SlideShare una empresa de Scribd logo

Plano numerico

UNIVERSIDAD POLITECNICA TERRITORIAL DE LARA “ANDRES ELOY BLANCO”

1 de 11
Descargar para leer sin conexión
INTEGRANTE:
MIRVALLE PÉREZ
CI: 21.297.397
SECCION: CO0104
PLANO NUMERICO O CARTESIANO
Se conoce como plano cartesiano, coordenadas cartesianas o
sistema cartesiano, a dos rectas numéricas perpendiculares, una
horizontal y otra vertical, que se cortan en un punto llamado
origen o punto cero.
La finalidad del plano cartesiano es describir la posición o
ubicación de un punto en el plano, la cual está representada por
el sistema de coordenadas.
El plano cartesiano también sirve para analizar matemáticamente
figuras geométricas como la parábola, la hipérbole, la línea, la
circunferencia y la elipse, las cuales forman parte de la geometría
analítica.
Partes del plano cartesiano
Los elementos y características que conforman el plano cartesiano
son los ejes coordenados, el origen, los cuadrantes y las
coordenadas. A continuación, te explicamos cada uno.
Se llaman ejes coordenados a las dos rectas perpendiculares que
se interconectan en un punto del plano. Estas rectas reciben el
nombre de abscisa y ordenada.
Abscisa: el eje de las abscisas está dispuesto de manera horizontal
y se identifica con la letra “x”.
Ordenada: el eje de las ordenadas está orientado verticalmente y
se representa con la letra “y”.
Origen o punto 0
Se llama origen al punto en el que se intersecan los ejes “x” y
“y”, punto al cual se le asigna el valor de cero (0). Por ese motivo,
también se conoce como punto cero (punto 0). Cada eje
representa una escala numérica que será positiva o negativa de
acuerdo a su dirección respecto del origen.
Así, respecto del origen o punto 0, el segmento derecho del eje
“x” es positivo, mientras que el izquierdo es negativo.
Consecuentemente, el segmento ascendente del eje “y” es
positivo, mientras que el segmento descendente es negativo
Cuadrantes del plano cartesiano
Se llama cuadrantes a las cuatro áreas que se forman por la
unión de las dos rectas perpendiculares. Los puntos del plano se
describen dentro de estos cuadrantes.
Los cuadrantes se enumeran tradicionalmente con números
romanos: I, II, III y IV.
Cuadrante I: la abscisa y la ordenada son positivas.
Cuadrante II: la abscisa es negativa y la ordenada positiva.
Cuadrante III: tanto la abscisa como la ordenada son negativas.
Cuadrante IV: la abscisa es positiva y el ordenada negativa.
DISTANCIA ENTRE DOS PUNDOS
Dadas las coordenadas de dos puntos, P1 y P2, se deduce la
fórmula de distancia entre estos dos puntos. La demostración
usa el teorema de Pitágoras. Un ejemplo muestra cómo usar la
fórmula para determinar la distancia entre dos puntos dadas
sus coordenadas La distancia entre dos puntos P1 y P2 del
plano la denotaremos por d(P1,P2 ). La fórmula de la distancia
usa las coordenadas de los puntos.
EJEMPLO
PUNTO MEDIO
es el punto que se encuentra a la misma distancia de otros dos
puntos cualquiera o extremos de un segmento
Si es un segmento, el punto medio es el que lo divide en dos
partes iguales. En ese caso, el punto medio es único y equidista
de los extremos del segmento. Por cumplir esta última
condición, pertenece a la mediatriz del segmento.
En el plano cartesiano
Dado un segmento, cuyos extremos tienen por coordenadas:
y
El punto medio tendrá por coordenadas:
En el espacio cartesiano
Sean los extremos con coordenadas
El punto medio tiene como coordenadas:
CIRCUNFERENCIA
Es el lugar geométrico de un punto que se mueve en un plano
de tal manera que se conserva siempre a una distancia
constante de un punto fijo de ese plano.
Elementos básicos
Centro: punto central que está a la misma distancia de todos los
puntos pertenecientes a la circunferencia.
Radio: pedazo de recta que une el centro con cualquier punto
perteneciente a la circunferencia.
Cuerda: pedazo de recta que une dos puntos cualquiera de una
circunferencia.
Diámetro: mayor cuerda que une dos puntos de una
circunferencia. Hay infinitos diámetros y todos pasan por el
centro de la circunferencia.
Recta secante: recta que corta dos puntos cualesquiera de una
circunferencia.
Recta tangente: recta que toca a la circunferencia en un solo
punto y es perpendicular a un radio.
TEOREMA. La circunferencia cuyo centro es el punto (h,k) y
cuyo radio es la constante r, tiene por ecuación

Más contenido relacionado

La actualidad más candente

Plano numerico osmary
Plano numerico osmaryPlano numerico osmary
Plano numerico osmaryosmaryacua
 
Plano numerico fer
Plano numerico ferPlano numerico fer
Plano numerico ferLuisFSuarez1
 
Lugares geométricos Por Antony Carrera
Lugares geométricos Por Antony CarreraLugares geométricos Por Antony Carrera
Lugares geométricos Por Antony CarreraTony Purple Diamond
 
Pensamiento geometrico y analitico
Pensamiento geometrico y analiticoPensamiento geometrico y analitico
Pensamiento geometrico y analiticoYudiDiaz
 
Plano Numérico o Plano Cartesiano
Plano Numérico o Plano CartesianoPlano Numérico o Plano Cartesiano
Plano Numérico o Plano CartesianoGenessisArteaga1
 
Lugares geometricos
Lugares geometricosLugares geometricos
Lugares geometricosivdan2
 
Lugar geométrico
Lugar geométricoLugar geométrico
Lugar geométricoRocio
 
PLANO CARTESIANO MATEMÁTICAS
PLANO CARTESIANO MATEMÁTICASPLANO CARTESIANO MATEMÁTICAS
PLANO CARTESIANO MATEMÁTICASNombre Apellidos
 
Angulos entre paralelas, puntos notables del triangulo y propiedades de las f...
Angulos entre paralelas, puntos notables del triangulo y propiedades de las f...Angulos entre paralelas, puntos notables del triangulo y propiedades de las f...
Angulos entre paralelas, puntos notables del triangulo y propiedades de las f...CesarReyesPuentes
 

La actualidad más candente (20)

Plano numerico osmary
Plano numerico osmaryPlano numerico osmary
Plano numerico osmary
 
Plano numerico fer
Plano numerico ferPlano numerico fer
Plano numerico fer
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Plano Numerico
Plano NumericoPlano Numerico
Plano Numerico
 
Plano Numérico
Plano Numérico Plano Numérico
Plano Numérico
 
Lugares geométricos Por Antony Carrera
Lugares geométricos Por Antony CarreraLugares geométricos Por Antony Carrera
Lugares geométricos Por Antony Carrera
 
Pensamiento geometrico y analitico
Pensamiento geometrico y analiticoPensamiento geometrico y analitico
Pensamiento geometrico y analitico
 
Plano Numérico
Plano NuméricoPlano Numérico
Plano Numérico
 
Plano Numérico o Plano Cartesiano
Plano Numérico o Plano CartesianoPlano Numérico o Plano Cartesiano
Plano Numérico o Plano Cartesiano
 
Lugares geometricos
Lugares geometricosLugares geometricos
Lugares geometricos
 
Plano numerico
Plano numerico Plano numerico
Plano numerico
 
Plano numerico
Plano numerico Plano numerico
Plano numerico
 
Lugar geométrico
Lugar geométricoLugar geométrico
Lugar geométrico
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Plano
PlanoPlano
Plano
 
PLANO CARTESIANO MATEMÁTICAS
PLANO CARTESIANO MATEMÁTICASPLANO CARTESIANO MATEMÁTICAS
PLANO CARTESIANO MATEMÁTICAS
 
Angulos entre paralelas, puntos notables del triangulo y propiedades de las f...
Angulos entre paralelas, puntos notables del triangulo y propiedades de las f...Angulos entre paralelas, puntos notables del triangulo y propiedades de las f...
Angulos entre paralelas, puntos notables del triangulo y propiedades de las f...
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 

Similar a Plano numerico

plano numerico o cartesiano.pdf
plano numerico o cartesiano.pdfplano numerico o cartesiano.pdf
plano numerico o cartesiano.pdfmichaelevies
 
Plano numerico pdf.pdf
Plano numerico pdf.pdfPlano numerico pdf.pdf
Plano numerico pdf.pdfArelis145641
 
PLANO NUMERICO KARLA GARCIA.pptx
PLANO NUMERICO KARLA GARCIA.pptxPLANO NUMERICO KARLA GARCIA.pptx
PLANO NUMERICO KARLA GARCIA.pptxKarlaGarcia571339
 
PLANOS NUMERICOS PRESENTANCION DE HERNANDEZ INVER.pptx
PLANOS NUMERICOS PRESENTANCION DE HERNANDEZ INVER.pptxPLANOS NUMERICOS PRESENTANCION DE HERNANDEZ INVER.pptx
PLANOS NUMERICOS PRESENTANCION DE HERNANDEZ INVER.pptxandresAmaya68
 
Plano Numérico o Plano Cartesiano.pdf
Plano Numérico o Plano Cartesiano.pdfPlano Numérico o Plano Cartesiano.pdf
Plano Numérico o Plano Cartesiano.pdfAngelDavidMendoza2
 
PLANO CARTESIANO GABRIEL .pdf
PLANO CARTESIANO GABRIEL .pdfPLANO CARTESIANO GABRIEL .pdf
PLANO CARTESIANO GABRIEL .pdfGabriel Peña
 
Plano numérico o plano cartesiano.pptx
Plano numérico o plano  cartesiano.pptxPlano numérico o plano  cartesiano.pptx
Plano numérico o plano cartesiano.pptxAndersonMarchan
 
Plano numerico 0203 Daymar Perez A.pdf
Plano numerico 0203 Daymar Perez A.pdfPlano numerico 0203 Daymar Perez A.pdf
Plano numerico 0203 Daymar Perez A.pdfdaymarperez2
 
Plano numerico.docx
Plano numerico.docxPlano numerico.docx
Plano numerico.docxEstudiante
 
PLANO NUMERICO.pptx
PLANO NUMERICO.pptxPLANO NUMERICO.pptx
PLANO NUMERICO.pptxAndreimar4
 

Similar a Plano numerico (20)

plano numerico o cartesiano.pdf
plano numerico o cartesiano.pdfplano numerico o cartesiano.pdf
plano numerico o cartesiano.pdf
 
Plano numerico pdf.pdf
Plano numerico pdf.pdfPlano numerico pdf.pdf
Plano numerico pdf.pdf
 
PRESENTACIÓN JONÁS CHIRINOS.pdf
PRESENTACIÓN JONÁS CHIRINOS.pdfPRESENTACIÓN JONÁS CHIRINOS.pdf
PRESENTACIÓN JONÁS CHIRINOS.pdf
 
PLANO NUMERICO KARLA GARCIA.pptx
PLANO NUMERICO KARLA GARCIA.pptxPLANO NUMERICO KARLA GARCIA.pptx
PLANO NUMERICO KARLA GARCIA.pptx
 
PLANOS NUMERICOS PRESENTANCION DE HERNANDEZ INVER.pptx
PLANOS NUMERICOS PRESENTANCION DE HERNANDEZ INVER.pptxPLANOS NUMERICOS PRESENTANCION DE HERNANDEZ INVER.pptx
PLANOS NUMERICOS PRESENTANCION DE HERNANDEZ INVER.pptx
 
Plano Numérico o Plano Cartesiano.pdf
Plano Numérico o Plano Cartesiano.pdfPlano Numérico o Plano Cartesiano.pdf
Plano Numérico o Plano Cartesiano.pdf
 
PLANO CARTESIANO GABRIEL .pdf
PLANO CARTESIANO GABRIEL .pdfPLANO CARTESIANO GABRIEL .pdf
PLANO CARTESIANO GABRIEL .pdf
 
produccion 2.pptx
produccion 2.pptxproduccion 2.pptx
produccion 2.pptx
 
Plano Numerico.pdf
Plano Numerico.pdfPlano Numerico.pdf
Plano Numerico.pdf
 
Plano numérico o plano cartesiano.pptx
Plano numérico o plano  cartesiano.pptxPlano numérico o plano  cartesiano.pptx
Plano numérico o plano cartesiano.pptx
 
PLANO NUMERICO.pptx
PLANO NUMERICO.pptxPLANO NUMERICO.pptx
PLANO NUMERICO.pptx
 
Plano Numerico.pptx
Plano Numerico.pptxPlano Numerico.pptx
Plano Numerico.pptx
 
Plano Numerico.pdf
Plano Numerico.pdfPlano Numerico.pdf
Plano Numerico.pdf
 
Plano numerico 0203 Daymar Perez A.pdf
Plano numerico 0203 Daymar Perez A.pdfPlano numerico 0203 Daymar Perez A.pdf
Plano numerico 0203 Daymar Perez A.pdf
 
PLANO NUMÉRICO.ppt
PLANO NUMÉRICO.pptPLANO NUMÉRICO.ppt
PLANO NUMÉRICO.ppt
 
Plano Numerico
Plano NumericoPlano Numerico
Plano Numerico
 
Plano numerico.docx
Plano numerico.docxPlano numerico.docx
Plano numerico.docx
 
PLANO NUMERICO.pptx
PLANO NUMERICO.pptxPLANO NUMERICO.pptx
PLANO NUMERICO.pptx
 
Plano Númerico.pptx
Plano Númerico.pptxPlano Númerico.pptx
Plano Númerico.pptx
 
Planos numericos
Planos numericosPlanos numericos
Planos numericos
 

Último

EJERCICIO TOMÁS Y LA ENERGÍA ELÉCTRICA.docx
EJERCICIO TOMÁS Y LA ENERGÍA ELÉCTRICA.docxEJERCICIO TOMÁS Y LA ENERGÍA ELÉCTRICA.docx
EJERCICIO TOMÁS Y LA ENERGÍA ELÉCTRICA.docxnelsontobontrujillo
 
Licenciatura en Pedagogia Presentacion.pptx
Licenciatura en Pedagogia Presentacion.pptxLicenciatura en Pedagogia Presentacion.pptx
Licenciatura en Pedagogia Presentacion.pptxgeomaster9
 
¿Transiciones o transformaciones? Una mirada “otra” necesaria para el sistema...
¿Transiciones o transformaciones? Una mirada “otra” necesaria para el sistema...¿Transiciones o transformaciones? Una mirada “otra” necesaria para el sistema...
¿Transiciones o transformaciones? Una mirada “otra” necesaria para el sistema...Jose Ignacio Rivas Flores
 
Infografía sobre la historia del Instituto Diocesano
Infografía sobre la historia del Instituto DiocesanoInfografía sobre la historia del Instituto Diocesano
Infografía sobre la historia del Instituto Diocesanomeizterz5353
 
Tema 2 Los minerales: los materiales de la Geosfera 2024
Tema 2 Los minerales: los materiales de la Geosfera 2024Tema 2 Los minerales: los materiales de la Geosfera 2024
Tema 2 Los minerales: los materiales de la Geosfera 2024IES Vicent Andres Estelles
 
BUEN INICIO DEL AÑO ESCOLAR 2024 11098.pptx
BUEN INICIO DEL AÑO ESCOLAR 2024 11098.pptxBUEN INICIO DEL AÑO ESCOLAR 2024 11098.pptx
BUEN INICIO DEL AÑO ESCOLAR 2024 11098.pptxDirectivosGanadores
 
Bermeo_Sabina_y_Hernández_Josué_Tarea_2.pdf
Bermeo_Sabina_y_Hernández_Josué_Tarea_2.pdfBermeo_Sabina_y_Hernández_Josué_Tarea_2.pdf
Bermeo_Sabina_y_Hernández_Josué_Tarea_2.pdfSabinaBermeo
 
5ta Sesión Ordinaria CTE_febrero 2024_Andrés López Palafox.pptx
5ta Sesión Ordinaria CTE_febrero  2024_Andrés López Palafox.pptx5ta Sesión Ordinaria CTE_febrero  2024_Andrés López Palafox.pptx
5ta Sesión Ordinaria CTE_febrero 2024_Andrés López Palafox.pptxVíctor Hugo Ramírez
 
Ecosistema componente El biotopo y sus características
Ecosistema  componente El biotopo y sus característicasEcosistema  componente El biotopo y sus características
Ecosistema componente El biotopo y sus característicasalisonguaman1rod
 
c2.hu2.p3.p7.Participación en la comunidad.pptx
c2.hu2.p3.p7.Participación en la comunidad.pptxc2.hu2.p3.p7.Participación en la comunidad.pptx
c2.hu2.p3.p7.Participación en la comunidad.pptxMartín Ramírez
 
Preelaboración de alimentos. Los huevos.pdf
Preelaboración de alimentos. Los huevos.pdfPreelaboración de alimentos. Los huevos.pdf
Preelaboración de alimentos. Los huevos.pdfVictorSanz21
 
Auquilla_Paola_y_Casco_Angela_Práctica_2.pdf
Auquilla_Paola_y_Casco_Angela_Práctica_2.pdfAuquilla_Paola_y_Casco_Angela_Práctica_2.pdf
Auquilla_Paola_y_Casco_Angela_Práctica_2.pdfAngelaCasco1
 
la evaluación formativa Diaz Barriga.pdf
la evaluación formativa Diaz Barriga.pdfla evaluación formativa Diaz Barriga.pdf
la evaluación formativa Diaz Barriga.pdfmjvalles74
 
Práctica 1. Aplicación de la herramienta Padlet
Práctica 1. Aplicación de la herramienta PadletPráctica 1. Aplicación de la herramienta Padlet
Práctica 1. Aplicación de la herramienta PadletOscar Tigasi
 
DOCUMENTOS PRESENTACIÓN PARA EXELEARNINGGG
DOCUMENTOS PRESENTACIÓN PARA EXELEARNINGGGDOCUMENTOS PRESENTACIÓN PARA EXELEARNINGGG
DOCUMENTOS PRESENTACIÓN PARA EXELEARNINGGGCarmenTamayoDuran
 
Auquilla_Paola_y_Casco_Angela_Tarea_2.pdf
Auquilla_Paola_y_Casco_Angela_Tarea_2.pdfAuquilla_Paola_y_Casco_Angela_Tarea_2.pdf
Auquilla_Paola_y_Casco_Angela_Tarea_2.pdfAngelaCasco1
 
herramientas manuales grado cuarto primaria.pptx
herramientas manuales grado cuarto primaria.pptxherramientas manuales grado cuarto primaria.pptx
herramientas manuales grado cuarto primaria.pptxnelsontobontrujillo
 
InteligenciaArtificial y su implicancia en Enfermeria
InteligenciaArtificial y su implicancia en EnfermeriaInteligenciaArtificial y su implicancia en Enfermeria
InteligenciaArtificial y su implicancia en EnfermeriaJosé MendozaPacheco
 

Último (20)

EJERCICIO TOMÁS Y LA ENERGÍA ELÉCTRICA.docx
EJERCICIO TOMÁS Y LA ENERGÍA ELÉCTRICA.docxEJERCICIO TOMÁS Y LA ENERGÍA ELÉCTRICA.docx
EJERCICIO TOMÁS Y LA ENERGÍA ELÉCTRICA.docx
 
Licenciatura en Pedagogia Presentacion.pptx
Licenciatura en Pedagogia Presentacion.pptxLicenciatura en Pedagogia Presentacion.pptx
Licenciatura en Pedagogia Presentacion.pptx
 
¿Transiciones o transformaciones? Una mirada “otra” necesaria para el sistema...
¿Transiciones o transformaciones? Una mirada “otra” necesaria para el sistema...¿Transiciones o transformaciones? Una mirada “otra” necesaria para el sistema...
¿Transiciones o transformaciones? Una mirada “otra” necesaria para el sistema...
 
Infografía sobre la historia del Instituto Diocesano
Infografía sobre la historia del Instituto DiocesanoInfografía sobre la historia del Instituto Diocesano
Infografía sobre la historia del Instituto Diocesano
 
Tema 2 Los minerales: los materiales de la Geosfera 2024
Tema 2 Los minerales: los materiales de la Geosfera 2024Tema 2 Los minerales: los materiales de la Geosfera 2024
Tema 2 Los minerales: los materiales de la Geosfera 2024
 
BUEN INICIO DEL AÑO ESCOLAR 2024 11098.pptx
BUEN INICIO DEL AÑO ESCOLAR 2024 11098.pptxBUEN INICIO DEL AÑO ESCOLAR 2024 11098.pptx
BUEN INICIO DEL AÑO ESCOLAR 2024 11098.pptx
 
Bermeo_Sabina_y_Hernández_Josué_Tarea_2.pdf
Bermeo_Sabina_y_Hernández_Josué_Tarea_2.pdfBermeo_Sabina_y_Hernández_Josué_Tarea_2.pdf
Bermeo_Sabina_y_Hernández_Josué_Tarea_2.pdf
 
5ta Sesión Ordinaria CTE_febrero 2024_Andrés López Palafox.pptx
5ta Sesión Ordinaria CTE_febrero  2024_Andrés López Palafox.pptx5ta Sesión Ordinaria CTE_febrero  2024_Andrés López Palafox.pptx
5ta Sesión Ordinaria CTE_febrero 2024_Andrés López Palafox.pptx
 
Ecosistema componente El biotopo y sus características
Ecosistema  componente El biotopo y sus característicasEcosistema  componente El biotopo y sus características
Ecosistema componente El biotopo y sus características
 
c2.hu2.p3.p7.Participación en la comunidad.pptx
c2.hu2.p3.p7.Participación en la comunidad.pptxc2.hu2.p3.p7.Participación en la comunidad.pptx
c2.hu2.p3.p7.Participación en la comunidad.pptx
 
Preelaboración de alimentos. Los huevos.pdf
Preelaboración de alimentos. Los huevos.pdfPreelaboración de alimentos. Los huevos.pdf
Preelaboración de alimentos. Los huevos.pdf
 
PPT : Sabiduría para vivir con rectitud
PPT  : Sabiduría para vivir con rectitudPPT  : Sabiduría para vivir con rectitud
PPT : Sabiduría para vivir con rectitud
 
Auquilla_Paola_y_Casco_Angela_Práctica_2.pdf
Auquilla_Paola_y_Casco_Angela_Práctica_2.pdfAuquilla_Paola_y_Casco_Angela_Práctica_2.pdf
Auquilla_Paola_y_Casco_Angela_Práctica_2.pdf
 
la evaluación formativa Diaz Barriga.pdf
la evaluación formativa Diaz Barriga.pdfla evaluación formativa Diaz Barriga.pdf
la evaluación formativa Diaz Barriga.pdf
 
Práctica 1. Aplicación de la herramienta Padlet
Práctica 1. Aplicación de la herramienta PadletPráctica 1. Aplicación de la herramienta Padlet
Práctica 1. Aplicación de la herramienta Padlet
 
DOCUMENTOS PRESENTACIÓN PARA EXELEARNINGGG
DOCUMENTOS PRESENTACIÓN PARA EXELEARNINGGGDOCUMENTOS PRESENTACIÓN PARA EXELEARNINGGG
DOCUMENTOS PRESENTACIÓN PARA EXELEARNINGGG
 
Auquilla_Paola_y_Casco_Angela_Tarea_2.pdf
Auquilla_Paola_y_Casco_Angela_Tarea_2.pdfAuquilla_Paola_y_Casco_Angela_Tarea_2.pdf
Auquilla_Paola_y_Casco_Angela_Tarea_2.pdf
 
herramientas manuales grado cuarto primaria.pptx
herramientas manuales grado cuarto primaria.pptxherramientas manuales grado cuarto primaria.pptx
herramientas manuales grado cuarto primaria.pptx
 
Presentación Probabilidad y estadística.pptx
Presentación Probabilidad y estadística.pptxPresentación Probabilidad y estadística.pptx
Presentación Probabilidad y estadística.pptx
 
InteligenciaArtificial y su implicancia en Enfermeria
InteligenciaArtificial y su implicancia en EnfermeriaInteligenciaArtificial y su implicancia en Enfermeria
InteligenciaArtificial y su implicancia en Enfermeria
 

Plano numerico

  • 2. PLANO NUMERICO O CARTESIANO Se conoce como plano cartesiano, coordenadas cartesianas o sistema cartesiano, a dos rectas numéricas perpendiculares, una horizontal y otra vertical, que se cortan en un punto llamado origen o punto cero. La finalidad del plano cartesiano es describir la posición o ubicación de un punto en el plano, la cual está representada por el sistema de coordenadas. El plano cartesiano también sirve para analizar matemáticamente figuras geométricas como la parábola, la hipérbole, la línea, la circunferencia y la elipse, las cuales forman parte de la geometría analítica. Partes del plano cartesiano Los elementos y características que conforman el plano cartesiano son los ejes coordenados, el origen, los cuadrantes y las coordenadas. A continuación, te explicamos cada uno. Se llaman ejes coordenados a las dos rectas perpendiculares que se interconectan en un punto del plano. Estas rectas reciben el nombre de abscisa y ordenada. Abscisa: el eje de las abscisas está dispuesto de manera horizontal y se identifica con la letra “x”. Ordenada: el eje de las ordenadas está orientado verticalmente y se representa con la letra “y”.
  • 3. Origen o punto 0 Se llama origen al punto en el que se intersecan los ejes “x” y “y”, punto al cual se le asigna el valor de cero (0). Por ese motivo, también se conoce como punto cero (punto 0). Cada eje representa una escala numérica que será positiva o negativa de acuerdo a su dirección respecto del origen. Así, respecto del origen o punto 0, el segmento derecho del eje “x” es positivo, mientras que el izquierdo es negativo. Consecuentemente, el segmento ascendente del eje “y” es positivo, mientras que el segmento descendente es negativo Cuadrantes del plano cartesiano Se llama cuadrantes a las cuatro áreas que se forman por la unión de las dos rectas perpendiculares. Los puntos del plano se describen dentro de estos cuadrantes. Los cuadrantes se enumeran tradicionalmente con números romanos: I, II, III y IV. Cuadrante I: la abscisa y la ordenada son positivas. Cuadrante II: la abscisa es negativa y la ordenada positiva. Cuadrante III: tanto la abscisa como la ordenada son negativas. Cuadrante IV: la abscisa es positiva y el ordenada negativa.
  • 4. DISTANCIA ENTRE DOS PUNDOS Dadas las coordenadas de dos puntos, P1 y P2, se deduce la fórmula de distancia entre estos dos puntos. La demostración usa el teorema de Pitágoras. Un ejemplo muestra cómo usar la fórmula para determinar la distancia entre dos puntos dadas sus coordenadas La distancia entre dos puntos P1 y P2 del plano la denotaremos por d(P1,P2 ). La fórmula de la distancia usa las coordenadas de los puntos. EJEMPLO
  • 5. PUNTO MEDIO es el punto que se encuentra a la misma distancia de otros dos puntos cualquiera o extremos de un segmento Si es un segmento, el punto medio es el que lo divide en dos partes iguales. En ese caso, el punto medio es único y equidista de los extremos del segmento. Por cumplir esta última condición, pertenece a la mediatriz del segmento. En el plano cartesiano Dado un segmento, cuyos extremos tienen por coordenadas: y El punto medio tendrá por coordenadas: En el espacio cartesiano Sean los extremos con coordenadas El punto medio tiene como coordenadas:
  • 6. CIRCUNFERENCIA Es el lugar geométrico de un punto que se mueve en un plano de tal manera que se conserva siempre a una distancia constante de un punto fijo de ese plano. Elementos básicos Centro: punto central que está a la misma distancia de todos los puntos pertenecientes a la circunferencia. Radio: pedazo de recta que une el centro con cualquier punto perteneciente a la circunferencia. Cuerda: pedazo de recta que une dos puntos cualquiera de una circunferencia. Diámetro: mayor cuerda que une dos puntos de una circunferencia. Hay infinitos diámetros y todos pasan por el centro de la circunferencia. Recta secante: recta que corta dos puntos cualesquiera de una circunferencia. Recta tangente: recta que toca a la circunferencia en un solo punto y es perpendicular a un radio. TEOREMA. La circunferencia cuyo centro es el punto (h,k) y cuyo radio es la constante r, tiene por ecuación
  • 7. PARABOLA Una parábola queda definida por el conjunto de los puntos del plano que equidistan de una recta fija y un punto fijo Elementos de la parábola Foco: Es el punto fijo F. Directriz: Es la recta fija D. Parámetro: A la distancia entre el foco y la directriz de una parábola se le llama parámetro p. Eje: La recta perpendicular a la directriz y que pasa por el foco recibe el nombre de eje. Es el eje de simetría de la parábola. Vértice: Es el punto medio entre el foco y la directriz. También se puede ver como el punto de intersección del eje con la parábola. Radio vector: Es el segmento que une un punto cualquiera de la parábola con el foco.
  • 8. ELIPSE Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante. Elementos de la elipse: 1. Focos: Son los puntos fijos F y F'. 2. Eje focal: Es la recta que pasa por los focos. 3. Eje secundario: Es la mediatriz del segmento FF'. 4. Centro: Es el punto de intersección de los ejes. 5. Radios vectores: Son los segmentos que van desde un punto de la elipse a los focos: PF y PF'. 6. Distancia focal: Es el segmento segmento de longitud 2c, c es el valor de la semidistancia focal. 7. Vértices: Son los puntos de intersección de la elipse con los ejes: A, A', B y B'. 8. Eje mayor: Es el segmento segmento de longitud 2a, a es el valor del semieje mayor. 9. Eje menor: Es el segmento segmento de longitud 2b, b es el valor del semieje menor. 10. Ejes de simetría: Son las rectas que contienen al eje mayor o al eje menor. 11. Centro de simetría: Coincide con el centro de la elipse, que es el punto de intersección de los ejes de simetría.
  • 9. HIPERBOLA Es el lugar geométrico de los puntos del plano cuya diferencia de distancias a dos puntos fijos llamados focos es constante. Elementos de la hipérbola: 1. Focos: Son los puntos fijos F y F'. 2. Eje principal o real: Es la recta que pasa por los focos. 3. Eje secundario o imaginario: Es la mediatriz del segmento FF'. 4. Centro: Es el punto de intersección de los ejes. 5. Vértices: Los puntos A y A' son los puntos de intersección de la hipérbola con el eje focal. Los puntos B y B' se obtienen como intersección del eje imaginario con la circunferencia que tiene por centro uno de los vértices y de radio c. 6. Radios vectores: Son los segmentos que van desde un punto de la hipérbola a los focos: PF y PF'. 7. Distancia focal: Es el segmento de longitud 2c. 8. Eje mayor: Es el segmento de longitud 2a. 9. Eje menor: Es el segmento de longitud 2b. 10. Ejes de simetría: Son las rectas que contienen al eje real o al eje imaginario. 11. Asíntotas: Son las rectas de ecuaciones: 12. Relación entre los semiejes: