Hitos  de la Física ModernaRadicación de cuerpo negro    Teoría de la relatividad Dualidad Onda –Corpúsculo Principio de incertidumbre
Radiación de cuerpo negro1. Radiación absorbida , reflejada y emitida Sobre la superficie de un cuerpo incide constantemente energía radiante, tanto desde el interior como desde el exterior, la que incide desde el exterior procede de los objetos que rodean al cuerpo. Cuando la energía radiante incide sobre la superficie una parte se refleja y la otra parte se transmite.
    Consideremos la energía radiante que incide desde el exterior sobre la superficie del cuerpo.     Si la superficie es lisa y pulimentada, como la de un espejo, la mayor parte de la energía incidente se refleja, el resto atraviesa la superficie del cuerpo y es absorbido por sus átomos o moléculas. 	Si r es la proporción de energía radiante que se refleja, y a la proporción que se absorbe, se debe de cumplir que r+a=1.
La misma proporción r de la energía radiante que incide desde el interior se refleja hacia dentro, y se transmite la proporción a=1-r que se propaga hacia afuera y se denomina por tanto, energía radiante emitida por la superficie. En la figura, se muestra el comportamiento de la superficie de un cuerpo que refleja una pequeña parte de la energía incidente. Las anchuras de las distintas bandas corresponden a cantidades relativas de energía radiante incidente, reflejada y transmitida a través de la superficie.
       Comparando ambas figuras, vemos que un buen absorbedor de radiación es un buen emisor, y un mal absorbedor es un mal emisor. También podemos decir, que un buen reflector es un mal emisor, y un mal reflector es un buen emisor.          Una aplicación práctica está en los termos utilizados para mantener la temperatura de los líquidos como el café.         Un termo tiene dobles paredes de vidrio, habiéndose vaciado de aire el espacio entre dichas paredes para evitar las pérdidas por conducción y convección.                                Para reducir las pérdidas por radiación, se cubren las paredes con una lámina de plata que es altamente reflectante y por tanto, mal emisor y mal absorbedor de radiación.
Radiación de cuerpo negro La superficie de un cuerpo negro es un caso límite, en el que toda la energía incidente desde el exterior es absorbida, y toda la energía incidente desde el interior es emitida.  
No existe  realmente  un cuerpo negro ,sin embargo, un cuerpo negro se puede sustituir con gran aproximación por una cavidad con una pequeña abertura. La energía radiante incidente a través de la abertura, es absorbida por las paredes en múltiples reflexiones y solamente una mínima proporción escapa (se refleja) a través de la abertura. Podemos por tanto decir, que toda la energía incidente es absorbida.
Consideremos una cavidad cuyas paredes están a una cierta temperatura. Los átomos que componen las paredes están emitiendo radiación electromagnética y al mismo tiempo absorben la radiación emitida por otros átomos de las paredes. Cuando la radiación encerrada dentro de la cavidad alcanza el equilibrio con los átomos de las paredes, la cantidad de energía que emiten los átomos en la unidad de tiempo es igual a la que absorben. En consecuencia, la densidad de energía del campo electromagnético existente en la cavidad es constante.
Si se abre un pequeño agujero en el recipiente, parte de la radiación se escapa y se puede analizar. El agujero se ve muy brillante cuando el cuerpo está a alta temperatura, y se ve completamente negro a bajas temperaturas.A cada frecuencia corresponde una densidad de energía que depende solamente de la temperatura de las paredes y es independiente del material del que están hechas.
Postulados de Planck  La energía esta cuantizada :                            E  =  n h f    La emisión de energía no es constante en el tiempo              Emite radiación solo cuando pasa de mayor a menor nivel de energía               Absorbe energía cuando pasa de menor a mayor nivel de energía
RelatividadEn 1905 Einstein presenta su teoría de la relatividad
Principio de la relatividad Las leyes físicas son las mismas en todos los  Sistemas físicos
Invariancia de la LuzLa velocidad de la Luz en el vacio ; es la misma sin importar la rapidez  que lleve la fuente emisora
¿La velocidad de la luz es la misma siempre..?Albert Michelson Y Edward Morley   midieron la velocidad de la luz e acercándose y alejándose de la fuente de emisión , encontrando que el valor de la velocidad de la luz era el mismo  Einstein dijo entonces: supongamos que cuando se mide la velocidad de la luz en el vacío, siempre resulta el mismo valor (unos 299.793 kilómetros por segundo), en cualesquiera circunstancias. ¿Cómo podemos disponer las leyes del universo para explicar esto? Einstein encontró que para explicar la constancia de la velocidad de la luz había que aceptar una serie de fenómenos inesperados.
     Halló que los objetos tenían que acortarse en la dirección del movimiento, tanto más cuanto mayor fuese su velocidad, hasta llegar finalmente a una longitud nula en el límite de la velocidad de la luz    Que la masa de los objetos en movimiento tenía que aumentar con la velocidad, hasta hacerse infinita en el límite de la velocidad de la luz  Que el paso del tiempo en un objeto en movimiento era cada vez más lento a medida que aumentaba la velocidad, hasta llegar a pararse en dicho límite; que la masa era equivalente a una cierta cantidad de energía y viceversa.
Efectos   al moverse a la velocidad de la LuzImaginemos que en un vagón que se mueve con velocidad v , próxima a la velocidad de la luz, un viajero enciende una linterna apuntando al techo y supongamos que pudiéramos ver como un fotón que sale de la linterna choca contra el techo. 
Observado desde dentro de la nave el fotón recorre una distancia s en un tiempo t´.Por tanto s = c t´
Observado desde fuera el fotón ha recorrido una distancia s´ en un tiempo t.                  Por tanto s´= c tComo s´ es mayor que s y la velocidad del fotón según Einstein es la misma en los dos casos, está claro que el tiempo t será mayor que t´.Además es fácil deducir la relación entre t y t`.
Aplicando el Teorema de Pitágoras:      s´2 = s2 + d2     c2 t2 = c2 t´2 + v2 t2     (c2 - v2) t2 = c2 t´2
Finalmente
Efecto sobre la longitud Para un observador externo un cuerpo en movimiento  a una velocidad cercana a la de la luz , parece contraerse  en dirección del movimiento
Masa de los cuerpos La dilatación del tiempo tiene un efecto sobre la masa .Para un observador externo  un objeto en  movimiento a una velocidad cercana a la de la luz , parece aumentar la masa Estos efectos se deben a la alteración del espacio-tiempo
Relación entre masa y energía Una consecuencia fundamental   de la teoría de la Relatividad es el hecho de que la masa no es mas que una forma de energía
Tercer Hito : los electrones interactúan con las ondas electromagnéticas
Efecto fotoeléctrico En 1887 HeinrichHertz  descubre accidentalmente  que la luz ultravioleta ( la chispa inicial  aumentaba la corriente entre dos electrodos metálicos 1889 Thompson mostro que las cargas emitidas en el efecto fotoeléctrico era electrones 1905 Einstein propone una explicación del efecto fotoeléctrico
Que plantea EisnteinLa luz se transporta  en paquetes de energía que se mueven a la velocidad de la luzLa luz interactúan con la materia como corriente de electrones La cantidad de energía de los fotones esta dada por  E = hfCuando la luz incide sobre ciertos materiales la energía entregada por los fotones  permite que el electrón sea liberado :
¿Qué importancia tuvo esto?La naturaleza de la luz es dual :  Se comporta como onda electromagnéticaSe comporta como partícula en forma de paquete s de energíaElectrones y fotones pueden chocar El Físico Compton descubrió   en 1923  estudio los rayos X . Descubre que los fotones de los rayos X transfieren su momentum  y su energía a los electrones , comportandose igual que bolas de villar ( efecto compton)
Cuarto Hito : Longitud de ondaLouis de Brogile Descubre que los electrones y otras partículas  tiene propiedades ondulatoriasToda partícula ( fotón electrón , etc)  tienen una longitud de onda que se relaciona con su momentum ( Longitud de onda de Broglie
Principio de IncertidumbreEn el mundo microscópico si tratamos de medir la posición de un objeto , perturba su momentum  Si se mide su momentum cambia su posición  El principio de incertidumbre , plantea  que no es posible conocer la posición de una partícula u su momentum ( velocidad  al mismo tiempo ) Como consecuencia de esto podemos decir que en el mundo microscópico nos e puede predecir con exactitud la trayectoria de una partícula .

Fisicamoderna1

  • 1.
    Hitos dela Física ModernaRadicación de cuerpo negro Teoría de la relatividad Dualidad Onda –Corpúsculo Principio de incertidumbre
  • 2.
    Radiación de cuerponegro1. Radiación absorbida , reflejada y emitida Sobre la superficie de un cuerpo incide constantemente energía radiante, tanto desde el interior como desde el exterior, la que incide desde el exterior procede de los objetos que rodean al cuerpo. Cuando la energía radiante incide sobre la superficie una parte se refleja y la otra parte se transmite.
  • 3.
    Consideremos la energía radiante que incide desde el exterior sobre la superficie del cuerpo. Si la superficie es lisa y pulimentada, como la de un espejo, la mayor parte de la energía incidente se refleja, el resto atraviesa la superficie del cuerpo y es absorbido por sus átomos o moléculas. Si r es la proporción de energía radiante que se refleja, y a la proporción que se absorbe, se debe de cumplir que r+a=1.
  • 4.
    La misma proporciónr de la energía radiante que incide desde el interior se refleja hacia dentro, y se transmite la proporción a=1-r que se propaga hacia afuera y se denomina por tanto, energía radiante emitida por la superficie. En la figura, se muestra el comportamiento de la superficie de un cuerpo que refleja una pequeña parte de la energía incidente. Las anchuras de las distintas bandas corresponden a cantidades relativas de energía radiante incidente, reflejada y transmitida a través de la superficie.
  • 5.
    Comparando ambas figuras, vemos que un buen absorbedor de radiación es un buen emisor, y un mal absorbedor es un mal emisor. También podemos decir, que un buen reflector es un mal emisor, y un mal reflector es un buen emisor. Una aplicación práctica está en los termos utilizados para mantener la temperatura de los líquidos como el café. Un termo tiene dobles paredes de vidrio, habiéndose vaciado de aire el espacio entre dichas paredes para evitar las pérdidas por conducción y convección. Para reducir las pérdidas por radiación, se cubren las paredes con una lámina de plata que es altamente reflectante y por tanto, mal emisor y mal absorbedor de radiación.
  • 6.
    Radiación de cuerponegro La superficie de un cuerpo negro es un caso límite, en el que toda la energía incidente desde el exterior es absorbida, y toda la energía incidente desde el interior es emitida.  
  • 7.
    No existe realmente un cuerpo negro ,sin embargo, un cuerpo negro se puede sustituir con gran aproximación por una cavidad con una pequeña abertura. La energía radiante incidente a través de la abertura, es absorbida por las paredes en múltiples reflexiones y solamente una mínima proporción escapa (se refleja) a través de la abertura. Podemos por tanto decir, que toda la energía incidente es absorbida.
  • 8.
    Consideremos una cavidadcuyas paredes están a una cierta temperatura. Los átomos que componen las paredes están emitiendo radiación electromagnética y al mismo tiempo absorben la radiación emitida por otros átomos de las paredes. Cuando la radiación encerrada dentro de la cavidad alcanza el equilibrio con los átomos de las paredes, la cantidad de energía que emiten los átomos en la unidad de tiempo es igual a la que absorben. En consecuencia, la densidad de energía del campo electromagnético existente en la cavidad es constante.
  • 9.
    Si se abreun pequeño agujero en el recipiente, parte de la radiación se escapa y se puede analizar. El agujero se ve muy brillante cuando el cuerpo está a alta temperatura, y se ve completamente negro a bajas temperaturas.A cada frecuencia corresponde una densidad de energía que depende solamente de la temperatura de las paredes y es independiente del material del que están hechas.
  • 10.
    Postulados de Planck La energía esta cuantizada : E = n h f La emisión de energía no es constante en el tiempo Emite radiación solo cuando pasa de mayor a menor nivel de energía Absorbe energía cuando pasa de menor a mayor nivel de energía
  • 11.
    RelatividadEn 1905 Einsteinpresenta su teoría de la relatividad
  • 12.
    Principio de larelatividad Las leyes físicas son las mismas en todos los Sistemas físicos
  • 13.
    Invariancia de laLuzLa velocidad de la Luz en el vacio ; es la misma sin importar la rapidez que lleve la fuente emisora
  • 14.
    ¿La velocidad dela luz es la misma siempre..?Albert Michelson Y Edward Morley midieron la velocidad de la luz e acercándose y alejándose de la fuente de emisión , encontrando que el valor de la velocidad de la luz era el mismo Einstein dijo entonces: supongamos que cuando se mide la velocidad de la luz en el vacío, siempre resulta el mismo valor (unos 299.793 kilómetros por segundo), en cualesquiera circunstancias. ¿Cómo podemos disponer las leyes del universo para explicar esto? Einstein encontró que para explicar la constancia de la velocidad de la luz había que aceptar una serie de fenómenos inesperados.
  • 15.
    Halló que los objetos tenían que acortarse en la dirección del movimiento, tanto más cuanto mayor fuese su velocidad, hasta llegar finalmente a una longitud nula en el límite de la velocidad de la luz Que la masa de los objetos en movimiento tenía que aumentar con la velocidad, hasta hacerse infinita en el límite de la velocidad de la luz Que el paso del tiempo en un objeto en movimiento era cada vez más lento a medida que aumentaba la velocidad, hasta llegar a pararse en dicho límite; que la masa era equivalente a una cierta cantidad de energía y viceversa.
  • 16.
    Efectos al moverse a la velocidad de la LuzImaginemos que en un vagón que se mueve con velocidad v , próxima a la velocidad de la luz, un viajero enciende una linterna apuntando al techo y supongamos que pudiéramos ver como un fotón que sale de la linterna choca contra el techo. 
  • 17.
    Observado desde dentrode la nave el fotón recorre una distancia s en un tiempo t´.Por tanto s = c t´
  • 18.
    Observado desde fuerael fotón ha recorrido una distancia s´ en un tiempo t. Por tanto s´= c tComo s´ es mayor que s y la velocidad del fotón según Einstein es la misma en los dos casos, está claro que el tiempo t será mayor que t´.Además es fácil deducir la relación entre t y t`.
  • 19.
    Aplicando el Teoremade Pitágoras: s´2 = s2 + d2 c2 t2 = c2 t´2 + v2 t2 (c2 - v2) t2 = c2 t´2
  • 20.
  • 21.
    Efecto sobre lalongitud Para un observador externo un cuerpo en movimiento a una velocidad cercana a la de la luz , parece contraerse en dirección del movimiento
  • 22.
    Masa de loscuerpos La dilatación del tiempo tiene un efecto sobre la masa .Para un observador externo un objeto en movimiento a una velocidad cercana a la de la luz , parece aumentar la masa Estos efectos se deben a la alteración del espacio-tiempo
  • 23.
    Relación entre masay energía Una consecuencia fundamental de la teoría de la Relatividad es el hecho de que la masa no es mas que una forma de energía
  • 24.
    Tercer Hito :los electrones interactúan con las ondas electromagnéticas
  • 25.
    Efecto fotoeléctrico En1887 HeinrichHertz descubre accidentalmente que la luz ultravioleta ( la chispa inicial aumentaba la corriente entre dos electrodos metálicos 1889 Thompson mostro que las cargas emitidas en el efecto fotoeléctrico era electrones 1905 Einstein propone una explicación del efecto fotoeléctrico
  • 26.
    Que plantea EisnteinLaluz se transporta en paquetes de energía que se mueven a la velocidad de la luzLa luz interactúan con la materia como corriente de electrones La cantidad de energía de los fotones esta dada por E = hfCuando la luz incide sobre ciertos materiales la energía entregada por los fotones permite que el electrón sea liberado :
  • 27.
    ¿Qué importancia tuvoesto?La naturaleza de la luz es dual : Se comporta como onda electromagnéticaSe comporta como partícula en forma de paquete s de energíaElectrones y fotones pueden chocar El Físico Compton descubrió en 1923 estudio los rayos X . Descubre que los fotones de los rayos X transfieren su momentum y su energía a los electrones , comportandose igual que bolas de villar ( efecto compton)
  • 28.
    Cuarto Hito :Longitud de ondaLouis de Brogile Descubre que los electrones y otras partículas tiene propiedades ondulatoriasToda partícula ( fotón electrón , etc) tienen una longitud de onda que se relaciona con su momentum ( Longitud de onda de Broglie
  • 29.
    Principio de IncertidumbreEnel mundo microscópico si tratamos de medir la posición de un objeto , perturba su momentum Si se mide su momentum cambia su posición El principio de incertidumbre , plantea que no es posible conocer la posición de una partícula u su momentum ( velocidad al mismo tiempo ) Como consecuencia de esto podemos decir que en el mundo microscópico nos e puede predecir con exactitud la trayectoria de una partícula .