SlideShare una empresa de Scribd logo
1 de 56
Descargar para leer sin conexión
INDICE
UNION DE CONJUNTOS
INTERSECCIÓN DE CONJUNTOS
DIFERENCIA DE CONJUNTOS
DIFERENCIA SIMÉTRICA
COMPLEMENTO DE UN CONJUNTO
PROBLEMAS
CONJUNTOS NUMÉRICOS
RELACIONES ENTRE CONJUNTOS
CONJUNTOS ESPECIALES
DIAGRAMAS DE VENN
DETERMINACION DE CONJUNTOS
RELACION DE PERTENENCIA
INTRODUCCIÓN
En matemáticas el concepto de
conjunto es considerado
primitivo y no se da una
definición de este, por lo tanto la
palabra CONJUNTO debe
aceptarse lógicamente como un
término no definido.
Un conjunto se puede entender como
una colección o agrupación bien
definida de objetos de cualquier clase.
Los objetos que forman un conjunto
son llamados miembros o elementos
del conjunto.
Ejemplo:
En la figura adjunta
tienes un Conjunto de
Personas
NOTACIÓN
Todo conjunto se escribe entre llaves { }
y se le denota mediante letras
mayúsculas A, B, C, ...,sus elementos se
separan mediante punto y coma.
Ejemplo:
El conjunto de las letras del alfabeto; a,
b, c, ..., x, y, z. se puede escribir así:
L={ a; b; c; ...; x; y; z}
Ejemplo:
A= {a;b;c;d;e} su cardinal n(A)=
B= {x;x;x;y;y;z} su cardinal n(B)=
En teoría de conjuntos no se acostumbra
repetir los elementos por ejemplo:
El conjunto {x; x; x; y; y; z } simplemente
será { x; y; z }.
Al número de elementos que tiene un conjunto
Q se le llama CARDINAL DEL CONJUNTO y se
le representa por n(Q).
5
3
INDICE
Para indicar que un elemento pertenece
a un conjunto se usa el símbolo: ∈
Si un elemento no pertenece a un
conjunto se usa el símbolo: ∉
Ejemplo: Sea M = {2;4;6;8;10}
2 M
∈ ...se lee 2 pertenece al conjunto M
5 M
∉ ...se lee 5 no pertenece al conjunto M
INDICE
I) POR EXTENSIÓN
Hay dos formas de determinar un conjunto,
por Extensión y por Comprensión
Es aquella forma mediante la cual se indica
cada uno de los elementos del conjunto.
Ejemplos:
A) El conjunto de los números pares mayores
que 5 y menores que 20.
A = { 6;8;10;12;14;16;18 }
INDICE
B) El conjunto de números negativos
impares mayores que -10.
B = {-9;-7;-5;-3;-1 }
II) POR COMPRENSIÓN
Es aquella forma mediante la cual se da una
propiedad que caracteriza a todos los
elementos del conjunto.
Ejemplo:
se puede entender que el conjunto P esta formado
por los números 0,1,2,3,4,5,6,7,8,9.
P = { los números dígitos }
Otra forma de escribir es: P = { x / x = dígito }
se lee “ P es el conjunto formado por los
elementos x tal que x es un dígito “
Ejemplo:
Expresar por extensión y por comprensión el
conjunto de días de la semana.
Por Extensión : D = { lunes; martes; miércoles;
jueves; viernes; sábado; domingo }
Por Comprensión : D = { x / x = día de la semana }
INDICE
Los diagramas de Venn que se deben al
filósofo inglés John Venn (1834-1883)
sirven para representar conjuntos de
manera gráfica mediante dibujos ó
diagramas que pueden ser círculos,
rectángulos, triángulos o cualquier curva
cerrada.
A
M
T
7
2
3
6
9
a
e
i
o
u
(1;3) (7;6)
(2;4) (5;8)
8
4
1 5
INDICE
A = o A = { } se lee: “A es el conjunto
vacío” o “A es el conjunto nulo “
CONJUNTO VACÍO
Es un conjunto que no tiene elementos,
también se le llama conjunto nulo.
Generalmente se le representa por los
símbolos: o { }
φ
φ
Ejemplos:
M = { números mayores que 9 y menores
que 5 }
P = { x / }
1
0
X
=
CONJUNTO UNITARIO
Es el conjunto que tiene un solo elemento.
Ejemplos:
F = { x / 2x + 6 = 0 } G = }
{ 2
x / x 4 x 0
= ∧ <
CONJUNTO FINITO
Es el conjunto con limitado número de
elementos.
Ejemplos:
E = { x / x es un número impar positivo
menor que 10 }
N = { x / x2
= 4 }
;
CONJUNTO INFINITO
Es el conjunto con ilimitado número de
elementos.
Ejemplos:
R = { x / x < 6 } S = { x / x es un número par }
CONJUNTO UNIVERSAL
Es un conjunto referencial que contiene a
todos los elementos de una situación
particular, generalmente se le representa
por la letra U
Ejemplo: El universo o conjunto universal
;
de todos los números es el conjunto de los
NÚMEROS COMPLEJOS. INDICE
INCLUSIÓN
Un conjunto A esta incluido en otro conjunto B ,sí
y sólo sí, todo elemento de A es también elemento
de B
NOTACIÓN : ⊂
A B
Se lee : A esta incluido en B, A es subconjunto de
B, A esta contenido en B , A es parte de B.
REPRESENTACIÓN GRÁFICA :
B A
PROPIEDADES:
I ) Todo conjunto está incluido en si mismo. ⊂
A A
II ) El conjunto vacío se considera incluido en
cualquier conjunto. φ ⊂ A
III ) A está incluido en B ( ) equivale a decir
que B incluye a A ( )
⊂
A B
⊃
B A
IV ) Si A no está incluido en B o A no es
subconjunto de B significa que por lo menos un
elemento de A no pertenece a B. ( )
⊄
A B
V ) Simbólicamente: ⊂ ⇔ ∀ ∈ ⇒ ∈
A B x A x B
CONJUNTOS COMPARABLES
Un conjunto A es COMPARABLE con otro
conjunto B si entre dichos conjuntos existe una
relación de inclusión.
A es comparable con B ⇔ A ⊂ B ∨ B ⊂ A
Ejemplo: A={1;2;3;4;5} y B={2;4}
1
2
3
4
5
A
B
Observa que B está
incluido en A ,por lo
tanto Ay B son
COMPARABLES
IGUALDAD DE CONJUNTOS
Dos conjuntos son iguales si tienen los mismos
elementos.
Ejemplo:
A = { x / x2
= 9 } y B = { x / (x – 3)(x + 3) =0 }
Resolviendo la ecuación de cada conjunto se
obtiene en ambos casos que x es igual a 3 o -3,
es decir : A = {-3;3} y B = {-3;3} ,por lo tanto A=B
Simbólicamente : = ⇔ ⊂ ∧ ⊂
A B (A B) (B A)
CONJUNTOS DISJUNTOS
Dos conjuntos son disjuntos cuando no tienen
elementos comunes.
REPRESENTACIÓN GRÁFICA :
A B
1
7
5 3
9
2
4
8
6



Como puedes
observar los
conjuntos A y B no
tienen elementos
comunes, por lo
tanto son
CONJUNTOS
DISJUNTOS
CONJUNTO DE CONJUNTOS
Es un conjunto cuyos elementos son conjuntos.
Ejemplo:
F = { {a};{b};{a; b};{a;b;c} }
Observa que los elementos del conjunto F también
son conjuntos.
{a} es un elemento del conjunto F entonces {a} F
∈
¿ Es correcto decir que {b} F ?
⊂ NO
Porque {b} es un elemento del conjunto F ,lo
correcto es {b} F
∈
CONJUNTO POTENCIA
El conjunto potencia de un conjunto A denotado
por P(A) o Pot(A) es el conjunto formado por
todos los subconjuntos de A.
Ejemplo: Sea A = { m;n;p }
Los subconjuntos de A son
{m},{n},{p},{m;n}, {n;p},
{m;p}, {m;n;p}, Φ
Entonces el conjunto potencia de A es:
P(A) = { {m};{n};{p};{m;n};{m;p};{n;p};{m:n;p};Φ }
¿ CUÁNTOS ELEMENTOS TIENE EL CONJUNTO
POTENCIA DE A ?
Observa que el conjunto A tiene 3 elementos y
su conjunto potencia osea P(A) tiene 8
elementos.
PROPIEDAD:
Dado un conjunto A cuyo número de elementos es
n , entonces el número de elementos de su
conjunto potencia es 2n
.
Ejemplo:
Dado el conjunto B ={x / x es un número par y
5< x <15 }. Determinar el cardinal de P(B).
RESPUESTA
Si 5<x<15 y es un
número par entonces
B= {6;8;10;12;14}
Observa que el conjunto
B tiene 5 elementos
entonces:
Card P(B)=n P(B)=25
=32
INDICE
Números Naturales ( N ) N={1;2;3;4;5;....}
Números Enteros ( Z ) Z={...;-2;-1;0;1;2;....}
Números Racionales (Q)
Q={...;-2;-1; ;0; ; ; 1; ;2;....}
Números Irracionales ( I ) I={...; ;....}
2; 3;π
Números Reales ( R )
R={...;-2;-1;0;1; ;2;3;....}
2; 3
1
2
−
1
5
1
2
4
3
Números Complejos ( C )
C={...;-2; ;0;1; ;2+3i;3;....}
2; 3
1
2
−
N
Z
Q
I
R
C
EJEMPLOS:
Expresar por extensión los siguientes conjuntos:
A ) { }
2
P x N/ x 9 0
= ∈ − =
B )
C )
D ) }
{
T x Q /(3x 4)(x 2) 0
= ∈ − − =
E ) }
{
B x I/(3x 4)(x 2) 0
= ∈ − − =
{ }
2
Q x Z / x 9 0
= ∈ − =
{ }
2
F x R / x 9 0
= ∈ + =
P={3}
Q={-3;3}
F = { }
{ }
4
T
3
=
{ }
B 2
=
RESPUESTAS
INDICE
7
6
5
5
6
A B
El conjunto “A unión B” que se representa asi
es el conjunto formado por todos los elementos que
pertenecen a A,a B o a ambos conjuntos.
∪
A B
}
{
∪ = ∈ ∨ ∈
A B x / x A x B
Ejemplo:
}
{ }
{
= =
A 1;2;3;4;5;6;7 yB 5;6;7;8;9
9
8
7
3
1
4
2
}
{
∪ =
A B 1;2;3;4;5;6;7;8;9
REPRESENTACIONES GRÁFICAS DE LA
UNIÓN DE CONJUNTOS
Si A y B son no comparables Si A y B son comparables
Si A y B son
conjuntos disjuntos
U
U
U
A
A
A
B
B
B
AUB AUB
PROPIEDADES DE LA UNIÓN DE
CONJUNTOS
1. A 1 A = A
2. A 2 B = B A
3. A 3 Φ = A
4. A 4 U = U
5. (A5B)BC =AC(B( C)
6. Si A6B=Φ ⇒ A=Φ ∧ B=Φ
INDICE
7
6
5
5
6
A B
El conjunto “A intersección B” que se representa
es el conjunto formado por todos los elementos que
pertenecen a A y pertenecen a B.
∩
A B
}
{
A B x / x A x B
∩ = ∈ ∧ ∈
Ejemplo:
}
{ }
{
= =
A 1;2;3;4;5;6;7 yB 5;6;7;8;9
9
8
7
3
1
4
2
}
{
A B 5;6;7
∩ =
REPRESENTACIONES GRÁFICAS DE LA
INTERSECCIÓN DE CONJUNTOS
Si A y B son no comparables Si A y B son comparables
Si A y B son
conjuntos disjuntos
U
U
U
A
A
A
B
B
AAB AAB=B
B
AAB=Φ
PROPIEDADES DE LA INTERSECCIÓN
DE CONJUNTOS
1. A 1 A = A
2. A 2 B = B A
3. A 3 Φ = Φ
4. A 4 U = A
5. (A5B)BC =AC(B( C)
6. A6(B( C) =(ACB)B(A( C)
AA(B( C) =(ACB)B(A( C)
INDICE
7
6
5
5
6
A B
El conjunto “A menos B” que se representa
es el conjunto formado por todos los elementos que
pertenecen a A y no pertenecen a B.
A B
−
}
{
A B x / x A x B
− = ∈ ∧ ∉
Ejemplo:
}
{ }
{
= =
A 1;2;3;4;5;6;7 yB 5;6;7;8;9
9
8
7
3
1
4
2
}
{
A B 1;2;3;4
− =
7
6
5
5
6
A B
El conjunto “B menos A” que se representa
es el conjunto formado por todos los elementos que
pertenecen a B y no pertenecen a A.
B A
−
}
{
B A x / x B x A
− = ∈ ∧ ∉
Ejemplo:
}
{ }
{
= =
A 1;2;3;4;5;6;7 yB 5;6;7;8;9
9
8
7
3
1
4
2
}
{
B A 8;9
− =
REPRESENTACIONES GRÁFICAS DE LA
DIFERENCIA DE CONJUNTOS
Si A y B son no comparables Si A y B son comparables
Si A y B son
conjuntos disjuntos
U
U
U
A
A
A
B
B
A - B A - B
B
A - B=A
INDICE
7
6
5
5
6
A B
El conjunto “A diferencia simétrica B ” que se
representa es el conjunto formado por todos los
elementos que pertenecen a (A-B) o(B-A).
A B
∆
}
{
A B x / x (A B) x (B A)
∆ = ∈ − ∨ ∈ −
Ejemplo:
}
{ }
{
= =
A 1;2;3;4;5;6;7 yB 5;6;7;8;9
9
8
7
3
1
4
2
}
{ }
{
A B 1;2;3;4 8;9
∆ = ∪
También es correcto afirmar que:
A B (A B) (B A)
∆ = − ∪ −
A B (A B) (A B)
∆ = ∪ − ∩
A B
A-B B-A
A B
Dado un conjunto universal U y un conjunto
A,se llama complemento de A al conjunto
formado por todos los elementos del
universo que no pertenecen al conjunto A.
Notación: A’ o AC
Ejemplo:
U ={1;2;3;4;5;6;7;8;9} A ={1;3; 5; 7; 9}
y
Simbólicamente: }
{
A ' x / x U x A
= ∈ ∧ ∉
A’ = U - A
1
2 3
4
5
6
7
8
9
U
A
A
A’={2;4;6,8}
PROPIEDADES DEL COMPLEMENTO
1. (A’)’=A
2. A2A’=U
3. A3A’=Φ
4. U’=Φ
5. Φ’=U
INDICE
PROBLEMA 1
PROBLEMA 2
PROBLEMA 3
PROBLEMA 4
PROBLEMA 5
FIN
Dados los conjuntos:
A = { 1; 4 ;7 ;10 ; ... ;34}
B = { 2 ;4;6;...;26}
C = { 3; 7;11;15;...;31}
a) Expresar B y C por comprensión
b) Calcular: n(B) + n(A)
c) Hallar: A c B , C – A
SOLUCIÓN
Los elementos de A son:
Primero analicemos cada conjunto
{
1 3x1
tt4tt
+
{
1 3x2
tt7tt
+
{
1 3x3
tt tt
10
+
{
1 3x11
tt3 tt
4
+
{
1 3x0
tt1tt
+
...
A = { 1+3n / n∈Z ∧ 0 ≤ n ≤ 11}
Los elementos de B son:
{
2x2
tt4tt {
2x3
tt6tt {
2x4
tt8tt {
2x13
tt tt
26
{
2x1
tt2tt ...
B = { 2n / n∈Z ∧ 1 ≤ n ≤
13}
n(B)=13
n(A)=12
Los elementos de C son:
{
3 4x1
tt7tt
+
{
3 4x2
tt tt
11
+
{
3 4x3
tt tt
15
+
{
3 4x7
tt tt
31
+
{
3 4x0
tt3tt
+
...
C = { 3+4n / n∈Z ∧ 0 ≤ n ≤
7 }
a) Expresar B y C por comprensión
B = { 2n / n∈Z ∧ 1 ≤ n ≤
18}
C = { 3+4n / n∈Z ∧ 0 ≤ n ≤
7 }
b) Calcular: n(B) + n(A)
n(C)=8
n(B) + n(A) = 13 +12 = 25
A = {1;4;7;10;13;16;19;22;25;28;31;34}
B = {2;4;6;8;10;12;14;16;18;20;22;24;26}
C = {3;7;11;15;19;23;27;31}
c) Hallar: A c B , C – A
A AB = { 4;10;16;22 }
C – A = { 3;11;15;23;27 }
Sabemos que A S B esta formado por los
elementos comunes de A y B,entonces:
Sabemos que C - A esta formado por los
elementos de C que no pertenecen a A,
entonces:
Si : G = { 1 ; {3} ; 5 ; {7;10} ;11 }
Determinar si es verdadero o falso:
a) Φ ⊂ G
b) {3} ∈ G
c) {{7};10} ∈G
d) {{3};1} ⊄ G
e) {1;5;11} ⊂ G
SOLUCIÓN
Observa que los elementos de A son:
1 ; {3} ; 5 ; {7;10} ; 11
es VERDADERO
Entonces:
es VERDADERO porque Φ esta
incluido en todo los conjuntos
es VERDADERO porque {3}
es un elemento de de G
es FALSO porque {{7};10}
no es elemento de G
es FALSO
a)Φ ⊂ G ....
b) {3} ∈ G ...
c) {{7};10} ∈G ..
d) {{3};1} ⊄ G ...
e) {1;5;11} ⊂ G ...
Dados los conjuntos:
P = { x ∈Z / 2x2
+5x-3=0 }
M = { x/4∈N / -4< x < 21 }
T = { x ∈R / (x2
- 9)(x - 4)=0 }
a) Calcular: M - ( T – P )
b) Calcular: Pot(M – T )
c) Calcular: (M c T) – P
SOLUCIÓN
P = { x ∈Z / 2x2
+5x-3=0 }
Analicemos cada conjunto:
2x2
+ 5x – 3 = 0
2x – 1
+ 3
x



(2x-1)(x+3)=0
2x-1=0 ⇒ x = 1/2
x+3=0 ⇒ x = -3
Observa que x∈Z ,
entonces: P = { -3 }
M = { x/4∈N / -4< x < 21 }
Como x/4 ∈ N entonces los valores de x
son : 4 ; 8 ; 12 ; 16 ; 20 pero los elementos
de M se obtienen dividiendo x entre 4,por lo
tanto : M = {1 ; 2 ; 3 ; 4 ; 5 }
T = { x ∈R / (x2
- 9)(x - 4)=0 }
Cada factor lo igualamos a cero y calculamos
los valores de x
x – 4 = 0 ⇒ x = 4
x2
– 9 = 0 ⇒ x2
= 9 ⇒ x = 3 o x =-3
Por lo tanto: T = { -3;3;4 }
a) Calcular: M - ( T – P )
T – P = { -3;3;4 } - { -3 } ⇒ T – P = {3 ;
4 }
M - (T –P)= {1 ; 2 ; 3 ; 4 ; 5 } - {3 ;4 }
M - (T –P)= {1 ; 2 ; 5 }
b) Calcular: Pot( M – T )
M – T = {1 ; 2 ; 3 ; 4 ; 5 } - { -3;3;4 }
M – T = {1 ; 2 ; 5 }
Pot( M – T ) = { {1}; {2};
{5};
{1;2};{1;5};
{1;2;5};
{2;5};
Φ }
c) Calcular: (M c T) – P
M MT = {1 ; 2 ; 3 ; 4 ; 5 } { { -3;3;4 }
M MT = { -3 ; 1 ; 2 ; 3 ; 4 ; 5 }
(M ( T) – P = { -3 ; 1 ; 2 ; 3 ; 4 ; 5 } - { -3 }
(M ( T) – P = {1 ; 2 ; 3 ; 4 ; 5 }
Expresar la región sombreada en
términos de operaciones entre los
conjuntos A,B y C.
A B
C
A
B
C
SOLUCIÓN
A B
C
A B
C
A
B
C
A
B
C
[(A[ B) – C]
[(B[ C) – A]
[(A[ C) – B]
C
A B
A
B
C
Observa como se
obtiene la región
sombreada
Toda la zona de amarillo es
AAB
La zona de verde es ALB
Entonces restando se obtiene la zona
que se ve en la figura : (AqB) - (ABB)
C
Finalmente le agregamos C y se obtiene:
[ (A[ B) - (ABB) ] BC ( A ∆ B ) C
=
Según las preferencias de 420
personas que ven los canales A,B o
C se observa que 180 ven el canal
A ,240 ven el canal B y 150 no ven el
canal C,los que ven por lo menos 2
canales son 230¿cuántos ven los
tres canales?
SOLUCIÓN
El universo es: 420
Ven el canal A: 180 Ven el canal B: 240
No ven el canal C: 150
Entonces si ven el canal C: 420 – 150 = 270
A B
C
a
d
(I) a + e + d + x =180
b
e
x
f
(II) b + e + f + x = 240
c
(III) d + c + f + x = 270
Dato: Ven por lo menos
dos canales 230 ,entonces:
(IV) d + e + f + x = 230
(I) a + e + d + x =180
(II) b + e + f + x = 240
(III) d + c + f + x = 270
Sumamos las ecuaciones (I),(II) y (III)
Sabemos que : a+b+c+d+e+f+x =420

230
entonces : a+b+c =190
a + b + c + 2(d + e + f + x) + x = 690
  

190 230
190 + 560 + x =690 ⇒ x = 40
Esto significa que 40 personas ven los tres canales
conjuntos-110626205831-phpapp02

Más contenido relacionado

La actualidad más candente

01. teoria de conjuntos
01. teoria de conjuntos01. teoria de conjuntos
01. teoria de conjuntos
Yesica Vane
 
Clase 5. conjuntos.
Clase 5. conjuntos.Clase 5. conjuntos.
Clase 5. conjuntos.
Keymar
 

La actualidad más candente (19)

Teoría de conjuntos
Teoría de conjuntosTeoría de conjuntos
Teoría de conjuntos
 
Teoria de-conjuntos
Teoria de-conjuntosTeoria de-conjuntos
Teoria de-conjuntos
 
TEORÍA DE CONJUNTOS
TEORÍA DE CONJUNTOSTEORÍA DE CONJUNTOS
TEORÍA DE CONJUNTOS
 
Teoría de conjuntos
Teoría de conjuntosTeoría de conjuntos
Teoría de conjuntos
 
Teoría de conjuntos
Teoría de conjuntosTeoría de conjuntos
Teoría de conjuntos
 
01. teoria de conjuntos
01. teoria de conjuntos01. teoria de conjuntos
01. teoria de conjuntos
 
Teoría de conjuntos
Teoría de conjuntos Teoría de conjuntos
Teoría de conjuntos
 
Teoria de conjuntos
Teoria de conjuntosTeoria de conjuntos
Teoria de conjuntos
 
Conjuntos 1
Conjuntos 1Conjuntos 1
Conjuntos 1
 
TeoríA de Conjuntos
TeoríA de ConjuntosTeoríA de Conjuntos
TeoríA de Conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Conjuntos22
Conjuntos22Conjuntos22
Conjuntos22
 
Clase 5. conjuntos.
Clase 5. conjuntos.Clase 5. conjuntos.
Clase 5. conjuntos.
 
Teoria de Conjuntos
Teoria de ConjuntosTeoria de Conjuntos
Teoria de Conjuntos
 
Teoria de conjuntos
Teoria de conjuntosTeoria de conjuntos
Teoria de conjuntos
 
Teoría de conjuntos
Teoría de conjuntosTeoría de conjuntos
Teoría de conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 

Similar a conjuntos-110626205831-phpapp02 (20)

Teoria de conjuntos
Teoria de conjuntosTeoria de conjuntos
Teoria de conjuntos
 
Conjuntos 110626205831-phpapp02
Conjuntos 110626205831-phpapp02Conjuntos 110626205831-phpapp02
Conjuntos 110626205831-phpapp02
 
Teoria de conjuntos
Teoria de conjuntosTeoria de conjuntos
Teoria de conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Teoría de Conjuntos
Teoría de ConjuntosTeoría de Conjuntos
Teoría de Conjuntos
 
Conjuntos-DOCENTE klinger-
Conjuntos-DOCENTE  klinger-Conjuntos-DOCENTE  klinger-
Conjuntos-DOCENTE klinger-
 
Conjuntos2637
Conjuntos2637Conjuntos2637
Conjuntos2637
 
Conjunto Sexto.ppt
Conjunto Sexto.pptConjunto Sexto.ppt
Conjunto Sexto.ppt
 
Conjun.ppt
Conjun.pptConjun.ppt
Conjun.ppt
 
Conjun.ppt
Conjun.pptConjun.ppt
Conjun.ppt
 
Conjun.ppt
Conjun.pptConjun.ppt
Conjun.ppt
 
Teoria de conjuntos en diapositvias interactivas
Teoria de conjuntos en diapositvias interactivasTeoria de conjuntos en diapositvias interactivas
Teoria de conjuntos en diapositvias interactivas
 
conjuntos.ppt
conjuntos.pptconjuntos.ppt
conjuntos.ppt
 
Conjuntos.ppt
Conjuntos.pptConjuntos.ppt
Conjuntos.ppt
 
SEMANA 4 - TEORIA DE CONJUNTOS.pptx
SEMANA 4 - TEORIA DE CONJUNTOS.pptxSEMANA 4 - TEORIA DE CONJUNTOS.pptx
SEMANA 4 - TEORIA DE CONJUNTOS.pptx
 
Conjuntos comp
Conjuntos  comp Conjuntos  comp
Conjuntos comp
 
Teoria de conjuntos
Teoria de conjuntosTeoria de conjuntos
Teoria de conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Conjuntos 41888__
Conjuntos  41888__Conjuntos  41888__
Conjuntos 41888__
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 

Más de J Martin Luzon

SEMANA 1 LA AUTOESTIMA Y SUS COMPONENTES.pdf
SEMANA 1 LA AUTOESTIMA Y SUS COMPONENTES.pdfSEMANA 1 LA AUTOESTIMA Y SUS COMPONENTES.pdf
SEMANA 1 LA AUTOESTIMA Y SUS COMPONENTES.pdf
J Martin Luzon
 

Más de J Martin Luzon (20)

SEMANA 13-14.pptx
SEMANA 13-14.pptxSEMANA 13-14.pptx
SEMANA 13-14.pptx
 
SEMANA 11.pptx
SEMANA 11.pptxSEMANA 11.pptx
SEMANA 11.pptx
 
SEMANA 12 PENSAMIENTO CRÍTICO.pptx
SEMANA 12 PENSAMIENTO CRÍTICO.pptxSEMANA 12 PENSAMIENTO CRÍTICO.pptx
SEMANA 12 PENSAMIENTO CRÍTICO.pptx
 
SEMANA 10 EL PENSAMIENTO LATERAL.pptx
SEMANA 10 EL PENSAMIENTO LATERAL.pptxSEMANA 10 EL PENSAMIENTO LATERAL.pptx
SEMANA 10 EL PENSAMIENTO LATERAL.pptx
 
SEMANA 7-8_metodologia (1).pptx
SEMANA 7-8_metodologia (1).pptxSEMANA 7-8_metodologia (1).pptx
SEMANA 7-8_metodologia (1).pptx
 
LOGICA
LOGICA LOGICA
LOGICA
 
SEMANA 2 INTELIGENCIAS MÚLTIPLES.pdf
SEMANA 2 INTELIGENCIAS MÚLTIPLES.pdfSEMANA 2 INTELIGENCIAS MÚLTIPLES.pdf
SEMANA 2 INTELIGENCIAS MÚLTIPLES.pdf
 
SEMANA 1 LA AUTOESTIMA Y SUS COMPONENTES.pdf
SEMANA 1 LA AUTOESTIMA Y SUS COMPONENTES.pdfSEMANA 1 LA AUTOESTIMA Y SUS COMPONENTES.pdf
SEMANA 1 LA AUTOESTIMA Y SUS COMPONENTES.pdf
 
normativa-que-rige-el-comercio-electrnico.pptx
normativa-que-rige-el-comercio-electrnico.pptxnormativa-que-rige-el-comercio-electrnico.pptx
normativa-que-rige-el-comercio-electrnico.pptx
 
comercio electrónico
comercio electrónicocomercio electrónico
comercio electrónico
 
SEMANA 4-5-6.pptx
SEMANA 4-5-6.pptxSEMANA 4-5-6.pptx
SEMANA 4-5-6.pptx
 
SEMANA 1-2-3- METODOLOGIAS TRADICIONALES [Autoguardado].pptx
SEMANA 1-2-3- METODOLOGIAS TRADICIONALES [Autoguardado].pptxSEMANA 1-2-3- METODOLOGIAS TRADICIONALES [Autoguardado].pptx
SEMANA 1-2-3- METODOLOGIAS TRADICIONALES [Autoguardado].pptx
 
Formulas EXCEL
Formulas EXCELFormulas EXCEL
Formulas EXCEL
 
excel
excelexcel
excel
 
Metodologías agiles
Metodologías agiles Metodologías agiles
Metodologías agiles
 
Ciclo de-vida-del-software-80150943
Ciclo de-vida-del-software-80150943Ciclo de-vida-del-software-80150943
Ciclo de-vida-del-software-80150943
 
paradigmas de programación
paradigmas de programaciónparadigmas de programación
paradigmas de programación
 
Semana 1 2-3 (3)
Semana 1 2-3 (3)Semana 1 2-3 (3)
Semana 1 2-3 (3)
 
tipos de comercio electronico
tipos de comercio electronicotipos de comercio electronico
tipos de comercio electronico
 
SISTEMA DE NUMERACION
SISTEMA DE NUMERACION SISTEMA DE NUMERACION
SISTEMA DE NUMERACION
 

Último

Editorial. Grupo de 12B de La Salle Margarita.pdf
Editorial. Grupo de 12B de La Salle Margarita.pdfEditorial. Grupo de 12B de La Salle Margarita.pdf
Editorial. Grupo de 12B de La Salle Margarita.pdf
Yanitza28
 
redes informaticas en una oficina administrativa
redes informaticas en una oficina administrativaredes informaticas en una oficina administrativa
redes informaticas en una oficina administrativa
nicho110
 
QUINTA SEXTA GENERACION de COMPUTADORAS
QUINTA  SEXTA GENERACION de COMPUTADORASQUINTA  SEXTA GENERACION de COMPUTADORAS
QUINTA SEXTA GENERACION de COMPUTADORAS
Marc Liust
 

Último (18)

2023 07 Casos prácticos para Realidad aumentada, metaverso y realidad extendida
2023 07 Casos prácticos para Realidad aumentada, metaverso y realidad extendida2023 07 Casos prácticos para Realidad aumentada, metaverso y realidad extendida
2023 07 Casos prácticos para Realidad aumentada, metaverso y realidad extendida
 
infor expo AVANCES TECNOLOGICOS DEL SIGLO 21.pptx
infor expo AVANCES TECNOLOGICOS DEL SIGLO 21.pptxinfor expo AVANCES TECNOLOGICOS DEL SIGLO 21.pptx
infor expo AVANCES TECNOLOGICOS DEL SIGLO 21.pptx
 
presentación del desensamble y ensamble del equipo de computo en base a las n...
presentación del desensamble y ensamble del equipo de computo en base a las n...presentación del desensamble y ensamble del equipo de computo en base a las n...
presentación del desensamble y ensamble del equipo de computo en base a las n...
 
10°8 - Avances tecnologicos del siglo XXI 10-8
10°8 - Avances tecnologicos del siglo XXI 10-810°8 - Avances tecnologicos del siglo XXI 10-8
10°8 - Avances tecnologicos del siglo XXI 10-8
 
Guia Basica para bachillerato de Circuitos Basicos
Guia Basica para bachillerato de Circuitos BasicosGuia Basica para bachillerato de Circuitos Basicos
Guia Basica para bachillerato de Circuitos Basicos
 
Función del analizador léxico.pdf presentacion
Función del analizador léxico.pdf presentacionFunción del analizador léxico.pdf presentacion
Función del analizador léxico.pdf presentacion
 
AVANCES TECNOLOGICOS DEL SIGLO XXI. 10-08..pptx
AVANCES TECNOLOGICOS  DEL SIGLO XXI. 10-08..pptxAVANCES TECNOLOGICOS  DEL SIGLO XXI. 10-08..pptx
AVANCES TECNOLOGICOS DEL SIGLO XXI. 10-08..pptx
 
Editorial. Grupo de 12B de La Salle Margarita.pdf
Editorial. Grupo de 12B de La Salle Margarita.pdfEditorial. Grupo de 12B de La Salle Margarita.pdf
Editorial. Grupo de 12B de La Salle Margarita.pdf
 
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
 
Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21
 
redes informaticas en una oficina administrativa
redes informaticas en una oficina administrativaredes informaticas en una oficina administrativa
redes informaticas en una oficina administrativa
 
QUINTA SEXTA GENERACION de COMPUTADORAS
QUINTA  SEXTA GENERACION de COMPUTADORASQUINTA  SEXTA GENERACION de COMPUTADORAS
QUINTA SEXTA GENERACION de COMPUTADORAS
 
presentacion_desamblado_de_una_computadora_base_a_las_normas_de_seguridad.pdf
presentacion_desamblado_de_una_computadora_base_a_las_normas_de_seguridad.pdfpresentacion_desamblado_de_una_computadora_base_a_las_normas_de_seguridad.pdf
presentacion_desamblado_de_una_computadora_base_a_las_normas_de_seguridad.pdf
 
investigación de los Avances tecnológicos del siglo XXI
investigación de los Avances tecnológicos del siglo XXIinvestigación de los Avances tecnológicos del siglo XXI
investigación de los Avances tecnológicos del siglo XXI
 
How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.
 
Editorial. Grupo de 12B. La Salle Margarita.pdf
Editorial. Grupo de 12B. La Salle Margarita.pdfEditorial. Grupo de 12B. La Salle Margarita.pdf
Editorial. Grupo de 12B. La Salle Margarita.pdf
 
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptx
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptxEVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptx
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptx
 
Buenos_Aires_Meetup_Redis_20240430_.pptx
Buenos_Aires_Meetup_Redis_20240430_.pptxBuenos_Aires_Meetup_Redis_20240430_.pptx
Buenos_Aires_Meetup_Redis_20240430_.pptx
 

conjuntos-110626205831-phpapp02

  • 1.
  • 2. INDICE UNION DE CONJUNTOS INTERSECCIÓN DE CONJUNTOS DIFERENCIA DE CONJUNTOS DIFERENCIA SIMÉTRICA COMPLEMENTO DE UN CONJUNTO PROBLEMAS CONJUNTOS NUMÉRICOS RELACIONES ENTRE CONJUNTOS CONJUNTOS ESPECIALES DIAGRAMAS DE VENN DETERMINACION DE CONJUNTOS RELACION DE PERTENENCIA INTRODUCCIÓN
  • 3. En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse lógicamente como un término no definido.
  • 4. Un conjunto se puede entender como una colección o agrupación bien definida de objetos de cualquier clase. Los objetos que forman un conjunto son llamados miembros o elementos del conjunto. Ejemplo: En la figura adjunta tienes un Conjunto de Personas
  • 5. NOTACIÓN Todo conjunto se escribe entre llaves { } y se le denota mediante letras mayúsculas A, B, C, ...,sus elementos se separan mediante punto y coma. Ejemplo: El conjunto de las letras del alfabeto; a, b, c, ..., x, y, z. se puede escribir así: L={ a; b; c; ...; x; y; z}
  • 6. Ejemplo: A= {a;b;c;d;e} su cardinal n(A)= B= {x;x;x;y;y;z} su cardinal n(B)= En teoría de conjuntos no se acostumbra repetir los elementos por ejemplo: El conjunto {x; x; x; y; y; z } simplemente será { x; y; z }. Al número de elementos que tiene un conjunto Q se le llama CARDINAL DEL CONJUNTO y se le representa por n(Q). 5 3 INDICE
  • 7. Para indicar que un elemento pertenece a un conjunto se usa el símbolo: ∈ Si un elemento no pertenece a un conjunto se usa el símbolo: ∉ Ejemplo: Sea M = {2;4;6;8;10} 2 M ∈ ...se lee 2 pertenece al conjunto M 5 M ∉ ...se lee 5 no pertenece al conjunto M INDICE
  • 8. I) POR EXTENSIÓN Hay dos formas de determinar un conjunto, por Extensión y por Comprensión Es aquella forma mediante la cual se indica cada uno de los elementos del conjunto. Ejemplos: A) El conjunto de los números pares mayores que 5 y menores que 20. A = { 6;8;10;12;14;16;18 } INDICE
  • 9. B) El conjunto de números negativos impares mayores que -10. B = {-9;-7;-5;-3;-1 } II) POR COMPRENSIÓN Es aquella forma mediante la cual se da una propiedad que caracteriza a todos los elementos del conjunto. Ejemplo: se puede entender que el conjunto P esta formado por los números 0,1,2,3,4,5,6,7,8,9. P = { los números dígitos }
  • 10. Otra forma de escribir es: P = { x / x = dígito } se lee “ P es el conjunto formado por los elementos x tal que x es un dígito “ Ejemplo: Expresar por extensión y por comprensión el conjunto de días de la semana. Por Extensión : D = { lunes; martes; miércoles; jueves; viernes; sábado; domingo } Por Comprensión : D = { x / x = día de la semana } INDICE
  • 11. Los diagramas de Venn que se deben al filósofo inglés John Venn (1834-1883) sirven para representar conjuntos de manera gráfica mediante dibujos ó diagramas que pueden ser círculos, rectángulos, triángulos o cualquier curva cerrada. A M T 7 2 3 6 9 a e i o u (1;3) (7;6) (2;4) (5;8) 8 4 1 5 INDICE
  • 12. A = o A = { } se lee: “A es el conjunto vacío” o “A es el conjunto nulo “ CONJUNTO VACÍO Es un conjunto que no tiene elementos, también se le llama conjunto nulo. Generalmente se le representa por los símbolos: o { } φ φ Ejemplos: M = { números mayores que 9 y menores que 5 } P = { x / } 1 0 X =
  • 13. CONJUNTO UNITARIO Es el conjunto que tiene un solo elemento. Ejemplos: F = { x / 2x + 6 = 0 } G = } { 2 x / x 4 x 0 = ∧ < CONJUNTO FINITO Es el conjunto con limitado número de elementos. Ejemplos: E = { x / x es un número impar positivo menor que 10 } N = { x / x2 = 4 } ;
  • 14. CONJUNTO INFINITO Es el conjunto con ilimitado número de elementos. Ejemplos: R = { x / x < 6 } S = { x / x es un número par } CONJUNTO UNIVERSAL Es un conjunto referencial que contiene a todos los elementos de una situación particular, generalmente se le representa por la letra U Ejemplo: El universo o conjunto universal ; de todos los números es el conjunto de los NÚMEROS COMPLEJOS. INDICE
  • 15. INCLUSIÓN Un conjunto A esta incluido en otro conjunto B ,sí y sólo sí, todo elemento de A es también elemento de B NOTACIÓN : ⊂ A B Se lee : A esta incluido en B, A es subconjunto de B, A esta contenido en B , A es parte de B. REPRESENTACIÓN GRÁFICA : B A
  • 16. PROPIEDADES: I ) Todo conjunto está incluido en si mismo. ⊂ A A II ) El conjunto vacío se considera incluido en cualquier conjunto. φ ⊂ A III ) A está incluido en B ( ) equivale a decir que B incluye a A ( ) ⊂ A B ⊃ B A IV ) Si A no está incluido en B o A no es subconjunto de B significa que por lo menos un elemento de A no pertenece a B. ( ) ⊄ A B V ) Simbólicamente: ⊂ ⇔ ∀ ∈ ⇒ ∈ A B x A x B
  • 17. CONJUNTOS COMPARABLES Un conjunto A es COMPARABLE con otro conjunto B si entre dichos conjuntos existe una relación de inclusión. A es comparable con B ⇔ A ⊂ B ∨ B ⊂ A Ejemplo: A={1;2;3;4;5} y B={2;4} 1 2 3 4 5 A B Observa que B está incluido en A ,por lo tanto Ay B son COMPARABLES
  • 18. IGUALDAD DE CONJUNTOS Dos conjuntos son iguales si tienen los mismos elementos. Ejemplo: A = { x / x2 = 9 } y B = { x / (x – 3)(x + 3) =0 } Resolviendo la ecuación de cada conjunto se obtiene en ambos casos que x es igual a 3 o -3, es decir : A = {-3;3} y B = {-3;3} ,por lo tanto A=B Simbólicamente : = ⇔ ⊂ ∧ ⊂ A B (A B) (B A)
  • 19. CONJUNTOS DISJUNTOS Dos conjuntos son disjuntos cuando no tienen elementos comunes. REPRESENTACIÓN GRÁFICA : A B 1 7 5 3 9 2 4 8 6    Como puedes observar los conjuntos A y B no tienen elementos comunes, por lo tanto son CONJUNTOS DISJUNTOS
  • 20. CONJUNTO DE CONJUNTOS Es un conjunto cuyos elementos son conjuntos. Ejemplo: F = { {a};{b};{a; b};{a;b;c} } Observa que los elementos del conjunto F también son conjuntos. {a} es un elemento del conjunto F entonces {a} F ∈ ¿ Es correcto decir que {b} F ? ⊂ NO Porque {b} es un elemento del conjunto F ,lo correcto es {b} F ∈
  • 21. CONJUNTO POTENCIA El conjunto potencia de un conjunto A denotado por P(A) o Pot(A) es el conjunto formado por todos los subconjuntos de A. Ejemplo: Sea A = { m;n;p } Los subconjuntos de A son {m},{n},{p},{m;n}, {n;p}, {m;p}, {m;n;p}, Φ Entonces el conjunto potencia de A es: P(A) = { {m};{n};{p};{m;n};{m;p};{n;p};{m:n;p};Φ } ¿ CUÁNTOS ELEMENTOS TIENE EL CONJUNTO POTENCIA DE A ?
  • 22. Observa que el conjunto A tiene 3 elementos y su conjunto potencia osea P(A) tiene 8 elementos. PROPIEDAD: Dado un conjunto A cuyo número de elementos es n , entonces el número de elementos de su conjunto potencia es 2n . Ejemplo: Dado el conjunto B ={x / x es un número par y 5< x <15 }. Determinar el cardinal de P(B). RESPUESTA Si 5<x<15 y es un número par entonces B= {6;8;10;12;14} Observa que el conjunto B tiene 5 elementos entonces: Card P(B)=n P(B)=25 =32 INDICE
  • 23. Números Naturales ( N ) N={1;2;3;4;5;....} Números Enteros ( Z ) Z={...;-2;-1;0;1;2;....} Números Racionales (Q) Q={...;-2;-1; ;0; ; ; 1; ;2;....} Números Irracionales ( I ) I={...; ;....} 2; 3;π Números Reales ( R ) R={...;-2;-1;0;1; ;2;3;....} 2; 3 1 2 − 1 5 1 2 4 3 Números Complejos ( C ) C={...;-2; ;0;1; ;2+3i;3;....} 2; 3 1 2 −
  • 25. EJEMPLOS: Expresar por extensión los siguientes conjuntos: A ) { } 2 P x N/ x 9 0 = ∈ − = B ) C ) D ) } { T x Q /(3x 4)(x 2) 0 = ∈ − − = E ) } { B x I/(3x 4)(x 2) 0 = ∈ − − = { } 2 Q x Z / x 9 0 = ∈ − = { } 2 F x R / x 9 0 = ∈ + = P={3} Q={-3;3} F = { } { } 4 T 3 = { } B 2 = RESPUESTAS INDICE
  • 26. 7 6 5 5 6 A B El conjunto “A unión B” que se representa asi es el conjunto formado por todos los elementos que pertenecen a A,a B o a ambos conjuntos. ∪ A B } { ∪ = ∈ ∨ ∈ A B x / x A x B Ejemplo: } { } { = = A 1;2;3;4;5;6;7 yB 5;6;7;8;9 9 8 7 3 1 4 2 } { ∪ = A B 1;2;3;4;5;6;7;8;9
  • 27. REPRESENTACIONES GRÁFICAS DE LA UNIÓN DE CONJUNTOS Si A y B son no comparables Si A y B son comparables Si A y B son conjuntos disjuntos U U U A A A B B B AUB AUB
  • 28. PROPIEDADES DE LA UNIÓN DE CONJUNTOS 1. A 1 A = A 2. A 2 B = B A 3. A 3 Φ = A 4. A 4 U = U 5. (A5B)BC =AC(B( C) 6. Si A6B=Φ ⇒ A=Φ ∧ B=Φ INDICE
  • 29. 7 6 5 5 6 A B El conjunto “A intersección B” que se representa es el conjunto formado por todos los elementos que pertenecen a A y pertenecen a B. ∩ A B } { A B x / x A x B ∩ = ∈ ∧ ∈ Ejemplo: } { } { = = A 1;2;3;4;5;6;7 yB 5;6;7;8;9 9 8 7 3 1 4 2 } { A B 5;6;7 ∩ =
  • 30. REPRESENTACIONES GRÁFICAS DE LA INTERSECCIÓN DE CONJUNTOS Si A y B son no comparables Si A y B son comparables Si A y B son conjuntos disjuntos U U U A A A B B AAB AAB=B B AAB=Φ
  • 31. PROPIEDADES DE LA INTERSECCIÓN DE CONJUNTOS 1. A 1 A = A 2. A 2 B = B A 3. A 3 Φ = Φ 4. A 4 U = A 5. (A5B)BC =AC(B( C) 6. A6(B( C) =(ACB)B(A( C) AA(B( C) =(ACB)B(A( C) INDICE
  • 32. 7 6 5 5 6 A B El conjunto “A menos B” que se representa es el conjunto formado por todos los elementos que pertenecen a A y no pertenecen a B. A B − } { A B x / x A x B − = ∈ ∧ ∉ Ejemplo: } { } { = = A 1;2;3;4;5;6;7 yB 5;6;7;8;9 9 8 7 3 1 4 2 } { A B 1;2;3;4 − =
  • 33. 7 6 5 5 6 A B El conjunto “B menos A” que se representa es el conjunto formado por todos los elementos que pertenecen a B y no pertenecen a A. B A − } { B A x / x B x A − = ∈ ∧ ∉ Ejemplo: } { } { = = A 1;2;3;4;5;6;7 yB 5;6;7;8;9 9 8 7 3 1 4 2 } { B A 8;9 − =
  • 34. REPRESENTACIONES GRÁFICAS DE LA DIFERENCIA DE CONJUNTOS Si A y B son no comparables Si A y B son comparables Si A y B son conjuntos disjuntos U U U A A A B B A - B A - B B A - B=A INDICE
  • 35. 7 6 5 5 6 A B El conjunto “A diferencia simétrica B ” que se representa es el conjunto formado por todos los elementos que pertenecen a (A-B) o(B-A). A B ∆ } { A B x / x (A B) x (B A) ∆ = ∈ − ∨ ∈ − Ejemplo: } { } { = = A 1;2;3;4;5;6;7 yB 5;6;7;8;9 9 8 7 3 1 4 2 } { } { A B 1;2;3;4 8;9 ∆ = ∪
  • 36. También es correcto afirmar que: A B (A B) (B A) ∆ = − ∪ − A B (A B) (A B) ∆ = ∪ − ∩ A B A-B B-A A B
  • 37. Dado un conjunto universal U y un conjunto A,se llama complemento de A al conjunto formado por todos los elementos del universo que no pertenecen al conjunto A. Notación: A’ o AC Ejemplo: U ={1;2;3;4;5;6;7;8;9} A ={1;3; 5; 7; 9} y Simbólicamente: } { A ' x / x U x A = ∈ ∧ ∉ A’ = U - A
  • 38. 1 2 3 4 5 6 7 8 9 U A A A’={2;4;6,8} PROPIEDADES DEL COMPLEMENTO 1. (A’)’=A 2. A2A’=U 3. A3A’=Φ 4. U’=Φ 5. Φ’=U INDICE
  • 39. PROBLEMA 1 PROBLEMA 2 PROBLEMA 3 PROBLEMA 4 PROBLEMA 5 FIN
  • 40. Dados los conjuntos: A = { 1; 4 ;7 ;10 ; ... ;34} B = { 2 ;4;6;...;26} C = { 3; 7;11;15;...;31} a) Expresar B y C por comprensión b) Calcular: n(B) + n(A) c) Hallar: A c B , C – A SOLUCIÓN
  • 41. Los elementos de A son: Primero analicemos cada conjunto { 1 3x1 tt4tt + { 1 3x2 tt7tt + { 1 3x3 tt tt 10 + { 1 3x11 tt3 tt 4 + { 1 3x0 tt1tt + ... A = { 1+3n / n∈Z ∧ 0 ≤ n ≤ 11} Los elementos de B son: { 2x2 tt4tt { 2x3 tt6tt { 2x4 tt8tt { 2x13 tt tt 26 { 2x1 tt2tt ... B = { 2n / n∈Z ∧ 1 ≤ n ≤ 13} n(B)=13 n(A)=12
  • 42. Los elementos de C son: { 3 4x1 tt7tt + { 3 4x2 tt tt 11 + { 3 4x3 tt tt 15 + { 3 4x7 tt tt 31 + { 3 4x0 tt3tt + ... C = { 3+4n / n∈Z ∧ 0 ≤ n ≤ 7 } a) Expresar B y C por comprensión B = { 2n / n∈Z ∧ 1 ≤ n ≤ 18} C = { 3+4n / n∈Z ∧ 0 ≤ n ≤ 7 } b) Calcular: n(B) + n(A) n(C)=8 n(B) + n(A) = 13 +12 = 25
  • 43. A = {1;4;7;10;13;16;19;22;25;28;31;34} B = {2;4;6;8;10;12;14;16;18;20;22;24;26} C = {3;7;11;15;19;23;27;31} c) Hallar: A c B , C – A A AB = { 4;10;16;22 } C – A = { 3;11;15;23;27 } Sabemos que A S B esta formado por los elementos comunes de A y B,entonces: Sabemos que C - A esta formado por los elementos de C que no pertenecen a A, entonces:
  • 44. Si : G = { 1 ; {3} ; 5 ; {7;10} ;11 } Determinar si es verdadero o falso: a) Φ ⊂ G b) {3} ∈ G c) {{7};10} ∈G d) {{3};1} ⊄ G e) {1;5;11} ⊂ G SOLUCIÓN
  • 45. Observa que los elementos de A son: 1 ; {3} ; 5 ; {7;10} ; 11 es VERDADERO Entonces: es VERDADERO porque Φ esta incluido en todo los conjuntos es VERDADERO porque {3} es un elemento de de G es FALSO porque {{7};10} no es elemento de G es FALSO a)Φ ⊂ G .... b) {3} ∈ G ... c) {{7};10} ∈G .. d) {{3};1} ⊄ G ... e) {1;5;11} ⊂ G ...
  • 46. Dados los conjuntos: P = { x ∈Z / 2x2 +5x-3=0 } M = { x/4∈N / -4< x < 21 } T = { x ∈R / (x2 - 9)(x - 4)=0 } a) Calcular: M - ( T – P ) b) Calcular: Pot(M – T ) c) Calcular: (M c T) – P SOLUCIÓN
  • 47. P = { x ∈Z / 2x2 +5x-3=0 } Analicemos cada conjunto: 2x2 + 5x – 3 = 0 2x – 1 + 3 x    (2x-1)(x+3)=0 2x-1=0 ⇒ x = 1/2 x+3=0 ⇒ x = -3 Observa que x∈Z , entonces: P = { -3 } M = { x/4∈N / -4< x < 21 } Como x/4 ∈ N entonces los valores de x son : 4 ; 8 ; 12 ; 16 ; 20 pero los elementos de M se obtienen dividiendo x entre 4,por lo tanto : M = {1 ; 2 ; 3 ; 4 ; 5 }
  • 48. T = { x ∈R / (x2 - 9)(x - 4)=0 } Cada factor lo igualamos a cero y calculamos los valores de x x – 4 = 0 ⇒ x = 4 x2 – 9 = 0 ⇒ x2 = 9 ⇒ x = 3 o x =-3 Por lo tanto: T = { -3;3;4 } a) Calcular: M - ( T – P ) T – P = { -3;3;4 } - { -3 } ⇒ T – P = {3 ; 4 } M - (T –P)= {1 ; 2 ; 3 ; 4 ; 5 } - {3 ;4 } M - (T –P)= {1 ; 2 ; 5 }
  • 49. b) Calcular: Pot( M – T ) M – T = {1 ; 2 ; 3 ; 4 ; 5 } - { -3;3;4 } M – T = {1 ; 2 ; 5 } Pot( M – T ) = { {1}; {2}; {5}; {1;2};{1;5}; {1;2;5}; {2;5}; Φ } c) Calcular: (M c T) – P M MT = {1 ; 2 ; 3 ; 4 ; 5 } { { -3;3;4 } M MT = { -3 ; 1 ; 2 ; 3 ; 4 ; 5 } (M ( T) – P = { -3 ; 1 ; 2 ; 3 ; 4 ; 5 } - { -3 } (M ( T) – P = {1 ; 2 ; 3 ; 4 ; 5 }
  • 50. Expresar la región sombreada en términos de operaciones entre los conjuntos A,B y C. A B C A B C SOLUCIÓN
  • 51. A B C A B C A B C A B C [(A[ B) – C] [(B[ C) – A] [(A[ C) – B] C
  • 52. A B A B C Observa como se obtiene la región sombreada Toda la zona de amarillo es AAB La zona de verde es ALB Entonces restando se obtiene la zona que se ve en la figura : (AqB) - (ABB) C Finalmente le agregamos C y se obtiene: [ (A[ B) - (ABB) ] BC ( A ∆ B ) C =
  • 53. Según las preferencias de 420 personas que ven los canales A,B o C se observa que 180 ven el canal A ,240 ven el canal B y 150 no ven el canal C,los que ven por lo menos 2 canales son 230¿cuántos ven los tres canales? SOLUCIÓN
  • 54. El universo es: 420 Ven el canal A: 180 Ven el canal B: 240 No ven el canal C: 150 Entonces si ven el canal C: 420 – 150 = 270 A B C a d (I) a + e + d + x =180 b e x f (II) b + e + f + x = 240 c (III) d + c + f + x = 270 Dato: Ven por lo menos dos canales 230 ,entonces: (IV) d + e + f + x = 230
  • 55. (I) a + e + d + x =180 (II) b + e + f + x = 240 (III) d + c + f + x = 270 Sumamos las ecuaciones (I),(II) y (III) Sabemos que : a+b+c+d+e+f+x =420  230 entonces : a+b+c =190 a + b + c + 2(d + e + f + x) + x = 690     190 230 190 + 560 + x =690 ⇒ x = 40 Esto significa que 40 personas ven los tres canales