SlideShare una empresa de Scribd logo
ESTRUCTURA
ATÓMICA
ESTRUCTURA
ATÓMICAQuímica 2º Bachillerato
John DaltonJohn Dalton Para él tenía que cumplirse, ante todo, que los átomos
de un mismo elemento debían tener la misma masa.
Con esta idea, Dalton publicó en 1808 su Teoría
Atómica que podemos resumir:
La materia está formada por partículas muy
pequeñas, llamadas átomos , que son indivisibles e
indestructibles.
Todos los átomos de un mismo elemento tienen la
misma masa atómica.
Los átomos se combinan entre si en relaciones
sencillas para formar compuestos.
Los cuerpos compuestos están formados por
átomos diferentes. Las propiedades del
compuesto dependen del número y de la clase de
átomos que tenga.
Físico Británico estudió las propiedades eléctricas de la materia,
especialmente la de los gases.
Joseph John Thomson (1856-
1940)
Joseph John Thomson (1856-
1940)
Descubrió que los rayos catódicos
estaban formados por partículas
cargadas negativamente (hoy en día
llamadas electrones), de las que
determinó la relación entre su carga y
masa. En 1906 le fue concedido el
premio Nóbel por sus trabajos.
Millikan calculó experimentalmente el valor de la carga eléctrica negativa de un
electrón mediante su experimento con gotas de aceite entre placas de un
condensador. Dió como valor de dicha carga e = 1,6 * 10 -19
culombios.
La medida directa del cociente carga-masa, e/m, de los electrones por J.J.
Thomson en 1897 puede considerarse justamente como el principio para la
compresión actual de la estructura atómica.
El clásico experimento de Thomson se desarrolló a partir del estudio de las
descargas eléctricas en gases.
Tubo de rayos catódicos utilizado por Thomson
Cuando se sitúan unas aberturas en A y B, el brillo se limita a un punto bien definido sobre el
vidrio, este punto puede desviarse mediante campos eléctricos o magnéticos.
Thomson define así su modelo de átomo :
Considera el átomo como una gran
esfera con carga eléctrica positiva, en la
cual se distribuyen los electrones como
pequeños granitos (de forma si-milar
a las semillas en una sandía)
Modelo atómico de ThomsonModelo atómico de Thomson
Concebía el átomo como una esfera de carga positiva uniforme en la cual
están incrustados los electrones.
Tras las investigaciones de Geiger y Mardsen sobre la
dispersión de partículas alfa al incidir sobre láminas
metálicas, se hizo necesario la revisión del modelo atómico
de Thomson, que realizó Rutherford entre 1909-1911.
Ernest Rutherford, (1871-1937)
Físico Inglés, nació en Nueva Zelanda, profesor en Manchester y director del
laboratorio Cavendish de la universidad de Cambridge. Premio Nobel de
Química en 1908. Sus brillantes investigaciones sobre la estructura atómica y
sobre la radioactividad iniciaron el camino a los descubrimientos más notables
del siglo. Estudió experimentalmente la naturaleza de las radiaciones emitidas
por los elementos radiactivos.
Ernest Rutherford, (1871-1937)
Físico Inglés, nació en Nueva Zelanda, profesor en Manchester y director del
laboratorio Cavendish de la universidad de Cambridge. Premio Nobel de
Química en 1908. Sus brillantes investigaciones sobre la estructura atómica y
sobre la radioactividad iniciaron el camino a los descubrimientos más notables
del siglo. Estudió experimentalmente la naturaleza de las radiaciones emitidas
por los elementos radiactivos.
Puesto que las partículas alfa y beta atraviesan el átomo, un
estudio riguroso de la naturaleza de la desviación debe
proporcionar cierta luz sobre la constitución de átomo, capaz de
producir los efectos observados.
Las investigaciones se produjeron tras el descubrimiento de la radioactividad
y la identificación de las partículas emitidas en un proceso radiactivo.
Experimento para determinar la constitución del
átomo
Experimento para determinar la constitución del
átomo
La mayoría de los rayos alfa atravesaba la lámina sin
desviarse, porque la mayor parte del espacio de un
átomo es espacio vacío.
Algunos rayos se desviaban, porque pasan muy cerca de
centros con carga eléctrica del mismo tipo que los rayos alfa
(CARGA POSITIVA).
Muy pocos rebotan, porque chocan frontalmente contra
esos centros de carga positiva.
El modelo del átomo de RUTHERFORD: con los
protones en el núcleo y los electrones girando
alrededor.
El Modelo Atómico de Rutherford quedó así:El Modelo Atómico de Rutherford quedó así:
- Todo átomo está formado por un
núcleo y
corteza.
- El núcleo, muy pesado, y de muy
pequeño tamaño, formado por un número de
protones
igual al NÚMERO ATÓMICO, donde se
concentra toda la masa atómica.
- Existiendo un gran espacio vacío entre el
núcleo y la corteza donde se mueven los
electrones.
NÚMERO ATÓMICO= número de protones del
núcleo que coincide con el número de
electrones si el átomo es neutro.
NÚMERO ATÓMICO= número de protones del
núcleo que coincide con el número de
electrones si el átomo es neutro.
 - Puesto que la materia es neutra el núcleo deberá tener un número de cargas
positivas protones ( número atómico=Z ) igual al de electrones corticales. En
el núcleo es donde están también los neutrones
- Girando alrededor en órbitas
circulares, un número de
electrones igual a de protones.
- Los electrones giran a
grandes distancias del núcleo
de modo que su fuerza
centrífuga es igual a la
atracción electrostática, pero de
sentido contrario. Al compensar
con la fuerza electrostática la
atracción del núcleo evita caer
contra él y se mantiene girando
alrededor.
En 1932 el inglés Chadwik al bombardear átomos
con partículas observó que se emitía una nueva
partícula sin carga y de masa similar al protón,
acababa de descubrir el NEUTRÓN
En el núcleo se encuentran los neutrones y los
protones.
 
   
Partícula
 
  Carga
 
  Masa
 
    PROTÓN
p+
   +1 unidad
electrostática de
carga = 1,6. 10-19
C
 1 unidad atómica de
masa
(u.m.a.) =1,66 10-27
kg
 
 
  NEUTRON
n
 
  0 no tiene carga
eléctrica, es neutro
 1 unidad atómica de
masa
(u.m.a.) =1,66 10-27
kg
 
 
   
ELECTRÓN
e-
 
  -1 unidad
electrostática de
carga =-1,6. 10-19
C
Muy pequeña y por
tanto despreciable
comparada con la de p+
y n
 
 
p1
1
n1
0
e0
1−
PARTÍCULAS
FUNDAMENTALES
PARTÍCULAS
FUNDAMENTALES
Los protones y neutrones determinan la masa de los átomos y los electrones son los
responsables de las propiedades químicas.
Los protones y neutrones determinan la masa de los átomos y los electrones son los
responsables de las propiedades químicas.
NÚCLEO = Zona central
del átomo donde se
encuentran protones y
neutrones
CORTEZA =Zona que
envuelve al núcleo donde
se encuentran
moviéndose los electrones
NÚCLEO = Zona central
del átomo donde se
encuentran protones y
neutrones
CORTEZA =Zona que
envuelve al núcleo donde
se encuentran
moviéndose los electrones
NÚMERO ATÓMICO (Z) al número de protones que tiene un átomo. Coincide con el número de
electrones si el átomo está neutro. Todos los átomos de un mismo elemento tienen el mismo número de
protones, por lo tanto, tienen el mismo número atómico.
NÚMERO ATÓMICO (Z) al número de protones que tiene un átomo. Coincide con el número de
electrones si el átomo está neutro. Todos los átomos de un mismo elemento tienen el mismo número de
protones, por lo tanto, tienen el mismo número atómico.
NÚMERO MÁSICO (A) a la suma de los protones y los neutrones que tiene un átomo.NÚMERO MÁSICO (A) a la suma de los protones y los neutrones que tiene un átomo.
ISÓTOPOS a átomos de un mismo elemento que se diferencian en el número de
neutrones. Tienen por tanto el mismo número atómico(Z) pero diferente número
másico(A).
ISÓTOPOS a átomos de un mismo elemento que se diferencian en el número de
neutrones. Tienen por tanto el mismo número atómico(Z) pero diferente número
másico(A).
Un átomo se representa por:
• Su símbolo = una letra mayúscula o dos letras, la primera mayúscula
que derivan de su nombre. Ca , H , Li, S, He....
• Su número atómico (Z) que se escribe abajo a la izquierda.
Su número másico (A) que se escribe arriba a la izquierda.
EA
Z
IONES a átomos o grupos de átomos que poseen carga eléctrica porque han ganado o perdido
electrones. Pueden ser:
CATIONES si poseen carga positiva y, por tanto, se han perdido electrones.
ANIONES si poseen carga negativa y , por tanto, se han ganado electrones.
IONES a átomos o grupos de átomos que poseen carga eléctrica porque han ganado o perdido
electrones. Pueden ser:
CATIONES si poseen carga positiva y, por tanto, se han perdido electrones.
ANIONES si poseen carga negativa y , por tanto, se han ganado electrones.
Crítica del modelo de Rutherford:Crítica del modelo de Rutherford:
Fue fundamental la demostración de la discontinuidad de la materia y de
los grandes vacíos del átomo. Por lo demás, presenta deficiencias y
puntos poco claros:
  - Según la ya probada teoría electromagnética de Maxwell, al ser el electrón
una partícula cargada en movimiento debe emitir radiación constante y por
tanto, perder energía.
Esto debe hacer que disminuya el radio de su órbita y el electrón terminaría por caer en
el núcleo; el átomo sería inestable. Por lo tanto, no se puede simplificar el problema
planteando, para un electrón , que la fuerza electrostática es igual a la centrífuga debe
haber algo más
-Era conocida en el momento de diseñar su teoría la hipótesis de Planck que no la
tuvo en cuenta.
-Tampoco es coherente con los resultados de los espectros atómicos.
Los experimentos de Rutherford eran definitivos, pero el planteamiento era
incompleto y lógicamente, también los cálculos.
LA RADIACIÓN ELECTROMAGNÉTICA.LA RADIACIÓN ELECTROMAGNÉTICA.
• Una onda electromagnética consiste en la oscilación de un campo eléctrico y
otro magnético en direcciones perpendiculares, entre sí, y a su vez,
perpendiculares ambos a la dirección de propagación.
• Viene determinada por su frecuencia “ν” o por su longitud de onda “λ”,
relacionadas entre sí por:
=
c
ν
λ
ESPECTRO ELECTROMAGNÉTICO:Es el conjunto de todas las radiaciones
electromagnéticas desde muy bajas longitudes de ondas (rayos γ 10–12
m) hasta
kilómetros (ondas de radio)
Espectro continuo de la luz es la descomposición de la luz en todas su
longitudes de onda mediante un prisma óptico.
C= velocidad de la luz
=3.108
m/s
C= velocidad de la luz
=3.108
m/s
ν
λ
Espectro electromagnético.Espectro electromagnético.
Espectro atómico de
absorción
Espectro atómico de
absorción
Cuando la radiación atraviesa un gas,
este absorbe una parte, el resultado
es el espectro continuo pero con
rayas negras donde falta la radiación
absorbida.
ESPECTRO DE ABSORCIÓN
Espectro de absorción
Espectro de emisión
ESPECTRO DE
EMISIÓN
ESPECTRO DE
EMISIÓN
Cuando a los elementos en estado
gaseoso se les suministra energía
(descarga eléctrica,
calentamiento...) éstos emiten
radiaciones de determinadas
longitudes de onda.
Estas radiaciones
dispersadas en un
prisma de un
espectroscopio se ven
como una serie de
rayas, y el conjunto de
las mismas es lo que
se conoce como
espectro de emisión.
Cada elemento tiene un espectro característico; por tanto, un
modelo atómico debería ser capaz de justificar el espectro de
cada elemento.
Cada elemento tiene un espectro característico; por tanto, un
modelo atómico debería ser capaz de justificar el espectro de
cada elemento.
TIPO DE
RADIACION
Intervalos de las longitudes de onda
Rayos Gamma inferiores a 10-2
nanómetros
Rayos X entre 10-2
nanómetros y 15 nanómetros
Ultravioleta entre 15 nanómetros y 4.102
nanómetros
ESPECTRO VISIBLE
entre 4.102
nanómetros y 7,8.102
nanómetros
(4000 Angstroms y 7800 Angstroms)
Infrarrojo
entre 7,8.102
nanómetros y 106
nanómetros
Región de
Microondas
entre 106
nanómetros y 3.108
nanómetros
Ondas de Radio mayores de 3.108
nanómetros
cobrecobre
ALGUNOS ESPECTROS DE EMISIÓN
(ensayo a la llama)
ALGUNOS ESPECTROS DE EMISIÓN
(ensayo a la llama)
cobaltocobalto
Cada elemento presenta un espectro de emisión diferente
identificable a simple vista mediante el ensayo a la llama.
TEORÍA CUÁNTICA DE
PLANCK
TEORÍA CUÁNTICA DE
PLANCK
La teoría cuántica se refiere a la energía:
Cuando la energía está en forma de radiación electromagnética (es decir, de una radiación
similar a la luz), se denomina energía radiante y su unidad mínima recibe el nombre de fotón.
La energía de un fotón viene dada por la ecuación de Planck:
E = h · νE = h · ν
h: constante de Planck = 6.62 · 10-34
Joule · segundo
ν: frecuencia de la radiación
Cuando una sustancia absorbe o emite energía, no
puede absorberse o emitirse cualquier cantidad de
energía, sino que definimos una unidad mínima de
energía, llamada cuanto (que será el equivalente en
energía a lo que es el átomo para la materia).
O sea cualquier cantidad de energía que se emita o
se absorba deberá ser un número entero de
cuantos.
MODELO ATÓMICO DE BÖHR. (En qué se basó)MODELO ATÓMICO DE BÖHR. (En qué se basó)
El modelo atómico de Rutherford llevaba a unas
conclusiones que se contradecían claramente con los
datos experimentales.
La teoría de Maxwell echaba por tierra el sencillo
planteamiento matemático del modelo de Rutherford.
El estudio de las rayas de los espectros
atómicos permitió relacionar la emisión de
radiaciones de determinada “λ ” (longitud de
onda) con cambios energéticos asociados a
saltos entre niveles electrónicos.
La teoría de Planck le hizo ver que la energía no era algo continuo sino que estaba
cuantizada en cantidades hν.
Segundo postulado
Sólo son posibles aquellas órbitas en las
que el electrón tiene un momento angular
que es múltiplo entero de h /(2 · π)
ÓRBITAS ESTACIONARIAS
Así, el Segundo Postulado nos indica que el
electrón no puede estar a cualquier
distancia del núcleo, sino que sólo hay
unas pocas órbitas posibles, las cuales
vienen definidas por los valores permitidos
para un parámetro que se denomina
número cuántico principal n.
Primer postulado
El electrón gira alrededor del núcleo en órbitas
circulares sin emitir energía radiante.
Tercer Postulado
La energía liberada al caer el electrón desde
una órbita a otra de menor energía se emite en
forma de fotón, cuya frecuencia viene dada
por la ecuación de Planck:
Ea - Eb = h · ν
Así, cuando el átomo absorbe (o emite) una radiación, el electrón pasa a una órbita de
mayor (o menor) energía, y la diferencia entre ambas órbitas se corresponderá con
una línea del espectro atómico de absorción (o de emisión).
MODELO ATÓMICO DE BÖHRMODELO ATÓMICO DE BÖHR
ENERGÍA DE LAS ORBITAS PERMITIDASENERGÍA DE LAS ORBITAS PERMITIDAS
A cada órbita permitida le corresponde una
energía que
depende del NC n.
A cada órbita permitida le corresponde una
energía que
depende del NC n.






−= 2
1
n
RE Hn
Donde R es la constante de Rydberg = 2,18.10
*-18 J
Donde R es la constante de Rydberg = 2,18.10
*-18 J
Niveles permitidos según el modelo de Bohr
(para el átomo de hidrógeno)
Niveles permitidos según el modelo de Bohr
(para el átomo de hidrógeno)
n = 1 E = –21,76 · 10–19
J
n = 2 E = –5,43 · 10–19
J
n = 3 E = –2,42 · 10–19
J
Energía
n = 4 E = –1,36 · 10–19
J
n = 5 E = –0,87 · 10–19
J
n = ∞ E = 0 J
An疝isis energ騁icoAn疝isis energ騁ico
SERIES ESPECTRALES: y su explicación con el modelo de BohrSERIES ESPECTRALES: y su explicación con el modelo de Bohr
Los espectroscopistas habían
calculado y estudiado a fondo las
rayas del espectro atómico más
sencillo, el del átomo de
hidrógeno. Cada uno estudió un
grupo de rayas del espectro:
• Serie Balmer:
aparece en la zona
visible del espectro.
• Serie Lyman:
aparece en la zona
ultravioleta del
espectro.
• Serie Paschen
• Serie Bracket
• Serie Pfund
Aparecen
en la zona
infrarroja
del
espectro
Ley de Rydberg .
La relación entre las longitudes de onda de las distintas rayas
del espectro del hidrógeno viene dada por la expresión:
La relación entre las longitudes de onda de las distintas rayas
del espectro del hidrógeno viene dada por la expresión:
 
= × − ÷
 
2 2
1 2
1 1 1
R
n nλ
donde n1 y n2 son números enteros > 0 cumpliéndose que n2
> n1
donde n1 y n2 son números enteros > 0 cumpliéndose que n2
> n1
Si n1 = 1; n2 = 2, 3, 4, 5 ... Serie Lyman
Si n1 = 2; n2 = 3, 4, 5, 6 ... Serie Balmer
Si n1 = 3; n2 = 4, 5, 6, 7 ... Serie Paschen
Si n1 = 1; n2 = 2, 3, 4, 5 ... Serie Lyman
Si n1 = 2; n2 = 3, 4, 5, 6 ... Serie Balmer
Si n1 = 3; n2 = 4, 5, 6, 7 ... Serie Paschen
CORRECCIONES AL MODELO DE BÖHR: NÚMEROS
CUÁNTICOS.
CORRECCIONES AL MODELO DE BÖHR: NÚMEROS
CUÁNTICOS.
En el modelo original de Böhr, se precisa un único parámetro (el número cuántico
principal, n), que se relaciona con el radio de la órbita circular que el electrón realiza
alrededor del núcleo, y también con la energía total del electrón. n indica los
diferentes niveles electrónicos (órbitas estacionarias en el modelo de
Bohr).
Los valores que puede tomar este número cuántico principal son los enteros positivos: 1, 2, 3...
Sin embargo, pronto fue necesario modificar el modelo para adaptarlo a los nuevos datos
experimentales, aparición de nuevas rayas espectrales con lo que se introdujeron otros tres
números cuánticos para caracterizar al electrón:
número cuántico secundario o azimutal (l)
número cuántico magnético (m)
número cuántico de espín (s)
número cuántico secundario o azimutal (l)
número cuántico magnético (m)
número cuántico de espín (s)
Número cuántico secundario o azimutal (L):
corrección de Sommerfeld
Número cuántico secundario o azimutal (L):
corrección de Sommerfeld
En 1916, Sommerfeld modificó el modelo de Böhr considerando que las órbitas del
electrón no eran necesariamente circulares, sino que también eran posibles órbitas
elípticas; esta modificación exige disponer de dos parámetros para caracterizar al electrón.
Una elipse viene definida por dos parámetros, que son los valores de sus semiejes mayor y
menor. En el caso de que ambos semiejes sean iguales, la elipse se convierte en una
circunferencia.
Así, introducimos el número cuántico secundario o azimutal (l), cuyos valores permitidos
son: L= 0, 1, 2, ..., n – 1
Por ejemplo, si n = 3, los valores que puede tomar L serán: 0, 1, 2
El desdoblamiento de algunas rayas espectrales observado con las mejoras
técnicas de algunos espectroscopios llevó a la necesidad de justificar estas
nuevas rayas y por tanto de corregir el modelo de Bohr.
Número cuántico magnético
(m).
Número cuántico magnético
(m).
Indica las posibles orientaciones en el espacio que puede adoptar la órbita del electrón
cuando éste es sometido a un campo magnético externo (efecto Zeemann). Valores
permitidos: - L, ..., 0, ..., + L
Por ejemplo, si el número cuántico secundario vale L= 2, los valores permitidos para m
serán: -2, -1, 0, 1, 2
El efecto Zeemann se debe a que cualquier carga eléctrica en movimiento crea un
campo magnético; por lo tanto, también el electrón lo crea, así que deberá sufrir la
influencia de cualquier campo magnético externo que se le aplique. Aplicando un campo
magnético a los espectros atómicos las rayas se desdoblan lo que indica que deben existir
diferentes orientaciones posibles .
Número cuántico de espín (s).Número cuántico de espín (s).
Indica el sentido de giro del electrón en torno a su propio eje. Puede tomar sólo dos
valores para el electrón: +1/2, -1/2.
n = 1, 2, 3, 4, ... (nº de capa o nivel)
L = 0, 1, 2, ... (n – 1) (forma del orbital o subnivel)
m = – L, ... , 0, ... L (orientación orbital o orbital)
s = – ½ , + ½ (spín rotación del electrón )
Cada electrón viene determinado por 4 números cuánticos: n, L, m y s (los tres
primeros determinan cada orbital, y el cuarto “s” sirve para diferenciar a cada uno
de los dos e–
que componen el mismo).
Los valores de éstos son los siguientes:
Números cuánticos.Números cuánticos.
n l m s
1s 1 0 0 ±1/2
2s 2 0 0 ±1/2
2p 2 1 –1,0,1 ±1/2
3s 3 0 0 ±1/2
3p 3 1 –1,0,1 ±1/2
3d 3 2 –2, –1,0,1,2 ±1/2
4s 4 0 0 ±1/2
4p 4 1 –1,0,1 ±1/2
4d 4 2 –2, –1,0,1,2 ±1/2
4f 4 3 –3,–2, –1,0,1,2,3 ±1/2
MODELO ACTUALMODELO ACTUAL
El átomo está formado por un núcleo
donde se encuentran los neutrones y los
protones y los electrones giran alrededor
en diferentes orbitales.
ORBITAL: ZONA DEL ESPACIO EN TORNO AL NÚCLEO DONDE LA
POSIBILIDAD DE ENCONTRAR AL ELECTRÓN ES MÁXIMA
Los electrones se sitúan en orbitales, los cuales tienen capacidad para situar dos de ellos:
• 1ª capa: 1 orb. “s” (2 e–
)
• 2ª capa: 1 orb. “s” (2 e–
) + 3 orb. “p” (6 e–
)
• 3ª capa: 1 orb. “s” (2 e–
) + 3 orb. “p” (6 e–
)
5 orb. “d” (10 e–
)
• 4ª capa: 1 orb. “s” (2 e–
) + 3 orb. “p” (6 e–
)
5 orb. “d” (10 e–
) + 7 orb. “f” (14 e–
)
• Y así sucesivamente…
Primero se indica el nivel que es el número cuántico principal n
Los valores del número cuántico L (subnivel) indican la letra del orbital que
corresponde: (L=0 es s ; L=1 es p ; L=2 es d ; L=3 es f)
Los valores de m indican los diferentes orbitales que caben en cada subnivel.
En cada orbital solo caben dos electrones uno girando de un lado y otro del
otro+1/2 y –1/2 número de spin
Ejemplo:
a) Establezca cuáles de las siguientes series de números
cuánticos serían posibles y cuáles imposibles para especificar el
estado de un electrón;
b) diga en que tipo de orbital atómico estarían situados los que son
posibles
Series n l m s
I 0 0 0 +½
II 1 1 0 +½
III 1 0 0 –½
IV 2 1 –2 +½
V 2 1 –1 +½
• Imposible. (n < 1)
• Imposible. (l = n)
• Posible. Orbital “1 s”
• Imposible (m ≠ -1,0,1)
• Posible. Orbital “2 p”
FORMA DE LOS
ORBITALES
FORMA DE LOS
ORBITALES
ORBITALES “s”ORBITALES “s”
Existe un orbital “s” por cada
nivel. Son esféricos,
concéntricos y su radio
aumenta con el NC principal n
Existe un orbital “s” por cada
nivel. Son esféricos,
concéntricos y su radio
aumenta con el NC principal n
FORMA DE LOS
ORBITALES
FORMA DE LOS
ORBITALES
ORBITALES “p”ORBITALES “p”
Existen 3 orbitales “p” por
cada nivel con n ≥ 2
Existen 3 orbitales “p” por
cada nivel con n ≥ 2
FORMA DE LOS
ORBITALES
FORMA DE LOS
ORBITALES
ORBITALES “d”ORBITALES “d”
Existen 5 orbitales “d” por
cada nivel con n ≥ 3
Existen 5 orbitales “d” por
cada nivel con n ≥ 3
FORMA DE LOS
ORBITALES
FORMA DE LOS
ORBITALES
ORBITALES “f”ORBITALES “f”
Existen 7 orbitales “f” por
cada nivel con n ≥ 4
Existen 7 orbitales “f” por
cada nivel con n ≥ 4
1s
2s 2p
3s 3p 3d
4s 4d 4p 4f
5s 5p 5d 5f
6s 6p 6d
7s 7p
A partir del nivel 3 las
energías de los orbitales
comienzan a intercalarse
A partir del nivel 3 las
energías de los orbitales
comienzan a intercalarse
ENERGÍA DE LOS
ORBITALES
ENERGÍA DE LOS
ORBITALES
COLOCACIÓN DE LOS ELECTRONES EN UN
DIAGRAMA DE ENERGÍA
COLOCACIÓN DE LOS ELECTRONES EN UN
DIAGRAMA DE ENERGÍA
Se siguen los siguientes principios:
• Principio de mínima energía (aufbau)
• Principio de máxima multiplicidad (regla de Hund)
• Una vez colocados se cumple el principio de exclusión de Pauli.
Principio de mínima
energía (aufbau)
• Se rellenan primero los niveles con menor energía.
• No se rellenan niveles superiores hasta que no
estén completos los niveles inferiores.
Principio de máxima
multiplicidad (regla
de Hund)
• Cuando un nivel electrónico tenga varios orbitales con
la misma energía, los electrones se van colocando lo
más desapareados posible en ese nivel electrónico.
• No se coloca un segundo electrón en uno de dichos
orbitales hasta que todos los orbitales de dicho nivel
de igual energía están semiocupados (desapareados).
Principio de exclusión
de Pauli.
“No puede haber dos electrones con los cuatro
números cuánticos iguales en un mismo átomo”
1 s
2 s
3 s
2 p
3 p
4 f
Energía
4 s
4 p 3 d
5 s
5 p
4 d
6s
6 p
5 d
n = 1; l = 0; m = 0; s = – ½n = 1; l = 0; m = 0; s = – ½n = 1; l = 0; m = 0; s = + ½n = 1; l = 0; m = 0; s = + ½n = 2; l = 0; m = 0; s = – ½n = 2; l = 0; m = 0; s = – ½n = 2; l = 0; m = 0; s = + ½n = 2; l = 0; m = 0; s = + ½n = 2; l = 1; m = – 1; s = – ½n = 2; l = 1; m = – 1; s = – ½n = 2; l = 1; m = 0; s = – ½n = 2; l = 1; m = 0; s = – ½n = 2; l = 1; m = + 1; s = – ½n = 2; l = 1; m = + 1; s = – ½n = 2; l = 1; m = – 1; s = + ½n = 2; l = 1; m = – 1; s = + ½n = 2; l = 1; m = 0; s = + ½n = 2; l = 1; m = 0; s = + ½n = 2; l = 1; m = + 1; s = + ½n = 2; l = 1; m = + 1; s = + ½n = 3; l = 0; m = 0; s = – ½n = 3; l = 0; m = 0; s = – ½n = 3; l = 0; m = 0; s = + ½n = 3; l = 0; m = 0; s = + ½n = 3; l = 1; m = – 1; s = – ½n = 3; l = 1; m = – 1; s = – ½n = 3; l = 1; m = 0; s = – ½n = 3; l = 1; m = 0; s = – ½n = 3; l = 1; m = + 1; s = – ½n = 3; l = 1; m = + 1; s = – ½n = 3; l = 1; m = – 1; s = + ½n = 3; l = 1; m = – 1; s = + ½n = 3; l = 1; m = 0; s = + ½n = 3; l = 1; m = 0; s = + ½n = 3; l = 1; m = + 1; s = + ½n = 3; l = 1; m = + 1; s = + ½n = 4; l = 0; m = 0; s = – ½n = 4; l = 0; m = 0; s = – ½n = 4; l = 0; m = 0; s = + ½n = 4; l = 0; m = 0; s = + ½n = 3; l = 2; m = – 2; s = – ½n = 3; l = 2; m = – 2; s = – ½n = 3; l = 2; m = – 1; s = – ½n = 3; l = 2; m = – 1; s = – ½n = 3; l = 2; m = 0; s = – ½n = 3; l = 2; m = 0; s = – ½n = 3; l = 2; m = + 1; s = – ½n = 3; l = 2; m = + 1; s = – ½n = 3; l = 2; m = + 2; s = – ½n = 3; l = 2; m = + 2; s = – ½n = 3; l = 2; m = – 2; s = + ½n = 3; l = 2; m = – 2; s = + ½n = 3; l = 2; m = – 1; s = + ½n = 3; l = 2; m = – 1; s = + ½n = 3; l = 2; m = 0; s = + ½n = 3; l = 2; m = 0; s = + ½n = 3; l = 2; m = + 1; s = + ½n = 3; l = 2; m = + 1; s = + ½n = 3; l = 2; m = + 2; s = + ½n = 3; l = 2; m = + 2; s = + ½n = 4; l = 1; m = – 1; s = – ½n = 4; l = 1; m = – 1; s = – ½n = 4; l = 1; m = 0; s = – ½n = 4; l = 1; m = 0; s = – ½n = 4; l = 1; m = + 1; s = – ½n = 4; l = 1; m = + 1; s = – ½n = 4; l = 1; m = – 1; s = + ½n = 4; l = 1; m = – 1; s = + ½n = 4; l = 1; m = 0; s = + ½n = 4; l = 1; m = 0; s = + ½n = 4; l = 1; m = + 1; s = + ½n = 4; l = 1; m = + 1; s = + ½n = ; l = ; m = ; s =n = ; l = ; m = ; s =
ORDEN EN QUE
SE RELLENAN
LOS ORBITALES
ORDEN EN QUE
SE RELLENAN
LOS ORBITALES

Más contenido relacionado

La actualidad más candente (18)

Racemisation n resolution
Racemisation n resolutionRacemisation n resolution
Racemisation n resolution
 
RMN: ejercicios adicionales
RMN: ejercicios adicionalesRMN: ejercicios adicionales
RMN: ejercicios adicionales
 
Isomería de Carbohidratos
Isomería de CarbohidratosIsomería de Carbohidratos
Isomería de Carbohidratos
 
Unidad III curso QOI
Unidad III curso QOIUnidad III curso QOI
Unidad III curso QOI
 
3.replicacion reparacion dna
3.replicacion  reparacion dna3.replicacion  reparacion dna
3.replicacion reparacion dna
 
Alteraciones en la regulación del ciclo celular
Alteraciones en la regulación del ciclo celularAlteraciones en la regulación del ciclo celular
Alteraciones en la regulación del ciclo celular
 
Asymmetric synthesis i
Asymmetric synthesis  iAsymmetric synthesis  i
Asymmetric synthesis i
 
Stereoselective and stereospecific reactions
Stereoselective and  stereospecific reactionsStereoselective and  stereospecific reactions
Stereoselective and stereospecific reactions
 
Asymmetric synthesis
Asymmetric synthesisAsymmetric synthesis
Asymmetric synthesis
 
1.isomeria por leo
1.isomeria por leo1.isomeria por leo
1.isomeria por leo
 
ESTEROIDES
ESTEROIDESESTEROIDES
ESTEROIDES
 
Espectroscopia de Masas
Espectroscopia de Masas Espectroscopia de Masas
Espectroscopia de Masas
 
Tabla de-grupos-funcionales
Tabla de-grupos-funcionalesTabla de-grupos-funcionales
Tabla de-grupos-funcionales
 
Nomenclature of stereoisomers
Nomenclature of stereoisomersNomenclature of stereoisomers
Nomenclature of stereoisomers
 
Planos corporales
Planos corporalesPlanos corporales
Planos corporales
 
Anómeros
AnómerosAnómeros
Anómeros
 
Pinene
PinenePinene
Pinene
 
Planos anatómicos
Planos anatómicosPlanos anatómicos
Planos anatómicos
 

Destacado

Funcionamento interno de computadores
Funcionamento interno de computadoresFuncionamento interno de computadores
Funcionamento interno de computadoresTiago
 
"Somos Físicos" ÁTomos, Moléculas e Substâncias
"Somos Físicos" ÁTomos, Moléculas e Substâncias"Somos Físicos" ÁTomos, Moléculas e Substâncias
"Somos Físicos" ÁTomos, Moléculas e SubstânciasVania Lima "Somos Físicos"
 
Elementos quimicos e periodicidade
Elementos quimicos e periodicidadeElementos quimicos e periodicidade
Elementos quimicos e periodicidadeAndrieli Caroline
 
3 introdução à estrutura e funcionamento de um pc
3 introdução à estrutura e funcionamento de um pc3 introdução à estrutura e funcionamento de um pc
3 introdução à estrutura e funcionamento de um pcSandra Minhós
 
Unidade 1.3. estrutura e funcionamento de um computador
Unidade 1.3.   estrutura e funcionamento de um computadorUnidade 1.3.   estrutura e funcionamento de um computador
Unidade 1.3. estrutura e funcionamento de um computadorhenriquecorreiosapo
 
Numbering system binary numbers among others.
Numbering system binary numbers among others.Numbering system binary numbers among others.
Numbering system binary numbers among others.BobPonja
 
Programação Eficaz - Agile Trends Floripa 2016
Programação Eficaz -  Agile Trends Floripa 2016Programação Eficaz -  Agile Trends Floripa 2016
Programação Eficaz - Agile Trends Floripa 2016Taller Negócio Digitais
 
"Somos Físicos" Átomos, Moléculas e Substâncias
"Somos Físicos" Átomos, Moléculas e Substâncias"Somos Físicos" Átomos, Moléculas e Substâncias
"Somos Físicos" Átomos, Moléculas e SubstânciasVania Lima "Somos Físicos"
 
Algoritmos e Estrutura de Dados - Aula 01
Algoritmos e Estrutura de Dados - Aula 01Algoritmos e Estrutura de Dados - Aula 01
Algoritmos e Estrutura de Dados - Aula 01thomasdacosta
 
"Somos Físicos" Átomo, Molécula e Substância
"Somos Físicos" Átomo, Molécula e Substância"Somos Físicos" Átomo, Molécula e Substância
"Somos Físicos" Átomo, Molécula e SubstânciaVania Lima "Somos Físicos"
 
Algoritmos e Estrutura de Dados - Aula 02
Algoritmos e Estrutura de Dados - Aula 02Algoritmos e Estrutura de Dados - Aula 02
Algoritmos e Estrutura de Dados - Aula 02thomasdacosta
 
Unidades de medida do sistema binário dos computadores
Unidades de medida do sistema binário dos computadoresUnidades de medida do sistema binário dos computadores
Unidades de medida do sistema binário dos computadoresmariliacherry
 
Paradigmas de Programação - Imperativo, Orientado a Objetos e Funcional
Paradigmas de Programação - Imperativo, Orientado a Objetos e FuncionalParadigmas de Programação - Imperativo, Orientado a Objetos e Funcional
Paradigmas de Programação - Imperativo, Orientado a Objetos e FuncionalGustavo Coutinho
 
3 - Modelos Atômicos - de Dalton a Bohr
3 - Modelos Atômicos - de Dalton a Bohr3 - Modelos Atômicos - de Dalton a Bohr
3 - Modelos Atômicos - de Dalton a BohrCharles Biral
 

Destacado (20)

Funcionamento interno de computadores
Funcionamento interno de computadoresFuncionamento interno de computadores
Funcionamento interno de computadores
 
Int tic
Int ticInt tic
Int tic
 
"Somos Físicos" ÁTomos, Moléculas e Substâncias
"Somos Físicos" ÁTomos, Moléculas e Substâncias"Somos Físicos" ÁTomos, Moléculas e Substâncias
"Somos Físicos" ÁTomos, Moléculas e Substâncias
 
Elementos quimicos e periodicidade
Elementos quimicos e periodicidadeElementos quimicos e periodicidade
Elementos quimicos e periodicidade
 
1350
13501350
1350
 
3 introdução à estrutura e funcionamento de um pc
3 introdução à estrutura e funcionamento de um pc3 introdução à estrutura e funcionamento de um pc
3 introdução à estrutura e funcionamento de um pc
 
Unidade 1.3. estrutura e funcionamento de um computador
Unidade 1.3.   estrutura e funcionamento de um computadorUnidade 1.3.   estrutura e funcionamento de um computador
Unidade 1.3. estrutura e funcionamento de um computador
 
Numbering system binary numbers among others.
Numbering system binary numbers among others.Numbering system binary numbers among others.
Numbering system binary numbers among others.
 
Programação Eficaz - Agile Trends Floripa 2016
Programação Eficaz -  Agile Trends Floripa 2016Programação Eficaz -  Agile Trends Floripa 2016
Programação Eficaz - Agile Trends Floripa 2016
 
Estrutura atômica
Estrutura atômicaEstrutura atômica
Estrutura atômica
 
Dyn
DynDyn
Dyn
 
Capsaicina
CapsaicinaCapsaicina
Capsaicina
 
"Somos Físicos" Átomos, Moléculas e Substâncias
"Somos Físicos" Átomos, Moléculas e Substâncias"Somos Físicos" Átomos, Moléculas e Substâncias
"Somos Físicos" Átomos, Moléculas e Substâncias
 
Algoritmos e Estrutura de Dados - Aula 01
Algoritmos e Estrutura de Dados - Aula 01Algoritmos e Estrutura de Dados - Aula 01
Algoritmos e Estrutura de Dados - Aula 01
 
"Somos Físicos" Átomo, Molécula e Substância
"Somos Físicos" Átomo, Molécula e Substância"Somos Físicos" Átomo, Molécula e Substância
"Somos Físicos" Átomo, Molécula e Substância
 
Algoritmos e Estrutura de Dados - Aula 02
Algoritmos e Estrutura de Dados - Aula 02Algoritmos e Estrutura de Dados - Aula 02
Algoritmos e Estrutura de Dados - Aula 02
 
Unidades de medida do sistema binário dos computadores
Unidades de medida do sistema binário dos computadoresUnidades de medida do sistema binário dos computadores
Unidades de medida do sistema binário dos computadores
 
944
944944
944
 
Paradigmas de Programação - Imperativo, Orientado a Objetos e Funcional
Paradigmas de Programação - Imperativo, Orientado a Objetos e FuncionalParadigmas de Programação - Imperativo, Orientado a Objetos e Funcional
Paradigmas de Programação - Imperativo, Orientado a Objetos e Funcional
 
3 - Modelos Atômicos - de Dalton a Bohr
3 - Modelos Atômicos - de Dalton a Bohr3 - Modelos Atômicos - de Dalton a Bohr
3 - Modelos Atômicos - de Dalton a Bohr
 

Similar a Estructura Atómica: Físico-Química IFE Minas

Similar a Estructura Atómica: Físico-Química IFE Minas (20)

Estructura atomica 38
Estructura atomica 38Estructura atomica 38
Estructura atomica 38
 
Estructuradelamateria2
Estructuradelamateria2Estructuradelamateria2
Estructuradelamateria2
 
Estructura atomica 46
Estructura atomica 46Estructura atomica 46
Estructura atomica 46
 
Studen Aid
Studen AidStuden Aid
Studen Aid
 
Estructuraatomica1
Estructuraatomica1Estructuraatomica1
Estructuraatomica1
 
Estructura atomica
Estructura atomicaEstructura atomica
Estructura atomica
 
Estructura Atomica
Estructura AtomicaEstructura Atomica
Estructura Atomica
 
Estructuradelamateria2
Estructuradelamateria2Estructuradelamateria2
Estructuradelamateria2
 
Presentacion estructua materia_parte1
Presentacion estructua materia_parte1Presentacion estructua materia_parte1
Presentacion estructua materia_parte1
 
MODELOS ATÓMICOS
MODELOS ATÓMICOSMODELOS ATÓMICOS
MODELOS ATÓMICOS
 
Presentacion tema1 parte1_quimica2bach
Presentacion tema1 parte1_quimica2bachPresentacion tema1 parte1_quimica2bach
Presentacion tema1 parte1_quimica2bach
 
Estructuraatomica
EstructuraatomicaEstructuraatomica
Estructuraatomica
 
Presentacion sergi
Presentacion sergiPresentacion sergi
Presentacion sergi
 
Modelos atomicos
Modelos atomicosModelos atomicos
Modelos atomicos
 
Modelos Atomicos
Modelos AtomicosModelos Atomicos
Modelos Atomicos
 
Modelos Atomicos
Modelos AtomicosModelos Atomicos
Modelos Atomicos
 
Modelos Atomicos Nurki
Modelos Atomicos NurkiModelos Atomicos Nurki
Modelos Atomicos Nurki
 
Estructura atómica. sistema periódico
Estructura atómica. sistema periódicoEstructura atómica. sistema periódico
Estructura atómica. sistema periódico
 
Clase sobre el atomo
Clase sobre el atomoClase sobre el atomo
Clase sobre el atomo
 
1b 11 modelos atómicos
1b 11 modelos atómicos1b 11 modelos atómicos
1b 11 modelos atómicos
 

Último

ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLAACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdfUn libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdfsandradianelly
 
Semana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptxSemana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptxLorenaCovarrubias12
 
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24auxsoporte
 
Material-de-Apoyo-Escuela-Sabatica-02-2-2024.pptx.ppt
Material-de-Apoyo-Escuela-Sabatica-02-2-2024.pptx.pptMaterial-de-Apoyo-Escuela-Sabatica-02-2-2024.pptx.ppt
Material-de-Apoyo-Escuela-Sabatica-02-2-2024.pptx.pptAntonioaraujo810405
 
Proceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaProceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaEdurne Navarro Bueno
 
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCIONCAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCIONMasielPMP
 
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
UNIDAD DE APRENDIZAJE DEL MES  Junio 2024UNIDAD DE APRENDIZAJE DEL MES  Junio 2024
UNIDAD DE APRENDIZAJE DEL MES Junio 2024EdwardYumbato1
 
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNETPRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNETCESAR MIJAEL ESPINOZA SALAZAR
 
1º GRADO CONCLUSIONES DESCRIPTIVAS PRIMARIA.docx
1º GRADO CONCLUSIONES DESCRIPTIVAS  PRIMARIA.docx1º GRADO CONCLUSIONES DESCRIPTIVAS  PRIMARIA.docx
1º GRADO CONCLUSIONES DESCRIPTIVAS PRIMARIA.docxFelixCamachoGuzman
 
Tarrajeo, tipos de tarrajeos, empastados, solaqueos y otros revestimientos.
Tarrajeo, tipos de tarrajeos, empastados, solaqueos y otros revestimientos.Tarrajeo, tipos de tarrajeos, empastados, solaqueos y otros revestimientos.
Tarrajeo, tipos de tarrajeos, empastados, solaqueos y otros revestimientos.DeinerSuclupeMori
 
Proyecto Integrador 2024. Archiduque entrevistas
Proyecto Integrador 2024. Archiduque entrevistasProyecto Integrador 2024. Archiduque entrevistas
Proyecto Integrador 2024. Archiduque entrevistasELIANAMARIBELBURBANO
 
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...crcamora123
 
ensayo literario rios profundos jose maria ARGUEDAS
ensayo literario rios profundos jose maria ARGUEDASensayo literario rios profundos jose maria ARGUEDAS
ensayo literario rios profundos jose maria ARGUEDASAntoineMoltisanti
 
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdfAsistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdfDemetrio Ccesa Rayme
 
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...Monseespinoza6
 
Creación WEB. Ideas clave para crear un sitio web
Creación WEB. Ideas clave para crear un sitio webCreación WEB. Ideas clave para crear un sitio web
Creación WEB. Ideas clave para crear un sitio webinformatica4
 
corpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdfcorpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdfYolandaRodriguezChin
 

Último (20)

3.Conectores uno_Enfermería_EspAcademico
3.Conectores uno_Enfermería_EspAcademico3.Conectores uno_Enfermería_EspAcademico
3.Conectores uno_Enfermería_EspAcademico
 
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLAACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
 
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdfUn libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
 
Semana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptxSemana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptx
 
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
 
Material-de-Apoyo-Escuela-Sabatica-02-2-2024.pptx.ppt
Material-de-Apoyo-Escuela-Sabatica-02-2-2024.pptx.pptMaterial-de-Apoyo-Escuela-Sabatica-02-2-2024.pptx.ppt
Material-de-Apoyo-Escuela-Sabatica-02-2-2024.pptx.ppt
 
Proceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaProceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de Pamplona
 
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCIONCAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
 
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
UNIDAD DE APRENDIZAJE DEL MES  Junio 2024UNIDAD DE APRENDIZAJE DEL MES  Junio 2024
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
 
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNETPRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
 
1º GRADO CONCLUSIONES DESCRIPTIVAS PRIMARIA.docx
1º GRADO CONCLUSIONES DESCRIPTIVAS  PRIMARIA.docx1º GRADO CONCLUSIONES DESCRIPTIVAS  PRIMARIA.docx
1º GRADO CONCLUSIONES DESCRIPTIVAS PRIMARIA.docx
 
Tarrajeo, tipos de tarrajeos, empastados, solaqueos y otros revestimientos.
Tarrajeo, tipos de tarrajeos, empastados, solaqueos y otros revestimientos.Tarrajeo, tipos de tarrajeos, empastados, solaqueos y otros revestimientos.
Tarrajeo, tipos de tarrajeos, empastados, solaqueos y otros revestimientos.
 
Proyecto Integrador 2024. Archiduque entrevistas
Proyecto Integrador 2024. Archiduque entrevistasProyecto Integrador 2024. Archiduque entrevistas
Proyecto Integrador 2024. Archiduque entrevistas
 
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
Presentación Propuesta de Proyecto Social Colorido y Juvenil Multicolor y Neg...
 
ensayo literario rios profundos jose maria ARGUEDAS
ensayo literario rios profundos jose maria ARGUEDASensayo literario rios profundos jose maria ARGUEDAS
ensayo literario rios profundos jose maria ARGUEDAS
 
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdfAsistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
 
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
Productos contestatos de la Séptima sesión ordinaria de CTE y TIFC para Docen...
 
Creación WEB. Ideas clave para crear un sitio web
Creación WEB. Ideas clave para crear un sitio webCreación WEB. Ideas clave para crear un sitio web
Creación WEB. Ideas clave para crear un sitio web
 
Conocemos la ermita de Ntra. Sra. del Arrabal
Conocemos la ermita de Ntra. Sra. del ArrabalConocemos la ermita de Ntra. Sra. del Arrabal
Conocemos la ermita de Ntra. Sra. del Arrabal
 
corpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdfcorpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdf
 

Estructura Atómica: Físico-Química IFE Minas

  • 2. John DaltonJohn Dalton Para él tenía que cumplirse, ante todo, que los átomos de un mismo elemento debían tener la misma masa. Con esta idea, Dalton publicó en 1808 su Teoría Atómica que podemos resumir: La materia está formada por partículas muy pequeñas, llamadas átomos , que son indivisibles e indestructibles. Todos los átomos de un mismo elemento tienen la misma masa atómica. Los átomos se combinan entre si en relaciones sencillas para formar compuestos. Los cuerpos compuestos están formados por átomos diferentes. Las propiedades del compuesto dependen del número y de la clase de átomos que tenga.
  • 3. Físico Británico estudió las propiedades eléctricas de la materia, especialmente la de los gases. Joseph John Thomson (1856- 1940) Joseph John Thomson (1856- 1940) Descubrió que los rayos catódicos estaban formados por partículas cargadas negativamente (hoy en día llamadas electrones), de las que determinó la relación entre su carga y masa. En 1906 le fue concedido el premio Nóbel por sus trabajos. Millikan calculó experimentalmente el valor de la carga eléctrica negativa de un electrón mediante su experimento con gotas de aceite entre placas de un condensador. Dió como valor de dicha carga e = 1,6 * 10 -19 culombios. La medida directa del cociente carga-masa, e/m, de los electrones por J.J. Thomson en 1897 puede considerarse justamente como el principio para la compresión actual de la estructura atómica.
  • 4. El clásico experimento de Thomson se desarrolló a partir del estudio de las descargas eléctricas en gases. Tubo de rayos catódicos utilizado por Thomson Cuando se sitúan unas aberturas en A y B, el brillo se limita a un punto bien definido sobre el vidrio, este punto puede desviarse mediante campos eléctricos o magnéticos.
  • 5. Thomson define así su modelo de átomo : Considera el átomo como una gran esfera con carga eléctrica positiva, en la cual se distribuyen los electrones como pequeños granitos (de forma si-milar a las semillas en una sandía) Modelo atómico de ThomsonModelo atómico de Thomson Concebía el átomo como una esfera de carga positiva uniforme en la cual están incrustados los electrones.
  • 6. Tras las investigaciones de Geiger y Mardsen sobre la dispersión de partículas alfa al incidir sobre láminas metálicas, se hizo necesario la revisión del modelo atómico de Thomson, que realizó Rutherford entre 1909-1911. Ernest Rutherford, (1871-1937) Físico Inglés, nació en Nueva Zelanda, profesor en Manchester y director del laboratorio Cavendish de la universidad de Cambridge. Premio Nobel de Química en 1908. Sus brillantes investigaciones sobre la estructura atómica y sobre la radioactividad iniciaron el camino a los descubrimientos más notables del siglo. Estudió experimentalmente la naturaleza de las radiaciones emitidas por los elementos radiactivos. Ernest Rutherford, (1871-1937) Físico Inglés, nació en Nueva Zelanda, profesor en Manchester y director del laboratorio Cavendish de la universidad de Cambridge. Premio Nobel de Química en 1908. Sus brillantes investigaciones sobre la estructura atómica y sobre la radioactividad iniciaron el camino a los descubrimientos más notables del siglo. Estudió experimentalmente la naturaleza de las radiaciones emitidas por los elementos radiactivos. Puesto que las partículas alfa y beta atraviesan el átomo, un estudio riguroso de la naturaleza de la desviación debe proporcionar cierta luz sobre la constitución de átomo, capaz de producir los efectos observados. Las investigaciones se produjeron tras el descubrimiento de la radioactividad y la identificación de las partículas emitidas en un proceso radiactivo.
  • 7. Experimento para determinar la constitución del átomo Experimento para determinar la constitución del átomo La mayoría de los rayos alfa atravesaba la lámina sin desviarse, porque la mayor parte del espacio de un átomo es espacio vacío. Algunos rayos se desviaban, porque pasan muy cerca de centros con carga eléctrica del mismo tipo que los rayos alfa (CARGA POSITIVA). Muy pocos rebotan, porque chocan frontalmente contra esos centros de carga positiva.
  • 8. El modelo del átomo de RUTHERFORD: con los protones en el núcleo y los electrones girando alrededor. El Modelo Atómico de Rutherford quedó así:El Modelo Atómico de Rutherford quedó así: - Todo átomo está formado por un núcleo y corteza. - El núcleo, muy pesado, y de muy pequeño tamaño, formado por un número de protones igual al NÚMERO ATÓMICO, donde se concentra toda la masa atómica. - Existiendo un gran espacio vacío entre el núcleo y la corteza donde se mueven los electrones. NÚMERO ATÓMICO= número de protones del núcleo que coincide con el número de electrones si el átomo es neutro. NÚMERO ATÓMICO= número de protones del núcleo que coincide con el número de electrones si el átomo es neutro.
  • 9.  - Puesto que la materia es neutra el núcleo deberá tener un número de cargas positivas protones ( número atómico=Z ) igual al de electrones corticales. En el núcleo es donde están también los neutrones - Girando alrededor en órbitas circulares, un número de electrones igual a de protones. - Los electrones giran a grandes distancias del núcleo de modo que su fuerza centrífuga es igual a la atracción electrostática, pero de sentido contrario. Al compensar con la fuerza electrostática la atracción del núcleo evita caer contra él y se mantiene girando alrededor. En 1932 el inglés Chadwik al bombardear átomos con partículas observó que se emitía una nueva partícula sin carga y de masa similar al protón, acababa de descubrir el NEUTRÓN En el núcleo se encuentran los neutrones y los protones.
  • 10.       Partícula     Carga     Masa       PROTÓN p+    +1 unidad electrostática de carga = 1,6. 10-19 C  1 unidad atómica de masa (u.m.a.) =1,66 10-27 kg       NEUTRON n     0 no tiene carga eléctrica, es neutro  1 unidad atómica de masa (u.m.a.) =1,66 10-27 kg         ELECTRÓN e-     -1 unidad electrostática de carga =-1,6. 10-19 C Muy pequeña y por tanto despreciable comparada con la de p+ y n     p1 1 n1 0 e0 1− PARTÍCULAS FUNDAMENTALES PARTÍCULAS FUNDAMENTALES Los protones y neutrones determinan la masa de los átomos y los electrones son los responsables de las propiedades químicas. Los protones y neutrones determinan la masa de los átomos y los electrones son los responsables de las propiedades químicas. NÚCLEO = Zona central del átomo donde se encuentran protones y neutrones CORTEZA =Zona que envuelve al núcleo donde se encuentran moviéndose los electrones NÚCLEO = Zona central del átomo donde se encuentran protones y neutrones CORTEZA =Zona que envuelve al núcleo donde se encuentran moviéndose los electrones
  • 11. NÚMERO ATÓMICO (Z) al número de protones que tiene un átomo. Coincide con el número de electrones si el átomo está neutro. Todos los átomos de un mismo elemento tienen el mismo número de protones, por lo tanto, tienen el mismo número atómico. NÚMERO ATÓMICO (Z) al número de protones que tiene un átomo. Coincide con el número de electrones si el átomo está neutro. Todos los átomos de un mismo elemento tienen el mismo número de protones, por lo tanto, tienen el mismo número atómico. NÚMERO MÁSICO (A) a la suma de los protones y los neutrones que tiene un átomo.NÚMERO MÁSICO (A) a la suma de los protones y los neutrones que tiene un átomo. ISÓTOPOS a átomos de un mismo elemento que se diferencian en el número de neutrones. Tienen por tanto el mismo número atómico(Z) pero diferente número másico(A). ISÓTOPOS a átomos de un mismo elemento que se diferencian en el número de neutrones. Tienen por tanto el mismo número atómico(Z) pero diferente número másico(A). Un átomo se representa por: • Su símbolo = una letra mayúscula o dos letras, la primera mayúscula que derivan de su nombre. Ca , H , Li, S, He.... • Su número atómico (Z) que se escribe abajo a la izquierda. Su número másico (A) que se escribe arriba a la izquierda. EA Z IONES a átomos o grupos de átomos que poseen carga eléctrica porque han ganado o perdido electrones. Pueden ser: CATIONES si poseen carga positiva y, por tanto, se han perdido electrones. ANIONES si poseen carga negativa y , por tanto, se han ganado electrones. IONES a átomos o grupos de átomos que poseen carga eléctrica porque han ganado o perdido electrones. Pueden ser: CATIONES si poseen carga positiva y, por tanto, se han perdido electrones. ANIONES si poseen carga negativa y , por tanto, se han ganado electrones.
  • 12. Crítica del modelo de Rutherford:Crítica del modelo de Rutherford: Fue fundamental la demostración de la discontinuidad de la materia y de los grandes vacíos del átomo. Por lo demás, presenta deficiencias y puntos poco claros:   - Según la ya probada teoría electromagnética de Maxwell, al ser el electrón una partícula cargada en movimiento debe emitir radiación constante y por tanto, perder energía. Esto debe hacer que disminuya el radio de su órbita y el electrón terminaría por caer en el núcleo; el átomo sería inestable. Por lo tanto, no se puede simplificar el problema planteando, para un electrón , que la fuerza electrostática es igual a la centrífuga debe haber algo más -Era conocida en el momento de diseñar su teoría la hipótesis de Planck que no la tuvo en cuenta. -Tampoco es coherente con los resultados de los espectros atómicos. Los experimentos de Rutherford eran definitivos, pero el planteamiento era incompleto y lógicamente, también los cálculos.
  • 13. LA RADIACIÓN ELECTROMAGNÉTICA.LA RADIACIÓN ELECTROMAGNÉTICA. • Una onda electromagnética consiste en la oscilación de un campo eléctrico y otro magnético en direcciones perpendiculares, entre sí, y a su vez, perpendiculares ambos a la dirección de propagación. • Viene determinada por su frecuencia “ν” o por su longitud de onda “λ”, relacionadas entre sí por: = c ν λ ESPECTRO ELECTROMAGNÉTICO:Es el conjunto de todas las radiaciones electromagnéticas desde muy bajas longitudes de ondas (rayos γ 10–12 m) hasta kilómetros (ondas de radio) Espectro continuo de la luz es la descomposición de la luz en todas su longitudes de onda mediante un prisma óptico. C= velocidad de la luz =3.108 m/s C= velocidad de la luz =3.108 m/s
  • 15. Espectro atómico de absorción Espectro atómico de absorción Cuando la radiación atraviesa un gas, este absorbe una parte, el resultado es el espectro continuo pero con rayas negras donde falta la radiación absorbida. ESPECTRO DE ABSORCIÓN Espectro de absorción
  • 16. Espectro de emisión ESPECTRO DE EMISIÓN ESPECTRO DE EMISIÓN Cuando a los elementos en estado gaseoso se les suministra energía (descarga eléctrica, calentamiento...) éstos emiten radiaciones de determinadas longitudes de onda. Estas radiaciones dispersadas en un prisma de un espectroscopio se ven como una serie de rayas, y el conjunto de las mismas es lo que se conoce como espectro de emisión.
  • 17. Cada elemento tiene un espectro característico; por tanto, un modelo atómico debería ser capaz de justificar el espectro de cada elemento. Cada elemento tiene un espectro característico; por tanto, un modelo atómico debería ser capaz de justificar el espectro de cada elemento.
  • 18.
  • 19.
  • 20. TIPO DE RADIACION Intervalos de las longitudes de onda Rayos Gamma inferiores a 10-2 nanómetros Rayos X entre 10-2 nanómetros y 15 nanómetros Ultravioleta entre 15 nanómetros y 4.102 nanómetros ESPECTRO VISIBLE entre 4.102 nanómetros y 7,8.102 nanómetros (4000 Angstroms y 7800 Angstroms) Infrarrojo entre 7,8.102 nanómetros y 106 nanómetros Región de Microondas entre 106 nanómetros y 3.108 nanómetros Ondas de Radio mayores de 3.108 nanómetros
  • 21. cobrecobre ALGUNOS ESPECTROS DE EMISIÓN (ensayo a la llama) ALGUNOS ESPECTROS DE EMISIÓN (ensayo a la llama) cobaltocobalto Cada elemento presenta un espectro de emisión diferente identificable a simple vista mediante el ensayo a la llama.
  • 22. TEORÍA CUÁNTICA DE PLANCK TEORÍA CUÁNTICA DE PLANCK La teoría cuántica se refiere a la energía: Cuando la energía está en forma de radiación electromagnética (es decir, de una radiación similar a la luz), se denomina energía radiante y su unidad mínima recibe el nombre de fotón. La energía de un fotón viene dada por la ecuación de Planck: E = h · νE = h · ν h: constante de Planck = 6.62 · 10-34 Joule · segundo ν: frecuencia de la radiación Cuando una sustancia absorbe o emite energía, no puede absorberse o emitirse cualquier cantidad de energía, sino que definimos una unidad mínima de energía, llamada cuanto (que será el equivalente en energía a lo que es el átomo para la materia). O sea cualquier cantidad de energía que se emita o se absorba deberá ser un número entero de cuantos.
  • 23. MODELO ATÓMICO DE BÖHR. (En qué se basó)MODELO ATÓMICO DE BÖHR. (En qué se basó) El modelo atómico de Rutherford llevaba a unas conclusiones que se contradecían claramente con los datos experimentales. La teoría de Maxwell echaba por tierra el sencillo planteamiento matemático del modelo de Rutherford. El estudio de las rayas de los espectros atómicos permitió relacionar la emisión de radiaciones de determinada “λ ” (longitud de onda) con cambios energéticos asociados a saltos entre niveles electrónicos. La teoría de Planck le hizo ver que la energía no era algo continuo sino que estaba cuantizada en cantidades hν.
  • 24. Segundo postulado Sólo son posibles aquellas órbitas en las que el electrón tiene un momento angular que es múltiplo entero de h /(2 · π) ÓRBITAS ESTACIONARIAS Así, el Segundo Postulado nos indica que el electrón no puede estar a cualquier distancia del núcleo, sino que sólo hay unas pocas órbitas posibles, las cuales vienen definidas por los valores permitidos para un parámetro que se denomina número cuántico principal n. Primer postulado El electrón gira alrededor del núcleo en órbitas circulares sin emitir energía radiante. Tercer Postulado La energía liberada al caer el electrón desde una órbita a otra de menor energía se emite en forma de fotón, cuya frecuencia viene dada por la ecuación de Planck: Ea - Eb = h · ν Así, cuando el átomo absorbe (o emite) una radiación, el electrón pasa a una órbita de mayor (o menor) energía, y la diferencia entre ambas órbitas se corresponderá con una línea del espectro atómico de absorción (o de emisión). MODELO ATÓMICO DE BÖHRMODELO ATÓMICO DE BÖHR
  • 25. ENERGÍA DE LAS ORBITAS PERMITIDASENERGÍA DE LAS ORBITAS PERMITIDAS A cada órbita permitida le corresponde una energía que depende del NC n. A cada órbita permitida le corresponde una energía que depende del NC n.       −= 2 1 n RE Hn Donde R es la constante de Rydberg = 2,18.10 *-18 J Donde R es la constante de Rydberg = 2,18.10 *-18 J
  • 26. Niveles permitidos según el modelo de Bohr (para el átomo de hidrógeno) Niveles permitidos según el modelo de Bohr (para el átomo de hidrógeno) n = 1 E = –21,76 · 10–19 J n = 2 E = –5,43 · 10–19 J n = 3 E = –2,42 · 10–19 J Energía n = 4 E = –1,36 · 10–19 J n = 5 E = –0,87 · 10–19 J n = ∞ E = 0 J
  • 28. SERIES ESPECTRALES: y su explicación con el modelo de BohrSERIES ESPECTRALES: y su explicación con el modelo de Bohr Los espectroscopistas habían calculado y estudiado a fondo las rayas del espectro atómico más sencillo, el del átomo de hidrógeno. Cada uno estudió un grupo de rayas del espectro: • Serie Balmer: aparece en la zona visible del espectro. • Serie Lyman: aparece en la zona ultravioleta del espectro. • Serie Paschen • Serie Bracket • Serie Pfund Aparecen en la zona infrarroja del espectro
  • 29. Ley de Rydberg . La relación entre las longitudes de onda de las distintas rayas del espectro del hidrógeno viene dada por la expresión: La relación entre las longitudes de onda de las distintas rayas del espectro del hidrógeno viene dada por la expresión:   = × − ÷   2 2 1 2 1 1 1 R n nλ donde n1 y n2 son números enteros > 0 cumpliéndose que n2 > n1 donde n1 y n2 son números enteros > 0 cumpliéndose que n2 > n1 Si n1 = 1; n2 = 2, 3, 4, 5 ... Serie Lyman Si n1 = 2; n2 = 3, 4, 5, 6 ... Serie Balmer Si n1 = 3; n2 = 4, 5, 6, 7 ... Serie Paschen Si n1 = 1; n2 = 2, 3, 4, 5 ... Serie Lyman Si n1 = 2; n2 = 3, 4, 5, 6 ... Serie Balmer Si n1 = 3; n2 = 4, 5, 6, 7 ... Serie Paschen
  • 30. CORRECCIONES AL MODELO DE BÖHR: NÚMEROS CUÁNTICOS. CORRECCIONES AL MODELO DE BÖHR: NÚMEROS CUÁNTICOS. En el modelo original de Böhr, se precisa un único parámetro (el número cuántico principal, n), que se relaciona con el radio de la órbita circular que el electrón realiza alrededor del núcleo, y también con la energía total del electrón. n indica los diferentes niveles electrónicos (órbitas estacionarias en el modelo de Bohr). Los valores que puede tomar este número cuántico principal son los enteros positivos: 1, 2, 3... Sin embargo, pronto fue necesario modificar el modelo para adaptarlo a los nuevos datos experimentales, aparición de nuevas rayas espectrales con lo que se introdujeron otros tres números cuánticos para caracterizar al electrón: número cuántico secundario o azimutal (l) número cuántico magnético (m) número cuántico de espín (s) número cuántico secundario o azimutal (l) número cuántico magnético (m) número cuántico de espín (s)
  • 31. Número cuántico secundario o azimutal (L): corrección de Sommerfeld Número cuántico secundario o azimutal (L): corrección de Sommerfeld En 1916, Sommerfeld modificó el modelo de Böhr considerando que las órbitas del electrón no eran necesariamente circulares, sino que también eran posibles órbitas elípticas; esta modificación exige disponer de dos parámetros para caracterizar al electrón. Una elipse viene definida por dos parámetros, que son los valores de sus semiejes mayor y menor. En el caso de que ambos semiejes sean iguales, la elipse se convierte en una circunferencia. Así, introducimos el número cuántico secundario o azimutal (l), cuyos valores permitidos son: L= 0, 1, 2, ..., n – 1 Por ejemplo, si n = 3, los valores que puede tomar L serán: 0, 1, 2 El desdoblamiento de algunas rayas espectrales observado con las mejoras técnicas de algunos espectroscopios llevó a la necesidad de justificar estas nuevas rayas y por tanto de corregir el modelo de Bohr.
  • 32. Número cuántico magnético (m). Número cuántico magnético (m). Indica las posibles orientaciones en el espacio que puede adoptar la órbita del electrón cuando éste es sometido a un campo magnético externo (efecto Zeemann). Valores permitidos: - L, ..., 0, ..., + L Por ejemplo, si el número cuántico secundario vale L= 2, los valores permitidos para m serán: -2, -1, 0, 1, 2 El efecto Zeemann se debe a que cualquier carga eléctrica en movimiento crea un campo magnético; por lo tanto, también el electrón lo crea, así que deberá sufrir la influencia de cualquier campo magnético externo que se le aplique. Aplicando un campo magnético a los espectros atómicos las rayas se desdoblan lo que indica que deben existir diferentes orientaciones posibles . Número cuántico de espín (s).Número cuántico de espín (s). Indica el sentido de giro del electrón en torno a su propio eje. Puede tomar sólo dos valores para el electrón: +1/2, -1/2.
  • 33. n = 1, 2, 3, 4, ... (nº de capa o nivel) L = 0, 1, 2, ... (n – 1) (forma del orbital o subnivel) m = – L, ... , 0, ... L (orientación orbital o orbital) s = – ½ , + ½ (spín rotación del electrón ) Cada electrón viene determinado por 4 números cuánticos: n, L, m y s (los tres primeros determinan cada orbital, y el cuarto “s” sirve para diferenciar a cada uno de los dos e– que componen el mismo). Los valores de éstos son los siguientes: Números cuánticos.Números cuánticos.
  • 34. n l m s 1s 1 0 0 ±1/2 2s 2 0 0 ±1/2 2p 2 1 –1,0,1 ±1/2 3s 3 0 0 ±1/2 3p 3 1 –1,0,1 ±1/2 3d 3 2 –2, –1,0,1,2 ±1/2 4s 4 0 0 ±1/2 4p 4 1 –1,0,1 ±1/2 4d 4 2 –2, –1,0,1,2 ±1/2 4f 4 3 –3,–2, –1,0,1,2,3 ±1/2
  • 35. MODELO ACTUALMODELO ACTUAL El átomo está formado por un núcleo donde se encuentran los neutrones y los protones y los electrones giran alrededor en diferentes orbitales. ORBITAL: ZONA DEL ESPACIO EN TORNO AL NÚCLEO DONDE LA POSIBILIDAD DE ENCONTRAR AL ELECTRÓN ES MÁXIMA Los electrones se sitúan en orbitales, los cuales tienen capacidad para situar dos de ellos: • 1ª capa: 1 orb. “s” (2 e– ) • 2ª capa: 1 orb. “s” (2 e– ) + 3 orb. “p” (6 e– ) • 3ª capa: 1 orb. “s” (2 e– ) + 3 orb. “p” (6 e– ) 5 orb. “d” (10 e– ) • 4ª capa: 1 orb. “s” (2 e– ) + 3 orb. “p” (6 e– ) 5 orb. “d” (10 e– ) + 7 orb. “f” (14 e– ) • Y así sucesivamente… Primero se indica el nivel que es el número cuántico principal n Los valores del número cuántico L (subnivel) indican la letra del orbital que corresponde: (L=0 es s ; L=1 es p ; L=2 es d ; L=3 es f) Los valores de m indican los diferentes orbitales que caben en cada subnivel. En cada orbital solo caben dos electrones uno girando de un lado y otro del otro+1/2 y –1/2 número de spin
  • 36. Ejemplo: a) Establezca cuáles de las siguientes series de números cuánticos serían posibles y cuáles imposibles para especificar el estado de un electrón; b) diga en que tipo de orbital atómico estarían situados los que son posibles Series n l m s I 0 0 0 +½ II 1 1 0 +½ III 1 0 0 –½ IV 2 1 –2 +½ V 2 1 –1 +½ • Imposible. (n < 1) • Imposible. (l = n) • Posible. Orbital “1 s” • Imposible (m ≠ -1,0,1) • Posible. Orbital “2 p”
  • 37. FORMA DE LOS ORBITALES FORMA DE LOS ORBITALES ORBITALES “s”ORBITALES “s” Existe un orbital “s” por cada nivel. Son esféricos, concéntricos y su radio aumenta con el NC principal n Existe un orbital “s” por cada nivel. Son esféricos, concéntricos y su radio aumenta con el NC principal n
  • 38. FORMA DE LOS ORBITALES FORMA DE LOS ORBITALES ORBITALES “p”ORBITALES “p” Existen 3 orbitales “p” por cada nivel con n ≥ 2 Existen 3 orbitales “p” por cada nivel con n ≥ 2
  • 39. FORMA DE LOS ORBITALES FORMA DE LOS ORBITALES ORBITALES “d”ORBITALES “d” Existen 5 orbitales “d” por cada nivel con n ≥ 3 Existen 5 orbitales “d” por cada nivel con n ≥ 3
  • 40. FORMA DE LOS ORBITALES FORMA DE LOS ORBITALES ORBITALES “f”ORBITALES “f” Existen 7 orbitales “f” por cada nivel con n ≥ 4 Existen 7 orbitales “f” por cada nivel con n ≥ 4
  • 41. 1s 2s 2p 3s 3p 3d 4s 4d 4p 4f 5s 5p 5d 5f 6s 6p 6d 7s 7p A partir del nivel 3 las energías de los orbitales comienzan a intercalarse A partir del nivel 3 las energías de los orbitales comienzan a intercalarse ENERGÍA DE LOS ORBITALES ENERGÍA DE LOS ORBITALES
  • 42. COLOCACIÓN DE LOS ELECTRONES EN UN DIAGRAMA DE ENERGÍA COLOCACIÓN DE LOS ELECTRONES EN UN DIAGRAMA DE ENERGÍA Se siguen los siguientes principios: • Principio de mínima energía (aufbau) • Principio de máxima multiplicidad (regla de Hund) • Una vez colocados se cumple el principio de exclusión de Pauli. Principio de mínima energía (aufbau) • Se rellenan primero los niveles con menor energía. • No se rellenan niveles superiores hasta que no estén completos los niveles inferiores. Principio de máxima multiplicidad (regla de Hund) • Cuando un nivel electrónico tenga varios orbitales con la misma energía, los electrones se van colocando lo más desapareados posible en ese nivel electrónico. • No se coloca un segundo electrón en uno de dichos orbitales hasta que todos los orbitales de dicho nivel de igual energía están semiocupados (desapareados). Principio de exclusión de Pauli. “No puede haber dos electrones con los cuatro números cuánticos iguales en un mismo átomo”
  • 43. 1 s 2 s 3 s 2 p 3 p 4 f Energía 4 s 4 p 3 d 5 s 5 p 4 d 6s 6 p 5 d n = 1; l = 0; m = 0; s = – ½n = 1; l = 0; m = 0; s = – ½n = 1; l = 0; m = 0; s = + ½n = 1; l = 0; m = 0; s = + ½n = 2; l = 0; m = 0; s = – ½n = 2; l = 0; m = 0; s = – ½n = 2; l = 0; m = 0; s = + ½n = 2; l = 0; m = 0; s = + ½n = 2; l = 1; m = – 1; s = – ½n = 2; l = 1; m = – 1; s = – ½n = 2; l = 1; m = 0; s = – ½n = 2; l = 1; m = 0; s = – ½n = 2; l = 1; m = + 1; s = – ½n = 2; l = 1; m = + 1; s = – ½n = 2; l = 1; m = – 1; s = + ½n = 2; l = 1; m = – 1; s = + ½n = 2; l = 1; m = 0; s = + ½n = 2; l = 1; m = 0; s = + ½n = 2; l = 1; m = + 1; s = + ½n = 2; l = 1; m = + 1; s = + ½n = 3; l = 0; m = 0; s = – ½n = 3; l = 0; m = 0; s = – ½n = 3; l = 0; m = 0; s = + ½n = 3; l = 0; m = 0; s = + ½n = 3; l = 1; m = – 1; s = – ½n = 3; l = 1; m = – 1; s = – ½n = 3; l = 1; m = 0; s = – ½n = 3; l = 1; m = 0; s = – ½n = 3; l = 1; m = + 1; s = – ½n = 3; l = 1; m = + 1; s = – ½n = 3; l = 1; m = – 1; s = + ½n = 3; l = 1; m = – 1; s = + ½n = 3; l = 1; m = 0; s = + ½n = 3; l = 1; m = 0; s = + ½n = 3; l = 1; m = + 1; s = + ½n = 3; l = 1; m = + 1; s = + ½n = 4; l = 0; m = 0; s = – ½n = 4; l = 0; m = 0; s = – ½n = 4; l = 0; m = 0; s = + ½n = 4; l = 0; m = 0; s = + ½n = 3; l = 2; m = – 2; s = – ½n = 3; l = 2; m = – 2; s = – ½n = 3; l = 2; m = – 1; s = – ½n = 3; l = 2; m = – 1; s = – ½n = 3; l = 2; m = 0; s = – ½n = 3; l = 2; m = 0; s = – ½n = 3; l = 2; m = + 1; s = – ½n = 3; l = 2; m = + 1; s = – ½n = 3; l = 2; m = + 2; s = – ½n = 3; l = 2; m = + 2; s = – ½n = 3; l = 2; m = – 2; s = + ½n = 3; l = 2; m = – 2; s = + ½n = 3; l = 2; m = – 1; s = + ½n = 3; l = 2; m = – 1; s = + ½n = 3; l = 2; m = 0; s = + ½n = 3; l = 2; m = 0; s = + ½n = 3; l = 2; m = + 1; s = + ½n = 3; l = 2; m = + 1; s = + ½n = 3; l = 2; m = + 2; s = + ½n = 3; l = 2; m = + 2; s = + ½n = 4; l = 1; m = – 1; s = – ½n = 4; l = 1; m = – 1; s = – ½n = 4; l = 1; m = 0; s = – ½n = 4; l = 1; m = 0; s = – ½n = 4; l = 1; m = + 1; s = – ½n = 4; l = 1; m = + 1; s = – ½n = 4; l = 1; m = – 1; s = + ½n = 4; l = 1; m = – 1; s = + ½n = 4; l = 1; m = 0; s = + ½n = 4; l = 1; m = 0; s = + ½n = 4; l = 1; m = + 1; s = + ½n = 4; l = 1; m = + 1; s = + ½n = ; l = ; m = ; s =n = ; l = ; m = ; s = ORDEN EN QUE SE RELLENAN LOS ORBITALES ORDEN EN QUE SE RELLENAN LOS ORBITALES