SlideShare una empresa de Scribd logo
TEÓRIA DE CONJUNTOS Profesor: Rubén Alva Cabrera
INDICE UNION DE CONJUNTOS INTERSECCIÓN DE CONJUNTOS DIFERENCIA DE CONJUNTOS DIFERENCIA SIMÉTRICA  COMPLEMENTO DE UN CONJUNTO PROBLEMAS CONJUNTOS NUMÉRICOS RELACIONES ENTRE CONJUNTOS CONJUNTOS ESPECIALES DIAGRAMAS DE VENN DETERMINACION DE CONJUNTOS RELACION DE PERTENENCIA INTRODUCCIÓN
CONJUNTOS En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse lógicamente como un término no definido.
Un conjunto se puede entender como una colección o agrupación bien definida de objetos de cualquier clase. Los objetos que forman un conjunto son llamados miembros o elementos del conjunto.  Ejemplo: En la figura adjunta tienes un Conjunto de Personas
NOTACIÓN Todo conjunto se escribe entre llaves {  }  y se le denota mediante letras mayúsculas  A, B, C, ...,sus elementos se separan mediante punto y coma. Ejemplo: El conjunto de las letras del alfabeto; a, b, c, ..., x, y, z. se puede escribir así:   L={ a; b; c; ...; x; y; z}
Ejemplo: A= {a;b;c;d;e} su cardinal n(A)= B= {x;x;x;y;y;z}  su cardinal n(B)=  En teoría de conjuntos no se acostumbra repetir los elementos por ejemplo: El conjunto {x; x; x; y; y; z } simplemente será { x; y; z }. Al número de elementos que tiene un conjunto Q se le llama CARDINAL DEL CONJUNTO y se le representa por n(Q). 5 3 INDICE
RELACION DE PERTENENCIA Para indicar que un elemento pertenece a un conjunto se usa el símbolo: Si un elemento no  pertenece a un conjunto se usa el símbolo: Ejemplo: Sea M = {2;4;6;8;10} ... se lee 2 pertenece al conjunto M ... se lee 5 no pertenece al conjunto M INDICE
DETERMINACION DE CONJUNTOS I) POR EXTENSIÓN Hay dos formas de determinar un conjunto, por Extensión  y por Comprensión Es aquella forma mediante la cual se indica cada uno de los elementos del conjunto. Ejemplos: A) El conjunto de los números pares mayores que 5  y menores que 20. A = { 6;8;10;12;14;16;18 } INDICE
B) El conjunto de números negativos impares mayores que -10. B = {-9;-7;-5;-3;-1 } II) POR COMPRENSIÓN Es aquella forma mediante la cual se da una propiedad que caracteriza a todos los elementos del conjunto. Ejemplo: se puede entender que el conjunto P esta formado por los números 0,1,2,3,4,5,6,7,8,9. P = { los números  dígitos }
Otra forma de escribir es:  P = { x / x = dígito }   se lee “ P es el conjunto formado por los elementos x tal que x es un dígito “ Ejemplo: Expresar por extensión y por comprensión el conjunto de días de la semana. Por Extensión : D = { lunes; martes; miércoles; jueves; viernes; sábado; domingo } Por Comprensión : D = { x / x = día de la semana } INDICE
DIAGRAMAS DE VENN Los diagramas de Venn que se deben al filósofo inglés John Venn (1834-1883) sirven para representar conjuntos de manera gráfica mediante dibujos ó diagramas que pueden ser círculos, rectángulos, triángulos o cualquier curva cerrada. A M T 7 2 3 6 9 a e i o u (1;3) (7;6) (2;4) (5;8) 8 4 1 5 INDICE
A =  o A =  {  }   se lee: “A es el conjunto vacío”  o “A es el conjunto nulo “ CONJUNTOS ESPECIALES CONJUNTO VACÍO Es un conjunto que no tiene elementos, también se le llama conjunto nulo. Generalmente se le representa por los símbolos:  o  {  } Ejemplos: M = { números mayores que 9 y menores que 5 } P = { x /  }
CONJUNTO UNITARIO Es el conjunto que tiene un solo elemento. Ejemplos: F = { x / 2x + 6 = 0 } G = CONJUNTO FINITO Es el conjunto con limitado número de elementos. Ejemplos: E = { x / x es un número impar positivo menor que 10 } N = { x / x 2  = 4 } ;
CONJUNTO INFINITO Es el conjunto con ilimitado número de elementos. Ejemplos: R = { x / x < 6 } S = { x / x es un número par } CONJUNTO UNIVERSAL Es un conjunto referencial que contiene a todos los elementos de una situación particular, generalmente se le representa por la letra  U Ejemplo: El universo o conjunto universal ; de todos los números es el conjunto de los NÚMEROS COMPLEJOS. INDICE
RELACIONES ENTRE CONJUNTOS INCLUSIÓN Un conjunto A esta incluido en otro conjunto B ,sí y sólo sí, todo elemento de A es también elemento de B NOTACIÓN : Se lee : A esta incluido en B, A es subconjunto de B, A esta contenido en B , A es parte de B. REPRESENTACIÓN GRÁFICA : B A
PROPIEDADES: I ) Todo conjunto está incluido en si mismo.  II ) El conjunto vacío se considera incluido en cualquier conjunto.  III ) A está incluido en B (  ) equivale a decir que B incluye a A (  ) IV ) Si A no está incluido en B o A no es subconjunto de B significa que por lo menos un elemento de A no pertenece a B. (  ) V ) Simbólicamente:
CONJUNTOS COMPARABLES Un conjunto A es COMPARABLE con otro conjunto B si entre dichos conjuntos existe  una relación de inclusión. A es comparable con B    A    B    B    A Ejemplo: A={1;2;3;4;5}  y  B={2;4} 1 2 3 4 5 A B Observa que B está incluido en A ,por lo tanto Ay B son COMPARABLES
IGUALDAD DE CONJUNTOS Dos conjuntos son iguales si tienen los mismos elementos. Ejemplo: A = { x / x 2  = 9 }  y  B = { x / (x – 3)(x + 3) =0 } Resolviendo la ecuación de cada conjunto se obtiene en ambos casos que x es igual a 3 o -3, es decir : A = {-3;3}  y  B = {-3;3} ,por lo tanto A=B Simbólicamente :
CONJUNTOS DISJUNTOS Dos conjuntos son disjuntos cuando no tienen elementos comunes. REPRESENTACIÓN GRÁFICA : A B 1 7 5 3 9 2 4 8 6    Como puedes observar los conjuntos A y B no tienen elementos comunes, por lo tanto son CONJUNTOS DISJUNTOS
CONJUNTO DE CONJUNTOS Es un conjunto cuyos elementos son conjuntos. Ejemplo: F = { {a};{b};{a; b};{a;b;c} } Observa que los elementos del conjunto F también son conjuntos. {a} es un elemento del conjunto F entonces {a}  F  ¿ Es correcto decir que {b}  F ? NO Porque {b} es un elemento del conjunto F ,lo correcto es {b}  F
CONJUNTO POTENCIA El conjunto potencia de un conjunto A denotado por P(A) o Pot(A) es el conjunto formado por todos los subconjuntos de A. Ejemplo:   Sea A = { m;n;p } Los subconjuntos de A son {m}, {n}, {p}, {m;n}, {n;p}, {m;p}, {m;n;p}, Φ Entonces el conjunto potencia de A es: P(A) = { {m};{n};{p};{m;n};{m;p};{n;p};{m:n;p}; Φ  } ¿ CUÁNTOS ELEMENTOS TIENE EL CONJUNTO POTENCIA DE A ?
Observa que el conjunto A tiene 3 elementos y su conjunto potencia osea P(A) tiene 8 elementos. PROPIEDAD: Dado un conjunto A cuyo número de elementos es n , entonces el número de elementos de su conjunto potencia es  2 n . Ejemplo: Dado el conjunto B ={x / x es un número par y  5< x <15 }. Determinar el cardinal de P(B). RESPUESTA Si 5<x<15 y es un número par entonces B= {6;8;10;12;14} Observa que el conjunto B tiene 5 elementos entonces: Card P(B)=n P(B)=2 5 =32 INDICE
CONJUNTOS NUMÉRICOS Números Naturales ( N )  N={1;2;3;4;5;....} Números Enteros ( Z )  Z={...;-2;-1;0;1;2;....} Números Racionales (Q)  Q={...;-2;-1;  ;0;  ;  ; 1;  ;2;....} Números Irracionales ( I )  I={...;  ;....} Números Reales ( R ) R={...;-2;-1;0;1;  ;2;3;....} Números Complejos ( C ) C={...;-2;  ;0;1;  ;2+3i;3;....}
CONJUNTOS NUMÉRICOS N Z Q I R C
CONJUNTOS NUMÉRICOS EJEMPLOS: Expresar por extensión los siguientes conjuntos: A )  B ) C ) D ) E ) P={3} Q={-3;3} F = { } RESPUESTAS INDICE
7 6 5 5 6 UNION DE CONJUNTOS A B El conjunto “A  unión B” que se representa asi  es el conjunto formado por todos los elementos que pertenecen a A,a B o a ambos conjuntos. Ejemplo: 9 8 7 3 1 4 2
REPRESENTACIONES GRÁFICAS DE LA UNIÓN DE CONJUNTOS Si A y B son no comparables Si A y B son comparables Si A y B son conjuntos disjuntos U U U A A A B B B AUB AUB
PROPIEDADES DE LA UNIÓN DE CONJUNTOS 1.  A    A = A 2.  A    B = B    A 3.  A     Φ   = A 4.  A    U = U 5.  (A  B)  C =A  (B  C) 6.  Si A  B= Φ     A= Φ     B= Φ INDICE
7 6 5 5 6 A B El conjunto “A  intersección  B” que se representa  es el conjunto formado por todos los elementos que pertenecen a A  y pertenecen a B. Ejemplo: 9 8 7 3 1 4 2 INTERSECCION DE CONJUNTOS
REPRESENTACIONES GRÁFICAS DE LA INTERSECCIÓN DE CONJUNTOS Si A y B son no comparables Si A y B son comparables Si A y B son conjuntos disjuntos U U U A A A B B A  B A  B=B B A  B= Φ
PROPIEDADES DE LA INTERSECCIÓN DE CONJUNTOS 1.  A    A = A 2.  A    B = B    A 3.  A     Φ   =  Φ 4.  A    U = A 5.  (A  B)  C =A  (B  C) 6.  A  (B  C) =(A  B)  (A  C) A  (B  C) =(A  B)  (A  C) INDICE
7 6 5 5 6 A B El conjunto “A  menos  B” que se representa  es el conjunto formado por todos los elementos que pertenecen a A y  no pertenecen a B. Ejemplo: 9 8 7 3 1 4 2 DIFERENCIA DE CONJUNTOS
7 6 5 5 6 A B El conjunto “B  menos  A” que se representa  es el conjunto formado por todos los elementos que pertenecen a B y no pertenecen a A. Ejemplo: 9 8 7 3 1 4 2 ¿A-B=B-A?
REPRESENTACIONES GRÁFICAS DE LA DIFERENCIA DE CONJUNTOS Si A y B son no comparables Si A y B son comparables Si A y B son conjuntos disjuntos U U U A A A B B A - B A - B B A - B= A INDICE
7 6 5 5 6 A B El conjunto “A  diferencia simétrica B ” que se representa  es el conjunto formado por todos los elementos que pertenecen a (A-B) o(B-A). Ejemplo: 9 8 7 3 1 4 2 DIFERENCIA SIMETRICA
También es correcto afirmar que: A B A-B B-A A B
COMPLEMENTO DE UN CONJUNTO Dado un conjunto universal U y un conjunto A,se llama complemento de A al conjunto formado por todos los elementos del universo que no pertenecen al conjunto A. Notación: A’ o  A C   Ejemplo: U ={1;2;3;4;5;6;7;8;9} A ={1;3; 5; 7; 9} y Simbólicamente: A’ = U - A
1 2 3 4 5 6 7 8 9 U A A A’={2;4;6,8} PROPIEDADES DEL COMPLEMENTO 1.  (A ’ ) ’ =A 2.  A  A ’ =U 3.  A  A ’ = Φ 4.  U ’ = Φ 5.  Φ ’ = U INDICE
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Dados los conjuntos: A = { 1; 4 ;7 ;10 ;  ... ;34}  B = { 2 ;4;6;...;26} C = { 3; 7;11;15;...;31} a) Expresar B y C por  comprensión b) Calcular: n(B) + n(A) c) Hallar: A    B , C – A 1 SOLUCIÓN
Los elementos de A son: Primero analicemos cada conjunto A = { 1+3n / n  Z    0    n    11} Los elementos de B son: B = { 2n / n  Z    1    n    13} n(B)=13 n(A)=12 ... ...
Los elementos de C son: C = { 3+4n / n  Z    0    n    7 } a) Expresar B y C por  comprensión B = { 2n / n  Z    1    n    18} C = { 3+4n / n  Z    0    n    7 } b) Calcular: n(B) + n(A) n(C)=8 n(B) + n(A) = 13 +12 = 25 ...
A = {1;4;7;10;13;16;19;22;25;28;31;34}  B = {2;4;6;8;10;12;14;16;18;20;22;24;26} C = {3;7;11;15;19;23;27;31} c) Hallar: A    B , C – A A    B = { 4;10;16;22 } C – A = { 3;11;15;23;27 } Sabemos que A    B esta formado por los elementos comunes de A y B,entonces: Sabemos que C - A esta formado por los elementos de C que no pertenecen a A, entonces:
Si : G = { 1 ; {3} ; 5 ; {7;10} ;11 } Determinar si es verdadero o falso: a)  Φ     G b) {3}    G c) {{7};10}   G d) {{3};1}    G e) {1;5;11}    G 2 SOLUCIÓN
Observa que los elementos de A son: 1 ;  {3} ; 5 ; {7;10} ; 11 es   VERDADERO Entonces: es VERDADERO  porque  Φ  esta incluido en todo los conjuntos  es VERDADERO porque {3} es un elemento de de G es FALSO porque {{7};10}  no es elemento de G  es FALSO  a) Φ     G  .... b) {3}    G ... c) {{7};10}   G .. d) {{3};1}    G ... e) {1;5;11}    G ...
Dados los conjuntos: P = { x   Z / 2x 2 +5x-3=0 } M = { x/4  N / -4< x < 21 }  T = { x   R / (x 2  - 9)(x - 4)=0 } a) Calcular: M - ( T – P ) b) Calcular: Pot(M – T ) c) Calcular: (M    T) – P 3 SOLUCIÓN
P = { x   Z / 2x 2 +5x-3=0 } Analicemos cada conjunto: 2x 2  + 5x – 3 = 0 (2x-1)(x+3)=0 2x-1=0    x = 1/2 x+3=0    x = -3 Observa que x  Z , entonces: P = { -3 } M = { x/4  N / -4< x < 21 } Como x/4    N entonces los valores de x son : 4 ; 8 ; 12 ; 16 ; 20  pero los elementos de M se obtienen dividiendo x entre 4,por lo tanto : M = {1 ; 2 ; 3 ; 4 ; 5 } 2x –  1 + 3 x   
T = { x   R / (x 2  - 9)(x - 4)=0 } Cada factor lo igualamos a cero y calculamos los valores de x x – 4 = 0    x = 4 x 2  – 9 = 0    x 2  = 9    x = 3 o x =-3 Por lo tanto: T = { -3;3;4 } a) Calcular: M - ( T – P ) T – P   =   { -3;3;4 } - { -3 }      T – P   = {3 ;4 } M - (T –P)= {1 ; 2 ; 3 ; 4 ; 5 } - {3 ;4 } M - (T –P)= {1 ; 2 ; 5 }
b) Calcular: Pot( M – T ) M – T =  {1 ; 2 ; 3 ; 4 ; 5 } - { -3;3;4 }  M – T =  {1 ; 2 ; 5 } Pot( M – T ) = { {1}; {2}; {5};  {1;2}; {1;5}; {1;2;5}; {2;5}; Φ  } c) Calcular: (M    T) – P M    T =  {1 ; 2 ; 3 ; 4 ; 5 }    { -3;3;4 }  M    T =  { -3 ; 1 ; 2 ; 3 ; 4 ; 5 } (M    T) – P =  { -3 ; 1 ; 2 ; 3 ; 4 ; 5 } -  { -3 } (M    T) – P =  {1 ; 2 ; 3 ; 4 ; 5 }
4 Expresar la región sombreada en términos de operaciones entre los conjuntos A,B y C. SOLUCIÓN A B C A B C
A B C A B C A B C A B C [(A  B) – C] [(B  C) – A] [(A  C) – B]    
A B A B C Observa como se obtiene la región sombreada Toda la zona de amarillo es A  B La zona de verde es A  B Entonces restando se obtiene la zona que se ve en la figura : (A  B) - (A  B) C Finalmente le agregamos C y se obtiene: [ (A  B) - (A  B) ]    C ( A    B )    C =
Según las preferencias de 420 personas que ven los canales A,B o C se observa que 180  ven el canal A ,240 ven el canal B y 150 no ven el canal C,los que ven por lo menos 2 canales son 230¿cuántos ven los tres canales? 5 SOLUCIÓN
El universo es: 420 Ven el canal A: 180 Ven el canal B: 240 No ven el canal C: 150 Entonces si ven el canal C: 420 – 150 = 270 A B C a d (I)  a + e + d + x =180 b e x f (II)  b + e + f + x = 240 c (III)  d + c + f + x = 270 Dato: Ven por lo menos dos canales 230 ,entonces:  (IV)  d + e + f + x = 230
(I)  a + e + d + x =180 (II)  b + e + f + x = 240 (III)  d + c + f + x = 270 Sumamos las ecuaciones (I),(II) y (III) Sabemos que :  a+b+c+d+e+f+x =420  230 entonces :  a+b+c =190 a + b + c + 2(d + e + f + x) + x = 690   190 230 190 + 560 + x =690  x = 40 Esto significa que 40 personas ven los tres canales
FIN Profesor: Rubén Alva Cabrera [email_address]

Más contenido relacionado

La actualidad más candente

Operaciones entre conjuntos
Operaciones entre conjuntosOperaciones entre conjuntos
Operaciones entre conjuntos
Yulieth Carolina Lopez Castilla
 
Conjuntos
ConjuntosConjuntos
Conjuntos
JOSE LUIS PELAEZ
 
POTENCIACIÓN Y RADICACIÓN
POTENCIACIÓN Y RADICACIÓNPOTENCIACIÓN Y RADICACIÓN
POTENCIACIÓN Y RADICACIÓNluzalbapalomino
 
Conjuntos y subconjuntos
Conjuntos y subconjuntosConjuntos y subconjuntos
Conjuntos y subconjuntos
Ricky Espinoza
 
Tema 3 operaciones con conjuntos
Tema 3   operaciones con conjuntosTema 3   operaciones con conjuntos
Tema 3 operaciones con conjuntos
Guadalupe Robles Calderón
 
Los NúMeros Racionales E Irracionales
Los NúMeros Racionales E IrracionalesLos NúMeros Racionales E Irracionales
Los NúMeros Racionales E Irracionales
Aaron Salguero
 
Relacion entre conjuntos
Relacion entre conjuntosRelacion entre conjuntos
Relacion entre conjuntos
fredyloz
 
operacion con conjuntos
operacion con conjuntosoperacion con conjuntos
operacion con conjuntos
kendrys05
 
Diapositivas conjuntos
Diapositivas conjuntosDiapositivas conjuntos
Diapositivas conjuntos
andreasoler85
 
Clase 5. conjuntos.
Clase 5. conjuntos.Clase 5. conjuntos.
Clase 5. conjuntos.Keymar
 
conjuntos y subconjuntos
conjuntos y subconjuntosconjuntos y subconjuntos
conjuntos y subconjuntos
milanomariangel
 
relaciones y funciones
relaciones y funcionesrelaciones y funciones
relaciones y funciones
pmadridclaretiano
 
Complemento de conjuntos
Complemento de conjuntosComplemento de conjuntos
Complemento de conjuntos
fredyloz
 
Presentación inecuaciones
Presentación inecuacionesPresentación inecuaciones
Presentación inecuaciones
alfonnavarro
 
Conjuntos
ConjuntosConjuntos
Conjuntos
317
 
Definición de Conjuntos.
Definición de Conjuntos.Definición de Conjuntos.
Definición de Conjuntos.
Santos Máximo Figueroa
 
Proyecto de aula matemática (Operaciones de Conjuntos)
Proyecto de aula matemática (Operaciones de Conjuntos)Proyecto de aula matemática (Operaciones de Conjuntos)
Proyecto de aula matemática (Operaciones de Conjuntos)
Santiago Arguello
 
Ejercicios de conjuntos
Ejercicios de conjuntosEjercicios de conjuntos
Ejercicios de conjuntosIsrael Ortiz
 

La actualidad más candente (20)

Operaciones entre conjuntos
Operaciones entre conjuntosOperaciones entre conjuntos
Operaciones entre conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
POTENCIACIÓN Y RADICACIÓN
POTENCIACIÓN Y RADICACIÓNPOTENCIACIÓN Y RADICACIÓN
POTENCIACIÓN Y RADICACIÓN
 
Conjuntos y subconjuntos
Conjuntos y subconjuntosConjuntos y subconjuntos
Conjuntos y subconjuntos
 
Tema 3 operaciones con conjuntos
Tema 3   operaciones con conjuntosTema 3   operaciones con conjuntos
Tema 3 operaciones con conjuntos
 
Los NúMeros Racionales E Irracionales
Los NúMeros Racionales E IrracionalesLos NúMeros Racionales E Irracionales
Los NúMeros Racionales E Irracionales
 
Relacion entre conjuntos
Relacion entre conjuntosRelacion entre conjuntos
Relacion entre conjuntos
 
operacion con conjuntos
operacion con conjuntosoperacion con conjuntos
operacion con conjuntos
 
Diapositivas de estructuras algebraicas
Diapositivas de estructuras algebraicasDiapositivas de estructuras algebraicas
Diapositivas de estructuras algebraicas
 
Diapositivas conjuntos
Diapositivas conjuntosDiapositivas conjuntos
Diapositivas conjuntos
 
Clase 5. conjuntos.
Clase 5. conjuntos.Clase 5. conjuntos.
Clase 5. conjuntos.
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
conjuntos y subconjuntos
conjuntos y subconjuntosconjuntos y subconjuntos
conjuntos y subconjuntos
 
relaciones y funciones
relaciones y funcionesrelaciones y funciones
relaciones y funciones
 
Complemento de conjuntos
Complemento de conjuntosComplemento de conjuntos
Complemento de conjuntos
 
Presentación inecuaciones
Presentación inecuacionesPresentación inecuaciones
Presentación inecuaciones
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Definición de Conjuntos.
Definición de Conjuntos.Definición de Conjuntos.
Definición de Conjuntos.
 
Proyecto de aula matemática (Operaciones de Conjuntos)
Proyecto de aula matemática (Operaciones de Conjuntos)Proyecto de aula matemática (Operaciones de Conjuntos)
Proyecto de aula matemática (Operaciones de Conjuntos)
 
Ejercicios de conjuntos
Ejercicios de conjuntosEjercicios de conjuntos
Ejercicios de conjuntos
 

Destacado

CONJUNTOS
CONJUNTOSCONJUNTOS
CONJUNTOS
Mayri's Aym
 
La etnomatematica
La etnomatematicaLa etnomatematica
La etnomatematicaemayana
 
TEORÍA DE CONJUNTOS
TEORÍA DE CONJUNTOSTEORÍA DE CONJUNTOS
TEORÍA DE CONJUNTOSguest59e22b5
 
Conjunto finito
Conjunto finitoConjunto finito
Conjunto finito
Carlos Morales
 
Leyes De Conjuntos
Leyes De ConjuntosLeyes De Conjuntos
Leyes De Conjuntos
Pablo Gandarilla C.
 
Lógica Matemática Teoría de Conjuntos
Lógica Matemática Teoría de ConjuntosLógica Matemática Teoría de Conjuntos
Lógica Matemática Teoría de Conjuntos
Videoconferencias UTPL
 
Algebra de conjuntos (leyes de conjuntos)
Algebra de conjuntos (leyes de conjuntos)Algebra de conjuntos (leyes de conjuntos)
Algebra de conjuntos (leyes de conjuntos)
Anthony Mantilla
 
EJEMPLOS DE CONJUNTOS
EJEMPLOS DE CONJUNTOSEJEMPLOS DE CONJUNTOS
EJEMPLOS DE CONJUNTOS
Magaly
 
Ejercicios resueltos de conjuntos
Ejercicios resueltos de conjuntosEjercicios resueltos de conjuntos
Ejercicios resueltos de conjuntos
hernancarrilloa
 

Destacado (12)

CONJUNTOS
CONJUNTOSCONJUNTOS
CONJUNTOS
 
La etnomatematica
La etnomatematicaLa etnomatematica
La etnomatematica
 
TEORÍA DE CONJUNTOS
TEORÍA DE CONJUNTOSTEORÍA DE CONJUNTOS
TEORÍA DE CONJUNTOS
 
Conjunto finito
Conjunto finitoConjunto finito
Conjunto finito
 
5 matematicas-1-ejercicios-teoria de conjuntos
5 matematicas-1-ejercicios-teoria de conjuntos5 matematicas-1-ejercicios-teoria de conjuntos
5 matematicas-1-ejercicios-teoria de conjuntos
 
El enlace-quimico.ppt
El enlace-quimico.pptEl enlace-quimico.ppt
El enlace-quimico.ppt
 
Leyes De Conjuntos
Leyes De ConjuntosLeyes De Conjuntos
Leyes De Conjuntos
 
Lógica Matemática Teoría de Conjuntos
Lógica Matemática Teoría de ConjuntosLógica Matemática Teoría de Conjuntos
Lógica Matemática Teoría de Conjuntos
 
Algebra de conjuntos (leyes de conjuntos)
Algebra de conjuntos (leyes de conjuntos)Algebra de conjuntos (leyes de conjuntos)
Algebra de conjuntos (leyes de conjuntos)
 
Leyes asociativa
Leyes asociativaLeyes asociativa
Leyes asociativa
 
EJEMPLOS DE CONJUNTOS
EJEMPLOS DE CONJUNTOSEJEMPLOS DE CONJUNTOS
EJEMPLOS DE CONJUNTOS
 
Ejercicios resueltos de conjuntos
Ejercicios resueltos de conjuntosEjercicios resueltos de conjuntos
Ejercicios resueltos de conjuntos
 

Similar a Teoria de Conjuntos

Teoria de conjuntos
Teoria de conjuntosTeoria de conjuntos
Teoria de conjuntosNash135
 
Conjuntos
ConjuntosConjuntos
Conjuntos
Miguel Morillo
 
Teoría de conjuntos para el estudio .ppt.pptx
Teoría de conjuntos para el estudio .ppt.pptxTeoría de conjuntos para el estudio .ppt.pptx
Teoría de conjuntos para el estudio .ppt.pptx
matedico1
 
Conjunto Sexto.ppt
Conjunto Sexto.pptConjunto Sexto.ppt
Conjunto Sexto.ppt
Luis Ospino
 
Conjun.ppt
Conjun.pptConjun.ppt
Conjun.ppt
JoaoOviedo1
 
Conjun.ppt
Conjun.pptConjun.ppt
Conjun.ppt
Conjun.pptConjun.ppt
Conjun.ppt
Ervin Lopez
 
conjuntos.ppt
conjuntos.pptconjuntos.ppt
conjuntos.ppt
IvanChipanaRamos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
mjoseam
 
Teoria de conjuntos en diapositvias interactivas
Teoria de conjuntos en diapositvias interactivasTeoria de conjuntos en diapositvias interactivas
Teoria de conjuntos en diapositvias interactivas
briannarp
 
SEMANA 4 - TEORIA DE CONJUNTOS.pptx
SEMANA 4 - TEORIA DE CONJUNTOS.pptxSEMANA 4 - TEORIA DE CONJUNTOS.pptx
SEMANA 4 - TEORIA DE CONJUNTOS.pptx
JeraldineSullon
 
conjuntos-110626205831-phpapp02
conjuntos-110626205831-phpapp02conjuntos-110626205831-phpapp02
conjuntos-110626205831-phpapp02
J Martin Luzon
 
Conjuntos2637
Conjuntos2637Conjuntos2637
Conjuntos.ppt
Conjuntos.pptConjuntos.ppt
Conjuntos.ppt
Fraloz
 
Conjuntos
ConjuntosConjuntos
Conjuntos
librerra
 
Teoria de conjuntos
Teoria de conjuntosTeoria de conjuntos
Teoria de conjuntos
Irving Pazo
 

Similar a Teoria de Conjuntos (20)

Teoria de conjuntos
Teoria de conjuntosTeoria de conjuntos
Teoria de conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Conjuntos comp
Conjuntos  comp Conjuntos  comp
Conjuntos comp
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Teoría de conjuntos para el estudio .ppt.pptx
Teoría de conjuntos para el estudio .ppt.pptxTeoría de conjuntos para el estudio .ppt.pptx
Teoría de conjuntos para el estudio .ppt.pptx
 
Conjunto Sexto.ppt
Conjunto Sexto.pptConjunto Sexto.ppt
Conjunto Sexto.ppt
 
Conjun.ppt
Conjun.pptConjun.ppt
Conjun.ppt
 
Conjun.ppt
Conjun.pptConjun.ppt
Conjun.ppt
 
Conjun.ppt
Conjun.pptConjun.ppt
Conjun.ppt
 
conjuntos.ppt
conjuntos.pptconjuntos.ppt
conjuntos.ppt
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Teoria de conjuntos en diapositvias interactivas
Teoria de conjuntos en diapositvias interactivasTeoria de conjuntos en diapositvias interactivas
Teoria de conjuntos en diapositvias interactivas
 
SEMANA 4 - TEORIA DE CONJUNTOS.pptx
SEMANA 4 - TEORIA DE CONJUNTOS.pptxSEMANA 4 - TEORIA DE CONJUNTOS.pptx
SEMANA 4 - TEORIA DE CONJUNTOS.pptx
 
conjuntos-110626205831-phpapp02
conjuntos-110626205831-phpapp02conjuntos-110626205831-phpapp02
conjuntos-110626205831-phpapp02
 
Conjuntos2637
Conjuntos2637Conjuntos2637
Conjuntos2637
 
Conjuntos.ppt
Conjuntos.pptConjuntos.ppt
Conjuntos.ppt
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Teoria de conjuntos
Teoria de conjuntosTeoria de conjuntos
Teoria de conjuntos
 

Último

CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptxCLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
LilianaRivera778668
 
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCIONCAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
MasielPMP
 
Introducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BIIntroducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BI
arleyo2006
 
Fase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometricoFase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometrico
YasneidyGonzalez
 
corpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdfcorpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdf
YolandaRodriguezChin
 
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdfAsistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Demetrio Ccesa Rayme
 
1º GRADO CONCLUSIONES DESCRIPTIVAS PRIMARIA.docx
1º GRADO CONCLUSIONES DESCRIPTIVAS  PRIMARIA.docx1º GRADO CONCLUSIONES DESCRIPTIVAS  PRIMARIA.docx
1º GRADO CONCLUSIONES DESCRIPTIVAS PRIMARIA.docx
FelixCamachoGuzman
 
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdfUn libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
sandradianelly
 
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
UNIDAD DE APRENDIZAJE DEL MES  Junio 2024UNIDAD DE APRENDIZAJE DEL MES  Junio 2024
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
EdwardYumbato1
 
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdfAsistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Demetrio Ccesa Rayme
 
Semana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptxSemana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptx
LorenaCovarrubias12
 
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
rosannatasaycoyactay
 
Mapa_Conceptual de los fundamentos de la evaluación educativa
Mapa_Conceptual de los fundamentos de la evaluación educativaMapa_Conceptual de los fundamentos de la evaluación educativa
Mapa_Conceptual de los fundamentos de la evaluación educativa
TatianaVanessaAltami
 
Presentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos DigitalesPresentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos Digitales
nievesjiesc03
 
Proceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaProceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de Pamplona
Edurne Navarro Bueno
 
True Mother's Speech at THE PENTECOST SERVICE..pdf
True Mother's Speech at THE PENTECOST SERVICE..pdfTrue Mother's Speech at THE PENTECOST SERVICE..pdf
True Mother's Speech at THE PENTECOST SERVICE..pdf
Mercedes Gonzalez
 
Libro infantil sapo y sepo un año entero pdf
Libro infantil sapo y sepo un año entero pdfLibro infantil sapo y sepo un año entero pdf
Libro infantil sapo y sepo un año entero pdf
danitarb
 
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdfTexto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
ClaudiaAlcondeViadez
 
Educar por Competencias GS2 Ccesa007.pdf
Educar por Competencias GS2 Ccesa007.pdfEducar por Competencias GS2 Ccesa007.pdf
Educar por Competencias GS2 Ccesa007.pdf
Demetrio Ccesa Rayme
 
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de MadridHorarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
20minutos
 

Último (20)

CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptxCLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
 
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCIONCAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
 
Introducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BIIntroducción a la ciencia de datos con power BI
Introducción a la ciencia de datos con power BI
 
Fase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometricoFase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometrico
 
corpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdfcorpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdf
 
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdfAsistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
Asistencia Tecnica Cartilla Pedagogica DUA Ccesa007.pdf
 
1º GRADO CONCLUSIONES DESCRIPTIVAS PRIMARIA.docx
1º GRADO CONCLUSIONES DESCRIPTIVAS  PRIMARIA.docx1º GRADO CONCLUSIONES DESCRIPTIVAS  PRIMARIA.docx
1º GRADO CONCLUSIONES DESCRIPTIVAS PRIMARIA.docx
 
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdfUn libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
 
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
UNIDAD DE APRENDIZAJE DEL MES  Junio 2024UNIDAD DE APRENDIZAJE DEL MES  Junio 2024
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
 
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdfAsistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
 
Semana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptxSemana #10-PM3 del 27 al 31 de mayo.pptx
Semana #10-PM3 del 27 al 31 de mayo.pptx
 
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
 
Mapa_Conceptual de los fundamentos de la evaluación educativa
Mapa_Conceptual de los fundamentos de la evaluación educativaMapa_Conceptual de los fundamentos de la evaluación educativa
Mapa_Conceptual de los fundamentos de la evaluación educativa
 
Presentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos DigitalesPresentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos Digitales
 
Proceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaProceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de Pamplona
 
True Mother's Speech at THE PENTECOST SERVICE..pdf
True Mother's Speech at THE PENTECOST SERVICE..pdfTrue Mother's Speech at THE PENTECOST SERVICE..pdf
True Mother's Speech at THE PENTECOST SERVICE..pdf
 
Libro infantil sapo y sepo un año entero pdf
Libro infantil sapo y sepo un año entero pdfLibro infantil sapo y sepo un año entero pdf
Libro infantil sapo y sepo un año entero pdf
 
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdfTexto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
 
Educar por Competencias GS2 Ccesa007.pdf
Educar por Competencias GS2 Ccesa007.pdfEducar por Competencias GS2 Ccesa007.pdf
Educar por Competencias GS2 Ccesa007.pdf
 
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de MadridHorarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
 

Teoria de Conjuntos

  • 1. TEÓRIA DE CONJUNTOS Profesor: Rubén Alva Cabrera
  • 2. INDICE UNION DE CONJUNTOS INTERSECCIÓN DE CONJUNTOS DIFERENCIA DE CONJUNTOS DIFERENCIA SIMÉTRICA COMPLEMENTO DE UN CONJUNTO PROBLEMAS CONJUNTOS NUMÉRICOS RELACIONES ENTRE CONJUNTOS CONJUNTOS ESPECIALES DIAGRAMAS DE VENN DETERMINACION DE CONJUNTOS RELACION DE PERTENENCIA INTRODUCCIÓN
  • 3. CONJUNTOS En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse lógicamente como un término no definido.
  • 4. Un conjunto se puede entender como una colección o agrupación bien definida de objetos de cualquier clase. Los objetos que forman un conjunto son llamados miembros o elementos del conjunto. Ejemplo: En la figura adjunta tienes un Conjunto de Personas
  • 5. NOTACIÓN Todo conjunto se escribe entre llaves { } y se le denota mediante letras mayúsculas A, B, C, ...,sus elementos se separan mediante punto y coma. Ejemplo: El conjunto de las letras del alfabeto; a, b, c, ..., x, y, z. se puede escribir así: L={ a; b; c; ...; x; y; z}
  • 6. Ejemplo: A= {a;b;c;d;e} su cardinal n(A)= B= {x;x;x;y;y;z} su cardinal n(B)= En teoría de conjuntos no se acostumbra repetir los elementos por ejemplo: El conjunto {x; x; x; y; y; z } simplemente será { x; y; z }. Al número de elementos que tiene un conjunto Q se le llama CARDINAL DEL CONJUNTO y se le representa por n(Q). 5 3 INDICE
  • 7. RELACION DE PERTENENCIA Para indicar que un elemento pertenece a un conjunto se usa el símbolo: Si un elemento no pertenece a un conjunto se usa el símbolo: Ejemplo: Sea M = {2;4;6;8;10} ... se lee 2 pertenece al conjunto M ... se lee 5 no pertenece al conjunto M INDICE
  • 8. DETERMINACION DE CONJUNTOS I) POR EXTENSIÓN Hay dos formas de determinar un conjunto, por Extensión y por Comprensión Es aquella forma mediante la cual se indica cada uno de los elementos del conjunto. Ejemplos: A) El conjunto de los números pares mayores que 5 y menores que 20. A = { 6;8;10;12;14;16;18 } INDICE
  • 9. B) El conjunto de números negativos impares mayores que -10. B = {-9;-7;-5;-3;-1 } II) POR COMPRENSIÓN Es aquella forma mediante la cual se da una propiedad que caracteriza a todos los elementos del conjunto. Ejemplo: se puede entender que el conjunto P esta formado por los números 0,1,2,3,4,5,6,7,8,9. P = { los números dígitos }
  • 10. Otra forma de escribir es: P = { x / x = dígito } se lee “ P es el conjunto formado por los elementos x tal que x es un dígito “ Ejemplo: Expresar por extensión y por comprensión el conjunto de días de la semana. Por Extensión : D = { lunes; martes; miércoles; jueves; viernes; sábado; domingo } Por Comprensión : D = { x / x = día de la semana } INDICE
  • 11. DIAGRAMAS DE VENN Los diagramas de Venn que se deben al filósofo inglés John Venn (1834-1883) sirven para representar conjuntos de manera gráfica mediante dibujos ó diagramas que pueden ser círculos, rectángulos, triángulos o cualquier curva cerrada. A M T 7 2 3 6 9 a e i o u (1;3) (7;6) (2;4) (5;8) 8 4 1 5 INDICE
  • 12. A = o A = { } se lee: “A es el conjunto vacío” o “A es el conjunto nulo “ CONJUNTOS ESPECIALES CONJUNTO VACÍO Es un conjunto que no tiene elementos, también se le llama conjunto nulo. Generalmente se le representa por los símbolos: o { } Ejemplos: M = { números mayores que 9 y menores que 5 } P = { x / }
  • 13. CONJUNTO UNITARIO Es el conjunto que tiene un solo elemento. Ejemplos: F = { x / 2x + 6 = 0 } G = CONJUNTO FINITO Es el conjunto con limitado número de elementos. Ejemplos: E = { x / x es un número impar positivo menor que 10 } N = { x / x 2 = 4 } ;
  • 14. CONJUNTO INFINITO Es el conjunto con ilimitado número de elementos. Ejemplos: R = { x / x < 6 } S = { x / x es un número par } CONJUNTO UNIVERSAL Es un conjunto referencial que contiene a todos los elementos de una situación particular, generalmente se le representa por la letra U Ejemplo: El universo o conjunto universal ; de todos los números es el conjunto de los NÚMEROS COMPLEJOS. INDICE
  • 15. RELACIONES ENTRE CONJUNTOS INCLUSIÓN Un conjunto A esta incluido en otro conjunto B ,sí y sólo sí, todo elemento de A es también elemento de B NOTACIÓN : Se lee : A esta incluido en B, A es subconjunto de B, A esta contenido en B , A es parte de B. REPRESENTACIÓN GRÁFICA : B A
  • 16. PROPIEDADES: I ) Todo conjunto está incluido en si mismo. II ) El conjunto vacío se considera incluido en cualquier conjunto. III ) A está incluido en B ( ) equivale a decir que B incluye a A ( ) IV ) Si A no está incluido en B o A no es subconjunto de B significa que por lo menos un elemento de A no pertenece a B. ( ) V ) Simbólicamente:
  • 17. CONJUNTOS COMPARABLES Un conjunto A es COMPARABLE con otro conjunto B si entre dichos conjuntos existe una relación de inclusión. A es comparable con B  A  B  B  A Ejemplo: A={1;2;3;4;5} y B={2;4} 1 2 3 4 5 A B Observa que B está incluido en A ,por lo tanto Ay B son COMPARABLES
  • 18. IGUALDAD DE CONJUNTOS Dos conjuntos son iguales si tienen los mismos elementos. Ejemplo: A = { x / x 2 = 9 } y B = { x / (x – 3)(x + 3) =0 } Resolviendo la ecuación de cada conjunto se obtiene en ambos casos que x es igual a 3 o -3, es decir : A = {-3;3} y B = {-3;3} ,por lo tanto A=B Simbólicamente :
  • 19. CONJUNTOS DISJUNTOS Dos conjuntos son disjuntos cuando no tienen elementos comunes. REPRESENTACIÓN GRÁFICA : A B 1 7 5 3 9 2 4 8 6    Como puedes observar los conjuntos A y B no tienen elementos comunes, por lo tanto son CONJUNTOS DISJUNTOS
  • 20. CONJUNTO DE CONJUNTOS Es un conjunto cuyos elementos son conjuntos. Ejemplo: F = { {a};{b};{a; b};{a;b;c} } Observa que los elementos del conjunto F también son conjuntos. {a} es un elemento del conjunto F entonces {a} F ¿ Es correcto decir que {b} F ? NO Porque {b} es un elemento del conjunto F ,lo correcto es {b} F
  • 21. CONJUNTO POTENCIA El conjunto potencia de un conjunto A denotado por P(A) o Pot(A) es el conjunto formado por todos los subconjuntos de A. Ejemplo: Sea A = { m;n;p } Los subconjuntos de A son {m}, {n}, {p}, {m;n}, {n;p}, {m;p}, {m;n;p}, Φ Entonces el conjunto potencia de A es: P(A) = { {m};{n};{p};{m;n};{m;p};{n;p};{m:n;p}; Φ } ¿ CUÁNTOS ELEMENTOS TIENE EL CONJUNTO POTENCIA DE A ?
  • 22. Observa que el conjunto A tiene 3 elementos y su conjunto potencia osea P(A) tiene 8 elementos. PROPIEDAD: Dado un conjunto A cuyo número de elementos es n , entonces el número de elementos de su conjunto potencia es 2 n . Ejemplo: Dado el conjunto B ={x / x es un número par y 5< x <15 }. Determinar el cardinal de P(B). RESPUESTA Si 5<x<15 y es un número par entonces B= {6;8;10;12;14} Observa que el conjunto B tiene 5 elementos entonces: Card P(B)=n P(B)=2 5 =32 INDICE
  • 23. CONJUNTOS NUMÉRICOS Números Naturales ( N ) N={1;2;3;4;5;....} Números Enteros ( Z ) Z={...;-2;-1;0;1;2;....} Números Racionales (Q) Q={...;-2;-1; ;0; ; ; 1; ;2;....} Números Irracionales ( I ) I={...; ;....} Números Reales ( R ) R={...;-2;-1;0;1; ;2;3;....} Números Complejos ( C ) C={...;-2; ;0;1; ;2+3i;3;....}
  • 25. CONJUNTOS NUMÉRICOS EJEMPLOS: Expresar por extensión los siguientes conjuntos: A ) B ) C ) D ) E ) P={3} Q={-3;3} F = { } RESPUESTAS INDICE
  • 26. 7 6 5 5 6 UNION DE CONJUNTOS A B El conjunto “A unión B” que se representa asi es el conjunto formado por todos los elementos que pertenecen a A,a B o a ambos conjuntos. Ejemplo: 9 8 7 3 1 4 2
  • 27. REPRESENTACIONES GRÁFICAS DE LA UNIÓN DE CONJUNTOS Si A y B son no comparables Si A y B son comparables Si A y B son conjuntos disjuntos U U U A A A B B B AUB AUB
  • 28. PROPIEDADES DE LA UNIÓN DE CONJUNTOS 1. A  A = A 2. A  B = B  A 3. A  Φ = A 4. A  U = U 5. (A  B)  C =A  (B  C) 6. Si A  B= Φ  A= Φ  B= Φ INDICE
  • 29. 7 6 5 5 6 A B El conjunto “A intersección B” que se representa es el conjunto formado por todos los elementos que pertenecen a A y pertenecen a B. Ejemplo: 9 8 7 3 1 4 2 INTERSECCION DE CONJUNTOS
  • 30. REPRESENTACIONES GRÁFICAS DE LA INTERSECCIÓN DE CONJUNTOS Si A y B son no comparables Si A y B son comparables Si A y B son conjuntos disjuntos U U U A A A B B A  B A  B=B B A  B= Φ
  • 31. PROPIEDADES DE LA INTERSECCIÓN DE CONJUNTOS 1. A  A = A 2. A  B = B  A 3. A  Φ = Φ 4. A  U = A 5. (A  B)  C =A  (B  C) 6. A  (B  C) =(A  B)  (A  C) A  (B  C) =(A  B)  (A  C) INDICE
  • 32. 7 6 5 5 6 A B El conjunto “A menos B” que se representa es el conjunto formado por todos los elementos que pertenecen a A y no pertenecen a B. Ejemplo: 9 8 7 3 1 4 2 DIFERENCIA DE CONJUNTOS
  • 33. 7 6 5 5 6 A B El conjunto “B menos A” que se representa es el conjunto formado por todos los elementos que pertenecen a B y no pertenecen a A. Ejemplo: 9 8 7 3 1 4 2 ¿A-B=B-A?
  • 34. REPRESENTACIONES GRÁFICAS DE LA DIFERENCIA DE CONJUNTOS Si A y B son no comparables Si A y B son comparables Si A y B son conjuntos disjuntos U U U A A A B B A - B A - B B A - B= A INDICE
  • 35. 7 6 5 5 6 A B El conjunto “A diferencia simétrica B ” que se representa es el conjunto formado por todos los elementos que pertenecen a (A-B) o(B-A). Ejemplo: 9 8 7 3 1 4 2 DIFERENCIA SIMETRICA
  • 36. También es correcto afirmar que: A B A-B B-A A B
  • 37. COMPLEMENTO DE UN CONJUNTO Dado un conjunto universal U y un conjunto A,se llama complemento de A al conjunto formado por todos los elementos del universo que no pertenecen al conjunto A. Notación: A’ o A C Ejemplo: U ={1;2;3;4;5;6;7;8;9} A ={1;3; 5; 7; 9} y Simbólicamente: A’ = U - A
  • 38. 1 2 3 4 5 6 7 8 9 U A A A’={2;4;6,8} PROPIEDADES DEL COMPLEMENTO 1. (A ’ ) ’ =A 2. A  A ’ =U 3. A  A ’ = Φ 4. U ’ = Φ 5. Φ ’ = U INDICE
  • 39.
  • 40. Dados los conjuntos: A = { 1; 4 ;7 ;10 ; ... ;34} B = { 2 ;4;6;...;26} C = { 3; 7;11;15;...;31} a) Expresar B y C por comprensión b) Calcular: n(B) + n(A) c) Hallar: A  B , C – A 1 SOLUCIÓN
  • 41. Los elementos de A son: Primero analicemos cada conjunto A = { 1+3n / n  Z  0  n  11} Los elementos de B son: B = { 2n / n  Z  1  n  13} n(B)=13 n(A)=12 ... ...
  • 42. Los elementos de C son: C = { 3+4n / n  Z  0  n  7 } a) Expresar B y C por comprensión B = { 2n / n  Z  1  n  18} C = { 3+4n / n  Z  0  n  7 } b) Calcular: n(B) + n(A) n(C)=8 n(B) + n(A) = 13 +12 = 25 ...
  • 43. A = {1;4;7;10;13;16;19;22;25;28;31;34} B = {2;4;6;8;10;12;14;16;18;20;22;24;26} C = {3;7;11;15;19;23;27;31} c) Hallar: A  B , C – A A  B = { 4;10;16;22 } C – A = { 3;11;15;23;27 } Sabemos que A  B esta formado por los elementos comunes de A y B,entonces: Sabemos que C - A esta formado por los elementos de C que no pertenecen a A, entonces:
  • 44. Si : G = { 1 ; {3} ; 5 ; {7;10} ;11 } Determinar si es verdadero o falso: a) Φ  G b) {3}  G c) {{7};10}  G d) {{3};1}  G e) {1;5;11}  G 2 SOLUCIÓN
  • 45. Observa que los elementos de A son: 1 ; {3} ; 5 ; {7;10} ; 11 es VERDADERO Entonces: es VERDADERO porque Φ esta incluido en todo los conjuntos es VERDADERO porque {3} es un elemento de de G es FALSO porque {{7};10} no es elemento de G es FALSO a) Φ  G .... b) {3}  G ... c) {{7};10}  G .. d) {{3};1}  G ... e) {1;5;11}  G ...
  • 46. Dados los conjuntos: P = { x  Z / 2x 2 +5x-3=0 } M = { x/4  N / -4< x < 21 } T = { x  R / (x 2 - 9)(x - 4)=0 } a) Calcular: M - ( T – P ) b) Calcular: Pot(M – T ) c) Calcular: (M  T) – P 3 SOLUCIÓN
  • 47. P = { x  Z / 2x 2 +5x-3=0 } Analicemos cada conjunto: 2x 2 + 5x – 3 = 0 (2x-1)(x+3)=0 2x-1=0  x = 1/2 x+3=0  x = -3 Observa que x  Z , entonces: P = { -3 } M = { x/4  N / -4< x < 21 } Como x/4  N entonces los valores de x son : 4 ; 8 ; 12 ; 16 ; 20 pero los elementos de M se obtienen dividiendo x entre 4,por lo tanto : M = {1 ; 2 ; 3 ; 4 ; 5 } 2x – 1 + 3 x   
  • 48. T = { x  R / (x 2 - 9)(x - 4)=0 } Cada factor lo igualamos a cero y calculamos los valores de x x – 4 = 0  x = 4 x 2 – 9 = 0  x 2 = 9  x = 3 o x =-3 Por lo tanto: T = { -3;3;4 } a) Calcular: M - ( T – P ) T – P = { -3;3;4 } - { -3 }  T – P = {3 ;4 } M - (T –P)= {1 ; 2 ; 3 ; 4 ; 5 } - {3 ;4 } M - (T –P)= {1 ; 2 ; 5 }
  • 49. b) Calcular: Pot( M – T ) M – T = {1 ; 2 ; 3 ; 4 ; 5 } - { -3;3;4 } M – T = {1 ; 2 ; 5 } Pot( M – T ) = { {1}; {2}; {5}; {1;2}; {1;5}; {1;2;5}; {2;5}; Φ } c) Calcular: (M  T) – P M  T = {1 ; 2 ; 3 ; 4 ; 5 }  { -3;3;4 } M  T = { -3 ; 1 ; 2 ; 3 ; 4 ; 5 } (M  T) – P = { -3 ; 1 ; 2 ; 3 ; 4 ; 5 } - { -3 } (M  T) – P = {1 ; 2 ; 3 ; 4 ; 5 }
  • 50. 4 Expresar la región sombreada en términos de operaciones entre los conjuntos A,B y C. SOLUCIÓN A B C A B C
  • 51. A B C A B C A B C A B C [(A  B) – C] [(B  C) – A] [(A  C) – B]  
  • 52. A B A B C Observa como se obtiene la región sombreada Toda la zona de amarillo es A  B La zona de verde es A  B Entonces restando se obtiene la zona que se ve en la figura : (A  B) - (A  B) C Finalmente le agregamos C y se obtiene: [ (A  B) - (A  B) ]  C ( A  B )  C =
  • 53. Según las preferencias de 420 personas que ven los canales A,B o C se observa que 180 ven el canal A ,240 ven el canal B y 150 no ven el canal C,los que ven por lo menos 2 canales son 230¿cuántos ven los tres canales? 5 SOLUCIÓN
  • 54. El universo es: 420 Ven el canal A: 180 Ven el canal B: 240 No ven el canal C: 150 Entonces si ven el canal C: 420 – 150 = 270 A B C a d (I) a + e + d + x =180 b e x f (II) b + e + f + x = 240 c (III) d + c + f + x = 270 Dato: Ven por lo menos dos canales 230 ,entonces: (IV) d + e + f + x = 230
  • 55. (I) a + e + d + x =180 (II) b + e + f + x = 240 (III) d + c + f + x = 270 Sumamos las ecuaciones (I),(II) y (III) Sabemos que : a+b+c+d+e+f+x =420  230 entonces : a+b+c =190 a + b + c + 2(d + e + f + x) + x = 690   190 230 190 + 560 + x =690  x = 40 Esto significa que 40 personas ven los tres canales
  • 56. FIN Profesor: Rubén Alva Cabrera [email_address]