SlideShare una empresa de Scribd logo
1 de 33
Descargar para leer sin conexión
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
1
UNIVERSIDAD NACIONAL EXPERIMENTAL
FRANCISCO DE MIRANDA
AREA DE TECNOLOGÍA
UNIDAD CURRICULAR TERMODINÁMICA
DEPARTAMENTO DE ENERGÉTICA
Prof, Ing. Frank Bello Msc, Prof, Ing. Indira Ortiz Esp , Prof. Ing. Johanna Krijnen.
Prof. Ing. Koralys Goitía.
http://www.termodinamicabasica.blogspot.com/
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
2
TEMA N° 3: TRABAJO Y CALOR
1. Trabajo
1.1. Definición General De Trabajo
1.2. Definición De Trabajo Termodinámico
1.3. Unidades De Trabajo
1.4. Potencia. Unidades
1.5. Tipos De Trabajo
1.5.1. Eléctrico
1.5.2. Mecánico
1.5.2.1. De Expansión/Compresión o PdV.
1.5.2.2. De Resorte
2. Calor
2.1. Definición Termodinámica De Calor
2.2. Convención de Signo
2.3. Unidades de Calor
2.4. Mecanismos de Transferencia de calor.
3. Comparación de Calor y Trabajo
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
3
1. TRABAJO
1 1.1. DEFINICIÓN GENERAL DE TRABAJO
Es la transferencia de energía asociada con una fuerza que actúa a lo largo de una
distancia.
Si se tiene un cuerpo con cierta cantidad de masa (m) y se quiere desplazar desde
una posición 1 hasta una posición 2, se aplica una fuerza F a lo largo de un
desplazamiento, se dice entonces que se ha realizado una cierta cantidad de trabajo.
1 dx 2
dx
F
dW *
=
Donde:
F= es la fuerza aplicada en la misma dirección del desplazamiento.
dx= indica la variación del desplazamiento
dw= Cantidad de trabajo aplicado
Al integrar queda:
.
uff,
Fu
er
distancia
X1 X2
2
1
X
X
W Fdx
= ∫
Trabajo=área
[N.m=J]
m m
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
4
Cuando la fuerza aplicada es constante
1.2. DEFINICIÓN DE TRABAJO TERMODINÁMICO
Se dice que un sistema efectúa trabajo cuando el único efecto externo al sistema
pudiese ser el levantamiento de un peso.
Es de suma importancia destacar que el trabajo se define como una interacción
entre el sistema y sus alrededores. A un sistema no se le puede asignar un trabajo (no es
algo que tenga un sistema) y por lo tanto no es una propiedad termodinámica.
El trabajo también se define como una interacción de energía la cual no es causada
por una diferencia de temperatura.
1.2.1. CONVENCIÓN DE SIGNO
La gran mayoría de los autores utilizan el siguiente convencionalismo:
™ Trabajo realizado por un sistema se considera positivo (+).
™ Trabajo realizado sobre el sistema se considera negativo (-).
1.3. UNIDADES
W=F x
Trabajo realizado
por el hombre
Fuerza aplicada
Distancia que
se desplaza el
objeto
Donde no hay movimiento, no hay trabajo
SISTEMA
Q (+)
W (+)
Q (-)
W (-)
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
5
Como el trabajo se define como la fuerza que actúa a lo largo de un desplazamiento
en la misma dirección de la fuerza. Sus unidades son de fuerza por desplazamiento. Las
unidades mas comunes son:
Sistema internacional: Joule = Newton x metro
Sistema Inglés: Librafuerza x pie (también se usa con frecuencia la unidad “Btu”)
Otras unidades:
dina x cm. = 1 ergio
Electrón voltio (ev): Trabajo requerido para mover un electrón a través de una
diferencia de un voltio.
1 ev = 1,6 x 10-12
ergio = 1,18 x 10-19
lbfpie
1.4. POTENCIA
Rapidez con la cual se realiza un trabajo
dt
W
W
δ
=
•
Unidades
min
33000
04
,
76
1
pie
lbf
s
m
kgf
hp
×
=
×
=
min
44240
102
1
pie
lbf
s
m
kgf
Kw
×
=
×
=
kw
hp 746
,
0
1 =
1.5. TIPOS DE TRABAJO
1.5.1. ELÉCTRICO
Cuando se mueve una carga en un
circuito eléctrico por efecto de las
fuerzas electromotrices.
c
Q
V
W δ
δ ×
=
V: diferencia de potencial o voltaje
eléctrico entre dos puntos del campo
eléctrico. 1 Voltio = 1 Joule/1 Columbio.
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
6
δQc = Cantidad de carga eléctrica, que atraviesa la frontera durante un período de
tiempo determinado.
Segundo
Columbio
A
Tiempo
a
C
dt
dQc
I
1
1
1
arg
=
=
=
=
Idt
dQc =
( ) dt
I
V
W ×
×
=
∂
( ) dt
I
V
Welecl ×
×
= ∫ ; si la V y I son constantes en el tiempo )
( 1
2 t
t
I
V
Welecl −
×
=
La potencia eléctrica
I
V
dt
dt
I
V
dt
Welct
elect
W ×
=
×
×
=
=
• .
.
δ
Watt
S
Joule
S
Columbio
Columbio
Joule
elec
W =
=
×
=
•
1
1
1.5.2. TRABAJO MECÁNICO
W = F x S
Si la fuerza no es constante
∫ ×
= ds
F
W
2
1
El trabajo que efectúa un sistema contra la fuerza externa opuesta al movimiento es
positivo y el trabajo hecho sobre un sistema por una fuerza externa que actúa en la
dirección del movimiento es negativo.
1.5.2.1. TRABAJO DE EXPANSIÓN Y COMPRESIÓN
El Trabajo de frontera móvil para un proceso cuasiequilibrio,
es un proceso durante el cual el sistema permanece en equilibrio
todo el tiempo.
dx
Fext
W ×
=
δ
A
PA
dx
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
7
Evaluando un gas encerrado en un cilindro émbolo sometido a un proceso de compresión.
Fext : Fuerza externa que actúa en la interfaz comprimiendo el gas.
dx: Desplazamiento causado por las comprensión
Este desplazamiento se puede escribir en función de un volumen diferencial y el
área del émbolo.
A
dv
dx
dx
A
dv =
⇒
×
=
dV
P
Aemb
dV
Fext
W .
=
×
=
δ
∫
=
2
1
2
1 Pdv
W
Para calcular el trabajo total requiere conocer la relación entre P y V durante el
proceso.
El área diferencial representa el trabajo realizado por el gas cuando el volumen varía
una cantidad dv. El área completa representa el trabajo total realizado por el gas cuando
este se expande de 1 a 2.
P
™ TIPOS DE PROCESOS DE EXPANSIÓN Y COMPRESIÓN
a. PROCESO ISOMÉTRICO (gas Ideal)
Proceso Isocórico o isométrico el volumen permanece constante y por lo tanto no se
realiza trabajo.
0
PdV
W
2
1
2
1 =
= ∫
P1
P2
V1 dV V2
w
δ
1
2
P1
P2
P
V
V1 = V2
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
8
b. PROCESO ISOBÁRICO
Proceso en el cual la presión permanece constante.
PdV
PdV
W
2
1
2
1 =
= ∫
c. PROCESO ISOTÉRMICO
En muchos procesos, especialmente con sustancias gaseosas, se presenta una
relación entre la presión y el volumen, de la forma PV=C. Para gases perfectos es a
temperatura constante (isotérmico).
C
V
P =
×
C
V
V
Ln
dV
V
C
PdV
w
1
2
2
1 ×
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
=
= ∫
1
1
2
2 V
P
V
P
C =
×
=
Para gases ideales
T
R
m
V
P =
×
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
1
2
2
1
V
V
TLn
R
m
W
Por la Ley de Boyle – Charles
2
1
1
2
P
P
V
V
=
d. PROCESO POLITRÓPICO
Se caracteriza por la existencia de intercambio de calor entre el sistema y los
alrededores.
Durante los procesos de expansión y compresión politrópicos de gases reales, la
presión y el volumen están relacionados, mediante la siguiente ecuación.
C
V
P n
=
× n y C son constantes.
C
V
P
V
P
n
2
2
n
1
1 =
×
=
×
1
1
2
1
2
1
2
1 +
−
=
=
×
=
=
+
−
−
−
∫
∫ ∫ n
V
C
dV
V
C
dv
V
C
Pdv
W
n
n
n
1
2
P . V = C
P
P1
P1
2
P
V
1
V1 V2
2
1
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
9
W= C =
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
−
−
=
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
+
−
−
+
−
−
−
+
−
+
−
n
1
V
V
C
1
n
V
1
n
V
n
1
1
n
1
2
1
n
1
1
n
2
n
1
V
.
P
V
P 1
1
2
.
2
−
−
Si el gas es ideal
mRT
V
P =
×
( )
n
1
T
T
mR
W 1
2
−
−
= 1
n ≠
e. PROCESO ADIABÁTICO ( gas ideal)
Proceso en cual no existe transferencia de calor entre el sistema y los alrededores.
En el caso de un gas ideal:
C
V
P K
=
×
K
V
P
V
P
W
−
×
−
×
=
1
1
1
2
2
2
1
K= Coeficiente adiabático de compresión.
K = Cp|Cv
Cp = Capacidad calorífica a Presión constante.
Cv= Capacidad calorífica a volumen constante.
1.5.2.2. TRABAJO DE RESORTE
Wresorte = dx
F×
Para un resorte lineal el desplazamiento es
proporcional a la fuerza aplicada.
x
k
F rest ×
=
Gases monoatómicos K=1,67
Gases diatómicos K=1,4
Gases poliatómicos K=1,3
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
10
2
RESORTE
P2
P1
V1 V2
rest
k : la constante del resorte , unidades Nw|m y X:
desplazamiento, se mide a partir de la posición de equilibrio
del resorte.
X = 0 F = 0
( )
∫ −
=
=
2
1
2
1
2
2
2
X
X
k
xdx
K
Wresorte rest
:
2
X Desplazamiento final.
1
X : Desplazamiento inicial.
El signo del trabajo del resorte se asigna considerando si el
sistema se expande o comprime.
2. CALOR.
2.1. Definición Termodinámica De Calor
Es la energía que se transmite a través del límite de un sistema, en virtud de una
diferencia de temperatura que existe con los alrededores.
Cuando existe una diferencia de temperatura entre el sistema y su entorno, hay
transferencia de energía como producto de los choques individuales de las moléculas del
sistema con las de su entorno.
Si la frontera del sistema es rígida, la suma de estos trabajos microscópicos no
pueden expresarse como una fuerza medida por un desplazamiento (trabajo). La suma de
estos trabajos microscópico es esencialmente lo que denominamos calor. Calor es trabajo
térmico a nivel microscópico.
El calor no se almacena, la energía si. Tanto el calor como el trabajo son
manifestaciones de energía en transito, por tal motivo solo la podemos observar a través
de las fronteras de los sistemas.
2.2. CONVENCIÓN DE SIGNO
La mayoría de los autores utilizan el siguiente convencionalismo:
Positivo (+), transmisión de calor a un sistema.
Negativo (-), transmisión de calor desde un sistema (calor retirado del sistema).
2.3. UNIDADES DE CALOR
Kilocaloría, es la cantidad de calor transmitida para producir un cambio de
temperatura de un Celsius (1 °C) a un kilogramo (1 kgm) de agua.
BTU, Unidad Térmica Británica, la cantidad de energía requerida para incrementar la
temperatura de una libramasa de agua (1 lbm) de agua un grado Fahrenheit (1°F).
El calor total se denota con la letra Q; Ejemplo: 1Btu, 2 kcal
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
11
El calor transferido por unidad de masa se denota con la letra q; Ejemplo: 1BTU/lbm,
1kcal/kgm
El transferido por unidad de tiempo se denota con la letra,
•
Q
También se utiliza cualquier otra unidad de energía como el Joule, ergios, Lbf*pie, etc
2.4. MECANISMOS DE TRANSFERENCIA DE CALOR
™ Conducción: es la transferencia de energía debida a las interacciones entre las
partículas en el interior de un material.
•
Q cond = -kt x A x dt|dx Ley de Fourier
™ Convección: es la transferencia de energía entre la superficie de un sólido y un líquido
o un gas debido al movimiento de un fluido.
•
Q conv = h A (Ts – Tf)
™ Radiación: es la transferencia de energía mediante radiación electromagnética. La
energía transferida por radiación puede emitirse desde una superficie o desde el
interior de fluidos transparentes y sólidos.
•
Q Rad = E γ A (Ts
4
– Talrd
4
).
3. Comparación de Calor y trabajo
Al igual que el calor, el trabajo es una interacción de energía entre un sistema y sus
alrededores. La energía es capaz de cruzar la frontera de un sistema cerrado en forma de
calor o de trabajo. En consecuencia, si la energía que cruza la frontera de un sistema
cerrado no es calor, debe ser trabajo. El calor es fácil de reconocer: la fuerza que lo
posibilita es una diferencia de temperatura entre el sistema y sus alrededores. Entonces
es posible afirmar, con cierta simplicidad, que una interacción de energía no provocada
por una diferencia de temperatura entre un sistema y sus alrededores, es trabajo. De
manera más específica, el trabajo es la transferencia de energía asociada con una fuerza
que actúa a lo largo de una distancia. La elevación de un émbolo, un eje que gira y un
alambre eléctrico que cruzan las fronteras del sistema son casos asociados con
interacciones de trabajo.
El trabajo es también una forma de energía como el calor y, por lo tanto, tiene unidades
de energía como kJ. El trabajo efectuado durante un proceso entre los estados 1 y 2 se
denomina W12, o aún más simple W.
Tanto el calor como el trabajo son cantidades direccionales y, en consecuencia, la
descripción completa de su interacción requiere de la especificación tanto de su magnitud
como de su dirección. Una forma de hacer esto es adoptando un signo convencional. La
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
12
forma convencional, generalmente aceptada, de signo formal para la interacción del calor
y del trabajo es como sigue: la transferencia de calor hacia un sistema y el trabajo hecho
por un sistema son positivos; la transferencia de calor desde un sistema y el trabajo hecho
sobre un sistema son negativos.
Cuando la dirección de la interacción de un calor o trabajo no se conoce es posible
suponer, simplemente, una dirección para la interacción (usando el subíndice entrada o
salida) y darle una solución. Un resultado positivo indica que la dirección supuesta es
correcta. Por otro lado, un resultado negativo indica que la relación de la interacción es
opuesta a la dirección considerada. Es como suponer una dirección para una fuerza
desconocida al resolver un problema de estática e invertir la dirección cuando se obtiene
un resultado negativo para la fuerza.
Una cantidad que se transfiere a o desde un sistema durante una interacción no es una
propiedad puesto que la cantidad de dicha cualidad depende de algo más que un estado
del sistema. El calor y la energía son mecanismos de transferencia de energía entre un
sistema y sus alrededores y existen muchas similitudes entre ellas:
1. Ambos se reconocen cuando cruzan las fronteras del sistema. Tanto a
transferencia de calor como el trabajo son fenómenos de frontera.
2. Los sistemas poseen energía, pero no calor o trabajo.
3. Ambos se asocian con un proceso, no con un estado. A diferencia de las
propiedades, ni el calor o el trabajo tienen significado en un estado.
4. Ambos son funciones de la trayectoria (sus magnitudes dependen de la trayectoria
seguida durante un proceso, así como de los estados extremos).
Las funciones de la trayectoria tienen diferenciales inexactas, designadas mediante el
símbolo δ. En consecuencia, una cantidad diferencial de calor o trabajo se representa
mediante δQ o δW, respectivamente, en lugar de dQ o dW. Las propiedades, sin
embargo, son funciones de punto (sólo dependen del estado y no de cómo el sistema
llega a ese estado) y tienen diferenciales exactas designadas por el símbolo d. Un
pequeño cambio en el volumen, por ejemplo, es representado por dV y el cambio de
volumen total durante un proceso entre los estados 1 y 2 es
V
V
V
dV Δ
=
−
=
∫
2
1
1
2
El cambio de volumen durante el proceso 1-2 siempre es el volumen en el estado 2
menos el volumen en el estado 1, sin importar la trayectoria seguida. Sin embargo, el
trabajo total realizado durante el proceso 1-2 es
)
(
2
1
2
1
12 W
no
W
W
W Δ
=
=
∫ δ
El trabajo total se obtiene de seguir la trayectoria del proceso y añadir las cantidades
diferenciales de trabajo (δW) efectuadas a lo largo del trayecto. La integral de δW no es
W2 – W1 (el trabajo en el estado 2 menos el trabajo en el estado 1), lo que no tiene sentido
puesto que el trabajo no es una propiedad y los sistemas no poseen trabajo en un estado.
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
13
PROBLEMAS RESUELTOS (TERMODINAMICA)
Tema: Trabajo Termodinámico
1) Un cilindro en el cual el émbolo se mantiene con un resorte, contiene 1 pie3
de aire a
una presión de 15 Psia, equilibrada exactamente con la presión atmosférica de 15 Psia.
Asumir que el peso del émbolo es despreciable. En el estado inicial el resorte solo toca la
émbolo sin ejercer fuerza alguna sobre el mismo. Entonces se calienta el gas hasta doblar
su volumen. La presión final del gas es de 50 Psia, y durante este proceso la fuerza que
ejerce el resorte es proporcional al desplazamiento del émbolo a partir de su posición
inicial. Se solicita: A) Mostrar el proceso en diagrama P-V B) Considerando el gas como
sistema, calcular el trabajo total efectuado: gráficamente y analíticamente. C) De este
trabajo total, ¿cuánto es hecho contra la atmósfera y cuánto contra el resorte?
SOLUCIÓN:
Esquema:
Seguidamente, hay que clasificar la información por estados:
1.1 Edo. 1 Edo. 2
P1= 15 Psia P2=50 Psia
V1= 1 pie3
V2=2V1=2 pie3
FRes ∝ x
A) Diagrama P-V:
En principio conocemos el estado inicial y final del proceso, sin embargo no se conoce la
trayectoria que va a unir esos dos estados, así que:
Hagamos un análisis para determinar la forma como varía la presión en función del
volumen ( relación P-V):
P (Psia)
V (pie3
)
1 2
15
50
(1)
(2)
Aire
(Sist
Resorte
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
14
Hay que tomar también en cuenta que la presión del sistema en cualquier momento va
ser la suma de la presión que ejerce la Atmósfera más la presión que ejerce el Resorte:
Psist = PAtm+ PRes
Así que debemos determinar como cambia la presión producida por el Resorte, ya que la
componente Presión Atmosférica es constante. Partamos del hecho de que la presión del
resorte ejerce una fuerza proporcional al desplazamiento(X) del émbolo y expresándolo en
forma diferencial:
dFRes ∝ dX
En principio debemos recordar que matemáticamente el signo de proporcionalidad( ∝ )
puede ser sustituido por un signo de igualdad (=) introduciendo una constante de
proporcionalidad (C):
dFRes = C dX (A)
Por otro lado recordemos que existe una relación estrecha entre fuerza y presión, así
podríamos escribir:
FRes= PRes* Aemb, y en forma diferencial:
dFRes= dPRes* Aemb (B)
Adicionalmente, la relación que existe entre el volumen y el desplazamiento en un cilindro
viene dado por:
V=Aemb*X
Entonces : X = v/aemb, y en forma diferencial:
dX = dV/Aemb ( C )
Sustituyendo (B) y (C) en (A):
dPRes* Aemb=C dV/Aemb
Así :
dPRes = C*dV/Aemb
2
Integrando esta expresión:
PRes = C*V/Aemb
2
+ C1
Por ser “Aemb
2
” un valor constante, podríamos rescribir equivalentemente que:
PRes = C´*V + C1
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
15
Esta última expresión revela que la Presión del Resorte varía LINEALMENTE con
respecto al volumen (y consecuente mente también la Presión del Sistema),
matemáticamente:
Psist = PAtm+ C´*V + C1
Los términos “PAtm” y “C1”, pueden ser condensados en otra constante, que llamaremos
“C2”:
Psist = C´*V + C2
Ahora si podemos, tener la certeza deque los estados (1) y (2) ubicados en el grafico
P-V, debemos unirlos con una Línea Recta:
B) Trabajo total efectuado:
B.1)Solución Gráfica
Ya que contamos con la gráfica del proceso y que el área debajo de la misma se
puede descomponer en dos figuras regulares sencillas: A1 (rectángulo) y A2 (triángulo), se
puede obtener el valor absoluto del trabajo gráficamente:
ATot= A1+ A2
Para el rectángulo: A1 = b*h = (2-1)pie3
* (15 Psia) = 15 Psia*Pie3
Para el triángulo: A2=(b*h)/2 =(2-1)pie3* (50-15 Psia)/2 = 17.5 Psia*Pie3
Entonces:
1W2Total = ATot= 15 Psia*Pie3
+ 17.5 Psia*Pie3
= 32. 5 Psia*Pie3
El signo del trabajo se determina analizando si el sistema se expande o se comprime. En
este caso en particular por ser un proceso de expansión el trabajo es realizado por el
sistema y por lo tanto es Positivo, así que:
1W2Total =32. 5 Psia*Pie3
= 6.025 Btu (Resp.)
B.2 )Solución Analítica
Ecuación que rige el proceso
V (Pie3
)
P (Psia)
1 2
15
50
(1)
(2)
A2
A1
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
16
Ya sabemos que la Ecuación General que rige al proceso es: Psist = C´*V + C2, sin
embargo para obtener una solución analítica es necesario determinar los valores de las 2
constantes C´y C2. Para lo cual evaluemos esta ecuación en los estados inicial y final:
Para edo. 1: V1= 1 Pie3
y P1= 15 Psia, sustituyendo en la ecuación del proceso( obviando
las unidades):
15 = C´*(1) + C2 C´ + C2 =15 (a)
Para edo. 2: V2= 1 Pie3
y P2= 50 Psia, sustituyendo en la ecuación del proceso ( obviando
las unidades):
50 = C´*(2) + C2 2C´ + C2 =50 (b)
Estamos en presencia de un sistema de dos ecuaciones con dos incógnitas, que al ser
resuelto determina que:
C´ = 35 y C2 = - 20
Por lo que:
Psist = 35V –20
Ecuación que puede ser sustituida en la definición general de trabajo de frontera para ser
integrada:
1W2 = ∫ P*dV
Sustituyendo e integrando entre V1 y V2:
1W2 = ∫ (35V –20)dV= | 17.5V2
– 20V|
Sustituyendo los límites de integración:
1W2 Total = | 17.5(2)2
– 20(2)| - | 17.5(1)2
– 20(1)| = 32. 5 Psia*Pie3
= 6.025 Btu (Resp.)
C) Trabajo contra la Atmósfera y trabajo contra el Resorte
Es evidente que el aire(sistema) ejecuta un trabajo en contra de dos elementos
que se le oponen, que son la Atmósfera y el Resorte, así que el trabajo total es:
1W2Total = WcAtm + WcRes
El Trabajo que se realiza contra la atmósfera (WcAtm), por su misma naturaleza es un
trabajo que se realiza a presión constante, por lo tanto la fórmula de calcularlo es la
siguiente:
WcAtm = PAtm(V2-V1)= 15 Psia(2 – 1 )pie3
=15 Psia*Pie3
=2.775 Btu
(Resp.)
El trabajo contra el resorte se puede obtener por simple diferencia:
WcRes= 1W2Total - WcAtm=(32.5 –15) Psia*Pie3
=17.5 Psia*Pie3
=3.2375 Btu(Resp.)
V2=2 pie3
V1=1 pie3
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
17
2) Un globo esférico tiene 0.254 m de diámetro y contiene Nitrógeno a una presión de 138
kPascal. El diámetro del globo aumenta a 0.305 m debido al calor y durante este proceso
la presión dentro del globo es proporcional a su diámetro. Calcular el trabajo efectuado
por el Nitrógeno durante el proceso.
SOLUCIÓN:
Esquema:
1.2 Edo. 1 Edo. 2
P1= 138 Kpascal P2=?
d1= 0.254 m d2=0.305 m
P ∝ d
1W2 =?
Para poder calcular cualquier trabajo relacionado con cambio de volumen,
necesariamente hay que conocer la relación Presión-Volumen (P-V)del proceso. En
principio conocemos una relación un tanto rudimentaria entre la presión y el diámetro del
globo (P ∝ d ). Entonces el objetivo primario será tratar de manipular esta expresión
matemáticamente hasta convertirla en una relación “P-V”. Procedamos:
En primer lugar debemos recordar, que matemáticamente el signo de
proporcionalidad( ∝ ) puede ser sustituido por un signo de igualdad (=) introduciendo una
constante de proporcionalidad (C):
P = C*d
En Segundo lugar como estamos trabajando con una esfera, debemos considerar que el
volumen de la misma viene dado por:
V=(1/6) Π*d3
De aquí se deriva que:
d= [V/(6Π)]1/3
= (1/6Π )1/3
V1/3
Como tanto el número “6” como el factor “Π” son valores constantes, su inverso elevado
a la “1/3” sigue siendo una constante, a la que llamaremos “C1”. Entonces podemos
rescribir esta última expresión de la siguiente manera:
Nitrógeno
(sistema)
(1)
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
18
d= C1* V1/3
Ahora sustituyendo (2) en (1), tenemos:
P = C* C1*V1/ 3
el producto de las dos constantes genera otra constante, que llamaremos “C2”, así:
P = C2*V1/ 3
Rearreglando :
P/ V1/ 3
= C2
Si pasamos el término “V1/ 3
” al numerador debemos cambiarle el signo de su exponente,
resultando:
P*V-1/ 3
= C2
1.2.1 Esta fórmula corresponde al denominado Proceso Politrópico (PVn
=C).
La fórmula para calcular el trabajo en un Proceso Politrópico es:
1W2 =(P2*V2 – P1*V1) / (1-n)
Los volúmenes se calcularán directamente por la fórmula de la esfera, a partir de ambos
diámetros:
V1= (1/6) Π*d1
3
=(1/6) Π*(0.254 m)3
= 0.00858 m3
V2= (1/6) Π*d2
3
=(1/6) Π*(0.305 m)3
= 0.0149 m3
La Presión final se determinará a partir de la ecuación que rige el proceso (Politrópico):
P1*V1
-1/ 3
= P2*V2
-1/ 3
Despejando P2:
P2 = P1*(V1/ V2)-1/ 3
= 165.87 kPa
Sustituyendo valores en la fórmula de trabajo:
1W2 = (165.87*0.0149 – 138*0.00858) kPa*m3
/ [1-(-1/3)] = 0.966Kjoul (Resp.)
Comentario Final:
Note, que el resultado es positivo porque el sistema se está expandiendo, o sea, está
realizando trabajo, no recibiéndolo. Si los estados final e inicial se invirtieran, la magnitud
del trabajo sería la misma; pero con signo contrario (negativo).
(2)
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
19
3) Un cilindro vertical dotado de un pistón contiene 0.10 pie3
de Freón-12 a 80 °F y una
calidad de 90%. El pistón tiene una masa de 850 Lbm, el área de la sección transversal
del pistón es 10 Pulg2
, y se mantiene en su lugar descansando en unos topes.
Adicionalmente, un agitador está dentro del cilindro como se indica en la figura. La presión
del ambiente es 15 Psia. Se suministra calor lentamente al Freón produciendo que el
pistón se mueva y simultáneamente es activado el agitador, suministrándole cierta
cantidad de trabajo al sistema. Si la temperatura final es 320 °F. Considerando el Freón-
12 como sistema, y que el trabajo neto (total) del mismo es 1 Btu, determine el trabajo
proporcionado por el agitador.
SOLUCIÓN:
Esquema:
Seguidamente, hay que clasificar la información por estados:
1.3 Edo. 1 Edo. 2
V1= 0.10 pie3 T2= 320 °F
T1= 80 °F
X1= 90%
mpist=850 Lbm
Apist =10 Pulg2
1W2neto =1 Btu
1W2Agit =?
Análisis: En este problema en particular, podemos identificar 2 tipos de trabajo distintos:
uno asociado al cambio de volumen del sistema (1w2vol) y otro asociado al movimiento de
un eje (1W2Agit), en consecuencia el Trabajo neto (1W2neto) de este sistema es la suma
algebraica de los mismos:
1W2neto = 1W2Agit + 1W2Vol
Y el trabajo del agitador consecuentemente:
1W2Agit = 1W2neto - 1W2Vol
El trabajo producto del cambio de volumen se efectúa en contra de la atmósfera y en
contra del peso del émbolo o pistón, ambos elementos ejercen una presión que se
mantiene constante a lo largo del proceso de expansión. Así ese trabajo viene dado por:
1W2Vol =P2 (V2 - V1 )
en donde la presión del sistema es:
P2= PPist+ PAtm
La presión que ejerce el pistón es el efecto de su peso, por lo que se calcula como sigue:
WAgit
Agitado
PAt
F-12
(Sist)
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
20
PPist=(Peso del pistón) /( APist*gc) (Nota: la “gc” es necesaria en
el sistema inglés)
PPist=(mPis*g) /( APis*gc) =(850 Lbm*32.2 pie/seg2
)/(10 Pulg2
*32.2
Lbm*Pie/Lbf*seg2
)= 85 Psia
Entonces:
P2= 85 Psia + 15 Psia = 100 Psia
Para conseguir V2, primero es necesario obtener la masa del sistema, la cual es
constante, por ser un sistema cerrado.
Usemos la información del estado inicial que es la más completa, para hacer este
cálculo:
m1 = V1/νsis1
por ser el estado inicial un estado de mezcla, el volumen específico del sistema se obtiene
en función de la calidad(X):
νsis1 = νf1 + X1(νfg1)
νf = 0.01227 pie3
/Lbm y νfg = 0.3390 pie3
/Lbm
Sustituyendo valores:
νsis1 = (0.01227 + 0.9*0.33909 pie3
/Lbm = 0.3714 pie3
/Lbm
Entonces :
m1 = 0.1 pie3
/0.3714 pie3
/Lbm = 0.269 Lbm m2
Del estado final conocemos: P2 =100 Psia y T2= 320 °F, con estas dos propiedades se
determina que el Freón es Vapor Sobrecalentado, y leyendo el volumen específico
respectivo en la Tabla correspondiente, se obtiene:
νsis2 = 0.66472 pie3
/Lbm,
Por lo que:
V2 = m2*νsis2 =0.269 Lbm*0.66472 pie3
/Lbm= 0.18 pie3
Retomando la fórmula de trabajo por cambio de volumen:
1W2Vol =P2 (V2 - V1 )=100 Psia(0.18-0.10) pie3
= 8. Psia*pie3
= 1.48 Btu
Finalmente, el trabajo entregado por el Agitador, será.
1W2Agit = 1W2neto - 1W2Vol= 1 Btu – 1.48 Btu = - 0.48 Btu (Resp.)
Comentarios Finales:
9 Note, que el resultado es negativo y esto es lógico ya que este trabajo en vez de
hacerlo el sistema, lo recibe el mismo.
9 Por otro lado fíjese que la presión que tenía al sistema en su estado inicial con el
émbolo descansando en los topes era la correspondiente a la de saturación a 80
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
21
°F ( 98.87 Psia) e independiente de la presión externa, pero una vez que se le
suministra calor al sistema la presión aumenta hasta equilibrarse exactamente con
la presión externa, la cual se mantiene constante en todo el recorrido del émbolo.
Esto explica porque se uso la P2 en el cálculo del trabajo de expansión, ya que lo
relevante al evaluar el trabajo, es saber como se comporta la presión mientras
exista movimiento.
4) Cierta cantidad de aire está contenida en un arreglo cilindro-pistón como muestra la
figura. El pistón es de peso despreciable y tiene un área de 4*10-4
m2
. La presión inicial del
aire equilibra exactamente la presión atmosférica de 101.33 kPa. La temperatura y el
volumen inicial son 20 C y 2*10-5
m3
respectivamente. Acoplado a esta arreglo hay un
resorte lineal, que tiene una constante de deformación KRes= 10 kNewton/m. El resorte
inicialmente solo toca al pistón y no ejerce fuerza alguna. Se le suministra calor al aire
expandiéndose y aumentando su presión hasta 304 kPa. Considerando el aire como un
gas ideal, determine: A) La masa del aire. B) El volumen final C) La temperatura Final D)
El trabajo total realizado por el aire.
SOLUCIÓN:
Esquema:
Seguidamente, hay que clasificar la información por estados:
1.4 Edo. 1 Edo. 2
P1= 101.33 kPa P2=304 kPa
V1= 2*10-5
m3
T2=?
V2=?
KRes= 10 kNewton/m
APist = 4*10-4
m2
maire= ?
1W2Tot =?
1.4.1.1.1.1 A) Masa del aire
La masa del aire se puede obtener a partir de la versión de la ecuación de gas ideal en
función de la masa. Usando la información del estado inicial:
P1*V1 =maire*Rp*T1
Despejando:
maire= P1*V1/ Rp*T1
Aire
(Sist
Resorte
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
22
En la tabla correspondiente se puede obtener la constante de gas particular para el aire:
Rp =0.28720 kPa*m3
/Kg*°K
Sustituyendo valores:
maire= (101.33kPa*2*10-5
m3
) / [ (0.28720 kPa*m3
/Kg*°K)*293 °K]=2.41*10-5
kg (Resp.)
B) Volumen Final
El volumen final es simplemente el volumen inicial más la variación del mismo:
V2=V1+ ΔV
Ahora bien la variación del volumen, puede ser escrita, en función del desplazamiento(X),
para un cilindro de la siguiente manera:
ΔV= APis*X
por lo que:
V2=V1+ APis*X
A su vez la distancia recorrida (X), está relacionada con la fuerza del resorte (lineal) por la
siguiente fórmula:
FRes = KRes*X, entonces X= FRes / KRes
en forma equivalente:
X= PRes*APis/ KRes
Por otra parte, la presión final del sistema es la sumatoria de la presión inicial mas la
presión del resorte:
P2 = P1 + PRes
Entonces:
PRes = P2 - P1 = (304 –101.33 )kPa = 202.66 kPa
Retomando la fórmula del desplazamiento:
X= PRes*APis/ KRes= 206.66 kPa*4*10-4
m2
/10 kN/m=0.0081 metros
Por lo tanto el volumen final será:
V2=V1+ APis*X= 2*10-5
m3
+4*10-4
m2
*0.0081 m=2.324*10-5
m3
(Resp.)
C) Temperatura Final
Aplicando la Ecuación de Gas ideal que relaciona dos estados de un sistema
cerrado, tenemos:
P1*V1/T1 =P2*V2/T2
Despejando T2:
T2 = (P2*V2/ P1*V1)*T1 =304 kPa*2.324*10-5
m3
/101.33 kPa*2.*10-5
m3
=1021.4 °K = 748.4 °C(
Resp.)
d) Trabajo Total
Grafiquemos el estado inicial y final del proceso en un diagrama P-V:
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
23
Para un Resorte Lineal el cambio de la presión ejercida, también es lineal, por lo que
debemos unir estos dos puntos con una línea recta:
Ya que contamos con la gráfica del proceso y que el área debajo de la misma se
puede descomponer en dos figuras regulares sencillas: A1 (rectángulo) y A2 (triángulo), se
puede obtener el valor absoluto del trabajo gráficamente:
ATot= A1+ A2
Para el rectángulo: A1 = b*h = (2.324*10-5
m3
-2 *10-5
) m3
* (101.33 kPa) = 3.28 *10-4
Kjoul
Para el triángulo: A2=(b*h)/2 (2.324*10-5
m3
-2 *10-5
) m3
* (304-101.33) kPa /2 = 3.28 *10-4
Kjoul
Entonces:
1W2Total = ATot= 3.28 *10-4
Kjoul + 3.28 *10-4
Kjoul= 6.56 *10-4
Kjoul
El signo del trabajo se determina analizando si el sistema se expande o se
comprime. En este caso en particular por ser un proceso de expansión el trabajo es
realizado por el sistema, y por lo tanto es Positivo, así que:
1W2Total = 6.56 *10-4
Kjoul (Resp.)
P (kPa)
V (m3
)
V1 V2
101.33
304.00
(1)
(2)
A2
P (kPa)
304
(2)
V (m3
)
V1 V2
101.33
(1)
A1
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
24
m1= 10 kg
mf = 8 kg
mg = 2 kg
T1= -10 °C
m2= 10 kg
V2 = 400 l
Estado 1 Estado 2
5) Un dispositivo cilindro-émbolo con un conjunto de topes contiene 10 kg de Freón-12 (R-
12). Al principio 8 kg de R-12 están en fase líquida y la temperatura es -10°C. Se
transfiere más calor al refrigerante hasta que el émbolo toca los topes superiores punto en
el cual el volumen es 400 litros. Determine a. La temperatura cuando el émbolo toca los
topes, b. Trabajo realizado durante el proceso.
Datos
Solución
a. Para determinar la temperatura en el instante que el émbolo toca los topes, es
necesario identificar el estado termodinámico y buscar la temperatura en el estado
correspondiente. En el estado final el R-12 ocupa un volumen de 400 litros y la
masa es 10 kg, ya que no se introdujo ni se extrajo masa del sistema, como el
dispositivo es un cilindro émbolo y no se especifica que durante el proceso de
expansión la presión cambió con la variación de volumen se considerará que es un
proceso isobárico.
El volumen especifico del sistema en el estado final
kg
m
kg
m
m
V 3
3
2
2
2 04
,
0
10
4
,
0
=
=
=
ν
La presión en el estado 2 es igual a la presión inicial
MPa
P
P
P T
sat 2191
,
0
1
1
2 =
=
=
Para identificar el estado termodinámico se buscan los volúmenes específicos del
líquido y vapor saturado en la tabla de saturación a la presión final
kgm
m
MPa
f
3
2191
,
0 0007
,
0
=
ν y
kgm
m
MPa
g
3
2191
,
0 076646
,
0
=
ν
Comparando éstos volúmenes específicos con el del estado final
kg
m
kg
m 3
3
0007
,
0
04
,
0 > y
kg
m
kg
m 3
3
076646
,
0
04
,
0 <
se determina que el estado termodinámico es mezcla líquido y vapor; por lo tanto
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
25
C
T
T MPa
P
sat °
−
=
= = 10
2191
,
0
2
2
b. Durante el proceso, el R-12 sufrió una expansión a presión y temperatura
constante, y el estado termodinámico inicial y final son mezcla líquido vapor. Su
representación en un diagrama Pv es la siguiente:
m3
/kg
La cantidad de trabajo efectuado se calcula por la siguiente ecuación
)
( 1
2 V
V
P
Wisobárico −
=
P= 0,2191 MPa
V2=0,4 m3
V1=?
Por ser una mezcla líquido vapor
kg
m
kg
m
kg
kg
kgm
m
x fg
f
3
3
3
1 016029
,
0
)
0007
,
0
076646
,
0
(
10
2
0007
,
0 =
⎥
⎦
⎤
⎢
⎣
⎡
−
×
+
=
+
= ν
ν
ν
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
26
3
3
1
1
1 16029
,
0
10
016029
,
0 m
kg
kg
m
m
V =
×
=
×
=ν
El trabajo total realizado por el sistema durante la expansión, el signo es del es
positivo ya que el mismo es realizado por el sistema.
kJ
MJ
kJ
MJ
m
Mpa
V
V
P
Wisobárico 52
,
52
1
1000
05252
,
0
)
16029
,
0
4
,
0
(
2191
,
0
)
( 3
1
2 =
×
=
−
×
=
−
=
6) Un cilindro vertical contiene 0,185 lbm a 100°F, el volumen inicial encerrado debajo del
embolo es 0,65 pie3
. El embolo tiene un área de 60 pulg2
y una masa de 125 lbm.
Inicialmente el embolo descansa sobre los topes. La presión atmosférica es de 14 psia y
la aceleración de la gravedad es de 30,9 pie/seg2
. Entonces se transmite calor hasta que
el cilindro contiene vapor saturado. Determine:
a) ¿Cual es la temperatura del agua cuando el embolo comienza a levantarse de los
topes?
b) Cuanto trabajo ejecuta el vapor de agua durante el proceso.
c) Dibuje el diagrama P-v y T-v de todo el proceso.
Esquema del Estado inicial.
SOLUCIÓN:
La masa permanece constante ya que es un sistema cerrado y no hay intercambio de
masa.
En el estado inicial el embolo descansa sobre los topes. Por lo tanto la presión inicial del
sistema es la presión de saturación a 100 ºF, ya que el estado 1 esta como mezcla
liquido+ vapor.
Para responder la letra a) debemos primero hacer un balance de fuerzas para determinar
a que presión se comenzara a levantar el embolo de los topes. Ya que nos han
proporcionado la data suficiente para el calculo del peso del embolo debemos incluirlo en
el balance de fuerza. Este queda del siguiente modo:
0
* =
=
+
∗
=
∑ Ae
Psistema
We
Ae
Patm
F
Despejando La Presión del sistema
v
+
L
EDO 1
m1=0,185 lbm
T1 = 100 ºF
V1 = 0,65 pie3
Edo = L+V
Ae = 60 pulg2
me= 125 lbm
EDO 2
m2= m1=0,185 lbm
V2 = 0,65 pie3
Ae = 60 pulg2
me= 125 lbm
EDO 3
m2= m1= m3= 0,185 lbm
Edo: Vapor Saturado
Ae = 60 pulg2
me= 125 lbm
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
27
Ae
We
Ae
Patm
Psis
+
=
*
Sabiendo que
gc
g
me
We
*
=
Nos queda del siguiente modo:
Ae
gc
g
me
Ae
Patm
Psis
*
* +
= = 2
2
2
2
2
60
*
*
17
,
32
9
,
30
*
125
lg
60
*
14
pul
s
lbf
pie
lbm
s
pie
lmb
pu
pul
lbfi
Psis
+
=
psia
pu
lbf
lbf
P 001
,
16
lg
60
065
,
120
840
2
2 =
+
=
En embolo comienza a levantarse cuando la presión en el equilibrio mecánico se hace
igual a 16,001 psia. Entonces la temperatura a la cual el embolo comienza a levantarse se
debe determinar con esta propiedad y el volumen en el edo 2 cuando apenas comienza a
levantarse que será el mismo del edo 1.
con este volumen y la P2 determinamos el
estado
Ya que en las tablas no aparece 16 psia
debemos interpolar los valores de vg y vf para
poder determinar el estado termodinámico.
Vg= 25,05 vf = 0,0167444 pie3
/lbm Mezcla L+V
La temperatura será entonces (luego de interpolarla) Tsat @ 16 psia =T2 = 216,019 ºF
T3 = T2 ya que el estado tres es Vapor Saturado.
P2 = P3 v3= vg= 25,05 pie3
/lbm ya que es vapor saturado
Podemos ahora calcular el trabajo del sistema.
b) 3
2
2
1 W
W
Wtotal +
= Î El trabajo 1-2 es isométrico por lo tanto es 0.
El trabajo 2-3 es isobárico, a presión constante por lo tanto se calcula por esta formula:
( )
2
3
3
2 V
V
P
W −
= Trabajo a presión constante.
3
3
3 *m
v
V = =
= lbm
0,185
*
lbm
pie
25,05
3
3
V 4,634 pie3
( ) 2
2
3
2
3
2
1
lg
144
*
65
,
0
634
,
4
lg
16
pie
pu
pie
pu
lbf
W −
= pie
lbf *
136
,
9179
=
lbm
pie
lbm
pie
v
v
3
3
2
1 514
,
3
185
,
0
65
,
0
=
=
=
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
28
1.4.1.1.1.1.1
1.4.1.1.1.1.2 c)
1.4.1.1.1.1.3
1.4.1.1.1.1.4
1.4.1.1.1.1.5
7) Un dispositivo cilindro – émbolo contiene 50 kg de agua a 150 kpa y 25o
C. El
área de la sección transversal del émbolo es de 0,1 m2
. Se transfiere calor al agua,
con lo que parte de ella se evapora y expande. Cuando el volumen alcanza 0,2 m3
el
émbolo alcanza un resorte lineal cuya constante de resorte es 100 kN/m. Se transfiere
más calor al agua hasta que el émbolo avanza 20 cm más. Determine:
a) La presión y temperatura finales.
b) El trabajo realizado durante este proceso.
c) Represente el proceso en un Diagrama P-V.
Agua
3,514 25,05 pie3
/lbm
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
29
SOLUCIÓN: Sistema Cerrado esto implica msist es constante. En este tipo de problemas
es importante ubicar en los distintos estados el volumen correspondiente ya que luego son
datos que nos ayudaran al cálculo del trabajo realizado.
Estado 1:
Con los datos del problema podemos determinar entonces el estado inicial. Esto es:
Estado 2:
En esta condición debido a la transferencia de calor el agua se evapora y expande, por lo
que el émbolo sube y alcanza el resorte lineal, en este punto el volumen es de 0,2 m3
.
Con esto podemos calcular el ν2 con la finalidad de confirmar el estado (L+v)
ν2 = V2 / m => 0,2 m3
/ 50 kg = 0,004 m3
/Kg.
Así νf < ν2 < νg => Mezcla Liquido- Vapor (Edo.2)
Es por ello que la gráfica muestra el cambio del estado 1 al estado 2 sobre la linea de
presión de 150 Kpa.
Estado 3:
Para determinar esta condición, en donde ya se ha iniciado la compresión del resorte
lineal cuya constante esta dada por el problema, tenemos:
F = k.x y Presorte = F/A
De los datos X = 20 cm (desplazamiento del émbolo) en la condición final.
Fresorte = 100 KN/m * 0,20 m = 20 KN
Presorte = 20 KN /0,1 m2
= 200 kPa
Entonces: Pfinal (sistema) = Pinic (sist) + Presorte = 150 kPa +200 kPa
Pfinal (sistema) = 350 kPa
En la tabla de saturación del agua @ 25o
C => Psat = 2,3385 Kpa
Así: Psist > Psat => Líquido Comprimido (Edo.1)
ν1 = νf = 0,001003 m
3
/kg, relacionando con la masa del sistema podemos conocer el
volumen en esta condición.
ν1 = V1/ m => despejando V1= 0,001003 m3
/kg * 50 kg
V1 = 0,05015 m3
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
30
T3 = Tsat P3 => T3 = 138,88 o
C
Para determinar la temperatura debemos calcular exactamente el volumen (V3) comparar
con los volúmenes de líquido y vapor saturado correspondiente a una presión de 350 Kpa
(Pfinal)
Recordemos que:
∆V2-3 = ∆X.A
∆V2-3 = 0,20 m * 0,1 m2
= 0,02m3
V3 = ∆V2-3 + V2 => V3 = 0,22 m3
Así el volumen específico correspondiente será
ν3 = V3 / m => 0,22 m3
/ 50 kg = 0,0044 m3
/Kg.
Comparando con los valores de νf y νg @ 350 KPa
νf < ν3 < νg => Continúa como mezcla Liquido- Vapor (Edo.3)
Por lo tanto la temperatura final (Edo. 3) será respectivamente la temperatura de
saturación correspondiente a una presión de 350Kpa.
De la tabla de saturación del agua, T3 = 138,88 o
C
El trabajo puede calcularse a través de las ecuaciones correspondientes a los procesos
llevados a cabo y/o gráficamente, es decir:
Proceso 1-2 ) → Proceso a P ctte
Proceso 2-3 ) → Proceso Compresión del Resorte
P
V
V3
V2
V1
150 KPa
350 KPa
1 2
3
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
31
Partiendo de las ecuaciones:
WTotal = W1-2 + W2-3
W1-2 = P.(V2 – V1) = 150 kpa . (0,2 – 0,05015) m3
= 22,50 KJ
W2-3 = P.(V3 – V2) + ½ K RESORTE . (X3 – X2)
W2-3 = 150 Kpa . (0,22 – 0,20) m3
+ ½ . 100 KN . [ (0,20)2
– (0)2
] m = 5KJ
Por lo tanto el trabajo realizado durante el proceso es de:
WTotal = 22,50 KJ + 5KJ = 27,50 KJ.
Se recomienda practicar el cálculo del trabajo empleando el método gráfico (área bajo la
curva), así como la representación del problema en un diagrama P-ν.
1.4.1.1.1.1.6 Problemas Propuestos
1.4.1.1.1.1.7 Tema: Trabajo Termodinámico
1) Conjunto cilindro-pistón contiene gas Butano, C4H10, a 300 °C y 100 kPa, con un
volumen de 0.02 m3
. El gas se comprime lentamente en un proceso isotérmico a 300 kPa.
a) Demuestre que es razonable suponer que durante este proceso el butano
se comprime como gas ideal.
b) Determine el trabajo que el butano realiza durante.
2) Un globo se compota de modo que la presión en su interior es proporcional al
cuadrado del diámetro. Contiene 2 kg de amoníaco (NH3) a 0 C, con calidad de 60%. Se
calientan el globo y el amoniaco, hasta alcanzar una presión final de 600 kPa. Si se
considera el amoniaco como sistema determine el trabajo durante el proceso,.
3) Dos kilogramos de agua se encuentran dentro de un conjunto cilindro-pistón, con un
pistón de masa despreciable, sobre el cual actúa un resorte lineal y la atmósfera exterior.
Inicialmente la fuerza del resorte es cero y P1=100 kPa con un volumen de 0.2 m3
.
Cuando el pistón justamente roza los soportes superiores el volumen es de 0.8 m3
y
T=600 C. Ahora se agrega calor hasta que la presión alcanza 1.2 Mpa. Encuentre la
temperatura final, represente el proceso en diagrama P-V y encuentre el trabajo que
realiza el agua durante el proceso.
Agu
a
Resorte
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
32
4) Dentro de un cilindro se comprime vapor de amoníaco por acción de una fuerza externa
que actúa sobre pistón el amoniaco se encuentra inicialmente a 30 °C y 500 kPa, y la
presión final es 1400 kPa. Se han medido los siguientes datos para el proceso:
Presión, kPa 500 653 802 945 945 1248 1400
Volumen,
Litros
1.25 1.08 0.96 0.84 0.72 0.60 0.50
5) Un cilindro provisto con un émbolo contiene gas propano a 100 kPa y 300 K, con un
volumen de 0.2 m3
. Ahora el gas se comprime lentamente de acuerdo con la relación
PV1.1
= C, hasta una temperatura final de 340 K. a) ¿ Cuál es la presión final?. b)
Justifique el comportamiento de gas ideal. c) ¿Cuánto trabajo realiza el propano durante el
proceso
Método gráfico para el cálculo del área bajo una curva
Paso # 1
Construya la gráfica a ESCALA con los valores x-y suministrados.
y
x
Paso # 2
Divida la curva en “N” franjas de igual anchura( ΔX ). Se recomienda que N ≥ 5.
y
x
y0
y1
y2
y3 y4 yn-1 yn
ΔX ΔX ΔX ΔX
ΔX ΔX
Paso # 3
TEMA 3: TRABAJO Y CALOR
TERMODINÁMICA.
33
Lea los valores de altura ( yo, y1, y2, y3,... yn ) que se generaron de la división
anterior. Estos valores de “y” no necesariamente coinciden con los valores que se
utilizaron para graficar en el paso # 1.
Paso # 4
Sustituya los valores leídos de la gráfica en cualquiera de las siguientes fórmulas:
a) Formula # 1 ( Regla Trapezoidal )
A = ΔX [ 0.5 ( y0 + yn ) + y1 + y2 + y3 + ... yn-1 ] ( Menos exacta)
b) Formula # 2 ( Regla de Durand )
A = ΔX [ 0.4 ( y0 + yn ) + 1.1(y1 + yn-1 ) + y2 + y3 + ... yn-2 ] ( Exactitud intermedia )
c) Formula # 3 ( Regla de Simpson - “N” debe ser par)
A =(1/ 3) ΔX [ ( y0 + yn ) + 4( y1 + y3 +...yn-1 ) + 2 (y2 + y4 + ... yn-2 ] ( Más exacta )
© by F.B.C ( 20 - 06 - 99
)
REFERENCIAS BIBLIOGRAFICAS
• Van Wylen, Gordon J. & Sonntag, Richard E. Fundamentos de Termodinámica.
Editorial Limusa. México. 1990. 735 págs.
• López Arango, Diego. Termodinámica. Editorial Escuela Colombiana de Ingeniería.
Segunda Edición. Colombia. 1999. 425 págs.
• Çengel, Yunus A. & Boles, Michael A. Termodinámica. Editorial McGraw-Hill.
Cuarta Edición. México. 2003. 829 págs.
• Wark, Kenneth & Richards, Donald E. Termodinámica. Editorial McGraw-Hill. Sexta
Edición. México. 2004. 1048 págs.
• Müller Erich. Termodinámica Básica. Equinoccio. Ediciones de la Universidad
Simón Bolívar.

Más contenido relacionado

Similar a GUIA3trabajo y calor.pdf

Ecuaciones termodinámica
Ecuaciones termodinámica Ecuaciones termodinámica
Ecuaciones termodinámica carlos Diaz
 
Fisica Las Leyes De La Termodinamica
Fisica Las Leyes De La TermodinamicaFisica Las Leyes De La Termodinamica
Fisica Las Leyes De La TermodinamicaYeison Duque
 
CAPÍTULO 2 Cambios de Energía en las RX Qu.pptx
CAPÍTULO 2 Cambios de Energía en las RX Qu.pptxCAPÍTULO 2 Cambios de Energía en las RX Qu.pptx
CAPÍTULO 2 Cambios de Energía en las RX Qu.pptxBRIANJEFFERSONGUILLE
 
Solucion examen termodinamica
Solucion examen termodinamicaSolucion examen termodinamica
Solucion examen termodinamicajosglods
 
Balances de Energía 2022.pdf
Balances de Energía 2022.pdfBalances de Energía 2022.pdf
Balances de Energía 2022.pdfValeriaSilveira13
 
Exposicion de-quimica-fisica
Exposicion de-quimica-fisicaExposicion de-quimica-fisica
Exposicion de-quimica-fisicaMayErazo1
 
Energía
EnergíaEnergía
Energíajurafg
 
Unidad I: Termodinámica
Unidad I: TermodinámicaUnidad I: Termodinámica
Unidad I: Termodinámicaneidanunez
 
Introducción a la termodinámica
Introducción a la termodinámicaIntroducción a la termodinámica
Introducción a la termodinámicaangie031093
 
Las Leyes De La Termodinamica Fisica
Las Leyes De La Termodinamica FisicaLas Leyes De La Termodinamica Fisica
Las Leyes De La Termodinamica FisicaYeison Duque
 
SEMANA 11 GRUPO 7-quimica general..pptx
SEMANA 11 GRUPO 7-quimica general..pptxSEMANA 11 GRUPO 7-quimica general..pptx
SEMANA 11 GRUPO 7-quimica general..pptxMauroJhampierRuizVen2
 
Introducción a la termodinámica (1).pdf
Introducción a la termodinámica (1).pdfIntroducción a la termodinámica (1).pdf
Introducción a la termodinámica (1).pdfErmyCruz
 

Similar a GUIA3trabajo y calor.pdf (20)

Termodinamica
TermodinamicaTermodinamica
Termodinamica
 
Texto de termodinámica aplicada
Texto de termodinámica aplicadaTexto de termodinámica aplicada
Texto de termodinámica aplicada
 
Ecuaciones termodinámica
Ecuaciones termodinámica Ecuaciones termodinámica
Ecuaciones termodinámica
 
Fisica Las Leyes De La Termodinamica
Fisica Las Leyes De La TermodinamicaFisica Las Leyes De La Termodinamica
Fisica Las Leyes De La Termodinamica
 
CAPÍTULO 2 Cambios de Energía en las RX Qu.pptx
CAPÍTULO 2 Cambios de Energía en las RX Qu.pptxCAPÍTULO 2 Cambios de Energía en las RX Qu.pptx
CAPÍTULO 2 Cambios de Energía en las RX Qu.pptx
 
Termodinamica 1
Termodinamica 1Termodinamica 1
Termodinamica 1
 
Solucion examen termodinamica
Solucion examen termodinamicaSolucion examen termodinamica
Solucion examen termodinamica
 
Balances de Energía 2022.pdf
Balances de Energía 2022.pdfBalances de Energía 2022.pdf
Balances de Energía 2022.pdf
 
Central termica2
Central termica2Central termica2
Central termica2
 
Exposicion de-quimica-fisica
Exposicion de-quimica-fisicaExposicion de-quimica-fisica
Exposicion de-quimica-fisica
 
Energía
EnergíaEnergía
Energía
 
Unidad I: Termodinámica
Unidad I: TermodinámicaUnidad I: Termodinámica
Unidad I: Termodinámica
 
Introducción a la termodinámica
Introducción a la termodinámicaIntroducción a la termodinámica
Introducción a la termodinámica
 
Clase N°4 Procesos Unitarios.pdf
Clase N°4 Procesos Unitarios.pdfClase N°4 Procesos Unitarios.pdf
Clase N°4 Procesos Unitarios.pdf
 
16 calorenergia
16 calorenergia16 calorenergia
16 calorenergia
 
Las Leyes De La Termodinamica Fisica
Las Leyes De La Termodinamica FisicaLas Leyes De La Termodinamica Fisica
Las Leyes De La Termodinamica Fisica
 
SEMANA 11 GRUPO 7-quimica general..pptx
SEMANA 11 GRUPO 7-quimica general..pptxSEMANA 11 GRUPO 7-quimica general..pptx
SEMANA 11 GRUPO 7-quimica general..pptx
 
Introducción a la termodinámica (1).pdf
Introducción a la termodinámica (1).pdfIntroducción a la termodinámica (1).pdf
Introducción a la termodinámica (1).pdf
 
CALEFACCION
CALEFACCIONCALEFACCION
CALEFACCION
 
Termodinamica
TermodinamicaTermodinamica
Termodinamica
 

Más de Osman Castro

4 Termodinamica.doc
4 Termodinamica.doc4 Termodinamica.doc
4 Termodinamica.docOsman Castro
 
254202406-GUIA1CONCEPTOSBASICOSTERMODINAMICA.pdf
254202406-GUIA1CONCEPTOSBASICOSTERMODINAMICA.pdf254202406-GUIA1CONCEPTOSBASICOSTERMODINAMICA.pdf
254202406-GUIA1CONCEPTOSBASICOSTERMODINAMICA.pdfOsman Castro
 
GUIA2SUSTANCIASPURAS.pdf
GUIA2SUSTANCIASPURAS.pdfGUIA2SUSTANCIASPURAS.pdf
GUIA2SUSTANCIASPURAS.pdfOsman Castro
 
GUIA4 PRIMERA LEY.pdf
GUIA4 PRIMERA LEY.pdfGUIA4 PRIMERA LEY.pdf
GUIA4 PRIMERA LEY.pdfOsman Castro
 
GUIA_Tema 5_2da_ley.pdf
GUIA_Tema 5_2da_ley.pdfGUIA_Tema 5_2da_ley.pdf
GUIA_Tema 5_2da_ley.pdfOsman Castro
 
FBIQ_EIP Calificaciones.pdf
FBIQ_EIP Calificaciones.pdfFBIQ_EIP Calificaciones.pdf
FBIQ_EIP Calificaciones.pdfOsman Castro
 
Miperfil osman castro
Miperfil osman castroMiperfil osman castro
Miperfil osman castroOsman Castro
 
Tema05 b energia_con_reaccion
Tema05 b energia_con_reaccionTema05 b energia_con_reaccion
Tema05 b energia_con_reaccionOsman Castro
 
Tema04 b energia_sin_reaccion
Tema04 b energia_sin_reaccionTema04 b energia_sin_reaccion
Tema04 b energia_sin_reaccionOsman Castro
 
Tema03 b materia_con_reaccion
Tema03 b materia_con_reaccionTema03 b materia_con_reaccion
Tema03 b materia_con_reaccionOsman Castro
 
Tema02 b materia_sin_reaccion
Tema02 b materia_sin_reaccionTema02 b materia_sin_reaccion
Tema02 b materia_sin_reaccionOsman Castro
 
Tema01 introduccion a_los_calculos
Tema01 introduccion a_los_calculosTema01 introduccion a_los_calculos
Tema01 introduccion a_los_calculosOsman Castro
 
Proyecto pdii i2020
Proyecto pdii i2020Proyecto pdii i2020
Proyecto pdii i2020Osman Castro
 
Ejemplo cronograma
Ejemplo cronogramaEjemplo cronograma
Ejemplo cronogramaOsman Castro
 
Cronogramaproyecto de diseño ii
Cronogramaproyecto de diseño iiCronogramaproyecto de diseño ii
Cronogramaproyecto de diseño iiOsman Castro
 

Más de Osman Castro (20)

4 Termodinamica.doc
4 Termodinamica.doc4 Termodinamica.doc
4 Termodinamica.doc
 
254202406-GUIA1CONCEPTOSBASICOSTERMODINAMICA.pdf
254202406-GUIA1CONCEPTOSBASICOSTERMODINAMICA.pdf254202406-GUIA1CONCEPTOSBASICOSTERMODINAMICA.pdf
254202406-GUIA1CONCEPTOSBASICOSTERMODINAMICA.pdf
 
GUIA2SUSTANCIASPURAS.pdf
GUIA2SUSTANCIASPURAS.pdfGUIA2SUSTANCIASPURAS.pdf
GUIA2SUSTANCIASPURAS.pdf
 
GUIA4 PRIMERA LEY.pdf
GUIA4 PRIMERA LEY.pdfGUIA4 PRIMERA LEY.pdf
GUIA4 PRIMERA LEY.pdf
 
GUIA_Tema 5_2da_ley.pdf
GUIA_Tema 5_2da_ley.pdfGUIA_Tema 5_2da_ley.pdf
GUIA_Tema 5_2da_ley.pdf
 
FBIQ_EIP Calificaciones.pdf
FBIQ_EIP Calificaciones.pdfFBIQ_EIP Calificaciones.pdf
FBIQ_EIP Calificaciones.pdf
 
Miperfil osman castro
Miperfil osman castroMiperfil osman castro
Miperfil osman castro
 
Tema05 b energia_con_reaccion
Tema05 b energia_con_reaccionTema05 b energia_con_reaccion
Tema05 b energia_con_reaccion
 
Tema04 b energia_sin_reaccion
Tema04 b energia_sin_reaccionTema04 b energia_sin_reaccion
Tema04 b energia_sin_reaccion
 
Tema03 b materia_con_reaccion
Tema03 b materia_con_reaccionTema03 b materia_con_reaccion
Tema03 b materia_con_reaccion
 
Tema02 b materia_sin_reaccion
Tema02 b materia_sin_reaccionTema02 b materia_sin_reaccion
Tema02 b materia_sin_reaccion
 
Tema01 introduccion a_los_calculos
Tema01 introduccion a_los_calculosTema01 introduccion a_los_calculos
Tema01 introduccion a_los_calculos
 
Recoleccionppt
RecoleccionpptRecoleccionppt
Recoleccionppt
 
Recoleccion datos
Recoleccion datosRecoleccion datos
Recoleccion datos
 
Proyecto pdii i2020
Proyecto pdii i2020Proyecto pdii i2020
Proyecto pdii i2020
 
Poblacionmuestra
PoblacionmuestraPoblacionmuestra
Poblacionmuestra
 
Normas apa upel
Normas apa upelNormas apa upel
Normas apa upel
 
Ejemplo cronograma
Ejemplo cronogramaEjemplo cronograma
Ejemplo cronograma
 
Cronopres
CronopresCronopres
Cronopres
 
Cronogramaproyecto de diseño ii
Cronogramaproyecto de diseño iiCronogramaproyecto de diseño ii
Cronogramaproyecto de diseño ii
 

Último

codigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinacodigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinavergarakarina022
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptELENA GALLARDO PAÚLS
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdfgimenanahuel
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.José Luis Palma
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMarjorie Burga
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.amayarogel
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadAlejandrino Halire Ccahuana
 
la unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscala unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscaeliseo91
 
Herramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfHerramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfMARIAPAULAMAHECHAMOR
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADOJosé Luis Palma
 
Manual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfManual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfMaryRotonda1
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxjosetrinidadchavez
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoFundación YOD YOD
 
Factores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFactores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFlor Idalia Espinoza Ortega
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdfBaker Publishing Company
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteJuan Hernandez
 

Último (20)

codigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinacodigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karina
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
 
Razonamiento Matemático 1. Deta del año 2020
Razonamiento Matemático 1. Deta del año 2020Razonamiento Matemático 1. Deta del año 2020
Razonamiento Matemático 1. Deta del año 2020
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdad
 
la unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscala unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fisca
 
Herramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfHerramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdf
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
 
Unidad 4 | Teorías de las Comunicación | MCDI
Unidad 4 | Teorías de las Comunicación | MCDIUnidad 4 | Teorías de las Comunicación | MCDI
Unidad 4 | Teorías de las Comunicación | MCDI
 
Manual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfManual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdf
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativo
 
Factores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFactores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamica
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parte
 
Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 

GUIA3trabajo y calor.pdf

  • 1. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 1 UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA UNIDAD CURRICULAR TERMODINÁMICA DEPARTAMENTO DE ENERGÉTICA Prof, Ing. Frank Bello Msc, Prof, Ing. Indira Ortiz Esp , Prof. Ing. Johanna Krijnen. Prof. Ing. Koralys Goitía. http://www.termodinamicabasica.blogspot.com/
  • 2. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 2 TEMA N° 3: TRABAJO Y CALOR 1. Trabajo 1.1. Definición General De Trabajo 1.2. Definición De Trabajo Termodinámico 1.3. Unidades De Trabajo 1.4. Potencia. Unidades 1.5. Tipos De Trabajo 1.5.1. Eléctrico 1.5.2. Mecánico 1.5.2.1. De Expansión/Compresión o PdV. 1.5.2.2. De Resorte 2. Calor 2.1. Definición Termodinámica De Calor 2.2. Convención de Signo 2.3. Unidades de Calor 2.4. Mecanismos de Transferencia de calor. 3. Comparación de Calor y Trabajo
  • 3. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 3 1. TRABAJO 1 1.1. DEFINICIÓN GENERAL DE TRABAJO Es la transferencia de energía asociada con una fuerza que actúa a lo largo de una distancia. Si se tiene un cuerpo con cierta cantidad de masa (m) y se quiere desplazar desde una posición 1 hasta una posición 2, se aplica una fuerza F a lo largo de un desplazamiento, se dice entonces que se ha realizado una cierta cantidad de trabajo. 1 dx 2 dx F dW * = Donde: F= es la fuerza aplicada en la misma dirección del desplazamiento. dx= indica la variación del desplazamiento dw= Cantidad de trabajo aplicado Al integrar queda: . uff, Fu er distancia X1 X2 2 1 X X W Fdx = ∫ Trabajo=área [N.m=J] m m
  • 4. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 4 Cuando la fuerza aplicada es constante 1.2. DEFINICIÓN DE TRABAJO TERMODINÁMICO Se dice que un sistema efectúa trabajo cuando el único efecto externo al sistema pudiese ser el levantamiento de un peso. Es de suma importancia destacar que el trabajo se define como una interacción entre el sistema y sus alrededores. A un sistema no se le puede asignar un trabajo (no es algo que tenga un sistema) y por lo tanto no es una propiedad termodinámica. El trabajo también se define como una interacción de energía la cual no es causada por una diferencia de temperatura. 1.2.1. CONVENCIÓN DE SIGNO La gran mayoría de los autores utilizan el siguiente convencionalismo: ™ Trabajo realizado por un sistema se considera positivo (+). ™ Trabajo realizado sobre el sistema se considera negativo (-). 1.3. UNIDADES W=F x Trabajo realizado por el hombre Fuerza aplicada Distancia que se desplaza el objeto Donde no hay movimiento, no hay trabajo SISTEMA Q (+) W (+) Q (-) W (-)
  • 5. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 5 Como el trabajo se define como la fuerza que actúa a lo largo de un desplazamiento en la misma dirección de la fuerza. Sus unidades son de fuerza por desplazamiento. Las unidades mas comunes son: Sistema internacional: Joule = Newton x metro Sistema Inglés: Librafuerza x pie (también se usa con frecuencia la unidad “Btu”) Otras unidades: dina x cm. = 1 ergio Electrón voltio (ev): Trabajo requerido para mover un electrón a través de una diferencia de un voltio. 1 ev = 1,6 x 10-12 ergio = 1,18 x 10-19 lbfpie 1.4. POTENCIA Rapidez con la cual se realiza un trabajo dt W W δ = • Unidades min 33000 04 , 76 1 pie lbf s m kgf hp × = × = min 44240 102 1 pie lbf s m kgf Kw × = × = kw hp 746 , 0 1 = 1.5. TIPOS DE TRABAJO 1.5.1. ELÉCTRICO Cuando se mueve una carga en un circuito eléctrico por efecto de las fuerzas electromotrices. c Q V W δ δ × = V: diferencia de potencial o voltaje eléctrico entre dos puntos del campo eléctrico. 1 Voltio = 1 Joule/1 Columbio.
  • 6. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 6 δQc = Cantidad de carga eléctrica, que atraviesa la frontera durante un período de tiempo determinado. Segundo Columbio A Tiempo a C dt dQc I 1 1 1 arg = = = = Idt dQc = ( ) dt I V W × × = ∂ ( ) dt I V Welecl × × = ∫ ; si la V y I son constantes en el tiempo ) ( 1 2 t t I V Welecl − × = La potencia eléctrica I V dt dt I V dt Welct elect W × = × × = = • . . δ Watt S Joule S Columbio Columbio Joule elec W = = × = • 1 1 1.5.2. TRABAJO MECÁNICO W = F x S Si la fuerza no es constante ∫ × = ds F W 2 1 El trabajo que efectúa un sistema contra la fuerza externa opuesta al movimiento es positivo y el trabajo hecho sobre un sistema por una fuerza externa que actúa en la dirección del movimiento es negativo. 1.5.2.1. TRABAJO DE EXPANSIÓN Y COMPRESIÓN El Trabajo de frontera móvil para un proceso cuasiequilibrio, es un proceso durante el cual el sistema permanece en equilibrio todo el tiempo. dx Fext W × = δ A PA dx
  • 7. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 7 Evaluando un gas encerrado en un cilindro émbolo sometido a un proceso de compresión. Fext : Fuerza externa que actúa en la interfaz comprimiendo el gas. dx: Desplazamiento causado por las comprensión Este desplazamiento se puede escribir en función de un volumen diferencial y el área del émbolo. A dv dx dx A dv = ⇒ × = dV P Aemb dV Fext W . = × = δ ∫ = 2 1 2 1 Pdv W Para calcular el trabajo total requiere conocer la relación entre P y V durante el proceso. El área diferencial representa el trabajo realizado por el gas cuando el volumen varía una cantidad dv. El área completa representa el trabajo total realizado por el gas cuando este se expande de 1 a 2. P ™ TIPOS DE PROCESOS DE EXPANSIÓN Y COMPRESIÓN a. PROCESO ISOMÉTRICO (gas Ideal) Proceso Isocórico o isométrico el volumen permanece constante y por lo tanto no se realiza trabajo. 0 PdV W 2 1 2 1 = = ∫ P1 P2 V1 dV V2 w δ 1 2 P1 P2 P V V1 = V2
  • 8. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 8 b. PROCESO ISOBÁRICO Proceso en el cual la presión permanece constante. PdV PdV W 2 1 2 1 = = ∫ c. PROCESO ISOTÉRMICO En muchos procesos, especialmente con sustancias gaseosas, se presenta una relación entre la presión y el volumen, de la forma PV=C. Para gases perfectos es a temperatura constante (isotérmico). C V P = × C V V Ln dV V C PdV w 1 2 2 1 × ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = = = ∫ 1 1 2 2 V P V P C = × = Para gases ideales T R m V P = × ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = 1 2 2 1 V V TLn R m W Por la Ley de Boyle – Charles 2 1 1 2 P P V V = d. PROCESO POLITRÓPICO Se caracteriza por la existencia de intercambio de calor entre el sistema y los alrededores. Durante los procesos de expansión y compresión politrópicos de gases reales, la presión y el volumen están relacionados, mediante la siguiente ecuación. C V P n = × n y C son constantes. C V P V P n 2 2 n 1 1 = × = × 1 1 2 1 2 1 2 1 + − = = × = = + − − − ∫ ∫ ∫ n V C dV V C dv V C Pdv W n n n 1 2 P . V = C P P1 P1 2 P V 1 V1 V2 2 1
  • 9. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 9 W= C = ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − = ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ + − − + − − − + − + − n 1 V V C 1 n V 1 n V n 1 1 n 1 2 1 n 1 1 n 2 n 1 V . P V P 1 1 2 . 2 − − Si el gas es ideal mRT V P = × ( ) n 1 T T mR W 1 2 − − = 1 n ≠ e. PROCESO ADIABÁTICO ( gas ideal) Proceso en cual no existe transferencia de calor entre el sistema y los alrededores. En el caso de un gas ideal: C V P K = × K V P V P W − × − × = 1 1 1 2 2 2 1 K= Coeficiente adiabático de compresión. K = Cp|Cv Cp = Capacidad calorífica a Presión constante. Cv= Capacidad calorífica a volumen constante. 1.5.2.2. TRABAJO DE RESORTE Wresorte = dx F× Para un resorte lineal el desplazamiento es proporcional a la fuerza aplicada. x k F rest × = Gases monoatómicos K=1,67 Gases diatómicos K=1,4 Gases poliatómicos K=1,3
  • 10. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 10 2 RESORTE P2 P1 V1 V2 rest k : la constante del resorte , unidades Nw|m y X: desplazamiento, se mide a partir de la posición de equilibrio del resorte. X = 0 F = 0 ( ) ∫ − = = 2 1 2 1 2 2 2 X X k xdx K Wresorte rest : 2 X Desplazamiento final. 1 X : Desplazamiento inicial. El signo del trabajo del resorte se asigna considerando si el sistema se expande o comprime. 2. CALOR. 2.1. Definición Termodinámica De Calor Es la energía que se transmite a través del límite de un sistema, en virtud de una diferencia de temperatura que existe con los alrededores. Cuando existe una diferencia de temperatura entre el sistema y su entorno, hay transferencia de energía como producto de los choques individuales de las moléculas del sistema con las de su entorno. Si la frontera del sistema es rígida, la suma de estos trabajos microscópicos no pueden expresarse como una fuerza medida por un desplazamiento (trabajo). La suma de estos trabajos microscópico es esencialmente lo que denominamos calor. Calor es trabajo térmico a nivel microscópico. El calor no se almacena, la energía si. Tanto el calor como el trabajo son manifestaciones de energía en transito, por tal motivo solo la podemos observar a través de las fronteras de los sistemas. 2.2. CONVENCIÓN DE SIGNO La mayoría de los autores utilizan el siguiente convencionalismo: Positivo (+), transmisión de calor a un sistema. Negativo (-), transmisión de calor desde un sistema (calor retirado del sistema). 2.3. UNIDADES DE CALOR Kilocaloría, es la cantidad de calor transmitida para producir un cambio de temperatura de un Celsius (1 °C) a un kilogramo (1 kgm) de agua. BTU, Unidad Térmica Británica, la cantidad de energía requerida para incrementar la temperatura de una libramasa de agua (1 lbm) de agua un grado Fahrenheit (1°F). El calor total se denota con la letra Q; Ejemplo: 1Btu, 2 kcal
  • 11. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 11 El calor transferido por unidad de masa se denota con la letra q; Ejemplo: 1BTU/lbm, 1kcal/kgm El transferido por unidad de tiempo se denota con la letra, • Q También se utiliza cualquier otra unidad de energía como el Joule, ergios, Lbf*pie, etc 2.4. MECANISMOS DE TRANSFERENCIA DE CALOR ™ Conducción: es la transferencia de energía debida a las interacciones entre las partículas en el interior de un material. • Q cond = -kt x A x dt|dx Ley de Fourier ™ Convección: es la transferencia de energía entre la superficie de un sólido y un líquido o un gas debido al movimiento de un fluido. • Q conv = h A (Ts – Tf) ™ Radiación: es la transferencia de energía mediante radiación electromagnética. La energía transferida por radiación puede emitirse desde una superficie o desde el interior de fluidos transparentes y sólidos. • Q Rad = E γ A (Ts 4 – Talrd 4 ). 3. Comparación de Calor y trabajo Al igual que el calor, el trabajo es una interacción de energía entre un sistema y sus alrededores. La energía es capaz de cruzar la frontera de un sistema cerrado en forma de calor o de trabajo. En consecuencia, si la energía que cruza la frontera de un sistema cerrado no es calor, debe ser trabajo. El calor es fácil de reconocer: la fuerza que lo posibilita es una diferencia de temperatura entre el sistema y sus alrededores. Entonces es posible afirmar, con cierta simplicidad, que una interacción de energía no provocada por una diferencia de temperatura entre un sistema y sus alrededores, es trabajo. De manera más específica, el trabajo es la transferencia de energía asociada con una fuerza que actúa a lo largo de una distancia. La elevación de un émbolo, un eje que gira y un alambre eléctrico que cruzan las fronteras del sistema son casos asociados con interacciones de trabajo. El trabajo es también una forma de energía como el calor y, por lo tanto, tiene unidades de energía como kJ. El trabajo efectuado durante un proceso entre los estados 1 y 2 se denomina W12, o aún más simple W. Tanto el calor como el trabajo son cantidades direccionales y, en consecuencia, la descripción completa de su interacción requiere de la especificación tanto de su magnitud como de su dirección. Una forma de hacer esto es adoptando un signo convencional. La
  • 12. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 12 forma convencional, generalmente aceptada, de signo formal para la interacción del calor y del trabajo es como sigue: la transferencia de calor hacia un sistema y el trabajo hecho por un sistema son positivos; la transferencia de calor desde un sistema y el trabajo hecho sobre un sistema son negativos. Cuando la dirección de la interacción de un calor o trabajo no se conoce es posible suponer, simplemente, una dirección para la interacción (usando el subíndice entrada o salida) y darle una solución. Un resultado positivo indica que la dirección supuesta es correcta. Por otro lado, un resultado negativo indica que la relación de la interacción es opuesta a la dirección considerada. Es como suponer una dirección para una fuerza desconocida al resolver un problema de estática e invertir la dirección cuando se obtiene un resultado negativo para la fuerza. Una cantidad que se transfiere a o desde un sistema durante una interacción no es una propiedad puesto que la cantidad de dicha cualidad depende de algo más que un estado del sistema. El calor y la energía son mecanismos de transferencia de energía entre un sistema y sus alrededores y existen muchas similitudes entre ellas: 1. Ambos se reconocen cuando cruzan las fronteras del sistema. Tanto a transferencia de calor como el trabajo son fenómenos de frontera. 2. Los sistemas poseen energía, pero no calor o trabajo. 3. Ambos se asocian con un proceso, no con un estado. A diferencia de las propiedades, ni el calor o el trabajo tienen significado en un estado. 4. Ambos son funciones de la trayectoria (sus magnitudes dependen de la trayectoria seguida durante un proceso, así como de los estados extremos). Las funciones de la trayectoria tienen diferenciales inexactas, designadas mediante el símbolo δ. En consecuencia, una cantidad diferencial de calor o trabajo se representa mediante δQ o δW, respectivamente, en lugar de dQ o dW. Las propiedades, sin embargo, son funciones de punto (sólo dependen del estado y no de cómo el sistema llega a ese estado) y tienen diferenciales exactas designadas por el símbolo d. Un pequeño cambio en el volumen, por ejemplo, es representado por dV y el cambio de volumen total durante un proceso entre los estados 1 y 2 es V V V dV Δ = − = ∫ 2 1 1 2 El cambio de volumen durante el proceso 1-2 siempre es el volumen en el estado 2 menos el volumen en el estado 1, sin importar la trayectoria seguida. Sin embargo, el trabajo total realizado durante el proceso 1-2 es ) ( 2 1 2 1 12 W no W W W Δ = = ∫ δ El trabajo total se obtiene de seguir la trayectoria del proceso y añadir las cantidades diferenciales de trabajo (δW) efectuadas a lo largo del trayecto. La integral de δW no es W2 – W1 (el trabajo en el estado 2 menos el trabajo en el estado 1), lo que no tiene sentido puesto que el trabajo no es una propiedad y los sistemas no poseen trabajo en un estado.
  • 13. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 13 PROBLEMAS RESUELTOS (TERMODINAMICA) Tema: Trabajo Termodinámico 1) Un cilindro en el cual el émbolo se mantiene con un resorte, contiene 1 pie3 de aire a una presión de 15 Psia, equilibrada exactamente con la presión atmosférica de 15 Psia. Asumir que el peso del émbolo es despreciable. En el estado inicial el resorte solo toca la émbolo sin ejercer fuerza alguna sobre el mismo. Entonces se calienta el gas hasta doblar su volumen. La presión final del gas es de 50 Psia, y durante este proceso la fuerza que ejerce el resorte es proporcional al desplazamiento del émbolo a partir de su posición inicial. Se solicita: A) Mostrar el proceso en diagrama P-V B) Considerando el gas como sistema, calcular el trabajo total efectuado: gráficamente y analíticamente. C) De este trabajo total, ¿cuánto es hecho contra la atmósfera y cuánto contra el resorte? SOLUCIÓN: Esquema: Seguidamente, hay que clasificar la información por estados: 1.1 Edo. 1 Edo. 2 P1= 15 Psia P2=50 Psia V1= 1 pie3 V2=2V1=2 pie3 FRes ∝ x A) Diagrama P-V: En principio conocemos el estado inicial y final del proceso, sin embargo no se conoce la trayectoria que va a unir esos dos estados, así que: Hagamos un análisis para determinar la forma como varía la presión en función del volumen ( relación P-V): P (Psia) V (pie3 ) 1 2 15 50 (1) (2) Aire (Sist Resorte
  • 14. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 14 Hay que tomar también en cuenta que la presión del sistema en cualquier momento va ser la suma de la presión que ejerce la Atmósfera más la presión que ejerce el Resorte: Psist = PAtm+ PRes Así que debemos determinar como cambia la presión producida por el Resorte, ya que la componente Presión Atmosférica es constante. Partamos del hecho de que la presión del resorte ejerce una fuerza proporcional al desplazamiento(X) del émbolo y expresándolo en forma diferencial: dFRes ∝ dX En principio debemos recordar que matemáticamente el signo de proporcionalidad( ∝ ) puede ser sustituido por un signo de igualdad (=) introduciendo una constante de proporcionalidad (C): dFRes = C dX (A) Por otro lado recordemos que existe una relación estrecha entre fuerza y presión, así podríamos escribir: FRes= PRes* Aemb, y en forma diferencial: dFRes= dPRes* Aemb (B) Adicionalmente, la relación que existe entre el volumen y el desplazamiento en un cilindro viene dado por: V=Aemb*X Entonces : X = v/aemb, y en forma diferencial: dX = dV/Aemb ( C ) Sustituyendo (B) y (C) en (A): dPRes* Aemb=C dV/Aemb Así : dPRes = C*dV/Aemb 2 Integrando esta expresión: PRes = C*V/Aemb 2 + C1 Por ser “Aemb 2 ” un valor constante, podríamos rescribir equivalentemente que: PRes = C´*V + C1
  • 15. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 15 Esta última expresión revela que la Presión del Resorte varía LINEALMENTE con respecto al volumen (y consecuente mente también la Presión del Sistema), matemáticamente: Psist = PAtm+ C´*V + C1 Los términos “PAtm” y “C1”, pueden ser condensados en otra constante, que llamaremos “C2”: Psist = C´*V + C2 Ahora si podemos, tener la certeza deque los estados (1) y (2) ubicados en el grafico P-V, debemos unirlos con una Línea Recta: B) Trabajo total efectuado: B.1)Solución Gráfica Ya que contamos con la gráfica del proceso y que el área debajo de la misma se puede descomponer en dos figuras regulares sencillas: A1 (rectángulo) y A2 (triángulo), se puede obtener el valor absoluto del trabajo gráficamente: ATot= A1+ A2 Para el rectángulo: A1 = b*h = (2-1)pie3 * (15 Psia) = 15 Psia*Pie3 Para el triángulo: A2=(b*h)/2 =(2-1)pie3* (50-15 Psia)/2 = 17.5 Psia*Pie3 Entonces: 1W2Total = ATot= 15 Psia*Pie3 + 17.5 Psia*Pie3 = 32. 5 Psia*Pie3 El signo del trabajo se determina analizando si el sistema se expande o se comprime. En este caso en particular por ser un proceso de expansión el trabajo es realizado por el sistema y por lo tanto es Positivo, así que: 1W2Total =32. 5 Psia*Pie3 = 6.025 Btu (Resp.) B.2 )Solución Analítica Ecuación que rige el proceso V (Pie3 ) P (Psia) 1 2 15 50 (1) (2) A2 A1
  • 16. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 16 Ya sabemos que la Ecuación General que rige al proceso es: Psist = C´*V + C2, sin embargo para obtener una solución analítica es necesario determinar los valores de las 2 constantes C´y C2. Para lo cual evaluemos esta ecuación en los estados inicial y final: Para edo. 1: V1= 1 Pie3 y P1= 15 Psia, sustituyendo en la ecuación del proceso( obviando las unidades): 15 = C´*(1) + C2 C´ + C2 =15 (a) Para edo. 2: V2= 1 Pie3 y P2= 50 Psia, sustituyendo en la ecuación del proceso ( obviando las unidades): 50 = C´*(2) + C2 2C´ + C2 =50 (b) Estamos en presencia de un sistema de dos ecuaciones con dos incógnitas, que al ser resuelto determina que: C´ = 35 y C2 = - 20 Por lo que: Psist = 35V –20 Ecuación que puede ser sustituida en la definición general de trabajo de frontera para ser integrada: 1W2 = ∫ P*dV Sustituyendo e integrando entre V1 y V2: 1W2 = ∫ (35V –20)dV= | 17.5V2 – 20V| Sustituyendo los límites de integración: 1W2 Total = | 17.5(2)2 – 20(2)| - | 17.5(1)2 – 20(1)| = 32. 5 Psia*Pie3 = 6.025 Btu (Resp.) C) Trabajo contra la Atmósfera y trabajo contra el Resorte Es evidente que el aire(sistema) ejecuta un trabajo en contra de dos elementos que se le oponen, que son la Atmósfera y el Resorte, así que el trabajo total es: 1W2Total = WcAtm + WcRes El Trabajo que se realiza contra la atmósfera (WcAtm), por su misma naturaleza es un trabajo que se realiza a presión constante, por lo tanto la fórmula de calcularlo es la siguiente: WcAtm = PAtm(V2-V1)= 15 Psia(2 – 1 )pie3 =15 Psia*Pie3 =2.775 Btu (Resp.) El trabajo contra el resorte se puede obtener por simple diferencia: WcRes= 1W2Total - WcAtm=(32.5 –15) Psia*Pie3 =17.5 Psia*Pie3 =3.2375 Btu(Resp.) V2=2 pie3 V1=1 pie3
  • 17. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 17 2) Un globo esférico tiene 0.254 m de diámetro y contiene Nitrógeno a una presión de 138 kPascal. El diámetro del globo aumenta a 0.305 m debido al calor y durante este proceso la presión dentro del globo es proporcional a su diámetro. Calcular el trabajo efectuado por el Nitrógeno durante el proceso. SOLUCIÓN: Esquema: 1.2 Edo. 1 Edo. 2 P1= 138 Kpascal P2=? d1= 0.254 m d2=0.305 m P ∝ d 1W2 =? Para poder calcular cualquier trabajo relacionado con cambio de volumen, necesariamente hay que conocer la relación Presión-Volumen (P-V)del proceso. En principio conocemos una relación un tanto rudimentaria entre la presión y el diámetro del globo (P ∝ d ). Entonces el objetivo primario será tratar de manipular esta expresión matemáticamente hasta convertirla en una relación “P-V”. Procedamos: En primer lugar debemos recordar, que matemáticamente el signo de proporcionalidad( ∝ ) puede ser sustituido por un signo de igualdad (=) introduciendo una constante de proporcionalidad (C): P = C*d En Segundo lugar como estamos trabajando con una esfera, debemos considerar que el volumen de la misma viene dado por: V=(1/6) Π*d3 De aquí se deriva que: d= [V/(6Π)]1/3 = (1/6Π )1/3 V1/3 Como tanto el número “6” como el factor “Π” son valores constantes, su inverso elevado a la “1/3” sigue siendo una constante, a la que llamaremos “C1”. Entonces podemos rescribir esta última expresión de la siguiente manera: Nitrógeno (sistema) (1)
  • 18. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 18 d= C1* V1/3 Ahora sustituyendo (2) en (1), tenemos: P = C* C1*V1/ 3 el producto de las dos constantes genera otra constante, que llamaremos “C2”, así: P = C2*V1/ 3 Rearreglando : P/ V1/ 3 = C2 Si pasamos el término “V1/ 3 ” al numerador debemos cambiarle el signo de su exponente, resultando: P*V-1/ 3 = C2 1.2.1 Esta fórmula corresponde al denominado Proceso Politrópico (PVn =C). La fórmula para calcular el trabajo en un Proceso Politrópico es: 1W2 =(P2*V2 – P1*V1) / (1-n) Los volúmenes se calcularán directamente por la fórmula de la esfera, a partir de ambos diámetros: V1= (1/6) Π*d1 3 =(1/6) Π*(0.254 m)3 = 0.00858 m3 V2= (1/6) Π*d2 3 =(1/6) Π*(0.305 m)3 = 0.0149 m3 La Presión final se determinará a partir de la ecuación que rige el proceso (Politrópico): P1*V1 -1/ 3 = P2*V2 -1/ 3 Despejando P2: P2 = P1*(V1/ V2)-1/ 3 = 165.87 kPa Sustituyendo valores en la fórmula de trabajo: 1W2 = (165.87*0.0149 – 138*0.00858) kPa*m3 / [1-(-1/3)] = 0.966Kjoul (Resp.) Comentario Final: Note, que el resultado es positivo porque el sistema se está expandiendo, o sea, está realizando trabajo, no recibiéndolo. Si los estados final e inicial se invirtieran, la magnitud del trabajo sería la misma; pero con signo contrario (negativo). (2)
  • 19. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 19 3) Un cilindro vertical dotado de un pistón contiene 0.10 pie3 de Freón-12 a 80 °F y una calidad de 90%. El pistón tiene una masa de 850 Lbm, el área de la sección transversal del pistón es 10 Pulg2 , y se mantiene en su lugar descansando en unos topes. Adicionalmente, un agitador está dentro del cilindro como se indica en la figura. La presión del ambiente es 15 Psia. Se suministra calor lentamente al Freón produciendo que el pistón se mueva y simultáneamente es activado el agitador, suministrándole cierta cantidad de trabajo al sistema. Si la temperatura final es 320 °F. Considerando el Freón- 12 como sistema, y que el trabajo neto (total) del mismo es 1 Btu, determine el trabajo proporcionado por el agitador. SOLUCIÓN: Esquema: Seguidamente, hay que clasificar la información por estados: 1.3 Edo. 1 Edo. 2 V1= 0.10 pie3 T2= 320 °F T1= 80 °F X1= 90% mpist=850 Lbm Apist =10 Pulg2 1W2neto =1 Btu 1W2Agit =? Análisis: En este problema en particular, podemos identificar 2 tipos de trabajo distintos: uno asociado al cambio de volumen del sistema (1w2vol) y otro asociado al movimiento de un eje (1W2Agit), en consecuencia el Trabajo neto (1W2neto) de este sistema es la suma algebraica de los mismos: 1W2neto = 1W2Agit + 1W2Vol Y el trabajo del agitador consecuentemente: 1W2Agit = 1W2neto - 1W2Vol El trabajo producto del cambio de volumen se efectúa en contra de la atmósfera y en contra del peso del émbolo o pistón, ambos elementos ejercen una presión que se mantiene constante a lo largo del proceso de expansión. Así ese trabajo viene dado por: 1W2Vol =P2 (V2 - V1 ) en donde la presión del sistema es: P2= PPist+ PAtm La presión que ejerce el pistón es el efecto de su peso, por lo que se calcula como sigue: WAgit Agitado PAt F-12 (Sist)
  • 20. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 20 PPist=(Peso del pistón) /( APist*gc) (Nota: la “gc” es necesaria en el sistema inglés) PPist=(mPis*g) /( APis*gc) =(850 Lbm*32.2 pie/seg2 )/(10 Pulg2 *32.2 Lbm*Pie/Lbf*seg2 )= 85 Psia Entonces: P2= 85 Psia + 15 Psia = 100 Psia Para conseguir V2, primero es necesario obtener la masa del sistema, la cual es constante, por ser un sistema cerrado. Usemos la información del estado inicial que es la más completa, para hacer este cálculo: m1 = V1/νsis1 por ser el estado inicial un estado de mezcla, el volumen específico del sistema se obtiene en función de la calidad(X): νsis1 = νf1 + X1(νfg1) νf = 0.01227 pie3 /Lbm y νfg = 0.3390 pie3 /Lbm Sustituyendo valores: νsis1 = (0.01227 + 0.9*0.33909 pie3 /Lbm = 0.3714 pie3 /Lbm Entonces : m1 = 0.1 pie3 /0.3714 pie3 /Lbm = 0.269 Lbm m2 Del estado final conocemos: P2 =100 Psia y T2= 320 °F, con estas dos propiedades se determina que el Freón es Vapor Sobrecalentado, y leyendo el volumen específico respectivo en la Tabla correspondiente, se obtiene: νsis2 = 0.66472 pie3 /Lbm, Por lo que: V2 = m2*νsis2 =0.269 Lbm*0.66472 pie3 /Lbm= 0.18 pie3 Retomando la fórmula de trabajo por cambio de volumen: 1W2Vol =P2 (V2 - V1 )=100 Psia(0.18-0.10) pie3 = 8. Psia*pie3 = 1.48 Btu Finalmente, el trabajo entregado por el Agitador, será. 1W2Agit = 1W2neto - 1W2Vol= 1 Btu – 1.48 Btu = - 0.48 Btu (Resp.) Comentarios Finales: 9 Note, que el resultado es negativo y esto es lógico ya que este trabajo en vez de hacerlo el sistema, lo recibe el mismo. 9 Por otro lado fíjese que la presión que tenía al sistema en su estado inicial con el émbolo descansando en los topes era la correspondiente a la de saturación a 80
  • 21. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 21 °F ( 98.87 Psia) e independiente de la presión externa, pero una vez que se le suministra calor al sistema la presión aumenta hasta equilibrarse exactamente con la presión externa, la cual se mantiene constante en todo el recorrido del émbolo. Esto explica porque se uso la P2 en el cálculo del trabajo de expansión, ya que lo relevante al evaluar el trabajo, es saber como se comporta la presión mientras exista movimiento. 4) Cierta cantidad de aire está contenida en un arreglo cilindro-pistón como muestra la figura. El pistón es de peso despreciable y tiene un área de 4*10-4 m2 . La presión inicial del aire equilibra exactamente la presión atmosférica de 101.33 kPa. La temperatura y el volumen inicial son 20 C y 2*10-5 m3 respectivamente. Acoplado a esta arreglo hay un resorte lineal, que tiene una constante de deformación KRes= 10 kNewton/m. El resorte inicialmente solo toca al pistón y no ejerce fuerza alguna. Se le suministra calor al aire expandiéndose y aumentando su presión hasta 304 kPa. Considerando el aire como un gas ideal, determine: A) La masa del aire. B) El volumen final C) La temperatura Final D) El trabajo total realizado por el aire. SOLUCIÓN: Esquema: Seguidamente, hay que clasificar la información por estados: 1.4 Edo. 1 Edo. 2 P1= 101.33 kPa P2=304 kPa V1= 2*10-5 m3 T2=? V2=? KRes= 10 kNewton/m APist = 4*10-4 m2 maire= ? 1W2Tot =? 1.4.1.1.1.1 A) Masa del aire La masa del aire se puede obtener a partir de la versión de la ecuación de gas ideal en función de la masa. Usando la información del estado inicial: P1*V1 =maire*Rp*T1 Despejando: maire= P1*V1/ Rp*T1 Aire (Sist Resorte
  • 22. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 22 En la tabla correspondiente se puede obtener la constante de gas particular para el aire: Rp =0.28720 kPa*m3 /Kg*°K Sustituyendo valores: maire= (101.33kPa*2*10-5 m3 ) / [ (0.28720 kPa*m3 /Kg*°K)*293 °K]=2.41*10-5 kg (Resp.) B) Volumen Final El volumen final es simplemente el volumen inicial más la variación del mismo: V2=V1+ ΔV Ahora bien la variación del volumen, puede ser escrita, en función del desplazamiento(X), para un cilindro de la siguiente manera: ΔV= APis*X por lo que: V2=V1+ APis*X A su vez la distancia recorrida (X), está relacionada con la fuerza del resorte (lineal) por la siguiente fórmula: FRes = KRes*X, entonces X= FRes / KRes en forma equivalente: X= PRes*APis/ KRes Por otra parte, la presión final del sistema es la sumatoria de la presión inicial mas la presión del resorte: P2 = P1 + PRes Entonces: PRes = P2 - P1 = (304 –101.33 )kPa = 202.66 kPa Retomando la fórmula del desplazamiento: X= PRes*APis/ KRes= 206.66 kPa*4*10-4 m2 /10 kN/m=0.0081 metros Por lo tanto el volumen final será: V2=V1+ APis*X= 2*10-5 m3 +4*10-4 m2 *0.0081 m=2.324*10-5 m3 (Resp.) C) Temperatura Final Aplicando la Ecuación de Gas ideal que relaciona dos estados de un sistema cerrado, tenemos: P1*V1/T1 =P2*V2/T2 Despejando T2: T2 = (P2*V2/ P1*V1)*T1 =304 kPa*2.324*10-5 m3 /101.33 kPa*2.*10-5 m3 =1021.4 °K = 748.4 °C( Resp.) d) Trabajo Total Grafiquemos el estado inicial y final del proceso en un diagrama P-V:
  • 23. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 23 Para un Resorte Lineal el cambio de la presión ejercida, también es lineal, por lo que debemos unir estos dos puntos con una línea recta: Ya que contamos con la gráfica del proceso y que el área debajo de la misma se puede descomponer en dos figuras regulares sencillas: A1 (rectángulo) y A2 (triángulo), se puede obtener el valor absoluto del trabajo gráficamente: ATot= A1+ A2 Para el rectángulo: A1 = b*h = (2.324*10-5 m3 -2 *10-5 ) m3 * (101.33 kPa) = 3.28 *10-4 Kjoul Para el triángulo: A2=(b*h)/2 (2.324*10-5 m3 -2 *10-5 ) m3 * (304-101.33) kPa /2 = 3.28 *10-4 Kjoul Entonces: 1W2Total = ATot= 3.28 *10-4 Kjoul + 3.28 *10-4 Kjoul= 6.56 *10-4 Kjoul El signo del trabajo se determina analizando si el sistema se expande o se comprime. En este caso en particular por ser un proceso de expansión el trabajo es realizado por el sistema, y por lo tanto es Positivo, así que: 1W2Total = 6.56 *10-4 Kjoul (Resp.) P (kPa) V (m3 ) V1 V2 101.33 304.00 (1) (2) A2 P (kPa) 304 (2) V (m3 ) V1 V2 101.33 (1) A1
  • 24. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 24 m1= 10 kg mf = 8 kg mg = 2 kg T1= -10 °C m2= 10 kg V2 = 400 l Estado 1 Estado 2 5) Un dispositivo cilindro-émbolo con un conjunto de topes contiene 10 kg de Freón-12 (R- 12). Al principio 8 kg de R-12 están en fase líquida y la temperatura es -10°C. Se transfiere más calor al refrigerante hasta que el émbolo toca los topes superiores punto en el cual el volumen es 400 litros. Determine a. La temperatura cuando el émbolo toca los topes, b. Trabajo realizado durante el proceso. Datos Solución a. Para determinar la temperatura en el instante que el émbolo toca los topes, es necesario identificar el estado termodinámico y buscar la temperatura en el estado correspondiente. En el estado final el R-12 ocupa un volumen de 400 litros y la masa es 10 kg, ya que no se introdujo ni se extrajo masa del sistema, como el dispositivo es un cilindro émbolo y no se especifica que durante el proceso de expansión la presión cambió con la variación de volumen se considerará que es un proceso isobárico. El volumen especifico del sistema en el estado final kg m kg m m V 3 3 2 2 2 04 , 0 10 4 , 0 = = = ν La presión en el estado 2 es igual a la presión inicial MPa P P P T sat 2191 , 0 1 1 2 = = = Para identificar el estado termodinámico se buscan los volúmenes específicos del líquido y vapor saturado en la tabla de saturación a la presión final kgm m MPa f 3 2191 , 0 0007 , 0 = ν y kgm m MPa g 3 2191 , 0 076646 , 0 = ν Comparando éstos volúmenes específicos con el del estado final kg m kg m 3 3 0007 , 0 04 , 0 > y kg m kg m 3 3 076646 , 0 04 , 0 < se determina que el estado termodinámico es mezcla líquido y vapor; por lo tanto
  • 25. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 25 C T T MPa P sat ° − = = = 10 2191 , 0 2 2 b. Durante el proceso, el R-12 sufrió una expansión a presión y temperatura constante, y el estado termodinámico inicial y final son mezcla líquido vapor. Su representación en un diagrama Pv es la siguiente: m3 /kg La cantidad de trabajo efectuado se calcula por la siguiente ecuación ) ( 1 2 V V P Wisobárico − = P= 0,2191 MPa V2=0,4 m3 V1=? Por ser una mezcla líquido vapor kg m kg m kg kg kgm m x fg f 3 3 3 1 016029 , 0 ) 0007 , 0 076646 , 0 ( 10 2 0007 , 0 = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ − × + = + = ν ν ν
  • 26. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 26 3 3 1 1 1 16029 , 0 10 016029 , 0 m kg kg m m V = × = × =ν El trabajo total realizado por el sistema durante la expansión, el signo es del es positivo ya que el mismo es realizado por el sistema. kJ MJ kJ MJ m Mpa V V P Wisobárico 52 , 52 1 1000 05252 , 0 ) 16029 , 0 4 , 0 ( 2191 , 0 ) ( 3 1 2 = × = − × = − = 6) Un cilindro vertical contiene 0,185 lbm a 100°F, el volumen inicial encerrado debajo del embolo es 0,65 pie3 . El embolo tiene un área de 60 pulg2 y una masa de 125 lbm. Inicialmente el embolo descansa sobre los topes. La presión atmosférica es de 14 psia y la aceleración de la gravedad es de 30,9 pie/seg2 . Entonces se transmite calor hasta que el cilindro contiene vapor saturado. Determine: a) ¿Cual es la temperatura del agua cuando el embolo comienza a levantarse de los topes? b) Cuanto trabajo ejecuta el vapor de agua durante el proceso. c) Dibuje el diagrama P-v y T-v de todo el proceso. Esquema del Estado inicial. SOLUCIÓN: La masa permanece constante ya que es un sistema cerrado y no hay intercambio de masa. En el estado inicial el embolo descansa sobre los topes. Por lo tanto la presión inicial del sistema es la presión de saturación a 100 ºF, ya que el estado 1 esta como mezcla liquido+ vapor. Para responder la letra a) debemos primero hacer un balance de fuerzas para determinar a que presión se comenzara a levantar el embolo de los topes. Ya que nos han proporcionado la data suficiente para el calculo del peso del embolo debemos incluirlo en el balance de fuerza. Este queda del siguiente modo: 0 * = = + ∗ = ∑ Ae Psistema We Ae Patm F Despejando La Presión del sistema v + L EDO 1 m1=0,185 lbm T1 = 100 ºF V1 = 0,65 pie3 Edo = L+V Ae = 60 pulg2 me= 125 lbm EDO 2 m2= m1=0,185 lbm V2 = 0,65 pie3 Ae = 60 pulg2 me= 125 lbm EDO 3 m2= m1= m3= 0,185 lbm Edo: Vapor Saturado Ae = 60 pulg2 me= 125 lbm
  • 27. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 27 Ae We Ae Patm Psis + = * Sabiendo que gc g me We * = Nos queda del siguiente modo: Ae gc g me Ae Patm Psis * * + = = 2 2 2 2 2 60 * * 17 , 32 9 , 30 * 125 lg 60 * 14 pul s lbf pie lbm s pie lmb pu pul lbfi Psis + = psia pu lbf lbf P 001 , 16 lg 60 065 , 120 840 2 2 = + = En embolo comienza a levantarse cuando la presión en el equilibrio mecánico se hace igual a 16,001 psia. Entonces la temperatura a la cual el embolo comienza a levantarse se debe determinar con esta propiedad y el volumen en el edo 2 cuando apenas comienza a levantarse que será el mismo del edo 1. con este volumen y la P2 determinamos el estado Ya que en las tablas no aparece 16 psia debemos interpolar los valores de vg y vf para poder determinar el estado termodinámico. Vg= 25,05 vf = 0,0167444 pie3 /lbm Mezcla L+V La temperatura será entonces (luego de interpolarla) Tsat @ 16 psia =T2 = 216,019 ºF T3 = T2 ya que el estado tres es Vapor Saturado. P2 = P3 v3= vg= 25,05 pie3 /lbm ya que es vapor saturado Podemos ahora calcular el trabajo del sistema. b) 3 2 2 1 W W Wtotal + = Î El trabajo 1-2 es isométrico por lo tanto es 0. El trabajo 2-3 es isobárico, a presión constante por lo tanto se calcula por esta formula: ( ) 2 3 3 2 V V P W − = Trabajo a presión constante. 3 3 3 *m v V = = = lbm 0,185 * lbm pie 25,05 3 3 V 4,634 pie3 ( ) 2 2 3 2 3 2 1 lg 144 * 65 , 0 634 , 4 lg 16 pie pu pie pu lbf W − = pie lbf * 136 , 9179 = lbm pie lbm pie v v 3 3 2 1 514 , 3 185 , 0 65 , 0 = = =
  • 28. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 28 1.4.1.1.1.1.1 1.4.1.1.1.1.2 c) 1.4.1.1.1.1.3 1.4.1.1.1.1.4 1.4.1.1.1.1.5 7) Un dispositivo cilindro – émbolo contiene 50 kg de agua a 150 kpa y 25o C. El área de la sección transversal del émbolo es de 0,1 m2 . Se transfiere calor al agua, con lo que parte de ella se evapora y expande. Cuando el volumen alcanza 0,2 m3 el émbolo alcanza un resorte lineal cuya constante de resorte es 100 kN/m. Se transfiere más calor al agua hasta que el émbolo avanza 20 cm más. Determine: a) La presión y temperatura finales. b) El trabajo realizado durante este proceso. c) Represente el proceso en un Diagrama P-V. Agua 3,514 25,05 pie3 /lbm
  • 29. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 29 SOLUCIÓN: Sistema Cerrado esto implica msist es constante. En este tipo de problemas es importante ubicar en los distintos estados el volumen correspondiente ya que luego son datos que nos ayudaran al cálculo del trabajo realizado. Estado 1: Con los datos del problema podemos determinar entonces el estado inicial. Esto es: Estado 2: En esta condición debido a la transferencia de calor el agua se evapora y expande, por lo que el émbolo sube y alcanza el resorte lineal, en este punto el volumen es de 0,2 m3 . Con esto podemos calcular el ν2 con la finalidad de confirmar el estado (L+v) ν2 = V2 / m => 0,2 m3 / 50 kg = 0,004 m3 /Kg. Así νf < ν2 < νg => Mezcla Liquido- Vapor (Edo.2) Es por ello que la gráfica muestra el cambio del estado 1 al estado 2 sobre la linea de presión de 150 Kpa. Estado 3: Para determinar esta condición, en donde ya se ha iniciado la compresión del resorte lineal cuya constante esta dada por el problema, tenemos: F = k.x y Presorte = F/A De los datos X = 20 cm (desplazamiento del émbolo) en la condición final. Fresorte = 100 KN/m * 0,20 m = 20 KN Presorte = 20 KN /0,1 m2 = 200 kPa Entonces: Pfinal (sistema) = Pinic (sist) + Presorte = 150 kPa +200 kPa Pfinal (sistema) = 350 kPa En la tabla de saturación del agua @ 25o C => Psat = 2,3385 Kpa Así: Psist > Psat => Líquido Comprimido (Edo.1) ν1 = νf = 0,001003 m 3 /kg, relacionando con la masa del sistema podemos conocer el volumen en esta condición. ν1 = V1/ m => despejando V1= 0,001003 m3 /kg * 50 kg V1 = 0,05015 m3
  • 30. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 30 T3 = Tsat P3 => T3 = 138,88 o C Para determinar la temperatura debemos calcular exactamente el volumen (V3) comparar con los volúmenes de líquido y vapor saturado correspondiente a una presión de 350 Kpa (Pfinal) Recordemos que: ∆V2-3 = ∆X.A ∆V2-3 = 0,20 m * 0,1 m2 = 0,02m3 V3 = ∆V2-3 + V2 => V3 = 0,22 m3 Así el volumen específico correspondiente será ν3 = V3 / m => 0,22 m3 / 50 kg = 0,0044 m3 /Kg. Comparando con los valores de νf y νg @ 350 KPa νf < ν3 < νg => Continúa como mezcla Liquido- Vapor (Edo.3) Por lo tanto la temperatura final (Edo. 3) será respectivamente la temperatura de saturación correspondiente a una presión de 350Kpa. De la tabla de saturación del agua, T3 = 138,88 o C El trabajo puede calcularse a través de las ecuaciones correspondientes a los procesos llevados a cabo y/o gráficamente, es decir: Proceso 1-2 ) → Proceso a P ctte Proceso 2-3 ) → Proceso Compresión del Resorte P V V3 V2 V1 150 KPa 350 KPa 1 2 3
  • 31. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 31 Partiendo de las ecuaciones: WTotal = W1-2 + W2-3 W1-2 = P.(V2 – V1) = 150 kpa . (0,2 – 0,05015) m3 = 22,50 KJ W2-3 = P.(V3 – V2) + ½ K RESORTE . (X3 – X2) W2-3 = 150 Kpa . (0,22 – 0,20) m3 + ½ . 100 KN . [ (0,20)2 – (0)2 ] m = 5KJ Por lo tanto el trabajo realizado durante el proceso es de: WTotal = 22,50 KJ + 5KJ = 27,50 KJ. Se recomienda practicar el cálculo del trabajo empleando el método gráfico (área bajo la curva), así como la representación del problema en un diagrama P-ν. 1.4.1.1.1.1.6 Problemas Propuestos 1.4.1.1.1.1.7 Tema: Trabajo Termodinámico 1) Conjunto cilindro-pistón contiene gas Butano, C4H10, a 300 °C y 100 kPa, con un volumen de 0.02 m3 . El gas se comprime lentamente en un proceso isotérmico a 300 kPa. a) Demuestre que es razonable suponer que durante este proceso el butano se comprime como gas ideal. b) Determine el trabajo que el butano realiza durante. 2) Un globo se compota de modo que la presión en su interior es proporcional al cuadrado del diámetro. Contiene 2 kg de amoníaco (NH3) a 0 C, con calidad de 60%. Se calientan el globo y el amoniaco, hasta alcanzar una presión final de 600 kPa. Si se considera el amoniaco como sistema determine el trabajo durante el proceso,. 3) Dos kilogramos de agua se encuentran dentro de un conjunto cilindro-pistón, con un pistón de masa despreciable, sobre el cual actúa un resorte lineal y la atmósfera exterior. Inicialmente la fuerza del resorte es cero y P1=100 kPa con un volumen de 0.2 m3 . Cuando el pistón justamente roza los soportes superiores el volumen es de 0.8 m3 y T=600 C. Ahora se agrega calor hasta que la presión alcanza 1.2 Mpa. Encuentre la temperatura final, represente el proceso en diagrama P-V y encuentre el trabajo que realiza el agua durante el proceso. Agu a Resorte
  • 32. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 32 4) Dentro de un cilindro se comprime vapor de amoníaco por acción de una fuerza externa que actúa sobre pistón el amoniaco se encuentra inicialmente a 30 °C y 500 kPa, y la presión final es 1400 kPa. Se han medido los siguientes datos para el proceso: Presión, kPa 500 653 802 945 945 1248 1400 Volumen, Litros 1.25 1.08 0.96 0.84 0.72 0.60 0.50 5) Un cilindro provisto con un émbolo contiene gas propano a 100 kPa y 300 K, con un volumen de 0.2 m3 . Ahora el gas se comprime lentamente de acuerdo con la relación PV1.1 = C, hasta una temperatura final de 340 K. a) ¿ Cuál es la presión final?. b) Justifique el comportamiento de gas ideal. c) ¿Cuánto trabajo realiza el propano durante el proceso Método gráfico para el cálculo del área bajo una curva Paso # 1 Construya la gráfica a ESCALA con los valores x-y suministrados. y x Paso # 2 Divida la curva en “N” franjas de igual anchura( ΔX ). Se recomienda que N ≥ 5. y x y0 y1 y2 y3 y4 yn-1 yn ΔX ΔX ΔX ΔX ΔX ΔX Paso # 3
  • 33. TEMA 3: TRABAJO Y CALOR TERMODINÁMICA. 33 Lea los valores de altura ( yo, y1, y2, y3,... yn ) que se generaron de la división anterior. Estos valores de “y” no necesariamente coinciden con los valores que se utilizaron para graficar en el paso # 1. Paso # 4 Sustituya los valores leídos de la gráfica en cualquiera de las siguientes fórmulas: a) Formula # 1 ( Regla Trapezoidal ) A = ΔX [ 0.5 ( y0 + yn ) + y1 + y2 + y3 + ... yn-1 ] ( Menos exacta) b) Formula # 2 ( Regla de Durand ) A = ΔX [ 0.4 ( y0 + yn ) + 1.1(y1 + yn-1 ) + y2 + y3 + ... yn-2 ] ( Exactitud intermedia ) c) Formula # 3 ( Regla de Simpson - “N” debe ser par) A =(1/ 3) ΔX [ ( y0 + yn ) + 4( y1 + y3 +...yn-1 ) + 2 (y2 + y4 + ... yn-2 ] ( Más exacta ) © by F.B.C ( 20 - 06 - 99 ) REFERENCIAS BIBLIOGRAFICAS • Van Wylen, Gordon J. & Sonntag, Richard E. Fundamentos de Termodinámica. Editorial Limusa. México. 1990. 735 págs. • López Arango, Diego. Termodinámica. Editorial Escuela Colombiana de Ingeniería. Segunda Edición. Colombia. 1999. 425 págs. • Çengel, Yunus A. & Boles, Michael A. Termodinámica. Editorial McGraw-Hill. Cuarta Edición. México. 2003. 829 págs. • Wark, Kenneth & Richards, Donald E. Termodinámica. Editorial McGraw-Hill. Sexta Edición. México. 2004. 1048 págs. • Müller Erich. Termodinámica Básica. Equinoccio. Ediciones de la Universidad Simón Bolívar.