Info-Matemático.

190 visualizaciones

Publicado el

.....

Publicado en: Educación
0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
190
En SlideShare
0
De insertados
0
Número de insertados
3
Acciones
Compartido
0
Descargas
0
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Info-Matemático.

  1. 1. BARQUISIMETO, LUNES 9 DE MARZO INFO-MATEMATICO REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACION LICEO BOLIVARIANO LOS CREPUSCULOS LA CIRCUNFERENCIA ES UNA CURVA PLANA Y CERRADA DONDE TODOS SUS PUNTOS ESTÁN A IGUAL DISTANCIA DEL CENTRO. pág. 2,3 LA ELIPSE ES UNA LÍNEA CURVA, CERRADA Y PLANA. Pág. 4, 5 UNA HIPÉRBOLA ES UNA SECCIÓN CÓNICA, UNA CURVA ABIERTA DE DOS RAMAS OBTENIDA CORTANDO UN CONO RECTO POR UN PLANO OBLICUO AL EJE DE SIMETRÍA. Pág.6 En matemáticas, una parábola la sección cónica resultante de cortar un cono recto con un plano cuyo ángulo de inclinación respecto al eje de revolución del cono sea igual al presentado por su generatriz. Pág. 7,8 Integrantes: Amaro José, Crespo Natacha, Mendosa María, White Michelle 5TO ‘’C’’
  2. 2. BARQUISIMETO, LUNES 9 DE MARZO La circunferencia es una curva plana y cerrada donde todos sus puntos están a igual distancia del centro. Una circunferencia es el lugar geométrico de los puntos de un plano que equidistan de otro punto fijo y coplanario llamado centro en una cantidad constante llamada radio. La circunferencia sólo posee longitud. Se distingue del círculo en que éste es el lugar geométrico de los puntos contenidos en una circunferencia determinada; es decir, la circunferencia es el perímetro del círculo cuya superficie contiene. Puede ser considerada como una elipse de excentricidad nula, o una elipse cuyos semiejes son iguales, o los focos coinciden. También se puede describir como la sección, perpendicular al eje, de una superficie cónica o cilíndrica, o como un polígono regular de infinitos lados, cuya apotema coincide con su radio. La intersección de un plano con una superficie esférica puede ser: o bien el conjunto vacío (plano exterior); o bien un solo punto (plano tangente); o bien una circunferencia, si el plano secante pasa por el centro, se llama ecuador. ELEMENTOS DE LA CIRCUNFERENCIA Existen varios puntos, rectas y segmentos, singulares en la circunferencia: • Centro, es el punto interior equidistante de todos los puntos de la circunferencia; • Radio. El radio de una circunferencia es el segmento que une el centro de la circunferencia con un punto cualquiera de la misma. El radio mide la mitad del diámetro. El radio es igual a la longitud de la circunferencia dividida entre 2π. • Diámetro. El diámetro de una circunferencia es el segmento que une dos puntos de la circunferencia y pasa por el centro. El diámetro mide el doble del radio. El diámetro es igual a la longitud de la circunferencia dividida entre π; Pag.2
  3. 3. Pag.3 Cuerda. La cuerda es un segmento que une dos puntos de la circunferencia. El diámetro es la cuerda de longitud máxima. • Recta secante. Es la línea que corta a la circunferencia en dos puntos; • Recta tangente. Es la línea que toca a la circunferencia en un sólo punto; • Punto de Tangencia es el punto de contacto de la recta tangente con la circunferencia; • Arco. El arco de la circunferencia es cada una de las partes en que una cuerda divide a la circunferencia. Un arco de circunferencia se denota con el símbolo sobre las letras de los puntos extremos del arco. • Semicircunferencia, cada uno de los dos arcos delimitados por los extremos de un diámetro. Un ángulo, respecto de una circunferencia, pueden ser: Ángulo central, si tiene su vértice en el centro de esta. Sus lados contienen a dos radios. La amplitud de un ángulo central es igual a la del arco que abarca. Ángulo inscrito, si su vértice es un punto de la circunferencia y sus lados contienen dos cuerdas. La amplitud de un ángulo inscrito en una semi circunferencia equivale a la mayor parte del ángulo exterior que limita dicha base. (Véase: arco capaz.) Ángulo semi-inscrito, si su vértice es un punto de la circunferencia y sus lados contienen una cuerda y una recta tangente a la circunferencia. El vértice es el punto de tangencia. La amplitud de un ángulo semi-inscrito es la mitad de la del arco que abarca. Ángulo interior, si su vértice está en el interior de la circunferencia. La amplitud de un ángulo interior es la mitad de la suma de dos medidas: la del arco que abarcan sus lados más la del arco que abarcan sus prolongaciones. Ángulo exterio, si tiene su vértice en el exterior de la circunferencia
  4. 4. La elipse es una línea curva, cerrada y plana cuya definición más usual es: La elipse es el lugar geométrico de todos los puntos de un plano, tales que la suma de las distancias a otros dos puntos fijos llamados focos es constante. Una elipse es la curva simétrica cerrada que resulta al cortar la superficie de un cono por un plano oblicuo al eje de simetría –con ángulo mayor que el de la generatriz respecto del eje de revolución. Una elipse que gira alrededor de su eje menor genera un esferoide achatado, mientras que una elipse que gira alrede dor de su eje principal genera un esferoide alargado. Pag.4 En la figura de la derecha se muestran los dos radio vectores correspondientes a cada punto P de una elipse, los vectores que van de los focos F1 y F2 a P. Las longitudes de los segmentos correspondientes a cada uno son PF1 (color azul) y PF2 (color rojo), y en la animación se ilustra como varían para diversos puntos P de la elipse. Como establece la definición inicial de la elipse como lugar geométrico, para todos los puntos P de la elipse la suma de las longitudes de sus dos radio vectores es una cantidad constante igual a la longitud 2a del eje mayor: PF1 + PF2 = 2a En la elipse de la imagen 2a vale 10 y se ilustra, para un conjunto selecto de puntos, cómo se cumple la definición.
  5. 5. Pag.5
  6. 6. Pag.6 Una hipérbola es una sección cónica, una curva abierta de dos ramas obtenida cortando un cono recto por un plano oblicuo al eje de simetría, y con ángulo menor que el de la generatriz respecto del eje de •Eje mayor o real El eje mayor es la recta de la hipérbola donde pertenecen los focos y los vértices de la misma. Su valor es 2a y es perpendicular al eje imaginario •Eje menor o imaginario. El eje menor o imaginario no tiene puntos en común con la hipérbola. Sin embargo, siempre se cumple que las perpendiculares lanzadas por sus extremos cortan con las perpendiculares lanzadas por los extremos del eje mayor en 4 puntos que pueden servir para trazar las asíntotas. •Asíntotas Son las rectas r y r' que pasan por el centro de la hipérbola y verifican que se acercan ramas de la misma tanto más cuanto más nos alejamos del centro de la hipérbola. Las ecuaciones de las asíntotas son: r: y= b/a x r': y = -b/a x •Vértices Los vértices de una hipérbola son los puntos donde ésta corta a sus ejes. •Focos Son dos puntos, F_1 ,y, F_2, respecto de los cuales permanece constante la diferencia de distancias (en valor absoluto) a cualquier punto, x, de dicha hipérbola. vert d(F_1,x)-d(F_2,x)vert=cte •Centro Punto medio de los vértices y de los focos de la hipérbola. •Tangentes:La tangente a una hipérbola en cualquier punto de la curva es bisectriz del ángulo formado por los radios vectores de ese punto.
  7. 7. Pag.7 En matemáticas, una parábola la sección cónica resultante de cortar un cono recto con un plano cuyo ángulo de inclinación respecto al eje de revolución del cono sea igual al presentado por su generatriz. El plano resultará por lo tanto paralelo a dicha recta. Se define también como el lugar geométrico de los puntos de un plano que equidistan de una recta llamada directriz,n y un punto exterior a ella llamado foco. En geometría proyectiva, la parábola se define como la curva envolvente de las rectas que unen pares de puntos homólogos en una proyectividad semejante o semejanza. La parábola aparece en muchas ramas de las ciencias aplicadas debido a que su forma se corresponde con las gráficas de las ecuaciones cuadráticas. Por ejemplo, son parábolas las trayectorias ideales de los cuerpos que se mueven bajo la influencia exclusiva de la gravedad (vermovimiento parabólico y trayectoria balística). Aunque la identificación de parábola con la intersección entre un cono recto y un plano que forme un ángulo con el eje de revolución del cono igual al que presenta su generatriz, es exacta, es común definirla también como un lugar geométrico: Se denomina parábola al lugar geométrico de los puntos de un plano que equidistan de una recta dada, llamada directriz, y de un punto exterior a ella, llamado foco. De esta forma, una vez fija una recta y un punto se puede construir una parábola que los tenga por foco y directriz de acuerdo a la siguiente construcción. Sea T un punto cualquiera de la recta directriz. Se une con el foco dado F y a continuación se traza la mediatriz (o perpendicular por el punto medio) del segmento TF. La intersección de la mediatriz con la perpendicular por T a la directriz da como resultado un punto P que pertenece a la parábola. Repitiendo el proceso para diferentes puntos T se puede aproximar tantos puntos de la parábola como sea necesario. De la construcción anterior se puede probar que la parábola es simétrica respecto a la línea perpendicular a la directriz y que pasa por el foco. Al punto de intersección de la parábola con tal línea (conocida como eje de la parábola) se le conoce como vértice de la parábola y es el punto cuya distancia a la directriz es mínima.
  8. 8. Pag.8 Al segmento de recta comprendido por la parábola, que pasa por el foco y es paralelo a la directriz, se le conoce como lado recto. La longitud del lado recto es siempre 4 veces la distancia focal. Siendo D, E los extremos del lado recto y T, U las respectivas proyecciones sobre la directriz, denotando por W la proyección del foco F sobre la directriz, se observa que FEUW y DFWT son cuadrados, y sus lados miden FW=2FV. Por tanto el segmento DE es igual a 4 veces el segmento FV(la distancia focal). Las tangentes a la parábola que pasan por los extremos del lado recto forman ángulos de 45° con el mismo, consecuencia de que FEUW y DFWTsean cuadrados, junto con la construcción mencionada en la sección anterior. Además, tales tangentes se cortan en la directriz de forma perpendicular, precisamente en el punto de proyección W del foco, propiedades que pueden ser aprovechadas para construir una aproximación geométrica del foco y la directriz cuando éstos son desconocidos. Dado que la parábola es una sección cónica, también puede describirse como la única sección cónica que tiene excentricidad . La unicidad se refiere a que todas las parábolas son semejantes, es decir, tienen la misma forma, salvo su escala. Desafortunadamente, al estudiar analíticamente las parábolas (basándose en ecuaciones), se suele afirmar erróneamente que los parámetros de la ecuación cambian la forma de la parábola, haciéndola más ancha o estrecha. La verdad es que todas las parábolas tienen la misma forma, pero la escala (zoom) crea la ilusión de que hay parábolas de formas diferentes. Un argumento geométrico informal es que al ser la directriz una recta infinita, al tomar cualquier punto y efectuar la construcción descrita arriba, se obtiene siempre la misma curva, salvo su escala, que depende de la distancia del punto a la directriz.
  9. 9. Pag.9 ¿Sabías Que? Cuando los bebes nacen y a medida que se les realizan chequeos médicos, los doctores miden la Circunferencia de la cabeza para ver si no presentan alguna anormalidad craneal.

×