Problema de Repaso Pedro levanta un peso de 70 Kg.  una distancia de 70 cm, 10 veces en 1 minuto, mientras que Juan levanta 50 Kg. 15 veces la misma distancia en 1 minuto y medio. ¿Quién es más potente y quién realizó mayor trabajo? Justificar la respuesta
Energía
Preguntas ¿Qué es la energía? ¿Cuántos tipos hay? ¿Cómo se transfiere? ¿La energía se “gasta”? ¿Puede utilizarse la energía indefinidamente? ¿Puede construirse un dispositivo que entregue más energía que la que consume?
Definición de energía Es un concepto abstracto Puede considerarse como una medida de la capacidad o potencial de realizar una actividad dinámica.
¿Cuántos tipos de energía existen? Parecen haber muchos tipos: eléctrica, química, radiante, hidráulica, elástica, sonora, étc. Sin embargo, todas ellas pueden clasificarse en el fondo como cinética o potencial.
 
Unidades de energía La unidad de energía en el Sistema Internacional es el Joule (J) Por razones históricas, también se utiliza la caloría, cuya relación es 1 cal = 4,186 J También se utiliza en la vida cotidiana el Kw-hr, ya que podemos utilizar la potencia para el cálculo. Por ejemplo, una lámpara de potencia 100 W consume 0,1 Kw-hr por hora de funcionamiento
Energía Cinética La energía cinética proviene del movimiento del cuerpo, y es igual a:  Ek = ½ mv 2
Energía Potencial Es energía “esperando” para actuar, o “almacenada” Puede adoptar muchas formas: resortes, enlaces La debida a la gravedad es Ep = m * g * h En un resorte es Ep = ½ k x 2,  donde k es una constante para el resorte y x la distancia comprimida
¿Cómo se transfiere la energía? Existen dos maneras de transferir energía: Calor y Trabajo El trabajo ya lo hemos definido, y es igual a W = F * d Es más difícil el concepto de calor
Calor En la vida cotidiana, muchas veces confundimos calor con temperatura Sin embargo, la temperatura es una medida del calor, pero no es igual al flujo de energía!
Temperatura El primer termómetro que se conoce fue inventado por Galileo En un principio no había escalas normalizadas, y cada fabricante tenía una escala propia Así surgieron las escalas Celsius y Farenheit
 
Temperatura Todos se basan en que la temperatura del fluído termométrico es igual a la de la sustancia medida
Temperatura Esto expresa lo que se conoce como “ley cero de la termodinámica”: cuando dos cuerpos están en equillibrio térmico, tienen la misma temperatura
Temperatura "Si dos objetos A y B están por separado en equilibrio térmico con un tercer objeto C, entonces los objetos A y B están en equilibrio térmico entre sí".
El calor y la energía En el siglo XVI, Lavoisier sugirió que el calor era un elemento, al que llamó calórico Este era liberado cuando por ejemplo, se limaba un metal La cantidad de calórico era fija y no podía aumentarse o disminuirse, pasaba de un cuerpo a otro
El calor y la energía Hoy el calor se define en forma distinta La energía que se transfiere desde un objeto caliente a uno frío se llama calor Es el flujo espontáneo de energía de un objeto a otro causado por diferencia de temperaturas
Equivalencia entre calor y trabajo Durante mucho tiempo se consideraron dos cosas distintas Sin embargo, Joule demostró que el trabajo podía convertirse en calor en su totalidad, y descubrió el “equivalente mecánico del calor”
Ley de Conservación de la energía En un sistema aislado, la energía total del mismo se mantiene constante
Consecuencias: 1. No existe ni puede existir  nada capaz de generar energía   2. No existe ni puede existir nada capaz de hacer desaparecer la energía.   3.-Si se observa que la cantidad de energía varía siempre será posible atribuir dicha variación a un intercambio de energía con algún otro cuerpo o con el medio circundante
Energía mecánica En este caso, debemos distinguir entre fuerzas conservativas y no conservativas En el caso de fuerzas conservativas, la energía total del sistema es la suma de las energías cinética y potencial, expresadas como: Et = Ek + Ep = ½ m*v 2  + m*g*h
Ejemplo de cálculo Un carrito está situado en reposo en la cima de una montaña rusa de 30 m de altura. Si el carrito pesa un total de 500 kg., ¿qué velocidad tendrá en la parte más baja de la misma ,  suponiendo que no hay rozamiento? Solución: la energía total del sistema será la suma de las energías cinética y potencial, esto es; Et = Ek + Ep = ½ mv2 + mgh En la cima, cuando la velocidad es cero, la energía total es igual a la energía potencial Et = Ep = m*g*h = 500kg * 9,8 m/s2 * 30 m = 147.000 J En la parte más baja, la energía total será igual a la energía cinética  Et = ½ mv2 = ½ * 500 * v2 Como la energía total se conserva, 250 v2 = 147.000 J V = 24,24 m/s = 87 km/h
Fuerzas no conservativas En el caso de que las fuerzas no sean conservativas (fricción, fuerzas externas), el trabajo realizado es igual al cambio en la energía mecánica W = Et f  - Et i
Ejemplo Un cuerpo de 20 Kg. de masa que se mueve a una velocidad de 2 m/s se somete a una aceleración de 2 m/s2 durante 5 segundos. Calcule el trabajo realizado sobre el cuerpo Como actúa una fuerza externa, la energía mecánica del sistema varía. Al final de los 5 segundos, el cuerpo adquiere una velocidad de 10 m/s. De aquí W = Etf – Eti = ½ * 20 Kg * (12 m/s)2 – ½ * 20 Kg * (2 m/s)2 = ½ * 20 Kg * 10m/s = 100 J
Termodinámica Es el estudio del calor y su transformación en Energía Mecánica
Acondicionadores de Aire ¿Porqué necesitan energía para funcionar? ¿Adonde va la energía eléctrica? ¿Por qué tienen un componente interior y otro exterior? ¿Si colocamos un aire “de ventana” en el medio de la habitación y lo encendemos, qué pasa?
¿Cómo podríamos enfriar una habitación en un día de calor?
1. Hacer fluir el calor a la casa del vecino Es Imposible…. Por la ley cero de la termodinámica
2. Destruir parte de la energía térmica de nuestra casa Tampoco podemos hacerlo, la energía solamente puede transformarse
3. Convertir energía térmica en energía eléctrica
Segunda ley de la termodinámica El principio de la conservación de la energía constituye la primera ley de la termodinámica. Sin embargo, surge otra pregunta: ¿Si la energía no se pierde, entonces porqué tenemos que preocuparnos por no “gastarla”? ¿No podemos seguir reutilizándola?
Segunda ley de la termodinámica La primera ley nos aclaró que la energía no se pierde en un proceso . Sin embargo, cada vez que la energía es transferida o transformada, una parte de ella, y a veces toda, se vuelve menos útil. Finalmente, toda la energía se convierte en “energía de bajo nivel”
Flujo de energía La energía fluye de una temperatura mayor a una menor (flujo de calor) La energía fluye de mayor presión a menor presión (expansión) La energía fluye de un mayor potencial de voltaje a uno menor (corriente eléctrica) La energía fluye de un potencial gravitacional mayor a uno menor (objetos en caída libre)
 
Eficiencia de las máquinas Todo el trabajo puede volverse calor……. ¡Pero no todo el calor puede volverse trabajo! Ejemplo: Máquinas Térmicas (máquinas de vapor, motores de explosión) La mayoría tiene una eficiencia menor a 40%
Máquinas Térmicas Cuando una máquina efectúa trabajo al funcionar entre dos temperaturas Tcaliente y T fría, sólo algo del calor tomado a T caliente se puede convertir en trabajo, y el resto es expulsado a T fría
Toda máquina térmica desperdicia algo de calor, aunque no tenga fricción. En 1824, Sadi Carnot demostró que la máxima fracción de energía consumida que puede convertirse en trabajo útil, aún en condiciones ideales, depende de la diferencia de temperaturas entre el reservorio caliente y el reservorio frío Eficiencia ideal = (Tcaliente – T fría) / Tcaliente

Energía 2010

  • 1.
    Problema de RepasoPedro levanta un peso de 70 Kg. una distancia de 70 cm, 10 veces en 1 minuto, mientras que Juan levanta 50 Kg. 15 veces la misma distancia en 1 minuto y medio. ¿Quién es más potente y quién realizó mayor trabajo? Justificar la respuesta
  • 2.
  • 3.
    Preguntas ¿Qué esla energía? ¿Cuántos tipos hay? ¿Cómo se transfiere? ¿La energía se “gasta”? ¿Puede utilizarse la energía indefinidamente? ¿Puede construirse un dispositivo que entregue más energía que la que consume?
  • 4.
    Definición de energíaEs un concepto abstracto Puede considerarse como una medida de la capacidad o potencial de realizar una actividad dinámica.
  • 5.
    ¿Cuántos tipos deenergía existen? Parecen haber muchos tipos: eléctrica, química, radiante, hidráulica, elástica, sonora, étc. Sin embargo, todas ellas pueden clasificarse en el fondo como cinética o potencial.
  • 6.
  • 7.
    Unidades de energíaLa unidad de energía en el Sistema Internacional es el Joule (J) Por razones históricas, también se utiliza la caloría, cuya relación es 1 cal = 4,186 J También se utiliza en la vida cotidiana el Kw-hr, ya que podemos utilizar la potencia para el cálculo. Por ejemplo, una lámpara de potencia 100 W consume 0,1 Kw-hr por hora de funcionamiento
  • 8.
    Energía Cinética Laenergía cinética proviene del movimiento del cuerpo, y es igual a: Ek = ½ mv 2
  • 9.
    Energía Potencial Esenergía “esperando” para actuar, o “almacenada” Puede adoptar muchas formas: resortes, enlaces La debida a la gravedad es Ep = m * g * h En un resorte es Ep = ½ k x 2, donde k es una constante para el resorte y x la distancia comprimida
  • 10.
    ¿Cómo se transfierela energía? Existen dos maneras de transferir energía: Calor y Trabajo El trabajo ya lo hemos definido, y es igual a W = F * d Es más difícil el concepto de calor
  • 11.
    Calor En lavida cotidiana, muchas veces confundimos calor con temperatura Sin embargo, la temperatura es una medida del calor, pero no es igual al flujo de energía!
  • 12.
    Temperatura El primertermómetro que se conoce fue inventado por Galileo En un principio no había escalas normalizadas, y cada fabricante tenía una escala propia Así surgieron las escalas Celsius y Farenheit
  • 13.
  • 14.
    Temperatura Todos sebasan en que la temperatura del fluído termométrico es igual a la de la sustancia medida
  • 15.
    Temperatura Esto expresalo que se conoce como “ley cero de la termodinámica”: cuando dos cuerpos están en equillibrio térmico, tienen la misma temperatura
  • 16.
    Temperatura "Si dosobjetos A y B están por separado en equilibrio térmico con un tercer objeto C, entonces los objetos A y B están en equilibrio térmico entre sí".
  • 17.
    El calor yla energía En el siglo XVI, Lavoisier sugirió que el calor era un elemento, al que llamó calórico Este era liberado cuando por ejemplo, se limaba un metal La cantidad de calórico era fija y no podía aumentarse o disminuirse, pasaba de un cuerpo a otro
  • 18.
    El calor yla energía Hoy el calor se define en forma distinta La energía que se transfiere desde un objeto caliente a uno frío se llama calor Es el flujo espontáneo de energía de un objeto a otro causado por diferencia de temperaturas
  • 19.
    Equivalencia entre calory trabajo Durante mucho tiempo se consideraron dos cosas distintas Sin embargo, Joule demostró que el trabajo podía convertirse en calor en su totalidad, y descubrió el “equivalente mecánico del calor”
  • 20.
    Ley de Conservaciónde la energía En un sistema aislado, la energía total del mismo se mantiene constante
  • 21.
    Consecuencias: 1. Noexiste ni puede existir nada capaz de generar energía 2. No existe ni puede existir nada capaz de hacer desaparecer la energía. 3.-Si se observa que la cantidad de energía varía siempre será posible atribuir dicha variación a un intercambio de energía con algún otro cuerpo o con el medio circundante
  • 22.
    Energía mecánica Eneste caso, debemos distinguir entre fuerzas conservativas y no conservativas En el caso de fuerzas conservativas, la energía total del sistema es la suma de las energías cinética y potencial, expresadas como: Et = Ek + Ep = ½ m*v 2 + m*g*h
  • 23.
    Ejemplo de cálculoUn carrito está situado en reposo en la cima de una montaña rusa de 30 m de altura. Si el carrito pesa un total de 500 kg., ¿qué velocidad tendrá en la parte más baja de la misma , suponiendo que no hay rozamiento? Solución: la energía total del sistema será la suma de las energías cinética y potencial, esto es; Et = Ek + Ep = ½ mv2 + mgh En la cima, cuando la velocidad es cero, la energía total es igual a la energía potencial Et = Ep = m*g*h = 500kg * 9,8 m/s2 * 30 m = 147.000 J En la parte más baja, la energía total será igual a la energía cinética Et = ½ mv2 = ½ * 500 * v2 Como la energía total se conserva, 250 v2 = 147.000 J V = 24,24 m/s = 87 km/h
  • 24.
    Fuerzas no conservativasEn el caso de que las fuerzas no sean conservativas (fricción, fuerzas externas), el trabajo realizado es igual al cambio en la energía mecánica W = Et f - Et i
  • 25.
    Ejemplo Un cuerpode 20 Kg. de masa que se mueve a una velocidad de 2 m/s se somete a una aceleración de 2 m/s2 durante 5 segundos. Calcule el trabajo realizado sobre el cuerpo Como actúa una fuerza externa, la energía mecánica del sistema varía. Al final de los 5 segundos, el cuerpo adquiere una velocidad de 10 m/s. De aquí W = Etf – Eti = ½ * 20 Kg * (12 m/s)2 – ½ * 20 Kg * (2 m/s)2 = ½ * 20 Kg * 10m/s = 100 J
  • 26.
    Termodinámica Es elestudio del calor y su transformación en Energía Mecánica
  • 27.
    Acondicionadores de Aire¿Porqué necesitan energía para funcionar? ¿Adonde va la energía eléctrica? ¿Por qué tienen un componente interior y otro exterior? ¿Si colocamos un aire “de ventana” en el medio de la habitación y lo encendemos, qué pasa?
  • 28.
    ¿Cómo podríamos enfriaruna habitación en un día de calor?
  • 29.
    1. Hacer fluirel calor a la casa del vecino Es Imposible…. Por la ley cero de la termodinámica
  • 30.
    2. Destruir partede la energía térmica de nuestra casa Tampoco podemos hacerlo, la energía solamente puede transformarse
  • 31.
    3. Convertir energíatérmica en energía eléctrica
  • 32.
    Segunda ley dela termodinámica El principio de la conservación de la energía constituye la primera ley de la termodinámica. Sin embargo, surge otra pregunta: ¿Si la energía no se pierde, entonces porqué tenemos que preocuparnos por no “gastarla”? ¿No podemos seguir reutilizándola?
  • 33.
    Segunda ley dela termodinámica La primera ley nos aclaró que la energía no se pierde en un proceso . Sin embargo, cada vez que la energía es transferida o transformada, una parte de ella, y a veces toda, se vuelve menos útil. Finalmente, toda la energía se convierte en “energía de bajo nivel”
  • 34.
    Flujo de energíaLa energía fluye de una temperatura mayor a una menor (flujo de calor) La energía fluye de mayor presión a menor presión (expansión) La energía fluye de un mayor potencial de voltaje a uno menor (corriente eléctrica) La energía fluye de un potencial gravitacional mayor a uno menor (objetos en caída libre)
  • 35.
  • 36.
    Eficiencia de lasmáquinas Todo el trabajo puede volverse calor……. ¡Pero no todo el calor puede volverse trabajo! Ejemplo: Máquinas Térmicas (máquinas de vapor, motores de explosión) La mayoría tiene una eficiencia menor a 40%
  • 37.
    Máquinas Térmicas Cuandouna máquina efectúa trabajo al funcionar entre dos temperaturas Tcaliente y T fría, sólo algo del calor tomado a T caliente se puede convertir en trabajo, y el resto es expulsado a T fría
  • 38.
    Toda máquina térmicadesperdicia algo de calor, aunque no tenga fricción. En 1824, Sadi Carnot demostró que la máxima fracción de energía consumida que puede convertirse en trabajo útil, aún en condiciones ideales, depende de la diferencia de temperaturas entre el reservorio caliente y el reservorio frío Eficiencia ideal = (Tcaliente – T fría) / Tcaliente