SlideShare una empresa de Scribd logo
1 de 15
ESFUERZO Y
DEFORMACION
REALIZADO POR: DAVID GARCÍA C.I: 8,273,755
INSTITUTO UNIVERSITARIO POLITÉCNICO
SANTIAGO MARIÑO
EXTENSIÓN PORLAMAR
INTRODUCCION
 En la vida cotidiana todo cuerpo en algún momento debe soportar alguna
fuerza aplicada, el estudio de ese esfuerzo y deformación.
 En Ingeniería se seleccionan materiales para diversas aplicaciones y
componentes adecuando las propiedades del material a las condiciones
funcionales requeridas por el componente.
 El primer paso en el proceso de selección requiere el análisis de la aplicación
para determinar las características más importantes que debe poseer el
material; una vez determinadas las propiedades requeridas, se selecciona el
material adecuado usando datos que se encuentran en los manuales y bases
de datos, entonces es ideal conocer acerca del esfuerzo y la deformación que
sufren los diferentes tipos de materiales
ESFUERZO
El esfuerzo se define aquí como la intensidad de las fuerzas componentes
internas distribuidas que resisten un cambio en la forma de un cuerpo. El
esfuerzo se define en términos de fuerza por unidad de área. Existen tres
clases básicas de esfuerzos: tensivo, compresivo y corte. El esfuerzo se
computa sobre la base de las dimensiones del corte transversal de una
pieza antes de la aplicación de la carga, que usualmente se llaman
dimensiones originales.
DEFORMACIÓN
La deformación se define como el cambio de forma de un cuerpo, el cual se debe
al esfuerzo, al cambio térmico, al cambio de humedad o a otras causas. En
conjunción con el esfuerzo directo, la deformación se supone como un cambio
lineal y se mide en unidades de longitud. En los ensayos de torsión se acostumbra
medir la deformación cómo un ángulo de torsión (en ocasiones llamados
detrusión) entre dos secciones especificadas.
Relación entre la deformación unitaria y la deformación
ELASTICIDAD
La elasticidad es aquella propiedad de un material por virtud de la cual las
deformaciones causadas por el esfuerzo desaparecen al removérsele. Algunas
sustancias, tales como los gases poseen únicamente elasticidad volumétrica, pero
los sólidos pueden poseer, además, elasticidad de forma.
Un cuerpo perfectamente elástico se concibe como uno que
recobra completamente su forma y sus dimensiones
originales al retirarse el esfuerzo. No se conocen materiales
que sean perfectamente elásticos a través del rango de
esfuerzos completo hasta la ruptura, aunque algunos
materiales como el acero, parecen ser elásticos en un
considerable rango de esfuerzos.
ELASTICIDAD
Algunos materiales, como el hierro fundido, el concreto, y ciertos metales no
ferrosos, son imperfectamente elásticos aun bajo esfuerzos relativamente
reducidos, pero la magnitud de la deformación permanente bajo carga de poca
duración es pequeña, de tal forma que para efectos prácticos el material se
considera como elástico hasta magnitudes de esfuerzos razonables
RESISTENCIA ÚLTIMA
El término resistencia última está relacionado con el esfuerzo máximo que un
material puede desarrollar. La resistencia a la tensiones el máximo esfuerzo de
tensión que un material es capaz de desarrollar. La figura 17 muestra,
esquemáticamente, las relaciones entre esfuerzo y deformación para un metal
dúctil y un metal no dúctil cargado hasta la ruptura por tensión
PLASTICIDAD
La plasticidad es aquella propiedad que permite al material sobrellevar
deformación permanente sin que sobrevenga la ruptura. Las evidencias de la
acción plástica en los materiales estructurales se llaman deformación, flujo
plástico y creep.
Las deformaciones plásticas son causadas por deslizamientos inducidos por esfuerzos
cortantes.Tales deformaciones pueden ocurrir en todos los materiales sometidos a
grandes esfuerzos, aun a temperaturas normales. Muchos metales muestran un
efecto de endurecimiento por deformación al sobrellevar deformaciones plásticas, ya
que después de que han ocurrido deslizamientos menores por corte no acusan
deformaciones plásticas adicionales hasta que se aplican esfuerzos mayores. No se
presentan cambios apreciables de volumen como resultado de las deformaciones
plásticas.
Deformación plástica y plano de deslizamiento
PLASTICIDAD
La plasticidad es importante en las operaciones de formación, conformación y
extrusión. Algunos metales se conforman en frío, por ejemplo, la laminación
profunda de láminas delgadas.
Muchos metales son conformados en caliente, por
ejemplo, la laminación de perfiles de acero estructural y
el forjado de ciertas partes para máquinas; los metales
como el hierro fundido se moldean en estado de fusión;
la madera se flexiona mejor mientras está seca y
caliente. Los materiales maleables son aquellos que
pueden martillarse para formar láminas delgadas sin
fractura; la maleabilidad depende tanto de la suavidad
como de la plasticidad del material.
RIGIDEZ
La rigidez tiene que ver con la deformabilidad relativa de un material bajo carga. Se le
mide por la velocidad del esfuerzo con respecto a la deformación. Mientras mayor sea el
esfuerzo requerido para producir una deformación dada, más rígido se considera que es el
material.
Bajo un esfuerzo simple dentro del rango proporcional, la razón entre el esfuerzo y la
deformación correspondiente es denominada módulo de elasticidad (E). Existen tres
módulos de elasticidad: el módulo en tensión, el módulo en compresión y el módulo en
cortante. Bajo el esfuerzo de tensión, esta medida de rigidez se denomina módulo de
Young; bajo corte simple la rigidez se denomina módulo de rigidez. En términos del
diagrama de esfuerzo y deformación, el módulo de elasticidad es la pendiente del
diagrama de esfuerzo y deformación en el rango de la proporcionalidad del esfuerzo y la
deformación
CAPACIDAD ENERGÉTICA
La capacidad de un material
para absorber o almacenar
energía se denomina
capacidad energética del
material. La cantidad de
energía absorbida al esforzar
un material hasta el límite
elástico, o la cantidad de
energía que puede
recobrarse cuando el
esfuerzo es liberado del
límite elástico, es llamada la
resiliencia elástica. La
energía almacenada por
unidad de volumen en el
límite elástico es el módulo
de resiliencia.
El módulo de resiliencia es una
medida de lo que puede llamarse
la resistencia a la energía elástica
del material y es de importancia
en la selección de materiales para
servicio, cuando las partes están
sometidas a cargas de energía,
pero cuando los esfuerzos deben
mantenerse dentro del límite
elástico (SEELEY y SMITH, 1956).
ASPECTOS GENERALES DE LA FALLA EN
LOS MATERIALES
La falla puede considerarse
como la alteración del
comportamiento
característico de acuerdo
con alguna propiedad física
básica. Por ejemplo, el es
forzamiento o deformación
de un material más allá del
límite elástico, es decir sin
recuperación de su forma o
longitud original. A nivel
macroescalar la falla puede
concebirse como el grado de
deformación qué sea
excesivo en relación con el
desempeño aceptable de un
miembro de alguna
estructura o máquina.
Esfuerzo presentacion

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

Esfuerzo, Deformacion fatiga y torsion
Esfuerzo, Deformacion fatiga y torsionEsfuerzo, Deformacion fatiga y torsion
Esfuerzo, Deformacion fatiga y torsion
 
Solcap6
Solcap6Solcap6
Solcap6
 
Torsion (3)
Torsion (3)Torsion (3)
Torsion (3)
 
Esfuerzo y Deformacion
Esfuerzo y DeformacionEsfuerzo y Deformacion
Esfuerzo y Deformacion
 
Flexion pura y esfuerzo causado por flexion
Flexion pura y esfuerzo causado por flexionFlexion pura y esfuerzo causado por flexion
Flexion pura y esfuerzo causado por flexion
 
Esfuerzo cortante
Esfuerzo cortanteEsfuerzo cortante
Esfuerzo cortante
 
Deformación
DeformaciónDeformación
Deformación
 
Torsión
TorsiónTorsión
Torsión
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacion
 
Trabajo de esfuerzo y deformacion
Trabajo de esfuerzo y deformacionTrabajo de esfuerzo y deformacion
Trabajo de esfuerzo y deformacion
 
Torsión de tubos de pared delgada.
Torsión de tubos de pared delgada. Torsión de tubos de pared delgada.
Torsión de tubos de pared delgada.
 
Trabajo esfuerzo y_deformacion._terminado
Trabajo esfuerzo y_deformacion._terminadoTrabajo esfuerzo y_deformacion._terminado
Trabajo esfuerzo y_deformacion._terminado
 
ESFUERZO Y FLEXIÓN
ESFUERZO Y FLEXIÓNESFUERZO Y FLEXIÓN
ESFUERZO Y FLEXIÓN
 
Flexion
FlexionFlexion
Flexion
 
Deformacion y esfuerzo
Deformacion y esfuerzoDeformacion y esfuerzo
Deformacion y esfuerzo
 
Efuerzo,deformacion y torsión
Efuerzo,deformacion y torsiónEfuerzo,deformacion y torsión
Efuerzo,deformacion y torsión
 
Esfuerzo, Deformacion, Flexion, torsion
Esfuerzo, Deformacion, Flexion, torsionEsfuerzo, Deformacion, Flexion, torsion
Esfuerzo, Deformacion, Flexion, torsion
 
Capitulo 01-02-2015-1(2)
Capitulo 01-02-2015-1(2)Capitulo 01-02-2015-1(2)
Capitulo 01-02-2015-1(2)
 
Esfuerzo cortante
Esfuerzo cortanteEsfuerzo cortante
Esfuerzo cortante
 
Esfuerzo y deformación (Mecánica de materiales)
Esfuerzo y deformación (Mecánica de materiales)Esfuerzo y deformación (Mecánica de materiales)
Esfuerzo y deformación (Mecánica de materiales)
 

Similar a Esfuerzo presentacion

Esfuerzo y deformacion.pptx6
Esfuerzo y deformacion.pptx6Esfuerzo y deformacion.pptx6
Esfuerzo y deformacion.pptx6Jacky Cedeño
 
Esfuerzo y deformacion albim
Esfuerzo y deformacion albimEsfuerzo y deformacion albim
Esfuerzo y deformacion albimJacky Cedeño
 
EsfuerzopresentacionJhordanf
EsfuerzopresentacionJhordanfEsfuerzopresentacionJhordanf
EsfuerzopresentacionJhordanfjhordanf
 
elemento de maquina
elemento de maquinaelemento de maquina
elemento de maquina3wwanuel
 
Propiedades fisicas de los materiales
Propiedades fisicas de los materialesPropiedades fisicas de los materiales
Propiedades fisicas de los materialesptr-phoo
 
Propiedades fisicas de los materiales
Propiedades fisicas de los materialesPropiedades fisicas de los materiales
Propiedades fisicas de los materialesptr-phoo
 
Resist de materiales
Resist de materialesResist de materiales
Resist de materialesDavid Suarez
 
Ductilidad
DuctilidadDuctilidad
DuctilidadBe To
 
Ductilidad
DuctilidadDuctilidad
DuctilidadBe To
 
Elemento de maquina
Elemento de maquinaElemento de maquina
Elemento de maquinadiegonicol
 
esfuerzo deformacion y torsion
esfuerzo deformacion y torsionesfuerzo deformacion y torsion
esfuerzo deformacion y torsionthemiguelito2015
 
Propiedades mecánicas Lagos-Rosero
Propiedades mecánicas Lagos-RoseroPropiedades mecánicas Lagos-Rosero
Propiedades mecánicas Lagos-RoseroCarlos Rosero
 
Deformación y Esfuerzo.
Deformación y Esfuerzo. Deformación y Esfuerzo.
Deformación y Esfuerzo. Rizcala
 
Deformación y Esfuerzo
Deformación y Esfuerzo Deformación y Esfuerzo
Deformación y Esfuerzo Rizcala
 
Esfuerzo, Deformacion, Fatiga. ELEMENTOS DE MAQUINAS
Esfuerzo, Deformacion, Fatiga. ELEMENTOS DE MAQUINASEsfuerzo, Deformacion, Fatiga. ELEMENTOS DE MAQUINAS
Esfuerzo, Deformacion, Fatiga. ELEMENTOS DE MAQUINASMaria Aular
 
Esfuerzo y Deformacion
Esfuerzo y DeformacionEsfuerzo y Deformacion
Esfuerzo y Deformacionjuanhernandezv
 

Similar a Esfuerzo presentacion (20)

Esfuerzo y deformacion.pptx6
Esfuerzo y deformacion.pptx6Esfuerzo y deformacion.pptx6
Esfuerzo y deformacion.pptx6
 
Esfuerzo y deformacion albim
Esfuerzo y deformacion albimEsfuerzo y deformacion albim
Esfuerzo y deformacion albim
 
EsfuerzopresentacionJhordanf
EsfuerzopresentacionJhordanfEsfuerzopresentacionJhordanf
EsfuerzopresentacionJhordanf
 
elemento de maquina
elemento de maquinaelemento de maquina
elemento de maquina
 
Propiedades fisicas de los materiales
Propiedades fisicas de los materialesPropiedades fisicas de los materiales
Propiedades fisicas de los materiales
 
Propiedades fisicas de los materiales
Propiedades fisicas de los materialesPropiedades fisicas de los materiales
Propiedades fisicas de los materiales
 
Resist de materiales
Resist de materialesResist de materiales
Resist de materiales
 
Ductilidad
DuctilidadDuctilidad
Ductilidad
 
Ductilidad
DuctilidadDuctilidad
Ductilidad
 
Elemento de maquina
Elemento de maquinaElemento de maquina
Elemento de maquina
 
Esfuerzo
EsfuerzoEsfuerzo
Esfuerzo
 
Esfuerzo
EsfuerzoEsfuerzo
Esfuerzo
 
Deformacion y esfuerzo
Deformacion y esfuerzoDeformacion y esfuerzo
Deformacion y esfuerzo
 
esfuerzo deformacion y torsion
esfuerzo deformacion y torsionesfuerzo deformacion y torsion
esfuerzo deformacion y torsion
 
Propiedades mecánicas Lagos-Rosero
Propiedades mecánicas Lagos-RoseroPropiedades mecánicas Lagos-Rosero
Propiedades mecánicas Lagos-Rosero
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacion
 
Deformación y Esfuerzo.
Deformación y Esfuerzo. Deformación y Esfuerzo.
Deformación y Esfuerzo.
 
Deformación y Esfuerzo
Deformación y Esfuerzo Deformación y Esfuerzo
Deformación y Esfuerzo
 
Esfuerzo, Deformacion, Fatiga. ELEMENTOS DE MAQUINAS
Esfuerzo, Deformacion, Fatiga. ELEMENTOS DE MAQUINASEsfuerzo, Deformacion, Fatiga. ELEMENTOS DE MAQUINAS
Esfuerzo, Deformacion, Fatiga. ELEMENTOS DE MAQUINAS
 
Esfuerzo y Deformacion
Esfuerzo y DeformacionEsfuerzo y Deformacion
Esfuerzo y Deformacion
 

Último

Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfPresentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfMirthaFernandez12
 
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...SuannNeyraChongShing
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.ALEJANDROLEONGALICIA
 
Sesion 02 Patentes REGISTRO EN INDECOPI PERU
Sesion 02 Patentes REGISTRO EN INDECOPI PERUSesion 02 Patentes REGISTRO EN INDECOPI PERU
Sesion 02 Patentes REGISTRO EN INDECOPI PERUMarcosAlvarezSalinas
 
Residente de obra y sus funciones que realiza .pdf
Residente de obra y sus funciones que realiza  .pdfResidente de obra y sus funciones que realiza  .pdf
Residente de obra y sus funciones que realiza .pdfevin1703e
 
clases de dinamica ejercicios preuniversitarios.pdf
clases de dinamica ejercicios preuniversitarios.pdfclases de dinamica ejercicios preuniversitarios.pdf
clases de dinamica ejercicios preuniversitarios.pdfDanielaVelasquez553560
 
183045401-Terminal-Terrestre-de-Trujillo.pdf
183045401-Terminal-Terrestre-de-Trujillo.pdf183045401-Terminal-Terrestre-de-Trujillo.pdf
183045401-Terminal-Terrestre-de-Trujillo.pdfEdwinAlexanderSnchez2
 
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Francisco Javier Mora Serrano
 
Caldera Recuperadora de químicos en celulosa tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa  tipos y funcionamientoCaldera Recuperadora de químicos en celulosa  tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa tipos y funcionamientoRobertoAlejandroCast6
 
Manual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfManual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfedsonzav8
 
Calavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdfCalavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdfyoseka196
 
ECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdfECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdfmatepura
 
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptxguillermosantana15
 
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfReporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfMikkaelNicolae
 
CICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresaCICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresaSHERELYNSAMANTHAPALO1
 
Elaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfElaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfKEVINYOICIAQUINOSORI
 
Presentación N° 1 INTRODUCCIÓN Y CONCEPTOS DE GESTIÓN AMBIENTAL.pdf
Presentación N° 1 INTRODUCCIÓN Y CONCEPTOS DE GESTIÓN AMBIENTAL.pdfPresentación N° 1 INTRODUCCIÓN Y CONCEPTOS DE GESTIÓN AMBIENTAL.pdf
Presentación N° 1 INTRODUCCIÓN Y CONCEPTOS DE GESTIÓN AMBIENTAL.pdfMIGUELANGELCONDORIMA4
 
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdfAnthonyTiclia
 
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaSesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaXimenaFallaLecca1
 
Comite Operativo Ciberseguridad 012020.pptx
Comite Operativo Ciberseguridad 012020.pptxComite Operativo Ciberseguridad 012020.pptx
Comite Operativo Ciberseguridad 012020.pptxClaudiaPerez86192
 

Último (20)

Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfPresentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
 
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.
 
Sesion 02 Patentes REGISTRO EN INDECOPI PERU
Sesion 02 Patentes REGISTRO EN INDECOPI PERUSesion 02 Patentes REGISTRO EN INDECOPI PERU
Sesion 02 Patentes REGISTRO EN INDECOPI PERU
 
Residente de obra y sus funciones que realiza .pdf
Residente de obra y sus funciones que realiza  .pdfResidente de obra y sus funciones que realiza  .pdf
Residente de obra y sus funciones que realiza .pdf
 
clases de dinamica ejercicios preuniversitarios.pdf
clases de dinamica ejercicios preuniversitarios.pdfclases de dinamica ejercicios preuniversitarios.pdf
clases de dinamica ejercicios preuniversitarios.pdf
 
183045401-Terminal-Terrestre-de-Trujillo.pdf
183045401-Terminal-Terrestre-de-Trujillo.pdf183045401-Terminal-Terrestre-de-Trujillo.pdf
183045401-Terminal-Terrestre-de-Trujillo.pdf
 
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
 
Caldera Recuperadora de químicos en celulosa tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa  tipos y funcionamientoCaldera Recuperadora de químicos en celulosa  tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa tipos y funcionamiento
 
Manual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfManual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdf
 
Calavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdfCalavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdf
 
ECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdfECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdf
 
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
 
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfReporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
 
CICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresaCICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresa
 
Elaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfElaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdf
 
Presentación N° 1 INTRODUCCIÓN Y CONCEPTOS DE GESTIÓN AMBIENTAL.pdf
Presentación N° 1 INTRODUCCIÓN Y CONCEPTOS DE GESTIÓN AMBIENTAL.pdfPresentación N° 1 INTRODUCCIÓN Y CONCEPTOS DE GESTIÓN AMBIENTAL.pdf
Presentación N° 1 INTRODUCCIÓN Y CONCEPTOS DE GESTIÓN AMBIENTAL.pdf
 
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
 
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaSesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
 
Comite Operativo Ciberseguridad 012020.pptx
Comite Operativo Ciberseguridad 012020.pptxComite Operativo Ciberseguridad 012020.pptx
Comite Operativo Ciberseguridad 012020.pptx
 

Esfuerzo presentacion

  • 1. ESFUERZO Y DEFORMACION REALIZADO POR: DAVID GARCÍA C.I: 8,273,755 INSTITUTO UNIVERSITARIO POLITÉCNICO SANTIAGO MARIÑO EXTENSIÓN PORLAMAR
  • 2. INTRODUCCION  En la vida cotidiana todo cuerpo en algún momento debe soportar alguna fuerza aplicada, el estudio de ese esfuerzo y deformación.  En Ingeniería se seleccionan materiales para diversas aplicaciones y componentes adecuando las propiedades del material a las condiciones funcionales requeridas por el componente.  El primer paso en el proceso de selección requiere el análisis de la aplicación para determinar las características más importantes que debe poseer el material; una vez determinadas las propiedades requeridas, se selecciona el material adecuado usando datos que se encuentran en los manuales y bases de datos, entonces es ideal conocer acerca del esfuerzo y la deformación que sufren los diferentes tipos de materiales
  • 3. ESFUERZO El esfuerzo se define aquí como la intensidad de las fuerzas componentes internas distribuidas que resisten un cambio en la forma de un cuerpo. El esfuerzo se define en términos de fuerza por unidad de área. Existen tres clases básicas de esfuerzos: tensivo, compresivo y corte. El esfuerzo se computa sobre la base de las dimensiones del corte transversal de una pieza antes de la aplicación de la carga, que usualmente se llaman dimensiones originales.
  • 4.
  • 5. DEFORMACIÓN La deformación se define como el cambio de forma de un cuerpo, el cual se debe al esfuerzo, al cambio térmico, al cambio de humedad o a otras causas. En conjunción con el esfuerzo directo, la deformación se supone como un cambio lineal y se mide en unidades de longitud. En los ensayos de torsión se acostumbra medir la deformación cómo un ángulo de torsión (en ocasiones llamados detrusión) entre dos secciones especificadas. Relación entre la deformación unitaria y la deformación
  • 6. ELASTICIDAD La elasticidad es aquella propiedad de un material por virtud de la cual las deformaciones causadas por el esfuerzo desaparecen al removérsele. Algunas sustancias, tales como los gases poseen únicamente elasticidad volumétrica, pero los sólidos pueden poseer, además, elasticidad de forma. Un cuerpo perfectamente elástico se concibe como uno que recobra completamente su forma y sus dimensiones originales al retirarse el esfuerzo. No se conocen materiales que sean perfectamente elásticos a través del rango de esfuerzos completo hasta la ruptura, aunque algunos materiales como el acero, parecen ser elásticos en un considerable rango de esfuerzos.
  • 7. ELASTICIDAD Algunos materiales, como el hierro fundido, el concreto, y ciertos metales no ferrosos, son imperfectamente elásticos aun bajo esfuerzos relativamente reducidos, pero la magnitud de la deformación permanente bajo carga de poca duración es pequeña, de tal forma que para efectos prácticos el material se considera como elástico hasta magnitudes de esfuerzos razonables
  • 8. RESISTENCIA ÚLTIMA El término resistencia última está relacionado con el esfuerzo máximo que un material puede desarrollar. La resistencia a la tensiones el máximo esfuerzo de tensión que un material es capaz de desarrollar. La figura 17 muestra, esquemáticamente, las relaciones entre esfuerzo y deformación para un metal dúctil y un metal no dúctil cargado hasta la ruptura por tensión
  • 9. PLASTICIDAD La plasticidad es aquella propiedad que permite al material sobrellevar deformación permanente sin que sobrevenga la ruptura. Las evidencias de la acción plástica en los materiales estructurales se llaman deformación, flujo plástico y creep. Las deformaciones plásticas son causadas por deslizamientos inducidos por esfuerzos cortantes.Tales deformaciones pueden ocurrir en todos los materiales sometidos a grandes esfuerzos, aun a temperaturas normales. Muchos metales muestran un efecto de endurecimiento por deformación al sobrellevar deformaciones plásticas, ya que después de que han ocurrido deslizamientos menores por corte no acusan deformaciones plásticas adicionales hasta que se aplican esfuerzos mayores. No se presentan cambios apreciables de volumen como resultado de las deformaciones plásticas.
  • 10. Deformación plástica y plano de deslizamiento
  • 11. PLASTICIDAD La plasticidad es importante en las operaciones de formación, conformación y extrusión. Algunos metales se conforman en frío, por ejemplo, la laminación profunda de láminas delgadas. Muchos metales son conformados en caliente, por ejemplo, la laminación de perfiles de acero estructural y el forjado de ciertas partes para máquinas; los metales como el hierro fundido se moldean en estado de fusión; la madera se flexiona mejor mientras está seca y caliente. Los materiales maleables son aquellos que pueden martillarse para formar láminas delgadas sin fractura; la maleabilidad depende tanto de la suavidad como de la plasticidad del material.
  • 12. RIGIDEZ La rigidez tiene que ver con la deformabilidad relativa de un material bajo carga. Se le mide por la velocidad del esfuerzo con respecto a la deformación. Mientras mayor sea el esfuerzo requerido para producir una deformación dada, más rígido se considera que es el material. Bajo un esfuerzo simple dentro del rango proporcional, la razón entre el esfuerzo y la deformación correspondiente es denominada módulo de elasticidad (E). Existen tres módulos de elasticidad: el módulo en tensión, el módulo en compresión y el módulo en cortante. Bajo el esfuerzo de tensión, esta medida de rigidez se denomina módulo de Young; bajo corte simple la rigidez se denomina módulo de rigidez. En términos del diagrama de esfuerzo y deformación, el módulo de elasticidad es la pendiente del diagrama de esfuerzo y deformación en el rango de la proporcionalidad del esfuerzo y la deformación
  • 13. CAPACIDAD ENERGÉTICA La capacidad de un material para absorber o almacenar energía se denomina capacidad energética del material. La cantidad de energía absorbida al esforzar un material hasta el límite elástico, o la cantidad de energía que puede recobrarse cuando el esfuerzo es liberado del límite elástico, es llamada la resiliencia elástica. La energía almacenada por unidad de volumen en el límite elástico es el módulo de resiliencia. El módulo de resiliencia es una medida de lo que puede llamarse la resistencia a la energía elástica del material y es de importancia en la selección de materiales para servicio, cuando las partes están sometidas a cargas de energía, pero cuando los esfuerzos deben mantenerse dentro del límite elástico (SEELEY y SMITH, 1956).
  • 14. ASPECTOS GENERALES DE LA FALLA EN LOS MATERIALES La falla puede considerarse como la alteración del comportamiento característico de acuerdo con alguna propiedad física básica. Por ejemplo, el es forzamiento o deformación de un material más allá del límite elástico, es decir sin recuperación de su forma o longitud original. A nivel macroescalar la falla puede concebirse como el grado de deformación qué sea excesivo en relación con el desempeño aceptable de un miembro de alguna estructura o máquina.