SlideShare una empresa de Scribd logo
1 de 4
Descargar para leer sin conexión
TEOREMA DE THEVENIN

Cualquier circuito, por complejo que sea, visto desde dos terminales concretos, es equivalente a un generador
ideal de tensión en serie con una resistencia, tales que:

      • La fuerza electromotriz del generador es igual a la diferencia de potencial que se mide en circuito
        abierto en dichos terminales
      • La resistencia es la que se "ve" HACIA el circuito desde los terminales en cuestión, cortocircuitando
        los generadores de tensión y dejando en circuito abierto los de corriente

Para aplicar el teorema de Thévenin, por ejemplo, en el caso de la Figura 6, elegimos los puntos X e Y y,
suponemos que desconectamos todo lo que tenemos a la derecha de dichos puntos, (es decir, estamos
suponiendo que las resistencias R3 y R4, las hemos desconectado físicamente del circuito original) y miramos
atrás, hacia la izquierda.




En esta nueva situación calculamos la tensión entre estos dos puntos (X,Y) que llamaremos la tensión
equivalente Thévenin Vth que coincide con la tensión en bornes de la resistencia R2 y cuyo valor es :

El siguiente paso es, estando nosotros situados en los puntos indicados (X Y) mirar hacia la izquierda otra vez
y calcular la resistencia que vemos, pero teniendo en cuenta que debemos suponer que los generadores de
tensión son unos cortocircuitos y los generados de corriente son circuitos abiertos, en el caso de nuestro
circuito original, sólo hay un generador de tensión que, para el cálculo que debemos hacer lo supondremos en
cortocircuito y ¿ que es lo que vemos ?




Pues si miráis la figura 6, lo que vemos es que, las resistencias R1 y R2 están en paralelo.
Por lo que la resistencia equivalente Thévenin, también llamada impedancia equivalente, Z th. vale:

El circuito estudiado a la izquierda de los puntos X, Y se reemplaza ahora por el circuito equivalente que
hemos calculado y nos queda el circuito de la figura 7, donde ahora es mucho más fácil realizar los cálculos
para obtener el valor Vo




                                                                                                                1
La otra forma de calcular Vo es, la de la teoría de mallas, que calculamos en la figura 8 y donde observamos
que los resultados son los mismos. Pero las ecuaciones resultantes son bastante más laboriosas.




                                                                                                               2
En primer lugar se calcula la tensión de salida Vo, proporcionada por el generador V1, suponiendo que el
generador V2 es un cortocircuito. A esta tensión así calculada la llamaremos V01 (cuando V2 = 0)

Seguidamente se calcula la tensión de salida Vo, proporcionada por el generador V2, suponiendo que el
generador V1 es un cortocircuito. A esta tensión así calculada la llamaremos V02 (cuando V1 = 0)




TEOREMA DE NORTON

Cualquier circuito, por complejo que sea, visto desde dos terminales concretos, es equivalente a un generador
ideal de corriente en paralelo con una resistencia, tales que:

      • La corriente del generador es la que se mide en el cortocircuito entre los terminales en cuestión.
      • La resistencia es la que se "ve" HACIA el circuito desde dichos terminales, cortocircuitando los
        generadores de tensión y dejando en circuito abierto los de corriente.−( Coincide con la resistencia
        equivalente Thévenin)

                                                                                                               3
Aplicando el Teorema de Norton al circuito de la figura 6, nos quedará el siguiente circuito:




Donde hemos cortocircuitado los puntos X Y de la figura 6. La corriente que circula por entre estos dos
puntos la llamaremos Ith y lógicamente es igual a la tensión V del generador de tensión dividido por la
resistencia R1 (Ley de OHM) Ith = V / R1 la resistencia Thévenin es la misma que la calculada
anteriormente, que era el paralelo de R1 y R2
Zth =R1//R2 = R1 x R2 / (R1 + R2)

5.4 EQUIVALENCIA ENTRE THEVENIN Y NORTON




Sea cual sea el equivalente obtenido es muy fácil pasar al otro equivalente sin más que aplicar el teorema
correspondiente, así por ejemplo, supongamos que hemos calculado el equivalente Thévenin de un circuito y
hemos obtenido el circuito de la izquierda de la figura siguiente :
Aplicando el teorema de Norton a la figura de la izquierda, cortocircuitaremos la salida y calcularemos la
corriente que pasa entre ellos que será la corriente : Ith = 10 / 20 = 0,5 A. y la resistencia Norton es 20 W .
por lo que nos quedará el circuito equivalente Norton de la derecha




                                                                                                                  4

Más contenido relacionado

La actualidad más candente

Circuitos en serie y en paralelo
Circuitos en serie y en paraleloCircuitos en serie y en paralelo
Circuitos en serie y en paralelo
sf21
 
Taller circuitos en serie
Taller circuitos en serieTaller circuitos en serie
Taller circuitos en serie
Sandra Zapata
 
Divisor de corriente
Divisor de corrienteDivisor de corriente
Divisor de corriente
abbantus
 
Clase 8 teorema de norton y thevenin
Clase 8 teorema de norton y theveninClase 8 teorema de norton y thevenin
Clase 8 teorema de norton y thevenin
Tensor
 
CáLculo De La Resistencia Total En Un Circuito
CáLculo De La Resistencia Total En Un CircuitoCáLculo De La Resistencia Total En Un Circuito
CáLculo De La Resistencia Total En Un Circuito
guest01c829
 
Circuitos serie-y-paralelo-ejercicios
Circuitos serie-y-paralelo-ejerciciosCircuitos serie-y-paralelo-ejercicios
Circuitos serie-y-paralelo-ejercicios
Cristian Garcia
 
Actividad 4 Circuitos Serie Y Paralelo
Actividad 4 Circuitos Serie Y ParaleloActividad 4 Circuitos Serie Y Paralelo
Actividad 4 Circuitos Serie Y Paralelo
profetec10
 

La actualidad más candente (20)

Ejercicios circuito en paralelo
Ejercicios circuito en paraleloEjercicios circuito en paralelo
Ejercicios circuito en paralelo
 
Circuito
CircuitoCircuito
Circuito
 
Circuitos en serie y en paralelo
Circuitos en serie y en paraleloCircuitos en serie y en paralelo
Circuitos en serie y en paralelo
 
Cálculo de circuitos: Thévenin
Cálculo de circuitos: ThéveninCálculo de circuitos: Thévenin
Cálculo de circuitos: Thévenin
 
Taller circuitos en serie
Taller circuitos en serieTaller circuitos en serie
Taller circuitos en serie
 
Divisor de corriente
Divisor de corrienteDivisor de corriente
Divisor de corriente
 
Teorema de thévenin
Teorema de théveninTeorema de thévenin
Teorema de thévenin
 
Teoremas de redes
Teoremas de redesTeoremas de redes
Teoremas de redes
 
Ejercicios circuitos simples
Ejercicios circuitos simplesEjercicios circuitos simples
Ejercicios circuitos simples
 
Teorema thevenin y norton
Teorema thevenin y nortonTeorema thevenin y norton
Teorema thevenin y norton
 
Clase 8 teorema de norton y thevenin
Clase 8 teorema de norton y theveninClase 8 teorema de norton y thevenin
Clase 8 teorema de norton y thevenin
 
Circuitos mixtos
Circuitos mixtosCircuitos mixtos
Circuitos mixtos
 
Teorema de la superposición
Teorema de la superposiciónTeorema de la superposición
Teorema de la superposición
 
teorema de thevenin
teorema de theveninteorema de thevenin
teorema de thevenin
 
Ejercicios de superposición
Ejercicios de superposiciónEjercicios de superposición
Ejercicios de superposición
 
CáLculo De La Resistencia Total En Un Circuito
CáLculo De La Resistencia Total En Un CircuitoCáLculo De La Resistencia Total En Un Circuito
CáLculo De La Resistencia Total En Un Circuito
 
Circuitos serie-y-paralelo-ejercicios
Circuitos serie-y-paralelo-ejerciciosCircuitos serie-y-paralelo-ejercicios
Circuitos serie-y-paralelo-ejercicios
 
Actividad 4 Circuitos Serie Y Paralelo
Actividad 4 Circuitos Serie Y ParaleloActividad 4 Circuitos Serie Y Paralelo
Actividad 4 Circuitos Serie Y Paralelo
 
Teoremas de thevenin y norton
Teoremas de thevenin y nortonTeoremas de thevenin y norton
Teoremas de thevenin y norton
 
Teoremas de superposición, Mallas, Thévenin y Norton
Teoremas de superposición, Mallas, Thévenin y NortonTeoremas de superposición, Mallas, Thévenin y Norton
Teoremas de superposición, Mallas, Thévenin y Norton
 

Destacado

Teorema de thévenin
Teorema de théveninTeorema de thévenin
Teorema de thévenin
albaelectro11
 
Lab. nâº2 leyes de kirchoff-teorema de thevenin
Lab. nâº2  leyes de kirchoff-teorema de theveninLab. nâº2  leyes de kirchoff-teorema de thevenin
Lab. nâº2 leyes de kirchoff-teorema de thevenin
Rudy Mansilla Urpi
 
Diapositivasredesiunidad4ipartefondoblanco 100426230623-phpapp02
Diapositivasredesiunidad4ipartefondoblanco 100426230623-phpapp02Diapositivasredesiunidad4ipartefondoblanco 100426230623-phpapp02
Diapositivasredesiunidad4ipartefondoblanco 100426230623-phpapp02
marcosgabo
 

Destacado (11)

Método de resolución de circuitos norton
Método de resolución de circuitos nortonMétodo de resolución de circuitos norton
Método de resolución de circuitos norton
 
Teorema de thévenin
Teorema de théveninTeorema de thévenin
Teorema de thévenin
 
Clase 8 teorema de norton y thevenin
Clase 8 teorema de norton y theveninClase 8 teorema de norton y thevenin
Clase 8 teorema de norton y thevenin
 
Lab.5
Lab.5Lab.5
Lab.5
 
Guía Teoremas de Circuitos
Guía Teoremas de CircuitosGuía Teoremas de Circuitos
Guía Teoremas de Circuitos
 
Método de resolución de circuitos thevenin
Método de resolución de circuitos theveninMétodo de resolución de circuitos thevenin
Método de resolución de circuitos thevenin
 
CIRCUITOS ELECTRICOS: THÉVENIN
CIRCUITOS ELECTRICOS: THÉVENINCIRCUITOS ELECTRICOS: THÉVENIN
CIRCUITOS ELECTRICOS: THÉVENIN
 
Lab. nâº2 leyes de kirchoff-teorema de thevenin
Lab. nâº2  leyes de kirchoff-teorema de theveninLab. nâº2  leyes de kirchoff-teorema de thevenin
Lab. nâº2 leyes de kirchoff-teorema de thevenin
 
Multiplicadores de lagrange
Multiplicadores de lagrangeMultiplicadores de lagrange
Multiplicadores de lagrange
 
Diapositivasredesiunidad4ipartefondoblanco 100426230623-phpapp02
Diapositivasredesiunidad4ipartefondoblanco 100426230623-phpapp02Diapositivasredesiunidad4ipartefondoblanco 100426230623-phpapp02
Diapositivasredesiunidad4ipartefondoblanco 100426230623-phpapp02
 
Teorema de Thevenin y Norton
Teorema de Thevenin y NortonTeorema de Thevenin y Norton
Teorema de Thevenin y Norton
 

Similar a Thevenin-Norton

Cap3
Cap3Cap3
Cap3
CJAO
 
Cap3
Cap3Cap3
Cap3
CJAO
 
Ley de Ohm y las Leyes de Kirchhoff Julian camilo galvis 11-1
Ley de Ohm y las Leyes de Kirchhoff Julian camilo galvis   11-1Ley de Ohm y las Leyes de Kirchhoff Julian camilo galvis   11-1
Ley de Ohm y las Leyes de Kirchhoff Julian camilo galvis 11-1
luigi vil
 

Similar a Thevenin-Norton (20)

Leyes de ohm kirchoff y norton
Leyes de ohm kirchoff y nortonLeyes de ohm kirchoff y norton
Leyes de ohm kirchoff y norton
 
1 definicion
1 definicion1 definicion
1 definicion
 
ΩΩ
 
Circuitoselctricoprevio
CircuitoselctricoprevioCircuitoselctricoprevio
Circuitoselctricoprevio
 
Practica 2 Teoremas de Redes
Practica 2 Teoremas de RedesPractica 2 Teoremas de Redes
Practica 2 Teoremas de Redes
 
Experimento de ciencias.pptx
Experimento de ciencias.pptxExperimento de ciencias.pptx
Experimento de ciencias.pptx
 
Erwin rincon teoremas de circuitos electricos
Erwin rincon  teoremas de circuitos electricosErwin rincon  teoremas de circuitos electricos
Erwin rincon teoremas de circuitos electricos
 
Circuitos rcl, factor q y pasabandas
Circuitos rcl, factor q y pasabandasCircuitos rcl, factor q y pasabandas
Circuitos rcl, factor q y pasabandas
 
Cap3
Cap3Cap3
Cap3
 
Cap3
Cap3Cap3
Cap3
 
Fundamentos de Corriente Alterna Monofásica
Fundamentos de Corriente Alterna MonofásicaFundamentos de Corriente Alterna Monofásica
Fundamentos de Corriente Alterna Monofásica
 
6127813 leyes-de-kirchhoff
6127813 leyes-de-kirchhoff6127813 leyes-de-kirchhoff
6127813 leyes-de-kirchhoff
 
Electricidad conceptos básicos
Electricidad conceptos básicosElectricidad conceptos básicos
Electricidad conceptos básicos
 
Teorema de thevenin y norton
Teorema de thevenin y nortonTeorema de thevenin y norton
Teorema de thevenin y norton
 
Ley de Ohm y las Leyes de Kirchhoff Julian camilo galvis 11-1
Ley de Ohm y las Leyes de Kirchhoff Julian camilo galvis   11-1Ley de Ohm y las Leyes de Kirchhoff Julian camilo galvis   11-1
Ley de Ohm y las Leyes de Kirchhoff Julian camilo galvis 11-1
 
teorema de Thevenin y Zbarra
teorema de Thevenin y Zbarrateorema de Thevenin y Zbarra
teorema de Thevenin y Zbarra
 
Thevenin Y Norton JT.pptx
Thevenin Y Norton JT.pptxThevenin Y Norton JT.pptx
Thevenin Y Norton JT.pptx
 
Leyes de Kirchhoff
Leyes de KirchhoffLeyes de Kirchhoff
Leyes de Kirchhoff
 
Circuitos de corriente alterna2233
Circuitos de corriente alterna2233Circuitos de corriente alterna2233
Circuitos de corriente alterna2233
 
U1 circuitos(1) INSTALACIONES ELECTRICAS DOMICILIARIAS.
U1 circuitos(1) INSTALACIONES ELECTRICAS DOMICILIARIAS.U1 circuitos(1) INSTALACIONES ELECTRICAS DOMICILIARIAS.
U1 circuitos(1) INSTALACIONES ELECTRICAS DOMICILIARIAS.
 

Último

redes informaticas en una oficina administrativa
redes informaticas en una oficina administrativaredes informaticas en una oficina administrativa
redes informaticas en una oficina administrativa
nicho110
 

Último (12)

PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptxPROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
 
Buenos_Aires_Meetup_Redis_20240430_.pptx
Buenos_Aires_Meetup_Redis_20240430_.pptxBuenos_Aires_Meetup_Redis_20240430_.pptx
Buenos_Aires_Meetup_Redis_20240430_.pptx
 
investigación de los Avances tecnológicos del siglo XXI
investigación de los Avances tecnológicos del siglo XXIinvestigación de los Avances tecnológicos del siglo XXI
investigación de los Avances tecnológicos del siglo XXI
 
Avances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estosAvances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estos
 
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptx
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptxEVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptx
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptx
 
How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.
 
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
 
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptxEL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
 
Avances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvanaAvances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvana
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNIT
 
redes informaticas en una oficina administrativa
redes informaticas en una oficina administrativaredes informaticas en una oficina administrativa
redes informaticas en una oficina administrativa
 
Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21
 

Thevenin-Norton

  • 1. TEOREMA DE THEVENIN Cualquier circuito, por complejo que sea, visto desde dos terminales concretos, es equivalente a un generador ideal de tensión en serie con una resistencia, tales que: • La fuerza electromotriz del generador es igual a la diferencia de potencial que se mide en circuito abierto en dichos terminales • La resistencia es la que se "ve" HACIA el circuito desde los terminales en cuestión, cortocircuitando los generadores de tensión y dejando en circuito abierto los de corriente Para aplicar el teorema de Thévenin, por ejemplo, en el caso de la Figura 6, elegimos los puntos X e Y y, suponemos que desconectamos todo lo que tenemos a la derecha de dichos puntos, (es decir, estamos suponiendo que las resistencias R3 y R4, las hemos desconectado físicamente del circuito original) y miramos atrás, hacia la izquierda. En esta nueva situación calculamos la tensión entre estos dos puntos (X,Y) que llamaremos la tensión equivalente Thévenin Vth que coincide con la tensión en bornes de la resistencia R2 y cuyo valor es : El siguiente paso es, estando nosotros situados en los puntos indicados (X Y) mirar hacia la izquierda otra vez y calcular la resistencia que vemos, pero teniendo en cuenta que debemos suponer que los generadores de tensión son unos cortocircuitos y los generados de corriente son circuitos abiertos, en el caso de nuestro circuito original, sólo hay un generador de tensión que, para el cálculo que debemos hacer lo supondremos en cortocircuito y ¿ que es lo que vemos ? Pues si miráis la figura 6, lo que vemos es que, las resistencias R1 y R2 están en paralelo. Por lo que la resistencia equivalente Thévenin, también llamada impedancia equivalente, Z th. vale: El circuito estudiado a la izquierda de los puntos X, Y se reemplaza ahora por el circuito equivalente que hemos calculado y nos queda el circuito de la figura 7, donde ahora es mucho más fácil realizar los cálculos para obtener el valor Vo 1
  • 2. La otra forma de calcular Vo es, la de la teoría de mallas, que calculamos en la figura 8 y donde observamos que los resultados son los mismos. Pero las ecuaciones resultantes son bastante más laboriosas. 2
  • 3. En primer lugar se calcula la tensión de salida Vo, proporcionada por el generador V1, suponiendo que el generador V2 es un cortocircuito. A esta tensión así calculada la llamaremos V01 (cuando V2 = 0) Seguidamente se calcula la tensión de salida Vo, proporcionada por el generador V2, suponiendo que el generador V1 es un cortocircuito. A esta tensión así calculada la llamaremos V02 (cuando V1 = 0) TEOREMA DE NORTON Cualquier circuito, por complejo que sea, visto desde dos terminales concretos, es equivalente a un generador ideal de corriente en paralelo con una resistencia, tales que: • La corriente del generador es la que se mide en el cortocircuito entre los terminales en cuestión. • La resistencia es la que se "ve" HACIA el circuito desde dichos terminales, cortocircuitando los generadores de tensión y dejando en circuito abierto los de corriente.−( Coincide con la resistencia equivalente Thévenin) 3
  • 4. Aplicando el Teorema de Norton al circuito de la figura 6, nos quedará el siguiente circuito: Donde hemos cortocircuitado los puntos X Y de la figura 6. La corriente que circula por entre estos dos puntos la llamaremos Ith y lógicamente es igual a la tensión V del generador de tensión dividido por la resistencia R1 (Ley de OHM) Ith = V / R1 la resistencia Thévenin es la misma que la calculada anteriormente, que era el paralelo de R1 y R2 Zth =R1//R2 = R1 x R2 / (R1 + R2) 5.4 EQUIVALENCIA ENTRE THEVENIN Y NORTON Sea cual sea el equivalente obtenido es muy fácil pasar al otro equivalente sin más que aplicar el teorema correspondiente, así por ejemplo, supongamos que hemos calculado el equivalente Thévenin de un circuito y hemos obtenido el circuito de la izquierda de la figura siguiente : Aplicando el teorema de Norton a la figura de la izquierda, cortocircuitaremos la salida y calcularemos la corriente que pasa entre ellos que será la corriente : Ith = 10 / 20 = 0,5 A. y la resistencia Norton es 20 W . por lo que nos quedará el circuito equivalente Norton de la derecha 4