramiento del asfalto en
  • 12. 3 base a reciclados de neumáticos (2000) y en el año 2002, un memorista de la Universidad de Chile efectúa un estudio en laboratorio acerca de la factibilidad técnica de las mezclas asfálticas modificadas con caucho, utilizando el método húmedo. Cabe destacar la existencia de dos tramos de prueba realizados por la Dirección de Vialidad utilizando asfalto caucho a través del proceso húmedo, el primero de ellos es un tramo de la ruta X-65 en la XI región, realizado en el mes de mayo del 2004, y el segundo, en la rehabilitación de la ruta 60-CH, en la V región, llevado a cabo en el mes de marzo del año 2005. (Ver referencia Nº[1]) El presente trabajo se enmarca dentro de una iniciativa de investigación de parte del Laboratorio Nacional de Vialidad y lo que se pretende es estudiar el efecto de la incorporación de caucho de neumáticos desechados dentro de mezclas asfálticas en caliente utilizando la vía seca, a través de ensayos en laboratorio, y compararlas con los estudios y experiencias realizadas en Chile mediante el proceso húmedo y con mezclas asfálticas tradicionales. Con este trabajo, se espera obtener una caracterización de las mezclas asfálticas con caucho mediante proceso seco, lo que permitiría proponer normativas para la Dirección de Vialidad, especialmente dentro del Manual de Carreteras.
  • 13. 4 1.2 OBJETIVOS Objetivos generales • Estudiar el comportamiento mecánico de las mezclas asfálticas a las cuales se les ha incorporado caucho como material granular fino. Objetivos específicos • Tomar conocimiento de la realidad nacional e internacional acerca del tema y de los proyectos ya realizados usando los distintos procesos de incorporación de caucho dentro de las mezclas asfálticas. • Caracterizar el caucho proveniente del reciclaje de neumáticos, para establecer proporciones a usar dentro de la granulometría del árido de la mezcla. • Realizar ensayos que permitan evaluar las propiedades de la mezcla en la cual será utilizado el caucho como material granular fino. • Proponer especificaciones para mezclas asfalto caucho mediante el proceso seco.
  • 14. 5 2. MARCO TEÓRICO 2.1 MEZCLAS ASFÁLTICAS EN CALIENTE La mezcla asfáltica la constituye un material pétreo recubierto con una película de asfalto, uniformemente combinados, en proporciones previamente especificadas. Las cantidades relativas de estos materiales, determinan las propiedades y características de la mezcla. Las mezclas asfálticas pueden fabricarse en caliente o en frío, siendo más comunes las primeras. Se denominan “mezclas en caliente”, pues para lograr que los áridos se mezclen homogéneamente con el asfalto, ambos componentes se llevan a temperaturas altas, sobre los 100ºC, para obtener una buena trabajabilidad de la mezcla. El proceso de mezclado se realiza en una Planta Asfáltica, y luego se transporta la mezcla al sitio de pavimentación y se coloca por medio de una pavimentadora o finisher, asegurándose que la superficie se encuentre preparada correctamente. Una vez extendida, se somete a un proceso de compactación, que hace que esta mezcla tenga propiedades resistentes al desgaste producido por el paso de los vehículos, y a su vez, pueda traspasar la solicitación del peso de ellos hacia las capas más profundas, absorbiendo una parte de esta solicitación. A través de este proceso, se obtiene una superficie suave y bien consolidada. 2.1.1 PROPIEDADES DE LAS MEZCLAS Las propiedades fundamentales que deben tener las mezclas asfálticas son las siguientes: Durabilidad, propiedad de la mezcla que hace que el pavimento sea capaz de resistir la desintegración debido al tránsito y al clima. Éste último, afecta principalmente al asfalto de la capa superficial por estar en contacto con el sol, el aire y el agua, pues produce que este material, pierda las propiedades aglutinantes, se oxide, se endurece y envejece, afectando la vida útil del pavimento.
  • 15. 6 Estabilidad, se refiere a la capacidad de la mezcla asfáltica para resistir las cargas de tránsito sin que se produzcan deformaciones. Esta propiedad depende de la cohesión de la mezcla y de la fricción interna. La fricción interna es aportada por el material pétreo y depende del tamaño del árido y de la rugosidad de sus caras. Las mezclas con materiales más gruesos y de caras angulosas tendrán mayor estabilidad que mezclas con materiales finos. La cohesión es la fuerza aglutinante de la mezcla que depende fundamentalmente de la capacidad que tenga el asfalto de mantener unidas las partículas del agregado. Esta propiedad varía inversamente con la temperatura y aumenta con el contenido de asfalto hasta llegar a un óptimo, luego hace un efecto lubricador. La pérdida de estabilidad en un pavimento se traduce en ahuellamientos y ondulaciones. Flexibilidad, capacidad de la mezcla de adaptarse a las deformaciones por asentamientos de la base y subrasante sin agrietarse. Resistencia a la fatiga, capacidad del pavimento asfáltico de soportar esfuerzos provocados por el tránsito en repetidas pasadas. Impermeabilidad, las mezclas deben ser en lo posible totalmente impermeables, de manera que el agua superficial no pueda atravesar hacia las capas inferiores, evitando con ello que éstas puedan perder capacidad de soporte. Resistencia al deslizamiento, capacidad del pavimento asfáltico de ofrecer resistencia al resbalamiento o deslizamiento, especialmente cuando está húmedo. Trabajabilidad, se refiere a la capacidad que tenga la mezcla de colocarse y compactarse con facilidad.
  • 16. 7 El objetivo principal en el diseño de mezclas asfálticas es encontrar la combinación más económica de agregados y asfalto, que le dé a la mezcla las propiedades antes vistas. En resumen, podría decirse que lo que se busca con el diseño de las mezclas es cumplir con lo siguiente: 1. Asfalto suficiente para asegurar un pavimento durable a través del total recubrimiento de los agregados y trabazón de las partículas, bajo una adecuada compactación. 2. Estabilidad suficiente de la mezcla para satisfacer los requerimientos de servicio y las demandas del tráfico sin deformación o desplazamiento. 3. Porcentaje de huecos en la mezcla total compactada suficiente para absorber la consolidación producto del amasado del tránsito. 4. Adecuada trabajabilidad para permitir una operación de construcción eficiente en la colocación de la mezcla para pavimentación.
  • 17. 8 2.2 MÉTODO DE DISEÑO El diseño de una mezcla asfáltica consiste básicamente en seleccionar una granulometría y un porcentaje de asfalto de modo que, una vez fabricada y puesta en terreno, cumpla las propiedades para la cual fue diseñada. Los métodos de dosificación tienen como fin determinar el porcentaje de asfalto óptimo para una combinación determinada de agregados de acuerdo a las propiedades seleccionadas. Previo al diseño de la mezcla, es necesario que todos los materiales constituyentes, agregados y asfaltos, sean analizados para decidir si son aptos o no para formar parte del pavimento a construir. El método de diseño más utilizado en Chile para las mezclas en caliente, es el Método Marshall, el cual está basado en el empleo de ensayos mecánicos. El Método Marshall es aplicable a mezclas en caliente con cementos asfálticos y que contengan agregados con tamaño máximo igual o inferior a 25 mm. Este procedimiento puede usarse tanto para el diseño en laboratorio como para el control de terreno. El desarrollo del método implica la confección de una serie de probetas normalizadas de 2½” de altura y 4” de diámetro, las cuales difieren en el porcentaje de ligante. Suelen utilizarse al menos cinco contenidos de cemento asfáltico, variando entre uno y otro en 0.5%, tratando de estar por encima y por debajo del óptimo esperado. Para cada contenido de ligante, se fabrican al menos tres probetas. Las probetas se preparan de acuerdo a un procedimiento específico de calentamiento, mezclado y compactación. Las temperaturas de mezclado y de compactación dependen del cemento asfáltico que se utilice para fabricar las probetas. La compactación del material dentro de los moldes se realiza a través del martillo Marshall, que es un dispositivo de acero, formado por una base plana y circular de 3 8 7 ” de diámetro, equipado con un peso de 10 [lb] (4.54 [kg]) y construido de modo de obtener una
  • 18. 9 altura de caída de 18”. Las probetas se compactan con 75 golpes por cara, o como se especifique según el tránsito de diseño. Figura 2.1. Martillo Marshall Las dos características principales de este método de diseño son el análisis Densidad-Huecos y el ensaye de Fluidez y Estabilidad de las probetas. La estabilidad de la probeta es el valor de la carga máxima en Newton que alcanzará al ensayarla a compresión lateral en la máquina de ensaye Marshall, la cual está diseñada para aplicar carga a las probetas a través de unas mordazas semicirculares a una velocidad de deformación de 51 mm por minuto. La fluidez es la deformación, en cuartos de milímetros, que ocurre desde el instante en que se aplica la carga hasta lograr la carga máxima.
  • 19. 10 Figura 2.2. Equipo Marshall Con los valores obtenidos, y en base a los criterios definidos en el Manual de Carreteras en función del tipo de tránsito y el empleo de la mezcla, ya sea como carpeta de rodado, carpeta intermedia o capa base, se obtiene el porcentaje óptimo de asfalto y la mezcla de agregados pétreos que garantizan una buena estructura.
  • 20. 11 2.3 ASFALTOS MODIFICADOS Existen situaciones en las cuales las mezclas asfálticas no son capaces de resistir la acción conjunta del tránsito y clima, por lo cual se hace necesario desarrollar mezclas más resistentes, mejorando sus propiedades mecánicas, haciendo énfasis en la durabilidad, el ahuellamiento y la fatiga. El asfalto es susceptible a la temperatura. Por ser un material viscoelástico, presenta cambios continuos en sus características según el rango de temperaturas de operación: es rígido a bajas temperaturas y fluido a altas. El principal objetivo al utilizar agentes modificadores en el cemento asfáltico es lograr propiedades reológicas no obtenidas en los asfaltos producidos con técnicas convencionales de refinación, principalmente las que tienen que ver con la sensibilidad térmica. Los beneficios que se pueden obtener al modificar el asfalto son: Aumentar la durabilidad del pavimento. Disminuir la susceptibilidad térmica, de modo que se aumente la rigidez a altas temperaturas de servicio, mejorando la resistencia de las mezclas a la deformación permanente y, por otro lado, se reduzca la fragilidad del asfalto expuesto a bajas temperaturas, previniendo la fisuración térmica. Aumentar la resistencia a fatiga de las mezclas. Mejorar la adhesión del asfalto con los agregados pétreos. Mejorar la cohesión, brindando mejor retención de los agregados. Reducir el envejecimiento en servicio, ampliando la vida útil de las mezclas asfálticas, ya que se mantienen las ventajas iniciales. En general, la incorporación de polímeros en las mezclas asfálticas ha permitido mejorar sus propiedades, como disminución de la deformabilidad y mayor resistencia a las solicitaciones del tránsito. Los polímeros son sustancias orgánicas de alto peso molecular que logran hidratarse e hincharse al interactuar con el betún asfáltico. Los polímeros más utilizados son los plastómeros EVA (etileno acetato de vinilo), los elastómeros SBS (estireno-butadieno-estireno) y el caucho molido.
  • 21. 12 3. MODIFICACIÓN DE MEZCLAS ASFÁLTICAS MEDIANTE LA INCORPORACIÓN DE CAUCHO DE NEUMÁTICOS DESECHADOS Uno de los polímeros utilizados para modificar el ligante y las mezclas asfálticas es el caucho. Este puede ser especialmente fabricado o provenir de la recuperación de piezas en desuso, como es el caso de los neumáticos. 3.1 CARACTERISTICAS DE LOS NEUMÁTICOS Las principales componentes de los neumáticos son cauchos naturales y sintéticos (SBS, SBR) y negro de humo. En menor cantidad, se encuentran el acero, textiles y aditivos, entre los que se destacan aceites, óxido de zinc activado con cadmio, dióxido de titanio, sulfuro, sílica, resinas fenólicas y ácidos grasos. El caucho natural se elabora a partir del látex, que es una resina blanca lechosa que se da en el árbol Hevea, más conocido como árbol del caucho, el cual se encuentra en selvas húmedas tropicales de Brasil, Colombia o Tailandia. Este látex es una dispersión acuosa que contiene entre un 25% a un 40% de caucho. Las cualidades que el caucho natural aporta a los neumáticos son: la maleabilidad, gran resistencia mecánica y adherencia de éstos sobre cualquier tipo de superficie, cualidades que hacen que en la actualidad aún siga siendo un elemento indispensable para la industria de los neumáticos, donde se consume aproximadamente el 70% de la producción mundial. El caucho sintético fue desarrollado en los años 30, para contrarrestar la falta de caucho natural. Las propiedades del caucho sintético son similares a las del natural, pero tiene otras ventajas sobre éste, como por ejemplo, mayor resistencia a la abrasión, alta adherencia al suelo y alta resistencia a la temperatura, más aún que el caucho natural. En general, gran parte del caucho sintético es usado para la fabricación de los neumáticos de automóviles, pero para los de camiones y buses, es necesaria una proporción más grande de caucho natural, con el objeto de controlar mejor la generación de calor. Como dato adicional, se tiene que las llantas de los automóviles contienen aproximadamente 16% de caucho natural y 31% de sintético.
  • 22. 13 La combinación de cauchos naturales y sintéticos, se realiza de modo de que los primeros, proporcionen elasticidad y los segundos, estabilidad térmica. Esta combinación de efectos favorece la durabilidad y la capacidad de adaptarse a las nuevas exigencias del tránsito. El negro de humo es obtenido por combustión o descomposición térmica parcial de gases naturales o hidrocarburos pesados. Este elemento en las llantas permite conseguir unas mezclas más resistentes a la rotura y a la abrasión, dándoles el característico color negro.
  • 23. 14 3.2 NEUMÁTICOS DESECHADOS Cada año millones de neumáticos son desechados en todo el mundo. El principal inconveniente con los neumáticos usados es su disposición final, dado que la mayoría de ellos terminan en sitios eriazos o en vertederos clandestinos. El almacenamiento ocupa un espacio considerable, aparte del peligro por la posibilidad de incendios y además por ser un terreno ideal para la proliferación de roedores e insectos que a menudo son transmisores de enfermedades. La quema directa provoca graves problemas ambientales ya que produce emisión de gases que contienen partículas nocivas para el entorno. En los vertederos, imposibilitan la compactación y ocasionan problemas de estabilidad por degradación química parcial que sufren, generando inseguridad en los mismos. Figura 3.1. Acumulación de neumáticos a la orilla del camino. Se ha estimado que un 80% de los neumáticos desechados proceden de automóviles o camionetas, un 20% de los vehículos pesados, y alrededor del 1% restante son neumáticos especiales para motocicletas, aviones, equipos de construcción y vehículos especiales.
  • 24. 15 En Chile no existe ningún método de reciclaje de los neumáticos. La única solución que se ha dado a mayor escala, es el uso como combustible en los hornos de cementeras, como reemplazo de parte del carbón necesario para la producción de clinker. En etapa de estudio, se encuentra el proyecto de la instalación de una planta procesadora de neumáticos en la planta de Codelco, ubicada en Calama. En la actualidad, se utilizan diversos métodos para valorizar los neumáticos desechados, a través de la obtención de granos de caucho, los cuales se usan como materia prima en la elaboración de mezclas asfálticas. El caucho reciclado es obtenido a través de la trituración de los neumáticos, separándolo de los demás componentes como el acero y las fibras textiles. Según el método utilizado para la producción de granos de caucho, se obtienen diferentes características en cuanto a la forma y textura de ellos. Las técnicas de molienda más comunes son el proceso ambiental y la trituración criogénica. 3.2.1 PROCESO AMBIENTAL La trituración ambiental puede ser lograda de dos modos: por granulación y por molienda. Este es un proceso puramente mecánico, donde el material entra en un molino o granulador a temperatura ambiente, la cual aumenta considerablemente durante el proceso debido a la fricción generada al ser desgarrado. Los granuladores reducen el tamaño del caucho mediante corte por la acción de cuchillas. El tamaño del producto es controlado por tamices ubicados dentro de la máquina, los cuales pueden ser cambiados para variar el tamaño del producto final. Otra forma es pasar el material por una serie de molinos, donde los primarios, secundarios y finales son muy similares, y operan básicamente bajo el mismo principio, estos usan dos rodillos grandes que van rotando, con dentaduras que cortan el material, ubicadas en uno o ambos rodillos. La diferencia de los rodillos está en la configuración que se les da; estos funcionan cara a cara, muy juntos y con distintas velocidades. El tamaño del
  • 25. 16 producto es controlado por el espacio libre entre los rodillos. El caucho, por lo general, es pasado por 2 o 3 molinos para alcanzar varias reducciones de tamaño del grano, y así poder separarlo de los otros componentes como fibras y acero que se encuentran en los neumáticos. Las partículas de caucho producidas en molinos tienen formas típicas alargadas, angostas y con una alta superficie de área. El caucho obtenido por el proceso ambiental, se clasifica según el tamaño de las partículas en Neumáticos cortados, Neumáticos triturados en astillas (Chips), caucho en polvo y caucho en migas. En general, los productos resultantes de este proceso son de alta calidad y limpio de todo tipo de impurezas, facilitando la utilización de este material en nuevos procesos y aplicaciones. 3.2.2 TRITURACIÓN CRIOGÉNICA Este proceso se refiere al empleo de nitrógeno liquido u otros materiales o métodos para congelar trozos de neumáticos o trozos de caucho antes de la reducción de tamaño, volviéndolo frágil y quebradizo como un cristal a temperaturas por debajo de -62ºC. El acero es separado mediante el empleo de imanes. La fibra textil es removida por medio de aspiración y selección. El material resultante presenta aspecto brillante y limpio, con superficies fracturadas y poco contenido de acero y fibra, debido a que la fragmentación ocurre por las uniones entre estos materiales y el caucho. El empleo de temperaturas criogénicas puede ser aplicado en cualquier etapa para la reducción de tamaño de los trozos de neumáticos. Este método requiere instalaciones muy complejas, lo que hace que sea poco rentable económicamente. Al comparar los granos obtenidos por la trituración criogénica y ambiental, se observa que las partículas para el primer método, son relativamente lisas y ovaladas, y para el proceso ambiental, son irregulares en forma y textura superficial. En relación a este
  • 26. 17 aspecto, cabe destacar que la forma final obtenida de los granos de caucho influye en la reacción con el cemento asfáltico, pues para partículas con alta superficie de área, como las obtenidas con el proceso ambiental, la reacción con el ligante es rápida, en cambio, para las partículas obtenidas a través de la trituración criogénica, al tener superficies planas y limpias, se disminuye el nivel de reacción con el cemento asfáltico.
  • 27. 18 3.3 APLICACIÓN DE GRANOS DE CAUCHO EN LAS MEZCLAS ASFÁLTICAS El caucho proveniente de neumáticos desechados puede ser incorporado en las mezclas asfálticas por medio de tres métodos diferentes denominados como Proceso por Vía Húmeda, Proceso por Vía Seca y Proceso en Refinería. En el Proceso Húmedo, el caucho actúa modificando el cemento asfáltico, mientras que en el Proceso Seco, el caucho es usado como una porción de agregado fino. En el Proceso en Refinería, la mezcla del caucho con el cemento asfáltico se realiza en la planta productora de asfalto, para luego transportarlo a obra en donde se combina con los áridos para producir la mezcla asfáltica. Cada proceso es utilizado dependiendo del producto que se quiera obtener. A continuación, se muestra la terminología asociada al uso de los granos de caucho en mezclas asfálticas: Tabla 3.1. Terminología asociada con el uso del caucho en las mezclas asfálticas. MATERIAL VÍA PRODUCTO Húmeda Asfalto modificado con caucho ó Asfalto-Caucho GRANOS DE CAUCHO Seca Mezcla asfáltica mejorada con caucho
  • 28. 19 3.3.1 PROCESO POR VÍA HÚMEDA En este proceso, se unen los granos de caucho con el cemento asfáltico para producir una mezcla modificada llamada asfalto-caucho, que es usada de la misma manera que un ligante modificado. Este proceso se encuentra definido en la norma ASTM D8-88. La fabricación de asfalto-caucho consiste en la mezcla de los granos de caucho, usualmente de tamaño máximo 0.85 mm, con el cemento asfáltico en un estanque con agitación. Generalmente, el porcentaje de adición de caucho es entre 18-24% con respecto al peso del ligante. Para promover la unión del asfalto y el caucho, es necesario establecer una temperatura y un tiempo de reacción dentro del estanque. Usualmente, la mezcla es formulada a temperaturas entre 180-210º C por 1 a 4 horas. Dentro de los requerimientos del proceso húmedo, se establece que el estanque agitador debe estar en terreno, ubicado junto a la planta asfáltica. Una vez que el asfalto-caucho alcance los parámetros requeridos, especialmente la viscosidad de la mezcla, se incorpora, en un proceso continuo, al mezclador de la planta asfáltica para unirse con los agregados pétreos.
  • 29. 20 En el siguiente esquema, se muestra la fabricación de las mezclas asfalto-caucho por el proceso vía húmeda: La interaccion del caucho con el ligante Figura 3.2. Esquema de fabricación de asfalto modificado con caucho mediante el proceso por vía húmeda. Una vez terminado el mezclado del asfalto-caucho con los agregados pétreos, el concreto asfáltico obtenido se transporta al sitio de pavimentación y se coloca por medio de una finisher tradicional. Para la compactación, generalmente se utiliza un rodillo liso doble tambor. El ligante asfáltico modificado con granos de caucho mediante el proceso húmedo también puede ser utilizado como riego. El más común es el llamado SAM (Stress Absorbing Membrane) que evita la reflexión de grietas. Cuando el riego SAM es puesto entre capas es llamado SAMI (Stress Absorbing Membrane Interlayer), este riego de liga es recomendado cuando la mezcla asfalto-caucho se coloca sobre pavimento antiguo de hormigón. 3.3.1.1 Modificación del ligante. Los granos de caucho al mezclarse con el cemento asfáltico, reaccionan con éste, hinchándose y ablandándose por la absorción de aceites aromáticos, los cuales son componentes químicos del asfalto que le dan la consistencia para que sea trabajable. Las partículas hinchadas se vuelven pegajosas, desarrollando
  • 30. 21 propiedades adhesivas. Además, a medida que se reducen los aceites aromáticos que lubrican la mezcla, se observa un aumento en la viscosidad. El proceso de hinchamiento de las partículas de caucho, no es del tipo química, pues las partículas no se funden en el asfalto. El proceso se asimila a lo que sucede con una esponja seca y dura al sumergirla en agua, pues a medida que la esponja absorbe el agua, se hincha y ablanda. El grado de modificación del ligante depende de ciertos factores entre los cuales se encuentran el tamaño, textura y proporción de los granos de caucho, tipo de cemento asfáltico, tiempo y temperatura de mezclado, grado de agitación mecánica durante la reacción de la mezcla y el componente aromático del cemento asfáltico. La viscosidad de la mezcla es el principal parámetro usado para supervisar la reacción, es por esto que debe ser chequeada a diferentes intervalos de tiempo durante el mezclado y el tiempo de reacción, hasta obtener la viscosidad requerida. 3.3.1.2 Especificaciones para el Proceso por Vía Húmeda utilizadas Dirección de Vialidad. La Dirección de Vialidad construyó dos tramos de prueba, utilizando especificaciones exigidas a los trabajos de construcción de capas superficiales de pavimento con mezcla asfáltica en caliente confeccionada con ligante asfalto-caucho, incluyendo la provisión de materiales, el transporte, la confección, distribución y compactación de la mezcla. A continuación se muestran los requisitos exigidos a los materiales constituyentes de la mezcla asfáltica, entre ellos los áridos, el ligante y el caucho; así como también los requerimientos de mezclado para la fabricación del ligante modificado y la producción de la mezcla asfáltica por vía húmeda.
  • 31. 22 a. Requisitos de los Materiales • Áridos: La fracción gruesa y fina, y el filler deben cumplir con los requisitos de una mezcla asfáltica en caliente según la sección 5.408 del Manual de Carreteras Volumen 5. o Mezcla de áridos: Los áridos combinados deberán cumplir con la banda granulométrica denominada SemiGap Graded, que se indica en la Tabla 2.2., cuando el objetivo del uso del asfalto caucho sea evitar la reflexión de grietas. En otros casos, se usa granulometrías convencionales. Tabla 3.2. Granulometría SemiGap Graded. TAMICES mm ASTM PORCENTAJE QUE PASA, % 20 3/4" 100 12,5 1/2" 80-95 10 3/8" 64-79 5 Nº 4 49-57 2,5 Nº 8 43-51 0,63 Nº 30 37-45 0,30 Nº 50 30-38 0,16 Nº 100 15-24 0,08 Nº 200 9-12 • Ligante asfalto-caucho: Este ligante se compone de asfalto base y caucho de neumático triturado. o Asfalto base: Este material debe cumplir los requisitos del ítem 5.408.202 del Manual de Carreteras Volumen 5.
  • 32. 23 o Caucho triturado: Deberá provenir de la trituración de los neumáticos de vehículos corrientes usando el método ambiental o criogénico, o una combinación de ambos. Los requerimientos son los indicados en la Tabla 2.3. Tabla 3.3. Requerimientos del caucho triturado en migas. REQUERIMIENTOS DEL CAUCHO TRITURADO EN MIGAS (1) Granulometría Tamices mm ASTM Porcentaje que pasa, % 2 Nº 10 100 0,85 Nº 20 60 – 100 0,63 Nº 30 50 – 90 0,3 Nº 50 0 – 45 0,08 Nº 200 0 – 5 (2) Contenido de Caucho Natural Mín. 30% (3) Densidad Relativa [kg/dm3 ] 1,10 – 1,25 o Mezcla asfalto-caucho: - Condiciones de preparación del ligante asfalto-caucho: Porcentaje de caucho en masa c/r al ligante total : 18 – 24% Temperatura de reacción de la mezcla : 180 – 210°C Tiempo de reacción (a la temperatura de reacción) : 1 – 4 horas - Características del Estanque Mezclador: El estanque deberá tener un sistema de calentamiento que permita mantener temperaturas entre 180°C y 210°C, agitadores tipo aspas para mantener en permanente agitación la mezcla asfalto-caucho durante el periodo de reacción y el lapso adicional según sea necesario, de acuerdo al funcionamiento integral de la planta.
  • 33. 24 - Requisitos del Ligante asfalto-caucho después de la reacción: Tabla 3.4. Requisitos del ligante asfalto-caucho después de la reacción según ASTM. Propiedades Mín. Máx. Viscosidad Brookfield a 175°C, [cP] 1.000 5.000 Penetración, 25°C, 100g, 5seg [1/10mm] 25 75 Penetración, 4°C, 200g, 60seg [1/10mm] 15 Resiliencia, 25°C [%] 20 Punto de Ablandamiento [°C] 55 PDR: Penetración Retenida, 4°C [%] 75 b. Producción de la mezcla asfáltica según proceso húmedo 1a Etapa: Preparación del ligante asfalto-caucho en un estanque provisto de un sistema de agitación a la temperatura y tiempo necesario para lograr la viscosidad especificada. Este estanque debe estar en terreno ubicado al lado de la Planta de Mezcla en Caliente. 2a Etapa: Luego, en un proceso continuo, se efectuará la mezcla con los áridos y filler en una Planta de Mezcla Asfáltica convencional. La temperatura de los áridos deberá estar entre 180ºC y 220°C, dependiendo de la formulación en laboratorio. • Requisitos para la dosificación Marshall: Tabla 3.5. Requisitos Mezcla con Asfalto-Caucho. Propiedades Mín. Máx. Estabilidad Marshall [kN] 8 Fluencia [0,25 mm] 8 16 Huecos en la Mezcla [%] 3 6 Huecos en el Agregado Mineral (VAM) [%] 16 Huecos Llenos con Ligante [%] 70 Relación Filler / Ligante 1 1.5
  • 34. 25 3.3.2 PROCESO POR VÍA SECA El proceso por vía seca es el método mediante el cual el caucho reciclado es mezclado con los agregados, antes de adicionar el cemento asfáltico. En este proceso, se usan los granos de caucho como un agregado en la mezcla asfáltica, los cuales pueden sumarse como un árido más o como sustituto de una pequeña parte del agregado fino, el cual puede estar entre el uno y tres por ciento del peso total de los agregados de la mezcla. Si bien los granos de caucho son tratados como un árido, no pueden considerarse un material inerte, pues interacciona con el ligante de la mezcla asfáltica. Este proceso de interacción suele llamarse “digestión” del caucho. Mediante este proceso, el caucho pasa de ser un árido elástico a ser un modificador del ligante en la mezcla asfáltica. La digestión es un proceso que prolifera desde la superficie de la partícula de caucho hacia su interior, por lo que será más rápida cuanto más fino sea el polvo de caucho, menor su proporción dentro de la mezcla asfáltica y cuanto más elevada sea la temperatura de la mezcla y el tiempo que se mantenga ésta caliente durante el proceso de fabricación y puesta en obra. En laboratorio, la digestión puede simularse manteniendo la mezcla en horno, a una temperatura en un rango 150-170° C y un tiempo de una a dos horas, previamente a la compactación de la probeta. Durante la digestión, no se producen reacciones importantes entre el caucho y cemento asfáltico debido al corto tiempo de mezclado, donde éste no es suficiente para que se produzca una reacción similar al proceso húmedo, por lo tanto, se asume que el efecto de la reacción caucho-ligante en el proceso seco es menor y, asimismo, tiene un efecto limitado en el comportamiento de la mezcla. Sin el tiempo de digestión, no podría obtenerse la interacción entre el ligante y el caucho, provocando que éste funcione como un árido elástico de granulometría muy concentrada, lo que por un lado produce la apertura de huecos y por otro, impide la compactación por su componente elástico. Este tiempo de curado de la mezcla es fundamental, ya que en caso de no realizarlo correctamente, no solo no se provoca la modificación del ligante, sino que se obtiene una mezcla de peores propiedades que una
  • 35. 26 tradicional. Sin digestión, se producen riesgos por deterioros prematuros de la mezcla asfáltica en terreno. Se ha observado que el principal riesgo es por el ataque del agua a la mezcla colocada, llevándola a desintegrarse progresivamente. Para evitar esta situación, es necesario, durante el diseño de la mezcla asfáltica, estimar cual será la temperatura y el tiempo de digestión mínimo para alcanzar el grado de digestión suficiente, esto puede hacer a través del ensayo de Inmersión-Compresión, que mide el efecto del agua sobre la cohesión de las mezclas asfálticas compactadas. (Ver referencia Nº [6]) En la siguiente figura, se muestra la fabricación de las mezclas asfálticas mejoradas con caucho a través del proceso seco: Figura 3.3. Esquema de fabricación de la mezcla asfáltica con caucho por vía seca. Los granos de caucho son mezclados con los áridos, anteriormente calentados. El cemento asfáltico es el mismo que se usa para mezclas convencionales, sin embargo, las temperaturas de mezclado son más altas, por lo general entre 160° y 190° C, al igual que las de compactación, que están entre 150° y 160° C. A diferencia del proceso húmedo, este método no requiere de un equipo especial de mezclado, solo un sistema de alimentación que proporcione la cantidad adecuada de caucho
  • 36. 27 y que sea suministrada en el momento indicado para que se mezcle con los agregados cuando estos alcancen cierta temperatura y antes que el ligante sea adicionado. Luego de mezclar el ligante con los agregados más el caucho, se le debe dar el tiempo a esta mezcla para que suceda el proceso de digestión. Este tiempo en obra, la mayoría de las veces está garantizado con el tiempo que toma el camión entre la planta, en la que se elabora la mezcla y el lugar de colocación del concreto asfáltico utilizando una extendedora tradicional. 3.3.2.1 Tecnologías para el uso de caucho reciclado mediante vía seca. Las tecnologías más usadas en Estados Unidos para el uso de caucho reciclado mediante este proceso, son la tecnología PlusRide y la tecnología Genérica o sistema TAK. Otra tecnología muy popular es la desarrollada en España y es actualmente usada en muchos países. a. PlusRide. Esta tecnología fue originalmente desarrollada en Suecia a finales de los años 1960, y registrada en los Estados Unidos bajo el nombre comercial PlusRide por la firma EnviroTire. El caucho reciclado es agregado a la mezcla en proporciones que van de 1 a 3 por ciento del peso total de los agregados. Los granos de caucho utilizados son gruesos para sustituir algunos agregados de la mezcla. Las partículas de caucho van desde 4.2 mm (1/4”) a 2.0 mm (tamiz Nº10). El contenido de vacíos con aire en la mezcla asfáltica debe estar entre 2 y 4 por ciento, y por lo general son obtenidos con contenidos de ligante entre 7.5 a 9 por ciento. b. Genérica. Este sistema fue desarrollado por el Dr. Barry Takallou a finales de los años 1980 y a principio de los años 1990, para producir mezclas asfálticas en calientes con granulometría densa. Este concepto emplea tanto el caucho reciclado grueso como fino para compatibilizar la granulometría de los agregados obteniendo una mezcla asfáltica mejorada. En este proceso, la granulometría del caucho es ajustada para acomodar la granulometría de los agregados. A diferencia de las mezclas PlusRide, la granulometría del caucho se divide en dos fracciones en la que la parte fina se encarga de interactuar con el
  • 37. 28 cemento asfáltico mientras la parte gruesa entra a comportarse como un agregado elástico en la mezclas asfáltica. El caucho puede llegar a necesitar una pre-reacción o pre-tratamiento con un catalizador para alcanzar un óptimo hinchazón de la partícula. En este sistema, el contenido de caucho reciclado no debe exceder el 2 por ciento del peso total de la mezcla para carpeta de rodadura. c. Convencional. Esta tecnología fue desarrollada en España para usar el caucho reciclado en la mejora de mezclas asfálticas empleando granulometrías convencionales que no implican consumos elevados de cemento asfáltico, pero que aportan menor cantidad de caucho, aproximadamente un dos por ciento del peso total de los agregados. El caucho utilizado es generalmente de granulometría fina, con tamaños de los granos no mayor a 0.5 mm. Estas mezclas asfálticas han sido evaluadas dinámicamente en el laboratorio y colocadas en la vía con buenos resultados.
  • 38. 29 3.4 CARACTERÍSTICAS DE LAS MEZCLAS ASFÁLTICAS EN CALIENTE MODIFICADAS CON CAUCHO Como se ha visto, existen distintas tecnologías de incorporación de caucho de neumáticos en la mezcla asfáltica, pero existen ciertas ventajas que son comunes para ambos casos. Entre estas ventajas, se encuentra la mejora en la resistencia a las deformaciones plásticas. En términos generales, puede decirse que cuanto más caucho se incorpora, es mayor el contenido de ligante en la mezcla asfáltica y mayor es la resistencia a la fatiga y a la reflexión de grietas. Entre los principales beneficios que se obtienen usando asfalto-caucho como ligante modificado mediante Vía Húmeda, está la reducción de la susceptibilidad térmica, además de mejorar el comportamiento a fatiga y al envejecimiento debido a los altos contenidos de ligante asfalto-caucho (entre 6.5 y 7.5% con respecto a los agregados), sin que se vea perjudicada la resistencia a las deformaciones plásticas. Cabe destacar que al usar caucho como modificador del ligante, aumenta la viscosidad, permitiendo mayor flexibilidad a bajas temperaturas y mejor estabilidad a altas. Dentro de las desventajas del método por Vía Húmeda, se tiene que posee un alto costo inicial, debido a que es necesario incorporar equipos especiales en el proceso de producción y de mezclado del ligante con el caucho. Por otro lado, el aumento de la viscosidad produce dificultades en la manipulación y en la aplicación, junto con esto se requieren mayores temperaturas de mezclado y de compactación. Aunque en el proceso por Vía Seca, la reacción entre el caucho y el cemento asfáltico es menor que para el ligante asfalto-caucho obtenido por Vía Húmeda, si se encuentra la temperatura y tiempo de digestión adecuada, se obtendrán propiedades similares en ambas mezclas. Según literatura, el uso de partículas gruesas de caucho como un agregado en la mezcla asfáltica puede mejorar el desempeño de la misma. Las partículas de caucho que
  • 39. 30 quedan expuestas en las superficie del pavimento tienen una función importante al impedir que los neumáticos de los vehículos se deslicen sobre el pavimento, ofreciendo un mejor agarre, y las que quedan dentro del cuerpo de la mezcla ayudan a retardar el fisuramiento de ésta, por absorción de los esfuerzos, obstaculizando la propagación de la fisura. 3.5 EXPERIENCIAS EXTRANJERAS Y NACIONALES UTILIZANDO CAUCHO RECICLADO El caucho en las mezclas asfálticas ha sido utilizado desde principios del siglo pasado. En 1920, empezaron los estudios y las primeras pruebas de la modificación del asfalto con caucho molido, sin mucho éxito. La primera tecnología en la cual se utilizó el proceso húmedo fue llamado el proceso McDonald, debido a los estudios realizados en 1960, por Charles McDonald, quien encontró una fórmula exitosa de tiempo/temperatura para la incorporación de caucho reciclado para modificar el ligante. En 1968, el “Arizona Department of Transportation” (ADOT), colocó la primera membrana SAM y en 1972, la primera SAMI como retardadora de figuración. Experiencias similares fueron llevadas a cabo por la Arizona Refinery Company (ARCo) o la EnviroTire INC con su sistema PlusRide de incorporación de granos de caucho de triturado de neumático al agregado, para fabricar una mezcla discontinua. Varios estados de Estados Unidos, entre ellos California y Florida, se unieron a estas experiencias, realizando tramos de prueba y colocando asfalto-caucho donde quiera que se presente agrietamiento, con buenos resultados. En España, los estudios comienzan en 1974 cuando el Centro de Investigaciones Elpidio Sánchez Marcos trabajó en fórmulas de incorporación de caucho al ligante para posteriormente fabricar mezclas asfálticas que fueron aplicadas en las calles de la ciudad de Barcelona.
  • 40. 31 En los años 90, Juan Gallego Medina realiza su tesis doctoral en la Escuela de Ingenieros de Caminos, Canales y Puertos de la Universidad Autónoma de Madrid. Este trabajo ha sido un gran apoyo a la presente investigación sobre el uso del caucho tanto para vía húmeda como seca. Los estudios y las pruebas con caucho por vía seca, han sido más actuales. En España, existen tramos de prueba en Madrid y en la provincia de Salamanca. Otros países de Europa, que han experimentado con tramos de prueba con el proceso por vía seca son Portugal, Italia y el Reino Unido. En Sudamérica, también se ha experimentado con caucho. En Brasil, existen tramos de prueba usando vía seca y húmeda, al igual que en México y en Colombia. En Argentina, se realizó un tramo de prueba utilizando el proceso seco en el año 2002, en la ciudad de Buenos Aires, en un sector de una de las avenidas más importantes de la ciudad, con alto trafico de autobuses urbanos, con resultados bastantes alentadores. En Chile, existen dos tramos experimentales utilizando el proceso húmedo realizados por la Dirección de Vialidad. El primero de ellos, se realizó en la undécima Región de Aysén en la Ruta X-65 en mayo del año 2004. El segundo tramo experimental fue realizado en la V Región, en la provincia de Los Andes, en la Rehabilitación de la Ruta 60 CH, llevado a cabo en marzo del año 2005. 3.5.1 TRAMO EXPERIMENTAL I (Ruta X –65, km 22.270-22.770) En la Región de Aysén, existe una importante variabilidad climática y térmica durante todo el año, con temperaturas que oscilan entre -20° C en invierno y sobre 25º C en verano. La Ruta X-65 une el sector de Villa Cerro Castillo con la ciudad de Puerto Ibáñez, presentando solicitaciones de tránsito bajas. En esta zona las condiciones climáticas son comparativamente más rigurosas que en el resto de la región, lo que produce que los pavimentos asfálticos se vean enfrentados a un mayor riesgo de agrietamiento térmico y deformaciones, por lo cual es necesario que su diseño considere este amplio rango de prestaciones.
  • 41. 32 La Dirección Regional de Vialidad decidió pavimentar un tramo de prueba de 500 m de longitud, utilizando un pavimento con una mezcla asfáltica con ligante modificado con migas de caucho, con el fin de evaluar posteriormente la posibilidad de aplicarlo con mayor frecuencia en los programas de pavimentación. Características del tramo experimental. • Estructura del pavimento: El pavimento colocado tiene la siguiente estructura: -Carpeta asfalto caucho : 6 cm -Base granular (CBR 80%) : 20 cm -Subbase granular (CBR 50%) : 24 cm • Características de la Mezcla Asfáltica: Para la pavimentación, se empleó mezcla asfáltica de granulometría semi densa tipo IV-A–12. El asfalto empleado para producir el ligante asfalto-caucho fue un CA 60/80. La granulometría del caucho utilizado es la mostrada en la tabla 2.6. Tabla 3.6. Granulometría del caucho usado en Ruta X-65. TAMICES mm ASTM PORCENTAJE QUE PASA, % 2.0 N° 10 100 1.25 N° 16 98 0,63 Nº 30 52 0,3 Nº 50 12 0,16 Nº 100 2 0,08 Nº 200 0.5 • Preparación del Ligante: El ligante asfalto-caucho fue preparado siguiendo el proceso por vía húmeda. Fue confeccionado en terreno, para lo cual se empleó un estanque instalado junto a la planta asfáltica. Este estanque digestor está provisto de un sistema de calefacción y de agitación para mantener condiciones controladas de temperatura, tiempo y agitación.
  • 42. 33 El ligante asfalto-caucho fue fabricado con 82 partes de cemento asfáltico CA 60/80 y 18 partes de caucho de trituración de neumático. • Dosificación de la Mezcla en Caliente con ligante asfalto-caucho: Porcentaje de asfalto-caucho (%) : 7.1 ± 0.3 Porcentaje de VAM (%) : 18.95 Estabilidad Marshall (N) : 8950 Densidad (kg/m3 ) : 2177 Temperatura de mezclado (°C) : 180 ± 5 Temperatura de compactación (°C) : 165 ± 5 • Proceso Constructivo: El proceso de mezclado con el árido se realizó en una Planta Asfáltica de tambor. El proceso de colocación se realizó con una finisher tradicional. La compactación se realizó con un rodillo liso doble tambor, el cual para obtener los niveles de densidad deseados utilizaba dos ciclos, además se ocupó dos rodillos neumáticos. 3.5.2 TRAMO EXPERIMENTAL II (Ruta 60 CH, km 66.000-67.500) La Ruta 60 CH es el Camino Internacional a Mendoza, con tránsito pesado y fuertes variaciones térmicas. Las temperaturas promedio están entre 30º C y –4º C. La Dirección de Vialidad decidió realizar un tramo de prueba, utilizando asfalto- caucho sobre el hormigón existente, que tenia más de 20 años de vida. Se utiliza como riego de liga un riego SAMI de ligante asfalto-caucho y la granulometría SemiGap Graded. Se estudia esta aplicación de mezcla con asfalto-caucho en este contrato, como solución alternativa para evitar la reflexión de grietas.
  • 43. 34 Características del tramo experimental. • Estructura del pavimento sobre hormigón existente: Pista izquierda (Pista 2) km 66.000 al km 67.000: -Carpeta asfalto / caucho : 5 cm -Riego SAMI -Base asfáltica abierta : 5 cm -Hormigón existente km 67.000 al km 67.500: -Carpeta asfalto / caucho : 5 cm -Riego SAMI -Hormigón existente Pista derecha (Pista 1) km 66.020 al km 66.490: -Carpeta asfalto CA 60/80 : 5 cm -Riego emulsión 1:1 -Base asfáltica abierta : 5 cm -Hormigón existente km 66.490 al km 67.000: -Carpeta asfalto / caucho : 5 cm -Riego emulsión 1:1 -Base asfáltica abierta : 5 cm -Hormigón existente km 67.000 al km 67.500: -Carpeta asfalto caucho : 5 cm -Riego emulsión 1:1 -Hormigón existente
  • 44. 35 • Características de la Mezcla Asfáltica: Se empleó la granulometría SemiGap Graded de acuerdo a la banda granulométrica especificada en el Estudio sobre Asfalto - Caucho presentado como Proyecto de Innovación Tecnológica en Vialidad y recomendada para evitar la reflexión de grietas. El asfalto empleado para producir el ligante modificado fue un CA 60/80. • Preparación del Ligante: El ligante asfalto-caucho fue confeccionado en la planta asfaltera ubicada en Concón. Este ligante se transporta en camión, aproximadamente dos horas de viaje, y se carga directo a la Planta mezcladora en Caliente en terreno. En esta experiencia en terreno, se observó que la viscosidad del ligante tenía gran dispersión al ser preparado en la planta asfaltera y no en faena, como lo indica el proceso por Vía Húmeda. • Dosificación de la Mezcla asfalto-caucho: Porcentaje de asfalto / caucho (%) : 6.5 ± 0.3 Porcentaje de VAM (%) : 19.1 Estabilidad Marshall (N) : 12.658 Densidad (kg/m3 ) : 2300 Temperatura de mezclado (°C) : 185 ± 5 Temperatura inicio compactación (°C) : 175 ± 5 • Proceso Constructivo: La mezcla se realizó en una Planta Asfáltica de Tambor ubicada en terreno. El proceso de colocación se realizó con una finisher tradicional. La compactación se realiza con dos pasadas de rodillo liso vibratorio y luego con rodillo neumático (un promedio de 30 ciclos). La compactación empezó con una temperatura de 160º C y se terminó a los 60º C.
  • 45. 36 4. DESARROLLO EXPERIMENTAL En este capítulo, se describe cómo se desarrolla el presente trabajo de investigación, la metodología seguida, los procedimientos desarrollados en los cuales se especifican los ensayos realizados, las características de los materiales utilizados, y los criterios de selección de las mezclas asfálticas mejoradas con granos de caucho. Para realizar el estudio de la incorporación de caucho mediante vía seca, es necesario partir con una mezcla patrón, con el fin de comparar la variación de las propiedades de esta mezcla al añadirle diferentes porcentajes de caucho. En este caso, la mezcla patrón corresponde a una mezcla convencional del tipo Semidensa. En la mezcla patrón y en las mejoradas con caucho, se utilizarán los mismos materiales pétreos y cemento asfáltico. 4.1 CARACTERIZACIÓN DE LOS MATERIALES 4.1.1 AGREGADOS PÉTREOS Se denomina agregado grueso a la porción del agregado retenida en el tamiz 2.5 mm (N° 8) y agregado fino, a la porción que pasa el mismo tamiz. Si se requiere, puede adicionarse filler de aportación, el cual está constituido por polvo mineral fino, tal como cemento hidráulico, cal u otro material inerte, libre de materia orgánica y partículas de arcilla. Los agregados utilizados provienen de cantera de la Planta Puente Verde de la Empresa Bitumix S.A. Se ocupan tres materiales: Gravilla ¾”, Gravilla ” y Polvo Roca. A estos materiales, se les realizaron los siguientes ensayos de caracterización, de acuerdo al Vol.8 del Manual de Carreteras. • Determinación de la densidad real seca, densidad neta y absorción de los agregados.
  • 46. 37 • Determinación cuantitativa de la distribución de los tamaños de las partículas de los agregados gruesos y finos. • Cubicidad de partículas. • Índice de Plasticidad. • Determinación de la resistencia al desgaste de los agregados, por medio de la máquina de Los Ángeles. a. Densidad real seca, densidad neta y absorción. Estos ensayos están descritos en la sección 8.202.20 (LNV 68) y 8.202.21 (LNV 69). Tabla 4.1. Densidades y absorción del agregado pétreo. Ensayes Gravilla ¾” Gravilla ” Polvo Roca Densidad Neta [kg/m³] 2.732 2.731 2.715 Densidad Real Seca [kg/m³] 2.650 2.629 2.658 Absorción 1.12 % 1.78 % 0.63 % b. Análisis granulométrico. La granulometría está definida como la distribución porcentual en masa de los distintos tamaños de partículas que constituyen el agregado pétreo. Se determina mediante el análisis granulométrico, el cual consiste en separar una muestra de agregado en fracciones de igual tamaño. La granulometría se expresa en función de los porcentajes parciales retenidos en cada tamiz. A continuación, se presenta el resultado del análisis granulométrico y la respectiva curva granulométrica. Este ensayo se realizó de acuerdo a lo descrito en la sección 8.202.3 (LNV 65).
  • 47. 38 Tabla 4.2. Granulometría agregado pétreo. Tamices Porcentaje que pasa, % mm ASTM Gravilla ¾” Gravilla ” Polvo Roca 20 3/4" 100 12,5 1/2" 31 10 3/8" 19 100 100 5 Nº 4 2 10 97 2,5 Nº 8 1 1 76 0,63 Nº 30 43 0,315 Nº 50 30 0,16 Nº 100 21 0,08 Nº 200 15 DISTRIBUCIÓN GRANULOMÉTRICA AGREGADOS PÉTREOS 0 10 20 30 40 50 60 70 80 90 100 0,01 0,1 1 10 100 Tamaño de Partículas (mm) Porcentajequepasa(%) Gravilla 3/4 Gravilla 3/8 Polvo Roca Figura 4.1. Curva distribución granulométrica agregados. c. Cubicidad de partículas. A través de este ensaye, se determina el contenido porcentual de partículas chancadas, rodadas y lajeadas de la fracción de un pétreo retenida en el tamiz 5 mm. El procedimiento se describe en la sección 8.202.6 (LNV 3) del Manual de Carreteras.
  • 48. 39 Tabla 4.3. Cubicidad de partículas agregado pétreo grueso. Ensayes Gravilla ¾” Gravilla ” Exigencia Método Partículas chancadas [%] 99 100 mín. 90 8.202.6 (LNV 3) Partículas lajeadas [%] 1 1 máx. 10 8.202.6 (LNV 3) d. Índice de Plasticidad. El método para la determinación de este índice está descrito en la sección 8.102.4 (LNV 90). Tabla 4.4. Índice de Plasticidad agregado pétreo. Ensayes Gravilla ¾” Gravilla ” Polvo Roca Exigencia Método Indice de Plasticidad NP NP NP NP 8.102.4 (LNV 90) e. Resistencia al desgaste. El objetivo de este ensayo es medir la dureza del los pétreos mayores a 2.5 mm, mediante la máquina de Los Ángeles. El procedimiento de este ensaye se encuentra en la sección 8.202.11 (LNV 75). Tabla 4.5. Resistencia al desgaste de agregado pétreo grueso. Ensayes Gravilla ¾” Gravilla ” Exigencia Método Desgaste de Los Angeles [%] 12,9 18,7 máx. 25 8.202.11 (LNV 75) 4.1.2 LIGANTE ASFÁLTICO Los ligantes son constituidos por la fracción más pesada de la destilación del petróleo. La mayor o menor dureza del asfalto depende de las condiciones de destilación, tales como presión, temperatura y tiempo. El uso principal del cemento asfáltico es en mezclas en caliente para la construcción y conservación de vías. Actualmente, los cementos asfálticos se clasifican según el grado de viscosidad absoluta medida a 60° C, siendo los más usados los asfaltos CA 14 (viscosidad entre 1400 y 2400 poise) y CA 24 (viscosidad mayor a 2400 poise).
  • 49. 40 Anteriormente, la clasificación era según el Grado de Penetración en base a la dureza o consistencia que es medida mediante el ensayo de penetración. Este ensayo mide las décimas de milímetros que una aguja penetra dentro de la masa de asfalto a 25º C, con un peso de 100 gr en 5 segundos. En este caso, los cementos asfálticos más utilizados eran los CA 60-80 y CA 80-100, donde las cifras indican los límites máximos y mínimos de la penetración. Para esta investigación, se decidió trabajar con un cemento asfáltico CA 60/80. La razón de esta elección fue para relacionar y comparar con los estudios realizados anteriormente con el proceso por vía húmeda, en laboratorio y en los tramos experimentales. El cemento asfáltico fue caracterizado según los siguientes ensayes: • Viscosidad Brookfield a 60º y a 135º C. • Ductilidad. • Penetración. • Punto de ablandamiento. • Densidad. Además, este cemento fue sometido al proceso de envejecimiento en el horno de película delgada rotatoria (RTFO), realizándose los ensayes de: • Pérdida por Calentamiento. • Viscosidad Absoluta a 60º C. • Ductilidad. • Índice de Durabilidad. A continuación, se muestran los resultados de los ensayes de caracterización realizados al cemento asfáltico, además se muestran los resultados luego del envejecimiento en el horno de película delgada rotatoria.
  • 50. 41 Tabla 4.6. Resultados cemento asfáltico. Propiedades Valor Exigencia Método Densidad, 25° C, [kg/m³] 1014 8.302.2 (LNV 16) Penetración, 25° C, 100g, 5seg, [1/10mm] 73 60 - 80 8.302.3 (LNV 34) Ductilidad 25º C, 5cm/ mín., [cm] 150 mín. 100 8.302.8 (LNV 35) Punto de Ablandamiento, [°C] 46,8 8.302.16 (LNV 48) Viscosidad Brookfield a 60º C, s29, 1rpm, 21% Torque, [P] 2100 8.302.24 Viscosidad Brookfield 135º C, s29, 120rpm, 5,1% Torque, [P] 4,3 8.302.24 PDR: Pérdida por Calentamiento, [%] 0,3 máx. 0.8 8.302.33 (LNV 33) Ductilidad 25º C, 5cm/ min, [cm] 150 mín. 100 8.302.8 (LNV 35) Viscosidad absoluta a 60º C, [P] 6672 8.302.15 (LNV 41) Índice de Durabilidad 3,2 máx. 3.5 De acuerdo a las especificaciones para los cementos asfálticos, que se muestran en la Tabla 8.301.1A del Vol.8 del Manual de Carreteras, este ligante cumple con la especificación de un CA 60/80. 4.1.3 MEZCLA DE ÁRIDOS La mezcla de los áridos cumple con los requisitos de una mezcla asfáltica en caliente, establecidos en la sección 5.408 del Vol.5 del Manual de Carreteras. Los resultados de los ensayos de densidad y absorción de la mezcla de agregados, se muestran en la tabla 3.7. Tabla 4.7. Densidades y absorción de la mezcla de agregados. Ensayes Mezcla Densidad Neta [kg/m³] 2.736 Densidad Real Seca [kg/m³] 2.637 Absorción 1.7 % La granulometría de la mezcla de agregados es de tipo Semidensa, la cual comúnmente se usa para carpeta de rodadura. La granulometría utilizada y la banda IV-A- 12, se presentan en la siguiente tabla.
  • 51. 42 Tabla 4.8. Granulometría Semidensa según Manual de Carreteras Vol. 5 y mezcla de trabajo. Tamices Porcentaje que pasa, % mm ASTM IV-A-12 Mezcla de trabajo 20 3/4" 100 100 12,5 1/2" 80-95 88 10 3/8" 70-85 78 5 Nº 4 43-58 51 2,5 Nº 8 28-42 35 0,63 Nº 30 13-24 13 0,3 Nº 50 8-17 8 0,16 Nº 100 6-12 6 0,08 Nº 200 4-8 4 Se trabaja por el centro de la banda IV-A-12 hasta la malla Nº8. Para los siguientes tamaños, se adopta los valores mínimos del intervalo, esto para disminuir la cantidad de finos en la mezcla. DISTRIBUCIÓN GRANULOMÉTRICA MEZCLA IV -A-12 0 10 20 30 40 50 60 70 80 90 100 0,01 0,1 1 10 100 Tamaño de Partículas (mm) Porcentajequepasa(%) Especificación IV-A-12 (mín) Especificación IV-A-12 (máx) Mezcla de trabajo Figura 4.2. Curva distribución granulométrica mezcla IV-A-12.
  • 52. 43 4.2 DISEÑO MARSHALL DE LA MEZCLA PATRÓN La cantidad de cemento asfáltico requerida se determina con el procedimiento Marshall, mediante la elaboración de probetas con distintos contenidos de ligante, con el cual se obtienen los parámetros Marshall que permiten determinar el porcentaje óptimo de ligante en la mezcla. El Método de Diseño Marshall permite obtener un contenido óptimo de cemento asfáltico para mezclas asfálticas en caliente. Los parámetros que se estudian durante el diseño son la Estabilidad, Fluidez, Densidad, Vacíos de la mezcla asfáltica y Vacíos en el agregado mineral. De acuerdo al criterio de diseño establecido, la determinación del contenido óptimo de asfalto se obtiene principalmente con la densidad, estabilidad y vacíos con aire en la mezcla asfáltica. Este método se encuentra descrito en 8.302.47 (LNV 47) del M.C-V.8. Los criterios aplicados en la evaluación de las mezclas asfálticas diseñadas siguiendo el método Marshall son los especificados en el Manual de Carreteras, V.5, sección 5.408.203, que trata sobre las propiedades de las mezclas asfálticas. Los requisitos que deben cumplir las mezclas asfálticas se indican en la siguiente tabla. Tabla 4.9. Requisitos para Mezclas Asfálticas según especificaciones del M.C.-V.5. Estabilidad mín. Fluencia Huecos en la mezclaTIPO DE MEZCLA ASFALTICA [N] [0,25 mm] [%] Rodadura 9.000 8-16 4-6 Intermedia 8.000 8-16 3-8 Base Gruesa 6.000 8-16 5-10 Para la determinación del contenido óptimo de ligante en la mezcla patrón, se elaboraron mezclas con cuatro contenidos diferentes de ligante. Los porcentajes utilizados fueron de 4.5%, 5%, 5.5% y 6%. Las diferentes probetas Marshall se preparan según el método descrito en 8.302.40 del M.C.-V.8. y se elaboran con 1100 g de peso, en moldes de 10.2 cm de diámetro, y con una energía de compactación de 75 golpes por cada cara.
  • 53. 44 Los parámetros Marshall para cada contenido de asfalto, se obtienen del promedio de los resultados obtenidos de tres probetas, cuyos valores no difieran demasiado entre ellas. Figura 4.3. Probetas Marshall sin desmoldar. Los resultados del diseño Marshall de la mezcla patrón, se muestran a continuación: Tabla 4.10. Parámetros Marshall de la mezcla patrón. DISEÑO MARSHALL Tªmezclado probetas 152 ºC Tªcompactación probetas 143 ºC UNIDAD RESULTADOS ASFALTO 60-80 % ref. agr. 4,5 5,0 5,5 6,0 Densidad kg/m3 2271 2292 2288 2283 DMM kg/m3 2466 2449 2432 2416 Estabilidad N 9025 10933 9415 8274 Fluencia 0,01'' 12,5 13,5 14,5 16 Huecos % 7,9 6,4 5,9 5,5 Huecos en el agregado mineral (VAM) % 17,6 17,2 17,8 18,3
  • 54. 45 DENSIDAD Vs PORCENTAJE DE ASFALTO 2265 2270 2275 2280 2285 2290 2295 4 4,5 5 5,5 6 6,5 ASFALTO (%Pb) DENSIDAD[kg/m^3] Figura 4.4. Variación de la Densidad respecto al porcentaje de cemento asfáltico, para mezcla patrón. ESTABILIDAD Vs PORCENTAJE DE ASFALTO 7000 7500 8000 8500 9000 9500 10000 10500 11000 11500 4 4,5 5 5,5 6 6,5 ASFALTO (%Pb) ESTABILIDAD[N] Figura 4.5. Variación de la Estabilidad respecto al porcentaje de cemento asfáltico, para mezcla patrón.
  • 55. 46 FLUIDEZ Vs PORCENTAJE DE ASFALTO 11 12 13 14 15 16 17 4 4,5 5 5,5 6 6,5 ASFALTO (%Pb) FLUIDEZ[0,01''] Figura 4.6. Variación de la Fluidez respecto al porcentaje de cemento asfáltico, para mezcla patrón. PORCENTAJE DE HUECOS EN LA MEZCLA Vs PORCENTAJE DE ASFALTO 4,0 5,0 6,0 7,0 8,0 9,0 4 4,5 5 5,5 6 6,5 ASFALTO (%Pb) %HUECOSENLAMEZCLA Figura 4.7. Variación de los Huecos en la mezcla respecto al porcentaje de cemento asfáltico, para mezcla patrón.
  • 56. 47 PORCENTAJE DE VACIOS EN EL AGREGADO MINERAL Vs PORCENTAJE DE ASFALTO 17,0 17,2 17,4 17,6 17,8 18,0 18,2 18,4 18,6 4 4,5 5 5,5 6 6,5 ASFALTO (%Pb) %VACIOSENELAGREGADOMINERAL Figura 4.8. Variación de Vacíos en el agregado mineral respecto al porcentaje de cemento asfáltico, para mezcla patrón. La determinación del contenido óptimo de asfalto para una carpeta de rodado, se realiza calculando el promedio entre los porcentajes de asfalto que entreguen la máxima Estabilidad, la máxima Densidad y 5% de Huecos en la Mezcla. Al porcentaje de asfalto óptimo obtenido se le aplica una tolerancia de ±0.3%. Para esta mezcla, se obtiene que el máximo por Densidad se encuentra con 5.4% de cemento asfáltico y el máximo por Estabilidad, con 5.1%. Con respecto a los huecos en la mezcla, el mínimo que se tiene con los porcentajes de cemento utilizados, es de 5.5%. Para esta mezcla, el porcentaje óptimo de asfalto, se estima que estaría cercano al 5.5%. Con este porcentaje, la Estabilidad y los huecos en la mezcla, se encuentran dentro de las especificaciones para una carpeta de rodadura (Tabla 4.9).
  • 57. 48 4.3 PREPARACIÓN DE LA MEZCLA MEDIANTE PROCESO POR VIA SECA Este proceso se desarrolla para estudiar el efecto del caucho al adicionarse como una parte de los agregados finos en la elaboración de las mezclas asfálticas. La tecnología de aplicación de la vía seca es la convencional, desarrollada en España, la cual usa porcentajes de adición de hasta el 2% del peso total de los agregados. En esta investigación, el caucho se adiciona en porcentajes de 0.5%, 1.0% y 1.5% con respecto al peso del árido y se utiliza una granulometría Semidensa IV-A-12, según la Tabla 5.408.201.F del Vol. 5 del Manual de Carreteras. 4.3.1 CAUCHO UTILIZADO El caucho lo suministra la Empresa PROBISA. Este caucho es similar al usado en el tramo experimental en la Ruta X-65, es importado y proviene de triturado de neumáticos usando el método ambiental, descrito anteriormente. La densidad del caucho utilizado es de 1.139 kg/m3 , bastante baja si se compara con la de los agregados, que es cercana a los 2.600 kg/m3 . Esto debe tenerse en cuenta pues al incorporar el caucho por peso, existe una modificación importante en términos de volumen de la mezcla. La granulometría del caucho importado se muestra en la Tabla 4.11. Se decide trabajar con tamaños inferiores al tamiz Nº 30 (0.63 mm), ya que la forma de las partículas superiores a este tamaño son alargadas debido al proceso de molienda utilizado, por lo que se prefirió no considerarlas y así tener un polvo de caucho más homogéneo. La granulometría del caucho usado para realizar esta experiencia se indica en la Tabla 4.12.
  • 58. 49 Tabla 4.11. Granulometría del caucho suministrado por PROBISA. TAMICES mm ASTM PORCENTAJE QUE PASA, % 2 Nº 10 100 1,25 Nº 16 99 0,63 Nº 30 95 0,30 Nº 50 37 0,16 Nº 100 7 0,08 Nº 200 0,5 Tabla 4.12. Granulometría del caucho utilizada. TAMICES mm ASTM PORCENTAJE QUE PASA, % 0,63 Nº 30 100 0,30 Nº 50 40 0,16 Nº 100 10 0,08 Nº 200 1 Cabe destacar que la granulometría del caucho utilizado en este trabajo, es diferente a la usada en el método por vía húmeda según la Tabla 3.3. DISTRIBUCIÓN GRANULOMÉTRICA CAUCHO 0 10 20 30 40 50 60 70 80 90 100 0,01 0,1 1 10 Tamaño de Partículas (mm) Porcentajequepasa(%) Caucho suministrado por PROBISA Caucho utilizado Figura 4.9. Curva distribución granulométrica caucho.
  • 59. 50 4.3.2 GRANULOMETRÍA DE LA MEZCLA MEJORADA CON CAUCHO La granulometría de la mezcla se ve afectada al incorporar el caucho a los áridos en los distintos porcentajes, pues existe mayor cantidad de finos. La curva granulométrica de los agregados con el caucho incorporado, tiene una variación mínima y sólo en las mallas Nº 8 y Nº 30, cuando ésta se realiza en peso. En la tabla siguiente, se muestran las granulometrías en peso de las mezclas con distinto contenido de caucho. Tabla 4.13. Distribución Granulométrica en peso de mezclas con caucho. Tamices Porcentaje que pasa, % mm ASTM 0,0% 0,5% 1,0% 1,5% 20 3/4" 100 100 100 100 12,5 1/2" 88 88 88 88 10 3/8" 78 78 78 78 5 Nº 4 51 51 51 51 2,5 Nº 8 35 35 36 36 0,63 Nº 30 13 13 14 14 0,30 Nº 50 8 8 8 8 0,16 Nº 100 6 6 6 6 0,08 Nº 200 4 4 4 4 Considerando que el caucho tiene menor densidad que los agregados, se presenta a continuación, la distribución granulométrica en volumen. Tabla 4.14. Distribución Granulométrica en volumen de mezclas con caucho. Tamices Porcentaje que pasa, % mm ASTM 0,0% 0,5% 1,0% 1,5% 20 3/4" 100 100 100 100 12,5 1/2" 88 88 88 88 10 3/8" 78 78 78 78 5 Nº 4 51 51 52 52 2,5 Nº 8 35 35 36 36 0,63 Nº 30 13 14 14 15 0,30 Nº 50 8 8 8 8 0,16 Nº 100 6 6 5 5 0,08 Nº 200 4 3 3 2
  • 60. 51 4.3.3 DETERMINACIÓN DEL PORCENTAJE ÓPTIMO DE CAUCHO El porcentaje óptimo de caucho se determina mediante el ensaye de Inmersión- Compresión y del análisis de los parámetros Marshall. Para su verificación, se realizan los ensayes de tracción indirecta, Módulo Resiliente y resistencia a la fatiga. 4.3.4 METODOLOGÍA PARA LA CONFECCIÓN DE LA MEZCLA MEJORADA CON CAUCHO El procedimiento para la confección de la mezcla con caucho en laboratorio, no difiere en gran medida del método empleado para una mezcla convencional sin caucho, salvo la determinación previa del tiempo y temperatura de digestión, que requiere este tipo de mezcla asfáltica antes de la compactación. Los pasos son los siguientes: 1. Preparar la granulometría de los agregados pétreos. 2. Calentar los agregados en horno a temperatura entre 170° y 210º C. 3. Establecer la proporción de caucho a utilizar, relacionada con el peso de los áridos. 4. Mezclar los agregados calientes con la cantidad de caucho que corresponda, y colocarlos en horno entre 150 y 190° C por aproximadamente 2 min para que el caucho aumente su temperatura. 5. Adicionar el asfalto, previamente calentado a la temperatura de mezclado, a la mezcla de agregados con caucho y mezclar por 2 a 3 min. 6. Colocar la mezcla asfáltica por un periodo de digestión en horno, cuyo tiempo y temperatura se han definido con anterioridad mediante el ensayo de Inmersión- Compresión. 7. Retirar la mezcla del horno y remover el material. 8. Compactar la mezcla caliente en moldes Marshall precalentados. La compactación se lleva a cabo a una temperatura 10º C más baja que la de digestión, con 75 golpes del martillo Marshall, por ambos lados de la probeta. 9. Dejar reposar por 24 horas antes de extraer la probeta del molde. 10. Remover la probeta a temperatura ambiente.
  • 61. 52 4.4 DETERMINACIÓN DEL TIEMPO Y TEMPERATURA DE DIGESTIÓN Para las mezclas asfálticas mejoradas con caucho, se requiere en primer lugar, determinar la temperatura y el tiempo de digestión, mediante el ensaye de Inmersión- Compresión. (Ver referencia Nº[6]) El ensaye de Inmersión-Compresión se realiza de acuerdo a las normas españolas NLT-161 y NLT-162, y se utiliza para determinar la pérdida de cohesión de las mezclas asfálticas, debido a la acción del agua. Para este ensayo, se ocupan probetas cilíndricas de altura igual a su diámetro (101.6 mm), cuya compactación no es por golpes, sino que por presión, asimismo el equipo de compactación consta de moldes de diámetro interior de 101.6 mm y altura de 178 mm, pistones cilíndricos de acero y soportes para mantener eventualmente el molde por encima de la base de sustentación del pistón inferior. Figura 4.10. Conjunto de compactación. MOLDE PISTÓN SUPERIOR BASE Y SOPORTES
  • 62. 53 Mediante este ensayo, se obtiene un índice numérico (Resistencia Conservada) al comparar las resistencias a compresión simple obtenidas entre dos juegos de probetas con distinto acondicionamiento; las primeras, se mantienen al aire por veinticuatro horas y luego en un baño de agua a 25ºC durante dos horas; el segundo juego, se sumerge en agua a una temperatura de 60ºC durante veinticuatro horas, después se sacan del baño y se mantienen dos horas a temperatura ambiente, para finalmente sumergirlas en agua a 25ºC por dos horas. Ambos grupos de probetas, son evaluados en compresión axial, sin soporte lateral, con una velocidad de deformación de constante 5.08 mm/min, a temperatura de 25ºC. La resistencia a compresión simple del primer grupo, probetas en seco, es R1 y la del segundo, probetas sumergidas, es R2. La resistencia conservada (R) se calcula como: [ ]%100 1 2 ×= R R R Para definir el tiempo y la temperatura de digestión, se preparan probetas a diferentes temperaturas, 150º,160º y 170º C, y a tiempos de 1 y 2 horas con distintos porcentajes de caucho y con un único porcentaje de ligante igual a 5.5%, correspondiente al óptimo de la mezcla patrón. Estas probetas son comparadas con la mezcla patrón, sin caucho y no sometida a tiempo y temperatura en hormo, antes de la compactación. Para la estimación del tiempo y la temperatura de digestión, se toma como parámetro de comparación entre mezclas, la resistencia conservada. Las mezclas se fabrican siguiendo el procedimiento anteriormente descrito en la sección 4.3.4, salvo la compactación de las probetas, mediante presión. Se realizan tres probetas por cada grupo, R1 y R2, y se utiliza la misma prensa para compactarlas y para realizar el ensayo a compresión.
  • 63. 54 Las distintas mezclas realizadas se muestran en la siguiente tabla: Tabla 4.15. Resultados ensaye Inmersión-Compresión. Tª digestión tiempo digestión Densidad R1 R2 R Mezcla [ºC] [hr] % caucho [kg/m3 ] [MPa] [MPa] [%] P1 0 0 0 2272 3,85 2,22 57,5 C1 150 2 1,0 2230 4,93 1,52 30,9 C2 150 2 1,5 2250 4,89 1,17 23,9 C3 160 1 1,0 2236 3,80 1,48 39,0 C4 160 2 1,0 2254 4,56 1,98 43,4 C5 170 2 0,5 2252 4,96 3,38 68,0 C6 170 2 1,0 2246 4,28 2,88 67,3 C7 170 2 1,5 2262 5,26 2,07 39,3 Debido a que este ensayo pretende obtener la susceptibilidad de la mezcla cuando está sometida a la acción del agua, solo interesa saber la diferencia porcentual entre los dos grupos, no las magnitudes de sus resistencias. Caso 1 Tª digestión=150ºC Para las mezclas fabricadas con temperatura de digestión de 150ºC por dos horas (mezclas C1 y C2), se varía el porcentaje de adición de caucho, con lo que puede obtenerse la evolución del parámetro resistencia conservada, con respecto a esta variable.
  • 64. 55 INMERSIÓN-COMPRESIÓN en función del contenido de caucho, para temperatura de digestión de 150ºC 0,00 1,00 2,00 3,00 4,00 5,00 6,00 0 1,0 1,5 % Caucho Tensiónderotura[MPa] Probetas en seco Probetas sumergidas 31% 24% % Resistencia Conservada 58% P1 C1 C2 Figura 4.11. Resultados mezclas C1 y C2. Se observa que la resistencia conservada disminuye notablemente al agregar caucho. La cohesión de la mezcla se ve perjudicada por efecto del agua cuando contiene caucho, cuando la temperatura de digestión es 150ºC, esto se debe a que a esta temperatura, no está ocurriendo completamente el proceso de digestión, es decir, el caucho no está interactuando con el ligante. Las resistencias en seco son más altas que las de mezclas sin caucho, no así la resistencia de probetas sumergidas que disminuyen al agregar caucho. Por otro lado, se tiene que al agregar caucho, la densidad de las probetas disminuye, esto se puede deber a la falta de digestión y al dosificar el caucho en peso, resulta mayor volumen, pues este material es menos denso que los agregados. Caso 2 Tª digestión=160ºC Si se aumenta la temperatura de digestión a 160ºC, manteniendo el porcentaje de caucho en 1% y se varía el tiempo de digestión, se obtienen los resultados para las mezclas C3 y C4, mostrados a continuación.
  • 65. 56 INMERSIÓN COMPRESIÓN en función del tiempo de digestión, para temperatura de digestión de 160ºC 0,00 0,50 1,00 1,50 2,00 2,50 3,00 3,50 4,00 4,50 5,00 0 1 2 Tiempo de Digestión [horas] Tensiónderotura[MPa] Probetas en seco Probetas sumergidas 39% 43% % Resistencia Conservada 58% P1 C3 C4 Figura 4.12. Resultados mezclas C3 y C4. Al aumentar la temperatura de digestión a 160ºC, se obtienen mejores valores de la resistencia conservada, debido a que el caucho comienza a interactuar con el ligante y el efecto del agua está disminuyendo. Mientras más tiempo se tenga la mezcla en el horno, se tiene que aumenta la densidad de las probetas, al igual que R1 y R2, esto provoca un mayor valor de la resistencia conservada. Por otro lado, se observa que los valores de resistencia conservada siguen estando por debajo del valor de la mezcla patrón. Caso 3 Tª digestión=170ºC Las mezclas C5, C6 y C7 se fabrican con temperatura de digestión de 170º C y un tiempo de digestión de 2 horas, variando el porcentaje de caucho desde 0.5% hasta 1.5%. Los resultados obtenidos para estas mezclas, se grafican a continuación.
  • 66. 57 INMERSIÓN-COMPRESIÓN en función del contenido de caucho, para temperatura de digestión de 170º C 0,00 1,00 2,00 3,00 4,00 5,00 6,00 0,0 0,5 1,0 1,5 % Caucho TensióndeRotura[MPa] Probetas en seco Probetas sumergidas 68% 67% 39% % Resistencia Conservada 58% P1 C5 C6 C7 Figura 4.13. Resultados mezclas C5, C6 y C7. Con esta temperatura de digestión, se observa que al agregar caucho hasta en 1% a las mezclas, es menor la pérdida de cohesión por efecto del agua, lo que se traduce en mayores valores de la resistencia conservada. También se observa que la resistencia para probetas sumergidas disminuye, pero no hay una clara tendencia para la resistencia en seco. Comparados con los resultados obtenidos con los ensayos anteriores a 150º y 160º C, se obtienen mejores valores de resistencia conservada con esta temperatura, salvo para el porcentaje de 1.5% de caucho. A modo de resumen, se presenta a continuación una tabla con los distintos valores de resistencia conservada para una mezcla con dotación de caucho de 1%, aumentando la temperatura de digestión, y manteniendo el tiempo en dos horas en cada caso.
  • 67. 58 Tabla 4.16. Resultados mezclas con 1% de caucho con tiempo de digestión de dos horas. Tª digestión tiempo digestión Densidad R1 R2 R Mezcla [ºC] [hr] % caucho [kg/m3 ] [MPa] [MPa] [%] C1 150 2 1,0 2230 4,93 1,52 30,9 C3 160 2 1,0 2254 4,56 1,98 43,4 C6 170 2 1,0 2246 4,28 2,88 67,3 RESISTENCIA CONSERVADA (%) Vs TEMPERATURA DE DIGESTIÓN R 2 = 0,97 0,0 10,0 20,0 30,0 40,0 50,0 60,0 70,0 80,0 145 150 155 160 165 170 175 Temperatura de digestión [ºC] Resistenciaconservada(%) tiempo de digestion de 2 hrs Lineal (tiempo de digestion de 2 hrs) Figura 4.14. Resultados mezclas con 1% de caucho con tiempo de digestión de dos horas. En este gráfico, se observa el comportamiento del indicador resistencia conservada al aumentar la temperatura de digestión de la mezcla. Se observa que al aumentar la temperatura, mejora la eficacia del proceso de adición de caucho a la mezcla, facilitando la digestión del caucho, por parte del ligante, lográndose mediante este proceso térmico, un importante mejoramiento en la resistencia a la humedad de las mezclas mejoradas con caucho. El valor alcanzado para la resistencia conservada, después de dos horas de digestión a 170ºC, se encuentra sobre el valor correspondiente para mezclas sin caucho. Como conclusión, se tiene que mientras más alta la temperatura de digestión y más largo el tiempo en horno, el proceso de digestión mejora. En este caso, los mejores valores
  • 68. 59 de resistencia conservada para esta mezcla, se encuentran para la temperatura de 170º C por dos horas, con contenidos de caucho de hasta el 1%. 4.5 ESTUDIO DEL EFECTO DE LA TEMPERATURA Y TIEMPO DE DIGESTIÓN EN LOS PARÁMETROS MARSHALL Para realizar el estudio, se confeccionan las mezclas mejoradas con caucho, con tres contenidos de cemento asfáltico, partiendo del porcentaje de ligante de la mezcla Patrón sin caucho de 5.5%. A continuación, se comparan los valores de los parámetros Marshall de mezclas preparadas con tiempo de digestión de dos horas, para las diferentes temperaturas de digestión de 150º, 160º y 170ºC y distintos porcentajes de adición de caucho. 4.5.1 DENSIDAD Este ensayo se realiza de acuerdo a la sección 8.302.38 (LNV 13) del M.C.-V.8. A continuación se muestran los resultados obtenidos de densidad para las mezclas asfálticas mejoradas con caucho. Tabla 4.17. Resultados de Densidad. % asfalto 4,5 5,0 5,5 6,0 6,5 Mezclas Densidad [kg/m3 ] 150º C/ 2 hr 0,5% - - 2273 2292 2316 1,0% - - 2270 2291 2310 1,5% - - 2263 2269 2285 160º C/ 2 hr 0,5% - - 2301 2313 2353 170º C/ 2 hr 0,5% - - 2290 2304 2298
  • 69. 60 DENSIDAD Vs PORCENTAJE DE ASFALTO 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 5 5,5 6 6,5 7 ASFALTO (%Pb) DENSIDAD[kg/m^3] 0.5%/ 150ºC/ 2hrs 0.5%/ 160ºC/ 2hrs 0.5%/ 170ºC/ 2hrs Figura 4.15. Variación de la densidad respecto al porcentaje de cemento asfáltico, para mezclas con 0.5% de caucho, tiempo de digestión de dos horas y diferentes temperaturas de digestión. Los valores de densidad obtenidos para las mezclas fabricadas a 160ºC por dos horas con 0.5% de caucho, son ligeramente superiores a los conseguidos a 170º y a 150ºC. La curva de las mezclas a 170ºC, tienen un máximo a diferencia de las otras temperaturas En la Figura 4.16. se observa que para las mezclas realizadas con una temperatura de digestión de 150º C por dos horas, la densidad disminuye a medida que la proporción de caucho se incrementa. Esto se debe a que al no ocurrir la digestión y dosificar el caucho por peso, resulta mayor volumen respecto de la mezcla original, debido a que el caucho es menos denso que los agregados.
  • 70. 61 DENSIDAD Vs PORCENTAJE DE ASFALTO 2260 2270 2280 2290 2300 2310 2320 5 5,5 6 6,5 7 ASFALTO (%Pb) DENSIDAD[kg/m^3] 0.5%/ 150ºC/ 2hrs 1.0%/ 150ºC/ 2hrs 1.5%/ 150ºC/ 2hrs Figura 4.16. Variación de la densidad respecto al porcentaje de cemento asfáltico, para mezclas con temperatura de digestión de 150ºC por dos horas. 4.5.2 ESTABILIDAD Este ensayo se realiza de acuerdo a la sección 8.302.47 (LNV 47) del M.C.-V.8. A continuación se muestran los resultados obtenidos de estabilidad para las mezclas asfálticas mejoradas con caucho. Tabla 4.18. Resultados de Estabilidad Marshall. % asfalto 4,5 5,0 5,5 6,0 6,5 Mezclas Estabilidad [N] 150ºC/ 2 hr 0,5% - - 10995 9737 11476 1,0% - - 10234 11576 12829 1,5% - - 10981 11179 11028 160ºC/ 2 hr 0,5% - - 12267 13774 13673 170ºC/ 2 hr 0,5% - - 16459 14405 13920
  • 71. 62 ESTABILIDAD Vs PORCENTAJE DE ASFALTO 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 5 5,5 6 6,5 7 ASFALTO (%Pb) ESTABILIDAD[N] 0.5%/ 150ºC/ 2hrs 0.5%/ 160ºC/ 2hrs 0.5%/ 170ºC/ 2hrs Figura 4.17. Variación de la Estabilidad respecto al porcentaje de cemento asfáltico, para mezclas con 0.5% de caucho, tiempo de digestión de dos horas y diferentes temperaturas de digestión. Los valores de Estabilidad más altos son los obtenidos para las mezclas fabricadas a 170ºC por dos horas con 0.5% de caucho. Para las mezclas con temperatura de digestión de 150ºC, la curva de Estabilidad no tiene la forma esperada. 4.5.3 FLUIDEZ Este ensayo se realiza de acuerdo a la sección 8.302.47 (LNV 47) del M.C.-V.8. A continuación se muestran los resultados obtenidos de fluidez para las mezclas asfálticas mejoradas con caucho.
  • 72. 63 Tabla 4.19. Resultados de Fluidez Marshall. % asfalto 4,5 5,0 5,5 6,0 6,5 Mezclas Fluidez [0,01"] 150ºC/ 2 hr 0,5% - - 14,0 12,8 13,0 1,0% - - 13,5 13,7 14,0 1,5% - - 13,3 13,0 14,3 160ºC/ 2 hr 0,5% - - 12,3 14,0 16,0 170ºC/ 2 hr 0,5% - - 12,0 13,3 16,0 FLUIDEZ Vs PORCENTAJE DE ASFALTO 10 11 12 13 14 15 16 17 5 5,5 6 6,5 7 ASFALTO (%Pb) FLUIDEZ[0,01''] 0.5%/ 150ºC/ 2hrs 0.5%/ 160ºC/ 2hrs 0.5%/ 170ºC/ 2hrs Figura 4.18. Variación de la fluidez respecto al porcentaje de cemento asfáltico, para mezclas con 0.5% de caucho, tiempo de digestión de dos horas y diferentes temperaturas de digestión. Los valores de fluidez obtenidos para las mezclas fabricadas a 160ºC por dos horas con 0.5% de caucho también siguen la tendencia esperada, al igual que para las mezclas a 170ºC. No ocurre lo mismo para la curva a 150ºC, donde los valores de fluidez inicialmente son altos para 5.5% de ligante, y disminuye hasta un cierto contenido de asfalto a partir del cual vuelve a aumentar. Esto podría deberse a que bajos contenidos de ligante en una mezcla mejorada con caucho son insuficientes para proporcionar una buena cohesión, junto
  • 73. 64 a esto hay que decir que el caucho a esta temperatura, posiblemente no interactúa con el ligante, por lo que es más relevante el comportamiento elástico del caucho. 4.5.4 HUECOS EN LA MEZCLA TOTAL A continuación se muestran los resultados obtenidos de huecos en la mezcla total para las mezclas asfálticas mejoradas con caucho. Tabla 4.20. Resultados de huecos en la mezcla total. % asfalto 4,5 5,0 5,5 6,0 6,5 Mezclas % huecos en la mezcla 150º C/ 2 hr 0,5% - - 6,1 4,7 3,1 1,0% - - 5,6 4,1 2,7 1,5% - - 5,5 4,6 3,3 160º C/ 2 hr 0,5% - - 5,0 3,8 1,6 170º C/ 2 hr 0,5% - - 5,4 4,2 3,8 En la Figura 4.19, se observa que a medida que aumenta el porcentaje de asfalto, los huecos disminuyen para cualquier temperatura de digestión. Los valores de huecos más bajos obtenidos, se tienen en la mezcla con temperatura de digestión de 160ºC.
  • 74. 65 PORCENTAJE DE HUECOS EN LA MEZCLA Vs PORCENTAJE DE ASFALTO 1,0 2,0 3,0 4,0 5,0 6,0 7,0 5 5,5 6 6,5 7 ASFALTO (%Pb) %HUECOSENLAMEZCLA 0.5%/ 150ºC/ 2hrs 0.5%/ 160ºC /2hrs 0.5%/ 170ºC/ 2hrs Figura 4.19. Variación de los huecos en la mezcla respecto al porcentaje de cemento asfáltico, para mezclas con 0.5% de caucho, tiempo de digestión de dos horas y diferentes temperaturas de digestión. En la Figura 4.20, se analiza el efecto del porcentaje de caucho sobre el contenido de huecos a 150ºC, donde se observa que para 1.5%, se genera un “efecto rebote” debido a que a esta temperatura no reacciona todo el caucho con el cemento asfáltico, dificultando la compactación debido a la característica elástica de este material.
  • 75. 66 PORCENTAJE DE HUECOS EN LA MEZCLA Vs PORCENTAJE DE ASFALTO 1,0 2,0 3,0 4,0 5,0 6,0 7,0 5 5,5 6 6,5 7 ASFALTO (%Pb) %HUECOSENLAMEZCLA 0.5%/ 150ºC/ 2hrs 1.0%/ 150ºC/ 2hrs 1.5%/ 150ºC/ 2hrs Figura 4.20. Variación de los huecos en la mezcla respecto al porcentaje de cemento asfáltico, para mezclas con temperatura de digestión de 150ºC por dos horas. 4.5.5 VACÍOS EN EL AGREGADO MINERAL A continuación se muestran los resultados obtenidos de vacíos en el agregado mineral en la mezcla total para las mezclas asfálticas mejoradas con caucho. Tabla 4.21. Resultados de vacíos en el agregado mineral. % asfalto 4,5 5,0 5,5 6,0 6,5 Mezclas % vacíos en el agregado mineral 150ºC/ 2 hr 0,5% - - 17,8 17,5 17,0 1,0% - - 17,4 17,0 16,7 1,5% - - 18,7 18,8 18,6 160ºC/ 2 hr 0,5% - - 16,8 16,7 15,7 170ºC/ 2 hr 0,5% - - 17,2 17,0 17,6
  • 76. 67 PORCENTAJE DE VACIOS EN EL AGREGADO MINERAL Vs PORCENTAJE DE ASFALTO 15,6 16,1 16,6 17,1 17,6 18,1 5 5,5 6 6,5 7 ASFALTO (%Pb) %VACIOSENELAGREGADOMINERAL 0.5%/ 150ºC/ 2hrs 0.5%/ 160ºC /2hrs 0.5%/ 170ºC/ 2hrs Figura 4.21. Variación de vacíos en el agregado mineral respecto al porcentaje de cemento asfáltico, para mezclas con 0.5% de caucho, tiempo de digestión de dos horas y diferentes temperaturas de digestión. Analizando las curvas de la Figura 4.21, puede decirse que la curva que se acerca más a lo esperado es la de las mezclas fabricadas a 170ºC. Para las mezclas elaboradas a 150º y 160ºC, los vacíos en el agregado mineral disminuyen al incrementar el contenido de cemento asfáltico. En la Figura 4.22, donde se analizan las mezclas fabricadas a temperatura de digestión de 150ºC, se observa que los vacíos en el agregado mineral se incrementan al aumentar la cantidad de caucho.
  • 77. 68 PORCENTAJE DE VACIOS EN EL AGREGADO MINERAL Vs PORCENTAJE DE ASFALTO 15,6 16,1 16,6 17,1 17,6 18,1 18,6 19,1 5 5,5 6 6,5 7 ASFALTO (%Pb) %VACIOSENELAGREGADOMINERAL 0.5%/ 150ºC /2hrs 1.0%/ 150ºC /2hrs 1.5%/ 150ºC /2hrs Figura 4.22. Variación de vacíos en el agregado mineral respecto al porcentaje de cemento asfáltico, para mezclas con temperatura de digestión de 150ºC por dos horas. En base a los parámetros Marshall, puede decirse que la temperatura de digestión que otorga mejores resultados de las mezclas es 170ºC. En las mezclas elaboradas a 150ºC, no ocurre completamente el proceso de digestión y los granos de caucho sin reaccionar, desmejoran las características de la mezcla. Con temperatura de digestión de 160ºC, las características de la mezcla son buenas, salvo que tiene valores altos de densidad, lo que provoca que los porcentajes de huecos en la mezcla y vacíos en el agregado mineral sean bajos, los que podrían estar fuera de las especificaciones para una carpeta de rodadura. 4.6 DISEÑO FINAL Del estudio anterior, se determina que la temperatura de digestión que otorga mejores resultados para las mezclas con caucho es a la máxima posible, en este caso a 170ºC. Es por esto que se analizan los parámetros Marshall, para determinar el valor óptimo de asfalto para los diseños con esta temperatura y los distintos porcentajes de adición de caucho.