SlideShare una empresa de Scribd logo
1 de 10
Descargar para leer sin conexión
Transistor NPN BC 548 encapsulado TO-92
Rodrigo Ernesto Ulloa Gaete
Estudiante Ingeniería Civil Eléctrica.
Universidad de Concepción.
rodrigoulloa@udec.cl
Abstract- En el presente escrito se presenta, desarrolla y
soluciona, con el respaldo teórico correspondiente, problemas
con respecto al análisis de Data Sheet para un Transistor NPN
BC 548 encapsulado TO-92. Se definen cada una de sus
características y se finaliza con la solución de los problemas
planteados, detallando paso a paso su construcción, y
comprobando con un simulador computacional.

INTRODUCCIÓN
Los transistores son dispositivos electrónicos
semiconductores
utilizados
principalmente
como
amplificadores y como conmutadores. Estos se dividen en dos
tipos: los BJT (Bipolar Junction Transistor) y los FET (Field
Effect Transistor), que se diferencian en sus estructuras y los
principios físicos que controlan la relación voltaje y corriente.
Los BJT, figura 1, tienen terminales denominados
emisor, colector y base, y se componen de tres materiales
semiconductores alternados: dos tipo p y uno tipo n (pnp) o
dos tipo n y uno tipo p (npn). El transistor BJT opera como
un amplificador de corriente controlado por la corriente de
base, con ganancia ß. El BJT tiene tres regiones de operación
que se clasifican según su aplicación.
Los estados de saturación y corte permiten utilizar el
BJT como un conmutador en aplicaciones de electrónica de
potencia o como interruptor de potencia en fuentes de poder
conmutadas de baja frecuencia. La descripción de estas
regiones es la siguiente:
• Región de Corte: Es cuando IB = 0, por lo tanto Ic = IE =
0. En este caso el voltaje VCE es igual al voltaje de
alimentación VCC.
• Región de Saturación: Es cuando IB es lo suficientemente
grande como para provocar que VCE tienda a cero. En este
caso IC es máxima.
El otro estado permite utilizar el BJT como un
amplificador y es el siguiente:
• Región Activa: En esta zona el transistor opera como
amplificador de señales alternas, verificándose la relación de
ganancia de corriente.
Para transistores tipo BJT la amplificación de señal es
lineal, lo que quiere decir que existe una relación directa
entre salida y entrada. Esta relación es la ganancia del
transistor, que es un valor que varía dependiendo del modelo
de transistor a ocupar.
Por otra parte, los transistores FET, figura 2, tienen
terminales denominados Gate (Compuerta), Drain (Drenaje) y
Source (Fuente) y se puede componer de dos formas: una
parte de un semiconductor tipo n y dos regiones con
impurezas tipo p unidas (JFET canal n) o un canal de material

tipo p y las regiones con impurezas son de tipo n (JFET canal
p). El JFET opera como un amplificador de corriente
controlado por voltaje aplicado entre compuerta y fuente. Los
JFET tienen 3 regiones de operación, las cuales se resumen a
continuación.
• Región de Ruptura: Cuando el voltaje entre Drain y
Source (VDS) crece más allá del estrangulamiento, se llega a
un punto donde VDS se vuelve tan grande que ocurre la
ruptura de avalancha del transistor, que destruye el
dispositivo por el incremento abrupto de la corriente ID
• Región de Saturación o Activa: La región entre el voltaje
de estrangulamiento y la ruptura de avalancha se denomina
región activa. Esta región es útil para aplicaciones de
amplificación lineal de señales. En esta región ID se satura y
su valor depende de VGS.
Para transistores tipo FET la amplificación de señal es
no lineal y se ve claramente al graficar la ecuación de
Shockley, que caracteriza a los FET, en especial al JFET,
aunque también al MOSFET tipo decremental. [1]

Fig.1. Representación Transistor NPN.

Fig.2. Representación Transistor FET.

OBJETIVOS
Los objetivos perseguidos en este trabajo son el diseño
de redes de polarización que permitan operar transistores en
modo activo, en especial, un BJT, para ser utilizado como
amplificador. Y además, obtener los parámetros reales de
operación de éstos de modo matemático, a través de la
obtención de las características del Data Sheet del Transistor
para finalmente comprobar dichos resultados con software de
apoyo.

1
Tabla 2
Parámetros de diseño.

DESARROLLO

A. ANÁLISIS DEL DATA SHEET DE UN TRANSISTOR.

Parámetros

Unidad

IC q

2 .00

mA

VCE q

La primera actividad consiste en el análisis de un Data
Sheet, para un Transistor NPN BC 548 encapsulado TO 92,
del cual se determinan las condiciones para una temperatura
de 25°C, a menos que se indique lo contrario. Luego se
resumen en la siguiente tabla los valores más característicos.

Valor
Punto Q

5.00

V

Alimentación y Carga
VCC

Parámetros
VCE
VCE(sat)

VCB
VBE
VBE(sat)
IC

PD
𝛽 DC
𝛽 AC

Valor
VMÁX : 30.0
V(BR)CEO : 30.0
Para: (*)
Ic : 10mA, IB: 0.5mA : 0.09
Ic : 100mA, IB: 5.0mA : 0.2
Ic : 10mA, IB: **
: 0.3
VMÁX.: 30.0
V(BR)CBO : 30.0
VMÁX.: 6.0
V(BR)EBO : 6.0
VBEsat min : 0.55
VBEsat max : 0.70
IC.: 100.0
ICES max. : 15.0
ICES typ. : 0.2
VMÁX.: 625 ± 5
VMÁX: 1.5 ± 0.012
𝛽 DCmin : 110
𝛽 DCmax : 800
𝛽 AC min : 125
𝛽 ACmax : 900

V
V
mADC
nA
nA
mW/°C
W/°C

V
V
V
VDC
V
VDC
V

V

0.55

V

VCE (sat)

0.20

V

𝛽 DC min

Unidad
VDC
V

12.0

VBE min

Tabla 1
Parámetros Transistor NPN BC 548 encapsulado TO 92.

110

Y se comprueba además que se trata de circuitos que
estarán dentro de los límites de operación al determinar el
nivel máximo de disipación: 𝑃 𝐶𝑚𝑎𝑥 = 𝑉 𝐶𝐸𝑞 ∙ 𝐼 𝐶𝑞 = 10 𝑚𝑊

1.

CONFIGURACIÓN EMISOR COMÚN, CON
POLARIZACIÓN FIJA.

A continuación, se proceden a determinar los valores de
las resistencias para posteriormente de determinar la Recta de
Carga del circuito de polarización fija, junto a su punto de
operación ideal.
1° Paso. Se analiza el circuito de polarización fija, mostrado
en la figura 3.

* Corresponde a los valores típicos del VCE (SAT)
** IB es evaluada para IC=11mA y Vce = 1.0v.

Para el cálculo de los valores que determinan la red de
polarización se necesita el 𝛽 del transistor. Al buscar el dicho
valor se obtienen valores dentro de un amplio rango dado por
el Data Sheet. Sin embargo se podría prestar atención a las
curvas presentes en estos últimos, donde es posible estimar
los 𝛽, el cual sería utilizado en el desarrollo del trabajo. Por
supuesto que se espera un comportamiento del transistor fiel a
sus curvas características y a los datos tabulados que, aunque
son estáticos, entregan los rangos de valores válidos.[3]
En el siguiente desarrollo, sólo se toman en cuenta
valores obtenidos y resumidos en la Tabla 1.

Fig. 3. Configuración Emisor Común, con polarización fija.

En el cual, se plantean dos LVK y la relación
correspondiente a la ganancia de corriente, para modelar
completamente el circuito.
1. 𝑉𝑐𝑐 − 𝑅 𝐵 𝐼 𝐵 − 𝑉 𝐵𝐸𝑚𝑖𝑛 = 0

B. DISEÑO AMPLIFICADOR.
Para el desarrollo de las configuraciones dadas, se
consideraron los parámetros, mostrados en la siguiente tabla.

2. 𝑉𝑐𝑐 − 𝑅 𝑐 𝐼 𝑐𝑞 − 𝑉 𝐶𝐸𝑞 = 0
3. 𝛽 𝐷𝐶𝑚𝑖𝑛 =

𝐼 𝐶𝑞
𝐼𝐵

2
2° Paso. Se desarrollan las ecuaciones planteadas y se
obtiene:
Rc =

Vcc − VCEq
ICq

RC =

12v − 5v
= 3.50 kΩ
2.0 mA

IB =

2.0 mA
= 18.18 μA
110

RB =
RB =

condición de excursión máxima simétrica. Evidentemente
esta es una condición de diseño que asegurará el máximo
margen del punto Q a incrementos de cualquier signo de la
intensidad de colector. Sin embargo, hay muchas otras
condiciones de operación del transistor que exige un
desplazamiento de Q en uno u otro sentido. En estos casos la
situación del punto Q estará definida por las diferentes
restricciones de diseño [3].
2.

CONFIGURACIÓN EMISOR COMÚN, CON
ESTABILIZACIÓN DEL EMISOR.

Vcc − VBEmin
IB

11.45 V
= 629.81 kΩ
18.18μA

3° Paso. Se plantea la Recta de Carga del circuito, pero
primero se calcula del Punto de operación Q ideal, que se
determina a partir de la ecuación 2. La cual, se infiere que:



𝑉 𝐶𝐸 𝑚𝑎𝑥 = 𝑉 𝐶𝐶 = 12 𝑉 , 𝑐𝑜𝑛 𝐼 𝑐 = 0
𝑉
𝐼 𝐶 𝑚𝑎𝑥 = 𝐶𝐶 = 3.428 𝑚𝐴 , 𝑐𝑜𝑛 𝑉 𝐶𝐸 = 0
𝑅𝐶

Luego, el punto de operación ideal es:


𝑉 𝐶𝐸𝑞

𝑖𝑑𝑒𝑎𝑙

=

12 𝑉
2

=6 𝑉
Fig. 5. Configuración Emisor Común, Estabilizado en Emisor.



𝐼 𝐶𝑞

𝑖𝑑𝑒𝑎𝑙

=

3.428 𝑚𝐴
2

= 1.71 𝑚𝐴

Finalmente, se compara con el punto de operación dado,
obteniendo la siguiente gráfica:

1° Paso. Para la construcción del diseño del circuito
Estabilizado en emisor, se comienza, al igual que en el
circuito anterior, planteando dos LVK, la relación
correspondiente a la ganancia de corriente y las suposiciones
para este tipo de configuración:
4.
5.

A partir del gráfico, se infiere que el transistor está
operando en la mitad superior de la recta de carga, o sea está
más próximo al estado de saturación si llega a la corriente
máxima, por lo tanto, como solución se propone variar el 𝛽
del circuito para cual el punto de operación alcance la

𝛽 𝐷𝐶𝑚𝑖𝑛 =

7.

Donde:
 QIDEAL: (6.00v , 1.71 mA)
 QDADO: ( 5.00v, 2.00 mA)

𝑉𝑐𝑐 − 𝑅 𝑐 𝐼 𝑐𝑞 − 𝑉 𝐶𝐸𝑞 − 𝑅 𝐸 𝐼 𝐸 = 0

6.

Fig. 4. Recta de Carga del circuito de polarización fija.

𝑉𝑐𝑐 − 𝑅 𝐵 𝐼 𝐵 − 𝑉 𝐵𝐸𝑚𝑖𝑛 − 𝑅 𝐸 𝐼 𝐸 = 0

𝑉𝐸 = 𝑅 𝐸 𝐼 𝐸

8.

𝐼𝐶 ≈ 𝐼𝐸

9.

𝐼 𝐶𝑞
𝐼𝐵

𝑉 𝐶𝐶
4

𝑉𝐸 =

2° Paso. Se desarrollan las ecuaciones planteadas y se
obtiene:
𝑉
12𝑣
𝑉 𝐸 = 𝐶𝐶 =
=3V
4

4

3
𝑉𝐸
3 𝑉
3 𝑉
=
=
= 1.5 𝑘Ω
𝐼𝐸
𝐼𝐶
2.0 𝑚𝐴

𝑅𝐸 =

𝑉𝑐𝑐 − 𝑉 𝐶𝐸𝑞 − 𝑅 𝐸 𝐼 𝐸
𝐼 𝐶𝑞

𝑅𝐸 =

𝑅𝐶 =

Q dado, se obtendrán las mismas rectas de carga. Esto debido
que se consideraron los mismos parámetros de operación para
ambos circuitos.

12𝑣 − 5𝑣 − (2.0𝑚𝐴 ∙ 1.5𝑘Ω)
= 2.0𝑘Ω
2.0 𝑚𝐴
2.0 𝑚𝐴
𝐼𝑏

110 =

𝐼𝐵 =

2.0 𝑚𝐴
= 18.18 𝜇𝐴
110

𝑅𝐵 =

1.

CONFIGURACIÓN COLECTOR COMÚN.

Se desea diseñar un amplificador en configuración
colector común, la cual se utiliza sobre todo para propósitos
de acoplamiento de impedancia, como la mostrada en la
figura 7.

𝑉𝑐𝑐 − 𝑉 𝐵𝐸𝑚𝑖𝑛 − 𝑅 𝐸 𝐼 𝐸
𝐼𝐵

𝑅𝐵 =

C. DISEÑO AMPLIFICADOR 2.

8.45 𝑉
= 464.79 𝑘Ω
18.18𝜇𝐴

3° Paso. Se plantea la Recta de Carga del circuito, junto a su
Punto de operación Q ideal, que se determina a partir de la
ecuación 5. La cual, se infiere que:



𝑉 𝐶𝐸 𝑚𝑎𝑥 = 𝑉 𝐶𝐶 = 12 𝑉 , 𝑐𝑜𝑛 𝐼 𝑐 = 0
𝑉 𝐶𝐶
𝐼 𝐶 𝑚𝑎𝑥 =
= 3.428 𝑚𝐴 , 𝑐𝑜𝑛 𝑉 𝐶𝐸 = 0
𝑅 𝐶 + 𝑅𝑒

Luego, el punto de operación:


𝑉 𝐶𝐸𝑞



𝐼 𝐶𝑞

𝑖𝑑𝑒𝑎𝑙

𝑖𝑑𝑒𝑎𝑙

=
=

12 𝑉

2

Fig. 7. Configuración Colector Común.

=6 𝑉

2
3.428 𝑚𝐴

= 1.71 𝑚𝐴

Finalmente, se compara con el punto de operación dado,
obteniendo la siguiente gráfica:

Fig. 6. Recta de Carga del circuito estabilizado en Emisor.

Donde:
 QIDEAL: (6.00v , 1.71 mA)
 QDADO: ( 5.00v, 2.00 mA)
A partir del gráfico, se infiere que independiente de la
configuración de emisor común que se realice, para un punto

1° Paso. Para la modelación del diseño del circuito Colector
Común, se comienza, simplificando el actual circuito de la
figura 7, el cual se reduce a un equivalente de Thevenin entre
el nodo 1 y 2, con la suposición que 𝐼 𝐵 , es prácticamente
despreciable, por lo tanto, se trata a R1 y R2 como resistencias
en serie, ya que la corriente que pasa por la resistencia 2 será
similar a la corriente que pase por la resistencia 1. Por lo
tanto, se construye un circuito como el mostrado en la figura
8. El cual, se modela planteando dos LVK, la relación
correspondiente a la ganancia de corriente y las suposiciones
para este tipo de configuración, además se considera el
criterio de la Estabilidad Térmica, en la ecuación 14, para
luego, a través de las ecuaciones 16 y 17, volver al circuito
original.
10. 𝑉 𝐵𝐵 − 𝑅 𝐵 𝐼 𝐵 − 𝑉 𝐵𝐸𝑚𝑖𝑛 − 𝑅 𝐸 𝐼 𝐸 = 0
12. 𝑉𝑐𝑐 − 𝑉 𝐶𝐸𝑞 − 𝑅 𝐸 𝐼 𝐸 = 0
𝐼 𝐶𝑞
13. 𝛽 𝐷𝐶𝑚𝑖𝑛 =
𝐼𝐵
14.

𝑅 𝐵 = 0.1 ∙ 𝑅 𝐸 ∙ 𝛽

15. 𝐼 𝐶 ≈ 𝐼 𝐸

4
16.

𝑅2 =

17.

𝑅 𝐵 ∙ 𝑉𝑐𝑐
𝑉 𝐵𝐵

𝑅1 =

Luego, el punto de operación:


𝑅𝐵
1−

𝑉 𝐵𝐵
𝑉𝑐𝑐

𝑉 𝐶𝐸𝑞



𝐼 𝐶𝑞

𝑖𝑑𝑒𝑎𝑙

𝑖𝑑𝑒𝑎𝑙

=
=

12 𝑉

=6 𝑉

2
3.428 𝑚𝐴
2

= 1.71 𝑚𝐴

Finalmente, se compara con el punto de operación dado,
obteniendo la siguiente gráfica:

Fig. 9. Recta de Carga del circuito de colector común.

Fig. 8. Configuración Colector Común, reducido.

Cabe notar que VBB corresponde al VTH, y que RB
corresponde al RTH, entre la tensión de alimentación y las
resistencias R1 y R2, del circuito completo presentado en la
figura 8.
2° Paso. Se desarrollan las ecuaciones planteadas y se
obtiene:
𝑅𝐸 =

𝑉 𝐶𝐶 − 𝑉 𝐶𝐸𝑚𝑖𝑛
12𝑣 − 5𝑣
=
= 3.5 𝑘Ω
𝐼𝐸
2.0 𝑚𝐴

2.0 𝑚𝐴
110 =
𝐼𝑏
2.0 𝑚𝐴
𝐼𝐵 =
= 18.18 𝜇𝐴
110
𝑅 𝐵 = 0.1 ∙ 3.5 𝑘Ω ∙ 110 = 38.5 𝑘Ω

Donde:
 QIDEAL: (6.00v , 1.71 mA)
 QDADO: ( 5.00v, 2.00 mA)
En el gráfico se obtiene lo esperado, y queda demostrado
que, independiente de la configuración que se realice, ya sea
emisor común, base común o colector común, para un punto
Q dado, se obtendrán las mismas rectas de carga. Esto debido
a que se consideran los mismos parámetros para todos los
circuitos.
D. SIMULACIÓN DE LOS DISEÑOS DE AMPLIFICACIÓN.
Cabe mencionar, que para todas las configuraciones se
utilizó el software PSIM®, para simulaciones. Además que el
análisis y diseño de los amplificadores se realizó sólo para la
respuesta DC del circuito y tomando en cuenta los límites de
operación planteados en el Data Sheet. Sin embargo, no se
consideró la respuesta AC del circuito, por lo tanto se espera
que los resultados obtenidos sean líneas rectas en cada gráfica
simulada.

𝑉 𝐵𝐵 = 𝑅 𝐵 𝐼 𝐵 + 𝑉 𝐵𝐸𝑚𝑖𝑛 + 𝑅 𝐸 𝐼 𝐸
𝑉 𝐵𝐵 = 0.7 + 0.55 𝑉 + 7 𝑉 = 8.25V
𝑅 𝐵 ∙ 𝑉𝑐𝑐
462𝑘Ω𝑉
=
= 56.0𝑘Ω
𝑉 𝐵𝐵
8.25𝑉
𝑅𝐵
38.5𝑘Ω
𝑅1 =
𝑉 𝐵𝐵 =
8.25𝑉 = 123.2𝑘Ω
𝑅2 =

1−

𝑉 𝑐𝑐

1−

1.

CONFIGURACIÓN DE EMISOR COMÚN, CON
POLARIZACIÓN FIJA.

Simulando con los parámetros obtenidos anteriormente,
el circuito mostrado en la figura 9, se obtienen las gráficas
mostradas a continuación.

12𝑉

3° Paso. Se plantea la Recta de Carga del circuito, junto a su
Punto de operación Q ideal, que se determina a partir de la
ecuación 2. La cual, se infiere que:



𝑉 𝐶𝐸 𝑚𝑎𝑥 = 𝑉 𝐶𝐶 = 12 𝑉 , 𝑐𝑜𝑛 𝐼 𝑐 = 0
𝑉
𝐼 𝐶 𝑚𝑎𝑥 = 𝐶𝐶 = 3.428 𝑚𝐴 , 𝑐𝑜𝑛 𝑉 𝐶𝐸 = 0
𝑅𝑒

5
Tabla 4
Parámetros del circuito de polarización fija obtenidos.

Parámetros
IB

2.000

mA

VBE

0.550

V

VCE

Obteniendo los resultados mostrados en las figuras 11 y 12.

Unidad
𝜇𝐴

IC

Fig. 10. Circuito de polarización fija, simulado en Psim®.

Valor
18.18

5.000

V

Se aprecia que los valores simulados son bastante
parecidos a los obtenidos matemáticamente. Por lo tanto, se
esperaría que el punto de operación sea similar al calculado
anteriormente diferenciándose en la máxima excursión de
señal, ya que cambiara levemente el punto en el cual
comienza a ocurrir la distorsión y además cambiará la recta
de carga, ya que se mantiene constante la señal de IC , y
disminuye el VCE.

2.

CONFIGURACIÓN DE EMISOR COMÚN, CON
ESTABILIZACIÓN DEL EMISOR.

Simulando con los parámetros obtenidos anteriormente,
el circuito mostrado en la figura 13, se obtienen las gráficas
mostradas a continuación.

Fig. 11. Respuesta de corriente, Circuito de polarización fija, simulado
en Psim®.

Fig. 12. Respuesta de tensión, Circuito de polarización fija, simulado en
Psim®.

Cuyos resultados se resumen a continuación:
Tabla 3
Parámetros del circuito de polarización fija simulados.

Parámetros
IB

Valor
18.18
2.000

mA

VBE

0.550

V

VCE

4.997

Obteniendo los resultados mostrados en las figuras 14 y 15.

Unidad
𝜇𝐴

IC

Fig. 13. Circuito de estabilización del emisor, simulado en Psim®.

V

Comparando con los resultados obtenidos anteriormente.

Fig. 14. Respuesta de corriente, Circuito Estabilizado al emisor,
simulado en Psim®.

6
Fig. 15. Respuesta de tensión, Circuito estabilizado en emisor,
simulado en Psim®.

Cuyos resultados se resumen a continuación:
Fig. 16. Circuito de Colector Común reducido, simulado en Psim®.
Tabla 5
Parámetros del circuito de Estabilizado en emisor, simulados.

Parámetros
IB

Valor
18.14

IC

1.996

mA

IE

2.013

mA

VBE

0.550

V

VCE

4.987

Obteniendo los resultados mostrados en las figuras 17 y 18.

Unidad
𝜇𝐴

V

Comparando con los resultados obtenidos matemáticamente.

Fig. 17. Respuesta de corriente, Circuito colector común reducido,
simulado en Psim®.

Tabla 6
Parámetros del circuito de Estabilizado en emisor, obtenidos.

Parámetros
IB

Valor
18.18

Unidad
𝜇𝐴

IC

2.000

mA

IE

2.000

mA

VBE

0.550

V

VCE

5.000

V

Se aprecia que algunos valores simulados son similares
a los obtenidos matemáticamente con algunas variaciones
debidas a la suposición de que IC = IE, pero respecto a la
configuración de polarización fija, se obtiene un punto de
operación más cercano al ideal, al disminuir la corriente de
colector y mantenerse el VCE, relativamente constante.
Ya que al contener un resistor en el emisor, se mejora el
nivel de estabilidad respecto al de la configuración de
polarización fija, en análisis DC. [1]

3.

Fig. 18. Respuesta de tensión, Circuito colector común reducido,
simulado en Psim®.

En la tabla 7, se resumen los parámetros encontrados,
tanto para las corrientes como las tensiones. A continuación
se simula el circuito original, sin el equivalente de Thevenin.

CONFIGURACIÓN DE COLECTOR COMÚN.

Simulando con los parámetros obtenidos anteriormente
los circuitos mostrados en las figuras 16 y 17, se obtienen las
gráficas mostradas a continuación de las cuales se hace una
comparación.

Fig. 19. Circuito de Colector Común, simulado en Psim®.

7
Obteniendo los resultados mostrados en las figuras 20 y 21.

Tabla 9
Parámetros del circuito de colector común obtenidos.

Parámetros
IB

Unidad
𝜇𝐴

IE

2.000

mA

VBE

0.550

V

VCE

5.000

V

VBB
Fig. 20. Respuesta de corriente, Circuito colector común, simulado en
Psim®.

Valor
18.18

8.249

V

Todos estos datos son determinados, a partir, de un 𝛽 =
110, como el mínimo especificado en el Data Sheet. Luego,
no se aprecia una clara variación en los parámetros del
circuito de colector común reducido, pero sí en los del
colector común no reducido, esto debido a las suposiciones
que se realizaron, en especial, sobre la corriente de base
comentada anteriormente.

E. DETERMINACIÓN A VARIACIONES DE 𝛽 .
Fig. 21. Respuesta de tensión, Circuito colector común, simulado en
Psim®.

En la tabla 8, se resumen los parámetros encontrados.
Tabla 7
Parámetros del colector común reducido, simulados.

Parámetros
IB

Valor
18.03

Unidad
𝜇𝐴

IE

2.002

mA

VBE

0.550

V

VCE

4.994

V

VBB

8.249

V

Tabla 8
Parámetros del colector común, simulados.

Parámetros
IR1

Valor
61.3292

Unidad
𝜇𝐴

IR2

79.3636

𝜇𝐴

IC

1.9855

𝑚𝐴

IE

2.0016

𝑚𝐴

IB

18.035

𝜇𝐴

VBE

0.550
4.99436

V

VBB

7.5564

V

1. CONFIGURACIÓN EMISOR COMÚN, CON
POLARIZACIÓN FIJA.
A continuación, se proceden a determinar los valores de
los puntos de operación máximo y mínimo, para este tipo de
circuito, con las ecuaciones 1, 2 y 3.
18. IB =

VCC − VBE
= 18.18 μA
RB

19. Icq min = 55 ∙ 18.18 μA = 0.999 mA
20. Icq max = 220 ∙ 18.18 μA = 3.999 mA

V

VCE

Para los circuitos analizados en las figuras 3, 5 y 8. Si
estos se pretenden diseñar a gran escala, se determinará la
variación de la corriente del colector a un 𝛽 𝑚𝑖𝑛 = 55 y
𝛽 𝑚𝑎𝑥 = 220. Con los datos de resistencias obtenidos
anteriormente.

Por lo que implica que:
Vceq min = 8.504 V
Vceq max = −1.997 V

Finalmente, se compara con el punto de operación dado,
obteniendo la siguiente gráfica:

Comparando con los resultados obtenidos matemáticamente.

8
24. Icq max = 220 ∙ 14.380 μA = 3.1694 mA
Por lo que implica que:
Vceq

min

= 7.9726 V

Vceq max = 0.9071 V
Finalmente, se compara con el punto de operación dado,
obteniendo la siguiente gráfica:
Fig. 22. Recta de Carga del circuito de polarización fija.

Donde:
 QIDEAL: (6.00v , 1.71 mA)
 QMAX: ( -2.00v, 3.99 mA)
 QMIN: ( 8.50v, 0.99 mA)
A partir del gráfico se aprecia que no es un buen circuito
estabilizador, al obtener un valor negativo del VCE, lo cual
significa que el transistor está en zona de saturación y con un
aumento considerable de IC. Por lo tanto, queda demostrado
que se debe tener mucho cuidado al momento de variar la
relación de ganancia de corriente, como se observa en la
figura 23, del cual se podría haber estimado la ganancia a
utilizar, para el punto Q dado.

Fig. 24. Recta de Carga del circuito estabilizado al emisor.

Donde:
 QIDEAL: (6.00 v , 1.71 mA)
 QMAX: ( 0.9071 v, 3.1694 mA)
 QMIN: ( 7.9726 v, 1.1507 mA)
A partir del gráfico se infiere que se logra la
estabilización al momento de agregar una resistencia en el
emisor, respecto de la configuración de polarización fija, ya
que reduce el nivel de saturación, utilizando el mismo resistor
del colector. Sin embargo, la variación grande de 𝛽, aún sigue
influenciando de gran medida en el punto de operación.

3. CONFIGURACIÓN COLECTOR COMÚN.
A continuación, se proceden a determinar los valores de
los puntos de operación máximo y mínimo, para este tipo de
circuito, con las ecuaciones 4, 5 y 6.
Fig. 23.Curva de Ganancia, Data Sheet.

2. CONFIGURACIÓN EMISOR COMÚN, ESTABILIZADO EN
EMISOR.
A continuación, se proceden a determinar los valores de
los puntos de operación máximo y mínimo, para este tipo de
circuito.
21. IB min =

VCC − VBE
= 20.863 μA
R B − R B ∙ 𝛽 𝑚𝑖𝑛

22. IB max =

VCC − VBE
= 14.380 μA
R B − R B ∙ 𝛽 𝑚𝑎𝑥

23. Icq min = 55 ∙ 20.863 μA = 1.1507 mA

25. Icq min =

7.7 V
= 1.83 mA
38.5
3.5 kΩ +
kΩ
55

26. Icq max =

7.7 V
= 2.09 mA
38.5
3.5 kΩ +
kΩ
220

Por lo que implica que:
Vceq

min

= 5.595 V

Vceq max = 4.668 V
Finalmente, se compara con el punto de operación dado,
obteniendo la siguiente gráfica:

9
Fig. 25. Recta de Carga del circuito de configuración colector común.

Donde:
 QIDEAL: (6.00 v , 1.71 mA)
 QMAX: ( 4.668 v, 2.09 mA)
 QMIN: ( 5.595 v, 1.83 mA)

A partir del gráfico, se observa claramente que éste
circuito corresponde al más estable de los analizados
anteriormente, ya que al hacer variar la ganancia de corriente
𝛽 al doble y al mínimo, el punto de operación se mantiene en
un margen muy pequeño en comparación a los otros,
apreciado en la figura 25.
Ya que cualquier circuito de polarización debe diseñarse
para establecer la operación del dispositivo en cualquiera de
los puntos que están dentro de la región activa, o sea que
estén dentro de los márgenes de la recta de carga y sobretodo
más próximos al punto Q ideal, para tener menor distorsión
en la salida. Aunque el BJT puede estar en polarización para
operar fuera de los límites máximos como se observó en la
figura 22, pero el resultado de tal operación podría ser un
importante recorte con la vida del dispositivo semiconductor.
F.

impedancia de entrada, necesitándose luego otra etapa para la
amplificación de la señal propiamente tal.[4]
Cuando se habla de la máxima excursión de señal, es
acerca del punto en el cual comienza la distorsión. Esto es
debido a que si la excursión de salida es demasiado grande, el
transistor abandona la región de operación lineal y luego se
apreciaría que la señal sale distorsionada.
Otro factor importante a considerar, aunque no fue
necesario para este trabajo, ya que sólo se consideraron las
operaciones en DC. Es la temperatura, ya que afecta en gran
medida a la ganancia de corriente del circuito en cualquier
transistor 𝛽 𝐴𝐶 y la corriente de fuga del transistor 𝐼 𝐶𝐸𝑂 .
Por último, cabe mencionar, que en el análisis por recta
de carga, considerado para cada circuito, representa una
mejor manera para la comprensión de estos dispositivos, al
observar claramente las variaciones de 𝛽 y los niveles de
corte, saturación y de región activa, que definen éste tipo de
transistores.

G. REFERENCIAS.
[1]“Transistores de Unión Bipolar”- Prof. Eduardo Espinosa, Sebastián
Godoy.
[2] “Punto de trabajo de un transistor bipolar”- U. Nacional - año 2003.
[3] ttp://www.unicrom.com/Tut_recta_carga_estatica_transistor_bipolar.asp
[4]”Amplificadores con Transistores de efecto de Campo”Alberto Guillermo Lozano Romero- año 2009.

CONCLUSIONES.

Independiente del 𝛽 utilizado, se ha podido polarizar un
BJT para su funcionamiento en zona activa, para las distintas
configuraciones de emisor común y colector común.
Obteniendo como resultado que el circuito de colector común
a cualquier variaciones de 𝛽, corresponde al más estable, y no
así el de emisor común estabilizado al emisor, como se suele
pensar, ya que ésta configuración, al agregarle una resistencia
en emisor, sólo corresponde a un nivel de mayor
estabilización, pero respecto al de configuración de
polarización fija. Pero como el parámetro 𝛽, es sensible a la
temperatura, sería mejor hacer un circuito que fuera menos
dependiente de él, ya que a veces no está bien definido. Por
esto que el circuito de colector común al ser menos
dependiente de 𝛽, que los de emisor común, presentan
características más estables.
Por otra parte, dadas las ganancias 𝛽, ya comentadas, se
puede indicar que éste tipo de transistor (BJT) corresponde a
un amplificador de corriente. Ya que al hacer variar el 𝛽, se
aprecia el comportamiento particular de cada circuito, al
observar cómo varía el punto de operación. Además ésta
relación de corriente puede ser utilizada para aumentar la

10

Más contenido relacionado

La actualidad más candente

Redesde 2 puertos parámetros Z y parámetros Y
Redesde 2 puertos parámetros Z y parámetros YRedesde 2 puertos parámetros Z y parámetros Y
Redesde 2 puertos parámetros Z y parámetros YIsrael Magaña
 
Electrónica: Instrumentación electrónica moderna y técnicas de medicion por W...
Electrónica: Instrumentación electrónica moderna y técnicas de medicion por W...Electrónica: Instrumentación electrónica moderna y técnicas de medicion por W...
Electrónica: Instrumentación electrónica moderna y técnicas de medicion por W...SANTIAGO PABLO ALBERTO
 
Unidad 3 c3-control /FUNCION DE TRANFERENCIA PULSO
Unidad 3 c3-control /FUNCION DE TRANFERENCIA PULSOUnidad 3 c3-control /FUNCION DE TRANFERENCIA PULSO
Unidad 3 c3-control /FUNCION DE TRANFERENCIA PULSODavinso Gonzalez
 
Sistemas lineales invariantes en el tiempo
Sistemas lineales invariantes en el tiempoSistemas lineales invariantes en el tiempo
Sistemas lineales invariantes en el tiempoMari Colmenares
 
Pract 6 lab elect i diodo zener (como regulador) final 6
Pract 6 lab elect i diodo zener (como regulador) final 6Pract 6 lab elect i diodo zener (como regulador) final 6
Pract 6 lab elect i diodo zener (como regulador) final 6Israel Chala
 
Electromagnetismo: Teoría Electromagnética 7ma Edición William H. Hayt, Jr. J...
Electromagnetismo: Teoría Electromagnética 7ma Edición William H. Hayt, Jr. J...Electromagnetismo: Teoría Electromagnética 7ma Edición William H. Hayt, Jr. J...
Electromagnetismo: Teoría Electromagnética 7ma Edición William H. Hayt, Jr. J...SANTIAGO PABLO ALBERTO
 
Simplificacion+diagramas
Simplificacion+diagramasSimplificacion+diagramas
Simplificacion+diagramasUNEFA
 
Señales Periódicas y Simetría Par e Impar
Señales Periódicas y Simetría Par e ImparSeñales Periódicas y Simetría Par e Impar
Señales Periódicas y Simetría Par e ImparSistemadeEstudiosMed
 
Guía rápida tmr0 e interrupciones
Guía rápida tmr0 e interrupcionesGuía rápida tmr0 e interrupciones
Guía rápida tmr0 e interrupcionesLuis Zurita
 
Lugar geométrico de las raices control 1
Lugar geométrico de las raices control 1Lugar geométrico de las raices control 1
Lugar geométrico de las raices control 1Marvin Pariona
 
Configuración de polarización fija y la auto polarización en el JFET
Configuración de polarización fija y la auto polarización en el JFETConfiguración de polarización fija y la auto polarización en el JFET
Configuración de polarización fija y la auto polarización en el JFETVidalia Montserrat Colunga Ramirez
 
2.1. Análisis Mediante la Recta de Carga para los Diodos
2.1. Análisis Mediante la Recta de Carga para los Diodos2.1. Análisis Mediante la Recta de Carga para los Diodos
2.1. Análisis Mediante la Recta de Carga para los DiodosOthoniel Hernandez Ovando
 

La actualidad más candente (20)

Redesde 2 puertos parámetros Z y parámetros Y
Redesde 2 puertos parámetros Z y parámetros YRedesde 2 puertos parámetros Z y parámetros Y
Redesde 2 puertos parámetros Z y parámetros Y
 
Electrónica: Instrumentación electrónica moderna y técnicas de medicion por W...
Electrónica: Instrumentación electrónica moderna y técnicas de medicion por W...Electrónica: Instrumentación electrónica moderna y técnicas de medicion por W...
Electrónica: Instrumentación electrónica moderna y técnicas de medicion por W...
 
Unidad 3 c3-control /FUNCION DE TRANFERENCIA PULSO
Unidad 3 c3-control /FUNCION DE TRANFERENCIA PULSOUnidad 3 c3-control /FUNCION DE TRANFERENCIA PULSO
Unidad 3 c3-control /FUNCION DE TRANFERENCIA PULSO
 
Circuitos disparo
Circuitos disparoCircuitos disparo
Circuitos disparo
 
Sistemas lineales invariantes en el tiempo
Sistemas lineales invariantes en el tiempoSistemas lineales invariantes en el tiempo
Sistemas lineales invariantes en el tiempo
 
Pract 6 lab elect i diodo zener (como regulador) final 6
Pract 6 lab elect i diodo zener (como regulador) final 6Pract 6 lab elect i diodo zener (como regulador) final 6
Pract 6 lab elect i diodo zener (como regulador) final 6
 
RELOJ DIGITAL TTL 24 horas
RELOJ DIGITAL TTL 24 horas RELOJ DIGITAL TTL 24 horas
RELOJ DIGITAL TTL 24 horas
 
Amplificador Operacional Lab Nº4
Amplificador Operacional Lab Nº4Amplificador Operacional Lab Nº4
Amplificador Operacional Lab Nº4
 
Electromagnetismo: Teoría Electromagnética 7ma Edición William H. Hayt, Jr. J...
Electromagnetismo: Teoría Electromagnética 7ma Edición William H. Hayt, Jr. J...Electromagnetismo: Teoría Electromagnética 7ma Edición William H. Hayt, Jr. J...
Electromagnetismo: Teoría Electromagnética 7ma Edición William H. Hayt, Jr. J...
 
Simplificacion+diagramas
Simplificacion+diagramasSimplificacion+diagramas
Simplificacion+diagramas
 
Señales Periódicas y Simetría Par e Impar
Señales Periódicas y Simetría Par e ImparSeñales Periódicas y Simetría Par e Impar
Señales Periódicas y Simetría Par e Impar
 
2.5. Rectificador de Media Onda
2.5. Rectificador de Media Onda2.5. Rectificador de Media Onda
2.5. Rectificador de Media Onda
 
Guía rápida tmr0 e interrupciones
Guía rápida tmr0 e interrupcionesGuía rápida tmr0 e interrupciones
Guía rápida tmr0 e interrupciones
 
PUT
PUTPUT
PUT
 
Lugar geométrico de las raices control 1
Lugar geométrico de las raices control 1Lugar geométrico de las raices control 1
Lugar geométrico de las raices control 1
 
Scr, triac y diac
Scr, triac y diacScr, triac y diac
Scr, triac y diac
 
Transistor bjt y polarizacion
Transistor bjt y polarizacionTransistor bjt y polarizacion
Transistor bjt y polarizacion
 
Capitulo3 analisis lgr (1)
Capitulo3 analisis lgr (1)Capitulo3 analisis lgr (1)
Capitulo3 analisis lgr (1)
 
Configuración de polarización fija y la auto polarización en el JFET
Configuración de polarización fija y la auto polarización en el JFETConfiguración de polarización fija y la auto polarización en el JFET
Configuración de polarización fija y la auto polarización en el JFET
 
2.1. Análisis Mediante la Recta de Carga para los Diodos
2.1. Análisis Mediante la Recta de Carga para los Diodos2.1. Análisis Mediante la Recta de Carga para los Diodos
2.1. Análisis Mediante la Recta de Carga para los Diodos
 

Destacado (20)

3.6. Limites de Operacion de un Transistor
3.6. Limites de Operacion de un Transistor3.6. Limites de Operacion de un Transistor
3.6. Limites de Operacion de un Transistor
 
Transistores
TransistoresTransistores
Transistores
 
Transistores
TransistoresTransistores
Transistores
 
WEBINAR SOBREVIURE A LA PAPERASSA: Tràmits per crear una empresa de turisme r...
WEBINAR SOBREVIURE A LA PAPERASSA: Tràmits per crear una empresa de turisme r...WEBINAR SOBREVIURE A LA PAPERASSA: Tràmits per crear una empresa de turisme r...
WEBINAR SOBREVIURE A LA PAPERASSA: Tràmits per crear una empresa de turisme r...
 
Transistores
TransistoresTransistores
Transistores
 
Los transistores Por Emerson Cardona y Felipe Mendoza
Los transistores Por Emerson Cardona y Felipe MendozaLos transistores Por Emerson Cardona y Felipe Mendoza
Los transistores Por Emerson Cardona y Felipe Mendoza
 
Monitor CRT
Monitor CRTMonitor CRT
Monitor CRT
 
Electronica basica
Electronica basicaElectronica basica
Electronica basica
 
Transistores
TransistoresTransistores
Transistores
 
Catálogo de semiconductores
Catálogo de semiconductoresCatálogo de semiconductores
Catálogo de semiconductores
 
Tipos de Osciladores
 Tipos de Osciladores Tipos de Osciladores
Tipos de Osciladores
 
1.2. Materiales Semiconductores
1.2. Materiales Semiconductores1.2. Materiales Semiconductores
1.2. Materiales Semiconductores
 
Fundamentos de Materiales Semiconductores
Fundamentos de Materiales SemiconductoresFundamentos de Materiales Semiconductores
Fundamentos de Materiales Semiconductores
 
Presentacion instrumentos de medicion
Presentacion instrumentos de medicionPresentacion instrumentos de medicion
Presentacion instrumentos de medicion
 
Materiales semiconductores
Materiales semiconductoresMateriales semiconductores
Materiales semiconductores
 
Osciladores
Osciladores Osciladores
Osciladores
 
Biofísica del sonido
Biofísica del sonido Biofísica del sonido
Biofísica del sonido
 
Materiales semiconductores
Materiales semiconductoresMateriales semiconductores
Materiales semiconductores
 
Transistores
TransistoresTransistores
Transistores
 
Biofisica de los sentidos
Biofisica de los sentidosBiofisica de los sentidos
Biofisica de los sentidos
 

Similar a Transistor NPN BC 548 encapsulado TO-92

Similar a Transistor NPN BC 548 encapsulado TO-92 (20)

Modelo hibrido ruben gonzalez
Modelo hibrido ruben gonzalezModelo hibrido ruben gonzalez
Modelo hibrido ruben gonzalez
 
Clase12 df(1)
Clase12 df(1)Clase12 df(1)
Clase12 df(1)
 
TRANSISTORES
TRANSISTORESTRANSISTORES
TRANSISTORES
 
Documento inicial
Documento inicialDocumento inicial
Documento inicial
 
TERCER DESAFIO
TERCER DESAFIO  TERCER DESAFIO
TERCER DESAFIO
 
Bueno
BuenoBueno
Bueno
 
Amplificadores TBJ
Amplificadores TBJAmplificadores TBJ
Amplificadores TBJ
 
Diario de campo de electronica
Diario de campo de electronicaDiario de campo de electronica
Diario de campo de electronica
 
tema-5-teoria-amplificadores Bjt-electronica.pdf
tema-5-teoria-amplificadores Bjt-electronica.pdftema-5-teoria-amplificadores Bjt-electronica.pdf
tema-5-teoria-amplificadores Bjt-electronica.pdf
 
Mejorar documento (1)
Mejorar documento (1)Mejorar documento (1)
Mejorar documento (1)
 
Informe #2 de lab de analogica2
Informe #2 de lab de analogica2Informe #2 de lab de analogica2
Informe #2 de lab de analogica2
 
Texto para cambiar
Texto para cambiarTexto para cambiar
Texto para cambiar
 
Mejora de word
Mejora de wordMejora de word
Mejora de word
 
Bjt
BjtBjt
Bjt
 
BJ PRACTICA.docx
BJ PRACTICA.docxBJ PRACTICA.docx
BJ PRACTICA.docx
 
Amplificador
AmplificadorAmplificador
Amplificador
 
Electrónica básica transitores
Electrónica básica transitoresElectrónica básica transitores
Electrónica básica transitores
 
Practica 8 lab elect i curva del bjt final...
Practica 8 lab elect i curva del bjt final...Practica 8 lab elect i curva del bjt final...
Practica 8 lab elect i curva del bjt final...
 
Ejercicio 4 final
Ejercicio 4 finalEjercicio 4 final
Ejercicio 4 final
 
Ejercicio 4 final
Ejercicio 4 finalEjercicio 4 final
Ejercicio 4 final
 

Transistor NPN BC 548 encapsulado TO-92

  • 1. Transistor NPN BC 548 encapsulado TO-92 Rodrigo Ernesto Ulloa Gaete Estudiante Ingeniería Civil Eléctrica. Universidad de Concepción. rodrigoulloa@udec.cl Abstract- En el presente escrito se presenta, desarrolla y soluciona, con el respaldo teórico correspondiente, problemas con respecto al análisis de Data Sheet para un Transistor NPN BC 548 encapsulado TO-92. Se definen cada una de sus características y se finaliza con la solución de los problemas planteados, detallando paso a paso su construcción, y comprobando con un simulador computacional. INTRODUCCIÓN Los transistores son dispositivos electrónicos semiconductores utilizados principalmente como amplificadores y como conmutadores. Estos se dividen en dos tipos: los BJT (Bipolar Junction Transistor) y los FET (Field Effect Transistor), que se diferencian en sus estructuras y los principios físicos que controlan la relación voltaje y corriente. Los BJT, figura 1, tienen terminales denominados emisor, colector y base, y se componen de tres materiales semiconductores alternados: dos tipo p y uno tipo n (pnp) o dos tipo n y uno tipo p (npn). El transistor BJT opera como un amplificador de corriente controlado por la corriente de base, con ganancia ß. El BJT tiene tres regiones de operación que se clasifican según su aplicación. Los estados de saturación y corte permiten utilizar el BJT como un conmutador en aplicaciones de electrónica de potencia o como interruptor de potencia en fuentes de poder conmutadas de baja frecuencia. La descripción de estas regiones es la siguiente: • Región de Corte: Es cuando IB = 0, por lo tanto Ic = IE = 0. En este caso el voltaje VCE es igual al voltaje de alimentación VCC. • Región de Saturación: Es cuando IB es lo suficientemente grande como para provocar que VCE tienda a cero. En este caso IC es máxima. El otro estado permite utilizar el BJT como un amplificador y es el siguiente: • Región Activa: En esta zona el transistor opera como amplificador de señales alternas, verificándose la relación de ganancia de corriente. Para transistores tipo BJT la amplificación de señal es lineal, lo que quiere decir que existe una relación directa entre salida y entrada. Esta relación es la ganancia del transistor, que es un valor que varía dependiendo del modelo de transistor a ocupar. Por otra parte, los transistores FET, figura 2, tienen terminales denominados Gate (Compuerta), Drain (Drenaje) y Source (Fuente) y se puede componer de dos formas: una parte de un semiconductor tipo n y dos regiones con impurezas tipo p unidas (JFET canal n) o un canal de material tipo p y las regiones con impurezas son de tipo n (JFET canal p). El JFET opera como un amplificador de corriente controlado por voltaje aplicado entre compuerta y fuente. Los JFET tienen 3 regiones de operación, las cuales se resumen a continuación. • Región de Ruptura: Cuando el voltaje entre Drain y Source (VDS) crece más allá del estrangulamiento, se llega a un punto donde VDS se vuelve tan grande que ocurre la ruptura de avalancha del transistor, que destruye el dispositivo por el incremento abrupto de la corriente ID • Región de Saturación o Activa: La región entre el voltaje de estrangulamiento y la ruptura de avalancha se denomina región activa. Esta región es útil para aplicaciones de amplificación lineal de señales. En esta región ID se satura y su valor depende de VGS. Para transistores tipo FET la amplificación de señal es no lineal y se ve claramente al graficar la ecuación de Shockley, que caracteriza a los FET, en especial al JFET, aunque también al MOSFET tipo decremental. [1] Fig.1. Representación Transistor NPN. Fig.2. Representación Transistor FET. OBJETIVOS Los objetivos perseguidos en este trabajo son el diseño de redes de polarización que permitan operar transistores en modo activo, en especial, un BJT, para ser utilizado como amplificador. Y además, obtener los parámetros reales de operación de éstos de modo matemático, a través de la obtención de las características del Data Sheet del Transistor para finalmente comprobar dichos resultados con software de apoyo. 1
  • 2. Tabla 2 Parámetros de diseño. DESARROLLO A. ANÁLISIS DEL DATA SHEET DE UN TRANSISTOR. Parámetros Unidad IC q 2 .00 mA VCE q La primera actividad consiste en el análisis de un Data Sheet, para un Transistor NPN BC 548 encapsulado TO 92, del cual se determinan las condiciones para una temperatura de 25°C, a menos que se indique lo contrario. Luego se resumen en la siguiente tabla los valores más característicos. Valor Punto Q 5.00 V Alimentación y Carga VCC Parámetros VCE VCE(sat) VCB VBE VBE(sat) IC PD 𝛽 DC 𝛽 AC Valor VMÁX : 30.0 V(BR)CEO : 30.0 Para: (*) Ic : 10mA, IB: 0.5mA : 0.09 Ic : 100mA, IB: 5.0mA : 0.2 Ic : 10mA, IB: ** : 0.3 VMÁX.: 30.0 V(BR)CBO : 30.0 VMÁX.: 6.0 V(BR)EBO : 6.0 VBEsat min : 0.55 VBEsat max : 0.70 IC.: 100.0 ICES max. : 15.0 ICES typ. : 0.2 VMÁX.: 625 ± 5 VMÁX: 1.5 ± 0.012 𝛽 DCmin : 110 𝛽 DCmax : 800 𝛽 AC min : 125 𝛽 ACmax : 900 V V mADC nA nA mW/°C W/°C V V V VDC V VDC V V 0.55 V VCE (sat) 0.20 V 𝛽 DC min Unidad VDC V 12.0 VBE min Tabla 1 Parámetros Transistor NPN BC 548 encapsulado TO 92. 110 Y se comprueba además que se trata de circuitos que estarán dentro de los límites de operación al determinar el nivel máximo de disipación: 𝑃 𝐶𝑚𝑎𝑥 = 𝑉 𝐶𝐸𝑞 ∙ 𝐼 𝐶𝑞 = 10 𝑚𝑊 1. CONFIGURACIÓN EMISOR COMÚN, CON POLARIZACIÓN FIJA. A continuación, se proceden a determinar los valores de las resistencias para posteriormente de determinar la Recta de Carga del circuito de polarización fija, junto a su punto de operación ideal. 1° Paso. Se analiza el circuito de polarización fija, mostrado en la figura 3. * Corresponde a los valores típicos del VCE (SAT) ** IB es evaluada para IC=11mA y Vce = 1.0v. Para el cálculo de los valores que determinan la red de polarización se necesita el 𝛽 del transistor. Al buscar el dicho valor se obtienen valores dentro de un amplio rango dado por el Data Sheet. Sin embargo se podría prestar atención a las curvas presentes en estos últimos, donde es posible estimar los 𝛽, el cual sería utilizado en el desarrollo del trabajo. Por supuesto que se espera un comportamiento del transistor fiel a sus curvas características y a los datos tabulados que, aunque son estáticos, entregan los rangos de valores válidos.[3] En el siguiente desarrollo, sólo se toman en cuenta valores obtenidos y resumidos en la Tabla 1. Fig. 3. Configuración Emisor Común, con polarización fija. En el cual, se plantean dos LVK y la relación correspondiente a la ganancia de corriente, para modelar completamente el circuito. 1. 𝑉𝑐𝑐 − 𝑅 𝐵 𝐼 𝐵 − 𝑉 𝐵𝐸𝑚𝑖𝑛 = 0 B. DISEÑO AMPLIFICADOR. Para el desarrollo de las configuraciones dadas, se consideraron los parámetros, mostrados en la siguiente tabla. 2. 𝑉𝑐𝑐 − 𝑅 𝑐 𝐼 𝑐𝑞 − 𝑉 𝐶𝐸𝑞 = 0 3. 𝛽 𝐷𝐶𝑚𝑖𝑛 = 𝐼 𝐶𝑞 𝐼𝐵 2
  • 3. 2° Paso. Se desarrollan las ecuaciones planteadas y se obtiene: Rc = Vcc − VCEq ICq RC = 12v − 5v = 3.50 kΩ 2.0 mA IB = 2.0 mA = 18.18 μA 110 RB = RB = condición de excursión máxima simétrica. Evidentemente esta es una condición de diseño que asegurará el máximo margen del punto Q a incrementos de cualquier signo de la intensidad de colector. Sin embargo, hay muchas otras condiciones de operación del transistor que exige un desplazamiento de Q en uno u otro sentido. En estos casos la situación del punto Q estará definida por las diferentes restricciones de diseño [3]. 2. CONFIGURACIÓN EMISOR COMÚN, CON ESTABILIZACIÓN DEL EMISOR. Vcc − VBEmin IB 11.45 V = 629.81 kΩ 18.18μA 3° Paso. Se plantea la Recta de Carga del circuito, pero primero se calcula del Punto de operación Q ideal, que se determina a partir de la ecuación 2. La cual, se infiere que:   𝑉 𝐶𝐸 𝑚𝑎𝑥 = 𝑉 𝐶𝐶 = 12 𝑉 , 𝑐𝑜𝑛 𝐼 𝑐 = 0 𝑉 𝐼 𝐶 𝑚𝑎𝑥 = 𝐶𝐶 = 3.428 𝑚𝐴 , 𝑐𝑜𝑛 𝑉 𝐶𝐸 = 0 𝑅𝐶 Luego, el punto de operación ideal es:  𝑉 𝐶𝐸𝑞 𝑖𝑑𝑒𝑎𝑙 = 12 𝑉 2 =6 𝑉 Fig. 5. Configuración Emisor Común, Estabilizado en Emisor.  𝐼 𝐶𝑞 𝑖𝑑𝑒𝑎𝑙 = 3.428 𝑚𝐴 2 = 1.71 𝑚𝐴 Finalmente, se compara con el punto de operación dado, obteniendo la siguiente gráfica: 1° Paso. Para la construcción del diseño del circuito Estabilizado en emisor, se comienza, al igual que en el circuito anterior, planteando dos LVK, la relación correspondiente a la ganancia de corriente y las suposiciones para este tipo de configuración: 4. 5. A partir del gráfico, se infiere que el transistor está operando en la mitad superior de la recta de carga, o sea está más próximo al estado de saturación si llega a la corriente máxima, por lo tanto, como solución se propone variar el 𝛽 del circuito para cual el punto de operación alcance la 𝛽 𝐷𝐶𝑚𝑖𝑛 = 7. Donde:  QIDEAL: (6.00v , 1.71 mA)  QDADO: ( 5.00v, 2.00 mA) 𝑉𝑐𝑐 − 𝑅 𝑐 𝐼 𝑐𝑞 − 𝑉 𝐶𝐸𝑞 − 𝑅 𝐸 𝐼 𝐸 = 0 6. Fig. 4. Recta de Carga del circuito de polarización fija. 𝑉𝑐𝑐 − 𝑅 𝐵 𝐼 𝐵 − 𝑉 𝐵𝐸𝑚𝑖𝑛 − 𝑅 𝐸 𝐼 𝐸 = 0 𝑉𝐸 = 𝑅 𝐸 𝐼 𝐸 8. 𝐼𝐶 ≈ 𝐼𝐸 9. 𝐼 𝐶𝑞 𝐼𝐵 𝑉 𝐶𝐶 4 𝑉𝐸 = 2° Paso. Se desarrollan las ecuaciones planteadas y se obtiene: 𝑉 12𝑣 𝑉 𝐸 = 𝐶𝐶 = =3V 4 4 3
  • 4. 𝑉𝐸 3 𝑉 3 𝑉 = = = 1.5 𝑘Ω 𝐼𝐸 𝐼𝐶 2.0 𝑚𝐴 𝑅𝐸 = 𝑉𝑐𝑐 − 𝑉 𝐶𝐸𝑞 − 𝑅 𝐸 𝐼 𝐸 𝐼 𝐶𝑞 𝑅𝐸 = 𝑅𝐶 = Q dado, se obtendrán las mismas rectas de carga. Esto debido que se consideraron los mismos parámetros de operación para ambos circuitos. 12𝑣 − 5𝑣 − (2.0𝑚𝐴 ∙ 1.5𝑘Ω) = 2.0𝑘Ω 2.0 𝑚𝐴 2.0 𝑚𝐴 𝐼𝑏 110 = 𝐼𝐵 = 2.0 𝑚𝐴 = 18.18 𝜇𝐴 110 𝑅𝐵 = 1. CONFIGURACIÓN COLECTOR COMÚN. Se desea diseñar un amplificador en configuración colector común, la cual se utiliza sobre todo para propósitos de acoplamiento de impedancia, como la mostrada en la figura 7. 𝑉𝑐𝑐 − 𝑉 𝐵𝐸𝑚𝑖𝑛 − 𝑅 𝐸 𝐼 𝐸 𝐼𝐵 𝑅𝐵 = C. DISEÑO AMPLIFICADOR 2. 8.45 𝑉 = 464.79 𝑘Ω 18.18𝜇𝐴 3° Paso. Se plantea la Recta de Carga del circuito, junto a su Punto de operación Q ideal, que se determina a partir de la ecuación 5. La cual, se infiere que:   𝑉 𝐶𝐸 𝑚𝑎𝑥 = 𝑉 𝐶𝐶 = 12 𝑉 , 𝑐𝑜𝑛 𝐼 𝑐 = 0 𝑉 𝐶𝐶 𝐼 𝐶 𝑚𝑎𝑥 = = 3.428 𝑚𝐴 , 𝑐𝑜𝑛 𝑉 𝐶𝐸 = 0 𝑅 𝐶 + 𝑅𝑒 Luego, el punto de operación:  𝑉 𝐶𝐸𝑞  𝐼 𝐶𝑞 𝑖𝑑𝑒𝑎𝑙 𝑖𝑑𝑒𝑎𝑙 = = 12 𝑉 2 Fig. 7. Configuración Colector Común. =6 𝑉 2 3.428 𝑚𝐴 = 1.71 𝑚𝐴 Finalmente, se compara con el punto de operación dado, obteniendo la siguiente gráfica: Fig. 6. Recta de Carga del circuito estabilizado en Emisor. Donde:  QIDEAL: (6.00v , 1.71 mA)  QDADO: ( 5.00v, 2.00 mA) A partir del gráfico, se infiere que independiente de la configuración de emisor común que se realice, para un punto 1° Paso. Para la modelación del diseño del circuito Colector Común, se comienza, simplificando el actual circuito de la figura 7, el cual se reduce a un equivalente de Thevenin entre el nodo 1 y 2, con la suposición que 𝐼 𝐵 , es prácticamente despreciable, por lo tanto, se trata a R1 y R2 como resistencias en serie, ya que la corriente que pasa por la resistencia 2 será similar a la corriente que pase por la resistencia 1. Por lo tanto, se construye un circuito como el mostrado en la figura 8. El cual, se modela planteando dos LVK, la relación correspondiente a la ganancia de corriente y las suposiciones para este tipo de configuración, además se considera el criterio de la Estabilidad Térmica, en la ecuación 14, para luego, a través de las ecuaciones 16 y 17, volver al circuito original. 10. 𝑉 𝐵𝐵 − 𝑅 𝐵 𝐼 𝐵 − 𝑉 𝐵𝐸𝑚𝑖𝑛 − 𝑅 𝐸 𝐼 𝐸 = 0 12. 𝑉𝑐𝑐 − 𝑉 𝐶𝐸𝑞 − 𝑅 𝐸 𝐼 𝐸 = 0 𝐼 𝐶𝑞 13. 𝛽 𝐷𝐶𝑚𝑖𝑛 = 𝐼𝐵 14. 𝑅 𝐵 = 0.1 ∙ 𝑅 𝐸 ∙ 𝛽 15. 𝐼 𝐶 ≈ 𝐼 𝐸 4
  • 5. 16. 𝑅2 = 17. 𝑅 𝐵 ∙ 𝑉𝑐𝑐 𝑉 𝐵𝐵 𝑅1 = Luego, el punto de operación:  𝑅𝐵 1− 𝑉 𝐵𝐵 𝑉𝑐𝑐 𝑉 𝐶𝐸𝑞  𝐼 𝐶𝑞 𝑖𝑑𝑒𝑎𝑙 𝑖𝑑𝑒𝑎𝑙 = = 12 𝑉 =6 𝑉 2 3.428 𝑚𝐴 2 = 1.71 𝑚𝐴 Finalmente, se compara con el punto de operación dado, obteniendo la siguiente gráfica: Fig. 9. Recta de Carga del circuito de colector común. Fig. 8. Configuración Colector Común, reducido. Cabe notar que VBB corresponde al VTH, y que RB corresponde al RTH, entre la tensión de alimentación y las resistencias R1 y R2, del circuito completo presentado en la figura 8. 2° Paso. Se desarrollan las ecuaciones planteadas y se obtiene: 𝑅𝐸 = 𝑉 𝐶𝐶 − 𝑉 𝐶𝐸𝑚𝑖𝑛 12𝑣 − 5𝑣 = = 3.5 𝑘Ω 𝐼𝐸 2.0 𝑚𝐴 2.0 𝑚𝐴 110 = 𝐼𝑏 2.0 𝑚𝐴 𝐼𝐵 = = 18.18 𝜇𝐴 110 𝑅 𝐵 = 0.1 ∙ 3.5 𝑘Ω ∙ 110 = 38.5 𝑘Ω Donde:  QIDEAL: (6.00v , 1.71 mA)  QDADO: ( 5.00v, 2.00 mA) En el gráfico se obtiene lo esperado, y queda demostrado que, independiente de la configuración que se realice, ya sea emisor común, base común o colector común, para un punto Q dado, se obtendrán las mismas rectas de carga. Esto debido a que se consideran los mismos parámetros para todos los circuitos. D. SIMULACIÓN DE LOS DISEÑOS DE AMPLIFICACIÓN. Cabe mencionar, que para todas las configuraciones se utilizó el software PSIM®, para simulaciones. Además que el análisis y diseño de los amplificadores se realizó sólo para la respuesta DC del circuito y tomando en cuenta los límites de operación planteados en el Data Sheet. Sin embargo, no se consideró la respuesta AC del circuito, por lo tanto se espera que los resultados obtenidos sean líneas rectas en cada gráfica simulada. 𝑉 𝐵𝐵 = 𝑅 𝐵 𝐼 𝐵 + 𝑉 𝐵𝐸𝑚𝑖𝑛 + 𝑅 𝐸 𝐼 𝐸 𝑉 𝐵𝐵 = 0.7 + 0.55 𝑉 + 7 𝑉 = 8.25V 𝑅 𝐵 ∙ 𝑉𝑐𝑐 462𝑘Ω𝑉 = = 56.0𝑘Ω 𝑉 𝐵𝐵 8.25𝑉 𝑅𝐵 38.5𝑘Ω 𝑅1 = 𝑉 𝐵𝐵 = 8.25𝑉 = 123.2𝑘Ω 𝑅2 = 1− 𝑉 𝑐𝑐 1− 1. CONFIGURACIÓN DE EMISOR COMÚN, CON POLARIZACIÓN FIJA. Simulando con los parámetros obtenidos anteriormente, el circuito mostrado en la figura 9, se obtienen las gráficas mostradas a continuación. 12𝑉 3° Paso. Se plantea la Recta de Carga del circuito, junto a su Punto de operación Q ideal, que se determina a partir de la ecuación 2. La cual, se infiere que:   𝑉 𝐶𝐸 𝑚𝑎𝑥 = 𝑉 𝐶𝐶 = 12 𝑉 , 𝑐𝑜𝑛 𝐼 𝑐 = 0 𝑉 𝐼 𝐶 𝑚𝑎𝑥 = 𝐶𝐶 = 3.428 𝑚𝐴 , 𝑐𝑜𝑛 𝑉 𝐶𝐸 = 0 𝑅𝑒 5
  • 6. Tabla 4 Parámetros del circuito de polarización fija obtenidos. Parámetros IB 2.000 mA VBE 0.550 V VCE Obteniendo los resultados mostrados en las figuras 11 y 12. Unidad 𝜇𝐴 IC Fig. 10. Circuito de polarización fija, simulado en Psim®. Valor 18.18 5.000 V Se aprecia que los valores simulados son bastante parecidos a los obtenidos matemáticamente. Por lo tanto, se esperaría que el punto de operación sea similar al calculado anteriormente diferenciándose en la máxima excursión de señal, ya que cambiara levemente el punto en el cual comienza a ocurrir la distorsión y además cambiará la recta de carga, ya que se mantiene constante la señal de IC , y disminuye el VCE. 2. CONFIGURACIÓN DE EMISOR COMÚN, CON ESTABILIZACIÓN DEL EMISOR. Simulando con los parámetros obtenidos anteriormente, el circuito mostrado en la figura 13, se obtienen las gráficas mostradas a continuación. Fig. 11. Respuesta de corriente, Circuito de polarización fija, simulado en Psim®. Fig. 12. Respuesta de tensión, Circuito de polarización fija, simulado en Psim®. Cuyos resultados se resumen a continuación: Tabla 3 Parámetros del circuito de polarización fija simulados. Parámetros IB Valor 18.18 2.000 mA VBE 0.550 V VCE 4.997 Obteniendo los resultados mostrados en las figuras 14 y 15. Unidad 𝜇𝐴 IC Fig. 13. Circuito de estabilización del emisor, simulado en Psim®. V Comparando con los resultados obtenidos anteriormente. Fig. 14. Respuesta de corriente, Circuito Estabilizado al emisor, simulado en Psim®. 6
  • 7. Fig. 15. Respuesta de tensión, Circuito estabilizado en emisor, simulado en Psim®. Cuyos resultados se resumen a continuación: Fig. 16. Circuito de Colector Común reducido, simulado en Psim®. Tabla 5 Parámetros del circuito de Estabilizado en emisor, simulados. Parámetros IB Valor 18.14 IC 1.996 mA IE 2.013 mA VBE 0.550 V VCE 4.987 Obteniendo los resultados mostrados en las figuras 17 y 18. Unidad 𝜇𝐴 V Comparando con los resultados obtenidos matemáticamente. Fig. 17. Respuesta de corriente, Circuito colector común reducido, simulado en Psim®. Tabla 6 Parámetros del circuito de Estabilizado en emisor, obtenidos. Parámetros IB Valor 18.18 Unidad 𝜇𝐴 IC 2.000 mA IE 2.000 mA VBE 0.550 V VCE 5.000 V Se aprecia que algunos valores simulados son similares a los obtenidos matemáticamente con algunas variaciones debidas a la suposición de que IC = IE, pero respecto a la configuración de polarización fija, se obtiene un punto de operación más cercano al ideal, al disminuir la corriente de colector y mantenerse el VCE, relativamente constante. Ya que al contener un resistor en el emisor, se mejora el nivel de estabilidad respecto al de la configuración de polarización fija, en análisis DC. [1] 3. Fig. 18. Respuesta de tensión, Circuito colector común reducido, simulado en Psim®. En la tabla 7, se resumen los parámetros encontrados, tanto para las corrientes como las tensiones. A continuación se simula el circuito original, sin el equivalente de Thevenin. CONFIGURACIÓN DE COLECTOR COMÚN. Simulando con los parámetros obtenidos anteriormente los circuitos mostrados en las figuras 16 y 17, se obtienen las gráficas mostradas a continuación de las cuales se hace una comparación. Fig. 19. Circuito de Colector Común, simulado en Psim®. 7
  • 8. Obteniendo los resultados mostrados en las figuras 20 y 21. Tabla 9 Parámetros del circuito de colector común obtenidos. Parámetros IB Unidad 𝜇𝐴 IE 2.000 mA VBE 0.550 V VCE 5.000 V VBB Fig. 20. Respuesta de corriente, Circuito colector común, simulado en Psim®. Valor 18.18 8.249 V Todos estos datos son determinados, a partir, de un 𝛽 = 110, como el mínimo especificado en el Data Sheet. Luego, no se aprecia una clara variación en los parámetros del circuito de colector común reducido, pero sí en los del colector común no reducido, esto debido a las suposiciones que se realizaron, en especial, sobre la corriente de base comentada anteriormente. E. DETERMINACIÓN A VARIACIONES DE 𝛽 . Fig. 21. Respuesta de tensión, Circuito colector común, simulado en Psim®. En la tabla 8, se resumen los parámetros encontrados. Tabla 7 Parámetros del colector común reducido, simulados. Parámetros IB Valor 18.03 Unidad 𝜇𝐴 IE 2.002 mA VBE 0.550 V VCE 4.994 V VBB 8.249 V Tabla 8 Parámetros del colector común, simulados. Parámetros IR1 Valor 61.3292 Unidad 𝜇𝐴 IR2 79.3636 𝜇𝐴 IC 1.9855 𝑚𝐴 IE 2.0016 𝑚𝐴 IB 18.035 𝜇𝐴 VBE 0.550 4.99436 V VBB 7.5564 V 1. CONFIGURACIÓN EMISOR COMÚN, CON POLARIZACIÓN FIJA. A continuación, se proceden a determinar los valores de los puntos de operación máximo y mínimo, para este tipo de circuito, con las ecuaciones 1, 2 y 3. 18. IB = VCC − VBE = 18.18 μA RB 19. Icq min = 55 ∙ 18.18 μA = 0.999 mA 20. Icq max = 220 ∙ 18.18 μA = 3.999 mA V VCE Para los circuitos analizados en las figuras 3, 5 y 8. Si estos se pretenden diseñar a gran escala, se determinará la variación de la corriente del colector a un 𝛽 𝑚𝑖𝑛 = 55 y 𝛽 𝑚𝑎𝑥 = 220. Con los datos de resistencias obtenidos anteriormente. Por lo que implica que: Vceq min = 8.504 V Vceq max = −1.997 V Finalmente, se compara con el punto de operación dado, obteniendo la siguiente gráfica: Comparando con los resultados obtenidos matemáticamente. 8
  • 9. 24. Icq max = 220 ∙ 14.380 μA = 3.1694 mA Por lo que implica que: Vceq min = 7.9726 V Vceq max = 0.9071 V Finalmente, se compara con el punto de operación dado, obteniendo la siguiente gráfica: Fig. 22. Recta de Carga del circuito de polarización fija. Donde:  QIDEAL: (6.00v , 1.71 mA)  QMAX: ( -2.00v, 3.99 mA)  QMIN: ( 8.50v, 0.99 mA) A partir del gráfico se aprecia que no es un buen circuito estabilizador, al obtener un valor negativo del VCE, lo cual significa que el transistor está en zona de saturación y con un aumento considerable de IC. Por lo tanto, queda demostrado que se debe tener mucho cuidado al momento de variar la relación de ganancia de corriente, como se observa en la figura 23, del cual se podría haber estimado la ganancia a utilizar, para el punto Q dado. Fig. 24. Recta de Carga del circuito estabilizado al emisor. Donde:  QIDEAL: (6.00 v , 1.71 mA)  QMAX: ( 0.9071 v, 3.1694 mA)  QMIN: ( 7.9726 v, 1.1507 mA) A partir del gráfico se infiere que se logra la estabilización al momento de agregar una resistencia en el emisor, respecto de la configuración de polarización fija, ya que reduce el nivel de saturación, utilizando el mismo resistor del colector. Sin embargo, la variación grande de 𝛽, aún sigue influenciando de gran medida en el punto de operación. 3. CONFIGURACIÓN COLECTOR COMÚN. A continuación, se proceden a determinar los valores de los puntos de operación máximo y mínimo, para este tipo de circuito, con las ecuaciones 4, 5 y 6. Fig. 23.Curva de Ganancia, Data Sheet. 2. CONFIGURACIÓN EMISOR COMÚN, ESTABILIZADO EN EMISOR. A continuación, se proceden a determinar los valores de los puntos de operación máximo y mínimo, para este tipo de circuito. 21. IB min = VCC − VBE = 20.863 μA R B − R B ∙ 𝛽 𝑚𝑖𝑛 22. IB max = VCC − VBE = 14.380 μA R B − R B ∙ 𝛽 𝑚𝑎𝑥 23. Icq min = 55 ∙ 20.863 μA = 1.1507 mA 25. Icq min = 7.7 V = 1.83 mA 38.5 3.5 kΩ + kΩ 55 26. Icq max = 7.7 V = 2.09 mA 38.5 3.5 kΩ + kΩ 220 Por lo que implica que: Vceq min = 5.595 V Vceq max = 4.668 V Finalmente, se compara con el punto de operación dado, obteniendo la siguiente gráfica: 9
  • 10. Fig. 25. Recta de Carga del circuito de configuración colector común. Donde:  QIDEAL: (6.00 v , 1.71 mA)  QMAX: ( 4.668 v, 2.09 mA)  QMIN: ( 5.595 v, 1.83 mA) A partir del gráfico, se observa claramente que éste circuito corresponde al más estable de los analizados anteriormente, ya que al hacer variar la ganancia de corriente 𝛽 al doble y al mínimo, el punto de operación se mantiene en un margen muy pequeño en comparación a los otros, apreciado en la figura 25. Ya que cualquier circuito de polarización debe diseñarse para establecer la operación del dispositivo en cualquiera de los puntos que están dentro de la región activa, o sea que estén dentro de los márgenes de la recta de carga y sobretodo más próximos al punto Q ideal, para tener menor distorsión en la salida. Aunque el BJT puede estar en polarización para operar fuera de los límites máximos como se observó en la figura 22, pero el resultado de tal operación podría ser un importante recorte con la vida del dispositivo semiconductor. F. impedancia de entrada, necesitándose luego otra etapa para la amplificación de la señal propiamente tal.[4] Cuando se habla de la máxima excursión de señal, es acerca del punto en el cual comienza la distorsión. Esto es debido a que si la excursión de salida es demasiado grande, el transistor abandona la región de operación lineal y luego se apreciaría que la señal sale distorsionada. Otro factor importante a considerar, aunque no fue necesario para este trabajo, ya que sólo se consideraron las operaciones en DC. Es la temperatura, ya que afecta en gran medida a la ganancia de corriente del circuito en cualquier transistor 𝛽 𝐴𝐶 y la corriente de fuga del transistor 𝐼 𝐶𝐸𝑂 . Por último, cabe mencionar, que en el análisis por recta de carga, considerado para cada circuito, representa una mejor manera para la comprensión de estos dispositivos, al observar claramente las variaciones de 𝛽 y los niveles de corte, saturación y de región activa, que definen éste tipo de transistores. G. REFERENCIAS. [1]“Transistores de Unión Bipolar”- Prof. Eduardo Espinosa, Sebastián Godoy. [2] “Punto de trabajo de un transistor bipolar”- U. Nacional - año 2003. [3] ttp://www.unicrom.com/Tut_recta_carga_estatica_transistor_bipolar.asp [4]”Amplificadores con Transistores de efecto de Campo”Alberto Guillermo Lozano Romero- año 2009. CONCLUSIONES. Independiente del 𝛽 utilizado, se ha podido polarizar un BJT para su funcionamiento en zona activa, para las distintas configuraciones de emisor común y colector común. Obteniendo como resultado que el circuito de colector común a cualquier variaciones de 𝛽, corresponde al más estable, y no así el de emisor común estabilizado al emisor, como se suele pensar, ya que ésta configuración, al agregarle una resistencia en emisor, sólo corresponde a un nivel de mayor estabilización, pero respecto al de configuración de polarización fija. Pero como el parámetro 𝛽, es sensible a la temperatura, sería mejor hacer un circuito que fuera menos dependiente de él, ya que a veces no está bien definido. Por esto que el circuito de colector común al ser menos dependiente de 𝛽, que los de emisor común, presentan características más estables. Por otra parte, dadas las ganancias 𝛽, ya comentadas, se puede indicar que éste tipo de transistor (BJT) corresponde a un amplificador de corriente. Ya que al hacer variar el 𝛽, se aprecia el comportamiento particular de cada circuito, al observar cómo varía el punto de operación. Además ésta relación de corriente puede ser utilizada para aumentar la 10