SlideShare una empresa de Scribd logo
1 de 10
INSTITUTO UNIVERSITARIO POLITÉCNICO
“SANTIAGO MARIÑO”
EXTENSION PORLAMAR
REALIZADO POR:
MANUEL RAMOS C.I: 17.243.711
Uno de los temas más importantes de la Resistencia de Materiales,
es la deformación y esfuerzo Y Torsión, aspectos que serán
definidos para el mejor entendimiento.
El esfuerzo y deformación se tratarán a continuación con énfasis en
aplicaciones, solución de problemas y específicamente se basa en
conceptos básicos y determinación de los esfuerzos normales y
cortantes, para luego determinar sus valores máximos y finalmente
el cálculo de las correspondientes deformaciones
INTRODUCCION

ESFUERZO Y DEFORMACIÓN DEBIDO A CARGAS EXTERNAS,
ESFUERZOS MECÁNICOS, TÉRMICOS Y LEY DE HOOKE.
Las propiedades mecánicas de la materia
son la elasticidad, la compresión y la
tensión.
Definimos a un cuerpo elástico
como aquel que recobra su tamaño y forma original cuando deja de actuar
sobre él una fuerza deformante. Las bandas de hule, las pelotas de golf, los
trampolines, las camas elásticas, las pelotas de fútbol y los resortes son
ejemplos comunes de cuerpos elásticos. Para todos los cuerpos elásticos,
conviene establecer relaciones de causa y efecto entre la deformación y las
fuerzas deformantes

Robert Hooke fue el primero en establecer esta relación por medio de la
invención de un volante para resorte para reloj. En términos generales,
Hooke descubrió que cuando una fuerza F, actúa sobre un resorte,
produce en él un alargamiento s que es directamente proporcional a la
magnitud de la fuerza aplicada. La Ley de Hooke se representa como:
F = ks.
La constante de proporcionalidad k varía mucho de acuerdo con el tipo
de material y recibe el nombre de constante del resorte. Para el ejemplo
anterior, la constante del resorte es de:
k = F/s = 20 N/cm
La Ley de Hooke no se limita al caso de los resortes en espiral; de hecho,
se aplica a la deformación de todos los cuerpos elásticos. Para que la Ley
pueda aplicar de un modo más general, es conveniente definir los
términos esfuerzo y deformación

La eficacia de cualquier fuerza que produce un esfuerzo depende en gran
medida del área sobre la que se distribuye la fuerza, por ello una definición
más completa del esfuerzo se puede enunciar de la siguiente forma:
Esfuerzo: es la
razón de una fuerza
aplicada entre el
área sobre el cual
actúa, por ejemplo
Newtons/m2, o
libras/ft2.
Deformación: es el cambio relativo en las
dimensiones o en la forma de un cuerpo como
resultado de la aplicación de un esfuerzo
El límite elástico es el esfuerzo máximo
que puede sufrir un cuerpo sin que la
deformación sea permanente.
La Ley de Hooke, establece:
Siempre que no se exceda el límite elástico, una deformación elástica es
directamente proporcional a la magnitud de la fuerza aplicada por unidad de
área (esfuerzo).
Si llamamos a la constante de proporcionalidad el módulo de elasticidad,
podemos escribir la Ley de Hooke en su forma más general:
Módulo de elasticidad = esfuerzo
Deformación

El esfuerzo de volumen, F/A, es la fuerza
normal por unidad de área, mientras que
la deformación de volumen - ∆V/V es el
cambio de volumen por unidad de
volumen
El esfuerzo cortante se define como la
relación de la fuerza tangencial F entre el
área A sobre la que se aplica.
La deformación cortante se define como el
ángulo (en radianes), que se conoce como
ángulo de corte.
Torsión: Entendemos por Torsión la deformación de un eje, producto de la acción
de dos fuerzas paralelas con direcciones contrarias en sus extremos. Es la
solicitación que se presenta cuando se aplica un momento sobre el eje longitudinal
de un elemento constructivo o prisma mecánico, como pueden ser ejes o, en
general, elementos donde una dimensión predomina sobre las otras dos, aunque
es posible encontrarla en situaciones diversas. La torsión se caracteriza
geométricamente porque cualquier curva paralela al eje de la

El torque o par es el nombre que se da a las fuerzas de torsión. Para
que la torsión exista se requieren 2 fuerzas (par), que se ejercen en
sentido opuesto. El valor del par depende del radio de acción de la
fuerza (brazo). La mayor o menor torsión que genera una fuerza
depende de la distancia al punto de pivote. A mayor brazo mayor par.
El torque es la fuerza aplicada en una palanca para producir un
movimiento de rotación en un cuerpo. Por ejemplo, la fuerza que
haces sobre el destornillador para ajustar un tornillo multiplicada por
el brazo de palanca que es el radio del destornillador, da como
resultado el torque aplicado al tornillo.
Los resortes de torsión están diseñados para ofrecer
resistencia a la torsión externa. La torsión se refiere a la
acción torsional de las espiras. Si bien el alambre en sí
está sujeto a esfuerzos de plegado en vez de esfuerzos
torsionales, los resortes de torsión operan a su máximo
cuando se apoyan sobre una vara o tubo.

Este tipo de resorte se compone más comúnmente de alambre
redondo, puede ser de enrollado cerrado o abierto y por lo general
está diseñado para enroscarse. Los extremos pueden estar doblados,
torcidos, enganchados o en argolla de acuerdo con la aplicación.
DEFORMACIONES EN ÁRBOLES DE SECCIÓN CIRCULAR
Cuando un eje es circular, las deformaciones que estos sufren al
aplicar un par de torsión T, cumplen con la siguiente propiedad:
cuando un eje circular se somete a torsión, todas sus secciones
transversales permanecen planas y sin distorsión, es decir,
aunque sus distintas secciones transversales a lo largo del eje
giran en diferentes cada sección transversal gira como un placa
sólida rígida.
Esta propiedad es característica de cualquier eje circular, sólidos o
huecos. Esta propiedad es posible ya que los ejes circulares son
asimétricos, es decir, su apariencia es la misma si se ve desde una
posición fija y se gira alrededor de su eje por un ángulo aleatorio

POTENCIA
ENSAYO DE TORSIÓN
El ensayo de torsión consiste en someter una probeta de sección redonda a
un momento torsión gradualmente creciente hasta que se produzca la falla
en la misma.
Los materiales sufren de deformación y existe un esfuerzo, entonces se puede
decir en conclusión que el esfuerzo es la razón de una fuerza aplicada entre el
área sobre el cual actúa, por ejemplo Newtons/m2, o libras/ft2, las fuerzas
internas de un elemento están ubicadas dentro del material por lo que se
distribuyen en toda el área; justamente se denomina esfuerzo a la fuerza por
unidad de área, la cual se denota con la letra griega sigma (σ) y es un
parámetro que permite comparar la resistencia de dos materiales, ya que
establece una base común de referencia y la deformación es el cambio relativo
en las dimensiones o en la forma de un cuerpo como resultado de la
aplicación de un esfuerzo.
La resistencia del material no es el único parámetro que debe utilizarse al
diseñar o analizar una estructura; controlar las deformaciones para que la
estructura cumpla con el propósito para el cual se diseñó tiene la misma o
mayor importancia, así como tener en cuenta los conceptos como Torsión,
torque, par de torsion.
CONCLUSIÓN

Más contenido relacionado

La actualidad más candente

Esfuerzo, deformacion, flexion, fatiga y torsion
Esfuerzo, deformacion, flexion, fatiga y torsionEsfuerzo, deformacion, flexion, fatiga y torsion
Esfuerzo, deformacion, flexion, fatiga y torsionMigueZR
 
Esfuerzo y deformación (Mecánica de materiales)
Esfuerzo y deformación (Mecánica de materiales)Esfuerzo y deformación (Mecánica de materiales)
Esfuerzo y deformación (Mecánica de materiales)Omar Torres Arenas
 
Esfuerzo resistencia de materiales
Esfuerzo resistencia de materialesEsfuerzo resistencia de materiales
Esfuerzo resistencia de materialesjuandiegorubioaldave
 
Esfuerzo normal y cortante
Esfuerzo normal y cortanteEsfuerzo normal y cortante
Esfuerzo normal y cortanteGaspar Albiter R
 
Problemas resueltos resistencia(1)
Problemas resueltos resistencia(1)Problemas resueltos resistencia(1)
Problemas resueltos resistencia(1)1clemente1
 
Esfuerzo, Flexión y Torsion
Esfuerzo, Flexión y TorsionEsfuerzo, Flexión y Torsion
Esfuerzo, Flexión y Torsionenmanuelacaro
 
Esfuerzo normal y tang
Esfuerzo normal y tangEsfuerzo normal y tang
Esfuerzo normal y tangARNSZ
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacionphuarac
 
Esfuerzo y deformación
Esfuerzo y deformación Esfuerzo y deformación
Esfuerzo y deformación wilmen Ramos
 
Ensayo materiales Destructivos y no destructivos
Ensayo materiales Destructivos y no destructivosEnsayo materiales Destructivos y no destructivos
Ensayo materiales Destructivos y no destructivoscharlis tareas
 
Deformaciones y esfuerzos en secciones no circulares
Deformaciones y esfuerzos en secciones no circularesDeformaciones y esfuerzos en secciones no circulares
Deformaciones y esfuerzos en secciones no circularesPerla Berrones
 
Tipos de apoyos y cálculo de reacciones
Tipos de apoyos y cálculo de reaccionesTipos de apoyos y cálculo de reacciones
Tipos de apoyos y cálculo de reaccionesUNEFM
 

La actualidad más candente (20)

Esfuerzo, deformacion, flexion, fatiga y torsion
Esfuerzo, deformacion, flexion, fatiga y torsionEsfuerzo, deformacion, flexion, fatiga y torsion
Esfuerzo, deformacion, flexion, fatiga y torsion
 
Esfuerzo cortante
Esfuerzo cortanteEsfuerzo cortante
Esfuerzo cortante
 
Esfuerzo y deformación (Mecánica de materiales)
Esfuerzo y deformación (Mecánica de materiales)Esfuerzo y deformación (Mecánica de materiales)
Esfuerzo y deformación (Mecánica de materiales)
 
Principio de Saint Venant
Principio de Saint VenantPrincipio de Saint Venant
Principio de Saint Venant
 
Esfuerzo resistencia de materiales
Esfuerzo resistencia de materialesEsfuerzo resistencia de materiales
Esfuerzo resistencia de materiales
 
Esfuerzo normal y cortante
Esfuerzo normal y cortanteEsfuerzo normal y cortante
Esfuerzo normal y cortante
 
Problemas resueltos resistencia(1)
Problemas resueltos resistencia(1)Problemas resueltos resistencia(1)
Problemas resueltos resistencia(1)
 
Esfuerzo, Flexión y Torsion
Esfuerzo, Flexión y TorsionEsfuerzo, Flexión y Torsion
Esfuerzo, Flexión y Torsion
 
Esfuerzo normal y tang
Esfuerzo normal y tangEsfuerzo normal y tang
Esfuerzo normal y tang
 
Esfuerzos y deformaciones
Esfuerzos y deformacionesEsfuerzos y deformaciones
Esfuerzos y deformaciones
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacion
 
Esfuerzo y deformación
Esfuerzo y deformación Esfuerzo y deformación
Esfuerzo y deformación
 
Estudio de esfuerzos y deformaciones mediante el circulo de mohr - Resistenci...
Estudio de esfuerzos y deformaciones mediante el circulo de mohr - Resistenci...Estudio de esfuerzos y deformaciones mediante el circulo de mohr - Resistenci...
Estudio de esfuerzos y deformaciones mediante el circulo de mohr - Resistenci...
 
Ensayo materiales Destructivos y no destructivos
Ensayo materiales Destructivos y no destructivosEnsayo materiales Destructivos y no destructivos
Ensayo materiales Destructivos y no destructivos
 
Torsión
TorsiónTorsión
Torsión
 
Esfuerzo y Deformacion
Esfuerzo y DeformacionEsfuerzo y Deformacion
Esfuerzo y Deformacion
 
Esfuerzos cortantes grupo 6
Esfuerzos cortantes grupo 6Esfuerzos cortantes grupo 6
Esfuerzos cortantes grupo 6
 
Deformaciones y esfuerzos en secciones no circulares
Deformaciones y esfuerzos en secciones no circularesDeformaciones y esfuerzos en secciones no circulares
Deformaciones y esfuerzos en secciones no circulares
 
Tipos de apoyos y cálculo de reacciones
Tipos de apoyos y cálculo de reaccionesTipos de apoyos y cálculo de reacciones
Tipos de apoyos y cálculo de reacciones
 
Esfuerzo plano
Esfuerzo planoEsfuerzo plano
Esfuerzo plano
 

Destacado

Esfuerzos introduccion
Esfuerzos introduccionEsfuerzos introduccion
Esfuerzos introduccionfroimaralonzo
 
Esfuerzo y deformacion yismara gomez
Esfuerzo y deformacion yismara gomezEsfuerzo y deformacion yismara gomez
Esfuerzo y deformacion yismara gomezManuel Gonzalez Gomez
 
Geotecnia aplicada a la construcción de túneles,
Geotecnia aplicada a la construcción de túneles,Geotecnia aplicada a la construcción de túneles,
Geotecnia aplicada a la construcción de túneles,Alex Guzmán
 
Deformación y Esfuerzos
Deformación y EsfuerzosDeformación y Esfuerzos
Deformación y EsfuerzosIvo Fritzler
 
Unidad II esfuerzos, deformaciones y propiedades fisicas
Unidad II  esfuerzos, deformaciones y propiedades fisicasUnidad II  esfuerzos, deformaciones y propiedades fisicas
Unidad II esfuerzos, deformaciones y propiedades fisicasgrupocad
 
Esfuerzo y flexion
Esfuerzo y flexionEsfuerzo y flexion
Esfuerzo y flexionjdam94
 
Resistencia de materiales
Resistencia de materialesResistencia de materiales
Resistencia de materialesEuler Ruiz
 
Soluciones Elásticas de Kirsch
Soluciones Elásticas de KirschSoluciones Elásticas de Kirsch
Soluciones Elásticas de KirschIvo Fritzler
 
Flexural strength
Flexural strengthFlexural strength
Flexural strengthSHAMJITH KM
 
Esfuerzo y flexión
Esfuerzo y flexiónEsfuerzo y flexión
Esfuerzo y flexiónjuliofer1
 
Criterios de Falla
Criterios de FallaCriterios de Falla
Criterios de FallaIvo Fritzler
 
Tensor de Esfuerzos
Tensor de EsfuerzosTensor de Esfuerzos
Tensor de EsfuerzosIvo Fritzler
 
Caracterización de Macizo Rocoso
Caracterización de Macizo RocosoCaracterización de Macizo Rocoso
Caracterización de Macizo RocosoIvo Fritzler
 
Resistencia de materiales
Resistencia de materialesResistencia de materiales
Resistencia de materialesRamon Ruiz
 
Deformacion axial
Deformacion axialDeformacion axial
Deformacion axialJulio Ramos
 

Destacado (20)

Esfuerzos introduccion
Esfuerzos introduccionEsfuerzos introduccion
Esfuerzos introduccion
 
Esfuerzo y deformacion yismara gomez
Esfuerzo y deformacion yismara gomezEsfuerzo y deformacion yismara gomez
Esfuerzo y deformacion yismara gomez
 
Tipos de esfuerzos
Tipos de esfuerzosTipos de esfuerzos
Tipos de esfuerzos
 
Geotecnia aplicada a la construcción de túneles,
Geotecnia aplicada a la construcción de túneles,Geotecnia aplicada a la construcción de túneles,
Geotecnia aplicada a la construcción de túneles,
 
Deformación y Esfuerzos
Deformación y EsfuerzosDeformación y Esfuerzos
Deformación y Esfuerzos
 
Unidad II esfuerzos, deformaciones y propiedades fisicas
Unidad II  esfuerzos, deformaciones y propiedades fisicasUnidad II  esfuerzos, deformaciones y propiedades fisicas
Unidad II esfuerzos, deformaciones y propiedades fisicas
 
Esfuerzo y flexion
Esfuerzo y flexionEsfuerzo y flexion
Esfuerzo y flexion
 
capitulo I, II y III
capitulo I, II y IIIcapitulo I, II y III
capitulo I, II y III
 
Resistencia de materiales
Resistencia de materialesResistencia de materiales
Resistencia de materiales
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacion
 
Soluciones Elásticas de Kirsch
Soluciones Elásticas de KirschSoluciones Elásticas de Kirsch
Soluciones Elásticas de Kirsch
 
Flexural strength
Flexural strengthFlexural strength
Flexural strength
 
Esfuerzo y flexión
Esfuerzo y flexiónEsfuerzo y flexión
Esfuerzo y flexión
 
Criterios de Falla
Criterios de FallaCriterios de Falla
Criterios de Falla
 
Tensor de Esfuerzos
Tensor de EsfuerzosTensor de Esfuerzos
Tensor de Esfuerzos
 
Unidad 4
Unidad 4Unidad 4
Unidad 4
 
Caracterización de Macizo Rocoso
Caracterización de Macizo RocosoCaracterización de Macizo Rocoso
Caracterización de Macizo Rocoso
 
Resistencia de materiales
Resistencia de materialesResistencia de materiales
Resistencia de materiales
 
Resistencia y deformabilidad de roca
Resistencia y deformabilidad de  rocaResistencia y deformabilidad de  roca
Resistencia y deformabilidad de roca
 
Deformacion axial
Deformacion axialDeformacion axial
Deformacion axial
 

Similar a ESFUERZO, DEFORMACIÓN Y TORSIÓN EN MATERIALES

Kisbel elemento de maquinas
Kisbel elemento de maquinasKisbel elemento de maquinas
Kisbel elemento de maquinaskisscarmona
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacionEsther Moya
 
CAPITULO I, II,III MECANICA APLICADA
CAPITULO I, II,III MECANICA APLICADACAPITULO I, II,III MECANICA APLICADA
CAPITULO I, II,III MECANICA APLICADAjoseacostam
 
Capitulo I II Y III
Capitulo I II Y IIICapitulo I II Y III
Capitulo I II Y IIIEsther Moya
 
elemento de maquína (slideshare)
elemento de maquína (slideshare)elemento de maquína (slideshare)
elemento de maquína (slideshare)Huguer Alcala
 
Esfuerzo y deformación
Esfuerzo y deformaciónEsfuerzo y deformación
Esfuerzo y deformaciónAriannysG
 
DEFORMACIÓN Y ELASTICIDAD
DEFORMACIÓN Y ELASTICIDADDEFORMACIÓN Y ELASTICIDAD
DEFORMACIÓN Y ELASTICIDADRubenAlgebra
 
Las tres propiedades DE LOS METALES
Las tres propiedades DE LOS METALES Las tres propiedades DE LOS METALES
Las tres propiedades DE LOS METALES Constanza Molina
 
Esfuerzo y deformacion elemento1
Esfuerzo y deformacion elemento1Esfuerzo y deformacion elemento1
Esfuerzo y deformacion elemento1victor21326372
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacionEvelio Vasquez
 
Apuntes resistencia de materiales
Apuntes resistencia de materialesApuntes resistencia de materiales
Apuntes resistencia de materialesMarthaResndiz
 
Esfuerzo y Deformacion
Esfuerzo y DeformacionEsfuerzo y Deformacion
Esfuerzo y DeformacionMaria Aular
 
Esfuerzo y deformación
Esfuerzo y deformaciónEsfuerzo y deformación
Esfuerzo y deformaciónAndri Figueroa
 
Presentación elementos
Presentación elementosPresentación elementos
Presentación elementosFrancys-28
 
Esfuerzo y deformacion elemento1
Esfuerzo y deformacion elemento1Esfuerzo y deformacion elemento1
Esfuerzo y deformacion elemento1victor21326372
 

Similar a ESFUERZO, DEFORMACIÓN Y TORSIÓN EN MATERIALES (20)

Kisbel elemento de maquinas
Kisbel elemento de maquinasKisbel elemento de maquinas
Kisbel elemento de maquinas
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacion
 
CAPITULO I, II,III MECANICA APLICADA
CAPITULO I, II,III MECANICA APLICADACAPITULO I, II,III MECANICA APLICADA
CAPITULO I, II,III MECANICA APLICADA
 
Capitulo I II Y III
Capitulo I II Y IIICapitulo I II Y III
Capitulo I II Y III
 
elemento de maquína (slideshare)
elemento de maquína (slideshare)elemento de maquína (slideshare)
elemento de maquína (slideshare)
 
Esfuerzo y deformación
Esfuerzo y deformaciónEsfuerzo y deformación
Esfuerzo y deformación
 
DEFORMACIÓN Y ELASTICIDAD
DEFORMACIÓN Y ELASTICIDADDEFORMACIÓN Y ELASTICIDAD
DEFORMACIÓN Y ELASTICIDAD
 
Las tres propiedades DE LOS METALES
Las tres propiedades DE LOS METALES Las tres propiedades DE LOS METALES
Las tres propiedades DE LOS METALES
 
Esfuerzo y deformacion elemento1
Esfuerzo y deformacion elemento1Esfuerzo y deformacion elemento1
Esfuerzo y deformacion elemento1
 
Maria malave
Maria malaveMaria malave
Maria malave
 
Capitulo 1.2y 3 maria felix
Capitulo 1.2y 3 maria felixCapitulo 1.2y 3 maria felix
Capitulo 1.2y 3 maria felix
 
Juan carlos
Juan carlosJuan carlos
Juan carlos
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacion
 
Republica bolivariana de venezuela
Republica bolivariana de venezuelaRepublica bolivariana de venezuela
Republica bolivariana de venezuela
 
Apuntes resistencia de materiales
Apuntes resistencia de materialesApuntes resistencia de materiales
Apuntes resistencia de materiales
 
Esfuerzo y Deformacion
Esfuerzo y DeformacionEsfuerzo y Deformacion
Esfuerzo y Deformacion
 
Esfuerzo y deformación
Esfuerzo y deformaciónEsfuerzo y deformación
Esfuerzo y deformación
 
Franjelica sucre
Franjelica sucreFranjelica sucre
Franjelica sucre
 
Presentación elementos
Presentación elementosPresentación elementos
Presentación elementos
 
Esfuerzo y deformacion elemento1
Esfuerzo y deformacion elemento1Esfuerzo y deformacion elemento1
Esfuerzo y deformacion elemento1
 

Último

dokumen.tips_36274588-sistema-heui-eui.ppt
dokumen.tips_36274588-sistema-heui-eui.pptdokumen.tips_36274588-sistema-heui-eui.ppt
dokumen.tips_36274588-sistema-heui-eui.pptMiguelAtencio10
 
El uso delas tic en la vida cotidiana MFEL
El uso delas tic en la vida cotidiana MFELEl uso delas tic en la vida cotidiana MFEL
El uso delas tic en la vida cotidiana MFELmaryfer27m
 
Google-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptx
Google-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptxGoogle-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptx
Google-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptxAlexander López
 
Presentación inteligencia artificial en la actualidad
Presentación inteligencia artificial en la actualidadPresentación inteligencia artificial en la actualidad
Presentación inteligencia artificial en la actualidadMiguelAngelVillanuev48
 
Mapa-conceptual-del-Origen-del-Universo-3.pptx
Mapa-conceptual-del-Origen-del-Universo-3.pptxMapa-conceptual-del-Origen-del-Universo-3.pptx
Mapa-conceptual-del-Origen-del-Universo-3.pptxMidwarHenryLOZAFLORE
 
GonzalezGonzalez_Karina_M1S3AI6... .pptx
GonzalezGonzalez_Karina_M1S3AI6... .pptxGonzalezGonzalez_Karina_M1S3AI6... .pptx
GonzalezGonzalez_Karina_M1S3AI6... .pptx241523733
 
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptxCrear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptxNombre Apellidos
 
Actividad integradora 6 CREAR UN RECURSO MULTIMEDIA
Actividad integradora 6    CREAR UN RECURSO MULTIMEDIAActividad integradora 6    CREAR UN RECURSO MULTIMEDIA
Actividad integradora 6 CREAR UN RECURSO MULTIMEDIA241531640
 
Hernandez_Hernandez_Practica web de la sesion 11.pptx
Hernandez_Hernandez_Practica web de la sesion 11.pptxHernandez_Hernandez_Practica web de la sesion 11.pptx
Hernandez_Hernandez_Practica web de la sesion 11.pptxJOSEMANUELHERNANDEZH11
 
La era de la educación digital y sus desafios
La era de la educación digital y sus desafiosLa era de la educación digital y sus desafios
La era de la educación digital y sus desafiosFundación YOD YOD
 
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptxLAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptxAlexander López
 
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdfPARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdfSergioMendoza354770
 
Segunda ley de la termodinámica TERMODINAMICA.pptx
Segunda ley de la termodinámica TERMODINAMICA.pptxSegunda ley de la termodinámica TERMODINAMICA.pptx
Segunda ley de la termodinámica TERMODINAMICA.pptxMariaBurgos55
 
Arenas Camacho-Practica tarea Sesión 12.pptx
Arenas Camacho-Practica tarea Sesión 12.pptxArenas Camacho-Practica tarea Sesión 12.pptx
Arenas Camacho-Practica tarea Sesión 12.pptxJOSEFERNANDOARENASCA
 
FloresMorales_Montserrath_M1S3AI6 (1).pptx
FloresMorales_Montserrath_M1S3AI6 (1).pptxFloresMorales_Montserrath_M1S3AI6 (1).pptx
FloresMorales_Montserrath_M1S3AI6 (1).pptx241522327
 
definicion segun autores de matemáticas educativa
definicion segun autores de matemáticas  educativadefinicion segun autores de matemáticas  educativa
definicion segun autores de matemáticas educativaAdrianaMartnez618894
 
El uso de las TIC's en la vida cotidiana.
El uso de las TIC's en la vida cotidiana.El uso de las TIC's en la vida cotidiana.
El uso de las TIC's en la vida cotidiana.241514949
 
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptxMedidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptxaylincamaho
 
Plan Sarmiento - Netbook del GCBA 2019..
Plan Sarmiento - Netbook del GCBA 2019..Plan Sarmiento - Netbook del GCBA 2019..
Plan Sarmiento - Netbook del GCBA 2019..RobertoGumucio2
 
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptxEl_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptxAlexander López
 

Último (20)

dokumen.tips_36274588-sistema-heui-eui.ppt
dokumen.tips_36274588-sistema-heui-eui.pptdokumen.tips_36274588-sistema-heui-eui.ppt
dokumen.tips_36274588-sistema-heui-eui.ppt
 
El uso delas tic en la vida cotidiana MFEL
El uso delas tic en la vida cotidiana MFELEl uso delas tic en la vida cotidiana MFEL
El uso delas tic en la vida cotidiana MFEL
 
Google-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptx
Google-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptxGoogle-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptx
Google-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptx
 
Presentación inteligencia artificial en la actualidad
Presentación inteligencia artificial en la actualidadPresentación inteligencia artificial en la actualidad
Presentación inteligencia artificial en la actualidad
 
Mapa-conceptual-del-Origen-del-Universo-3.pptx
Mapa-conceptual-del-Origen-del-Universo-3.pptxMapa-conceptual-del-Origen-del-Universo-3.pptx
Mapa-conceptual-del-Origen-del-Universo-3.pptx
 
GonzalezGonzalez_Karina_M1S3AI6... .pptx
GonzalezGonzalez_Karina_M1S3AI6... .pptxGonzalezGonzalez_Karina_M1S3AI6... .pptx
GonzalezGonzalez_Karina_M1S3AI6... .pptx
 
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptxCrear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
 
Actividad integradora 6 CREAR UN RECURSO MULTIMEDIA
Actividad integradora 6    CREAR UN RECURSO MULTIMEDIAActividad integradora 6    CREAR UN RECURSO MULTIMEDIA
Actividad integradora 6 CREAR UN RECURSO MULTIMEDIA
 
Hernandez_Hernandez_Practica web de la sesion 11.pptx
Hernandez_Hernandez_Practica web de la sesion 11.pptxHernandez_Hernandez_Practica web de la sesion 11.pptx
Hernandez_Hernandez_Practica web de la sesion 11.pptx
 
La era de la educación digital y sus desafios
La era de la educación digital y sus desafiosLa era de la educación digital y sus desafios
La era de la educación digital y sus desafios
 
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptxLAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
 
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdfPARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
 
Segunda ley de la termodinámica TERMODINAMICA.pptx
Segunda ley de la termodinámica TERMODINAMICA.pptxSegunda ley de la termodinámica TERMODINAMICA.pptx
Segunda ley de la termodinámica TERMODINAMICA.pptx
 
Arenas Camacho-Practica tarea Sesión 12.pptx
Arenas Camacho-Practica tarea Sesión 12.pptxArenas Camacho-Practica tarea Sesión 12.pptx
Arenas Camacho-Practica tarea Sesión 12.pptx
 
FloresMorales_Montserrath_M1S3AI6 (1).pptx
FloresMorales_Montserrath_M1S3AI6 (1).pptxFloresMorales_Montserrath_M1S3AI6 (1).pptx
FloresMorales_Montserrath_M1S3AI6 (1).pptx
 
definicion segun autores de matemáticas educativa
definicion segun autores de matemáticas  educativadefinicion segun autores de matemáticas  educativa
definicion segun autores de matemáticas educativa
 
El uso de las TIC's en la vida cotidiana.
El uso de las TIC's en la vida cotidiana.El uso de las TIC's en la vida cotidiana.
El uso de las TIC's en la vida cotidiana.
 
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptxMedidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
 
Plan Sarmiento - Netbook del GCBA 2019..
Plan Sarmiento - Netbook del GCBA 2019..Plan Sarmiento - Netbook del GCBA 2019..
Plan Sarmiento - Netbook del GCBA 2019..
 
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptxEl_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
 

ESFUERZO, DEFORMACIÓN Y TORSIÓN EN MATERIALES

  • 1. INSTITUTO UNIVERSITARIO POLITÉCNICO “SANTIAGO MARIÑO” EXTENSION PORLAMAR REALIZADO POR: MANUEL RAMOS C.I: 17.243.711
  • 2. Uno de los temas más importantes de la Resistencia de Materiales, es la deformación y esfuerzo Y Torsión, aspectos que serán definidos para el mejor entendimiento. El esfuerzo y deformación se tratarán a continuación con énfasis en aplicaciones, solución de problemas y específicamente se basa en conceptos básicos y determinación de los esfuerzos normales y cortantes, para luego determinar sus valores máximos y finalmente el cálculo de las correspondientes deformaciones INTRODUCCION
  • 3.  ESFUERZO Y DEFORMACIÓN DEBIDO A CARGAS EXTERNAS, ESFUERZOS MECÁNICOS, TÉRMICOS Y LEY DE HOOKE. Las propiedades mecánicas de la materia son la elasticidad, la compresión y la tensión. Definimos a un cuerpo elástico como aquel que recobra su tamaño y forma original cuando deja de actuar sobre él una fuerza deformante. Las bandas de hule, las pelotas de golf, los trampolines, las camas elásticas, las pelotas de fútbol y los resortes son ejemplos comunes de cuerpos elásticos. Para todos los cuerpos elásticos, conviene establecer relaciones de causa y efecto entre la deformación y las fuerzas deformantes
  • 4.  Robert Hooke fue el primero en establecer esta relación por medio de la invención de un volante para resorte para reloj. En términos generales, Hooke descubrió que cuando una fuerza F, actúa sobre un resorte, produce en él un alargamiento s que es directamente proporcional a la magnitud de la fuerza aplicada. La Ley de Hooke se representa como: F = ks. La constante de proporcionalidad k varía mucho de acuerdo con el tipo de material y recibe el nombre de constante del resorte. Para el ejemplo anterior, la constante del resorte es de: k = F/s = 20 N/cm La Ley de Hooke no se limita al caso de los resortes en espiral; de hecho, se aplica a la deformación de todos los cuerpos elásticos. Para que la Ley pueda aplicar de un modo más general, es conveniente definir los términos esfuerzo y deformación
  • 5.  La eficacia de cualquier fuerza que produce un esfuerzo depende en gran medida del área sobre la que se distribuye la fuerza, por ello una definición más completa del esfuerzo se puede enunciar de la siguiente forma: Esfuerzo: es la razón de una fuerza aplicada entre el área sobre el cual actúa, por ejemplo Newtons/m2, o libras/ft2. Deformación: es el cambio relativo en las dimensiones o en la forma de un cuerpo como resultado de la aplicación de un esfuerzo El límite elástico es el esfuerzo máximo que puede sufrir un cuerpo sin que la deformación sea permanente. La Ley de Hooke, establece: Siempre que no se exceda el límite elástico, una deformación elástica es directamente proporcional a la magnitud de la fuerza aplicada por unidad de área (esfuerzo). Si llamamos a la constante de proporcionalidad el módulo de elasticidad, podemos escribir la Ley de Hooke en su forma más general: Módulo de elasticidad = esfuerzo Deformación
  • 6.  El esfuerzo de volumen, F/A, es la fuerza normal por unidad de área, mientras que la deformación de volumen - ∆V/V es el cambio de volumen por unidad de volumen El esfuerzo cortante se define como la relación de la fuerza tangencial F entre el área A sobre la que se aplica. La deformación cortante se define como el ángulo (en radianes), que se conoce como ángulo de corte. Torsión: Entendemos por Torsión la deformación de un eje, producto de la acción de dos fuerzas paralelas con direcciones contrarias en sus extremos. Es la solicitación que se presenta cuando se aplica un momento sobre el eje longitudinal de un elemento constructivo o prisma mecánico, como pueden ser ejes o, en general, elementos donde una dimensión predomina sobre las otras dos, aunque es posible encontrarla en situaciones diversas. La torsión se caracteriza geométricamente porque cualquier curva paralela al eje de la
  • 7.  El torque o par es el nombre que se da a las fuerzas de torsión. Para que la torsión exista se requieren 2 fuerzas (par), que se ejercen en sentido opuesto. El valor del par depende del radio de acción de la fuerza (brazo). La mayor o menor torsión que genera una fuerza depende de la distancia al punto de pivote. A mayor brazo mayor par. El torque es la fuerza aplicada en una palanca para producir un movimiento de rotación en un cuerpo. Por ejemplo, la fuerza que haces sobre el destornillador para ajustar un tornillo multiplicada por el brazo de palanca que es el radio del destornillador, da como resultado el torque aplicado al tornillo. Los resortes de torsión están diseñados para ofrecer resistencia a la torsión externa. La torsión se refiere a la acción torsional de las espiras. Si bien el alambre en sí está sujeto a esfuerzos de plegado en vez de esfuerzos torsionales, los resortes de torsión operan a su máximo cuando se apoyan sobre una vara o tubo.
  • 8.  Este tipo de resorte se compone más comúnmente de alambre redondo, puede ser de enrollado cerrado o abierto y por lo general está diseñado para enroscarse. Los extremos pueden estar doblados, torcidos, enganchados o en argolla de acuerdo con la aplicación. DEFORMACIONES EN ÁRBOLES DE SECCIÓN CIRCULAR Cuando un eje es circular, las deformaciones que estos sufren al aplicar un par de torsión T, cumplen con la siguiente propiedad: cuando un eje circular se somete a torsión, todas sus secciones transversales permanecen planas y sin distorsión, es decir, aunque sus distintas secciones transversales a lo largo del eje giran en diferentes cada sección transversal gira como un placa sólida rígida. Esta propiedad es característica de cualquier eje circular, sólidos o huecos. Esta propiedad es posible ya que los ejes circulares son asimétricos, es decir, su apariencia es la misma si se ve desde una posición fija y se gira alrededor de su eje por un ángulo aleatorio
  • 9.  POTENCIA ENSAYO DE TORSIÓN El ensayo de torsión consiste en someter una probeta de sección redonda a un momento torsión gradualmente creciente hasta que se produzca la falla en la misma.
  • 10. Los materiales sufren de deformación y existe un esfuerzo, entonces se puede decir en conclusión que el esfuerzo es la razón de una fuerza aplicada entre el área sobre el cual actúa, por ejemplo Newtons/m2, o libras/ft2, las fuerzas internas de un elemento están ubicadas dentro del material por lo que se distribuyen en toda el área; justamente se denomina esfuerzo a la fuerza por unidad de área, la cual se denota con la letra griega sigma (σ) y es un parámetro que permite comparar la resistencia de dos materiales, ya que establece una base común de referencia y la deformación es el cambio relativo en las dimensiones o en la forma de un cuerpo como resultado de la aplicación de un esfuerzo. La resistencia del material no es el único parámetro que debe utilizarse al diseñar o analizar una estructura; controlar las deformaciones para que la estructura cumpla con el propósito para el cual se diseñó tiene la misma o mayor importancia, así como tener en cuenta los conceptos como Torsión, torque, par de torsion. CONCLUSIÓN