SlideShare una empresa de Scribd logo
1 de 33
Descargar para leer sin conexión
1:
IP
111
L
.1
e
e
lI
I c
e
H
1 •
e
HH e
MEXICO
Caracterización de suelos arenosos mediante
análisis de ondas de superficie
ESPECIALIDAD:
Ingeniería Civil
Salvador Lazcano Díaz del Castillo
Maestro en Ciencias
20 de septiembre del 2007
Caracterización de suelos arenosos mediante análisis de ondas de superficie
CONTENIDO:
Resumen ejecutivo 3
Caracterización de suelos 4
1.1. Caracterización mediante pruebas mecánicas 4
1.2. Caracterización mediante pruebas geofísicas 7
Ondas elásticas en depósitos de suelos 8
2.1. Tipos de ondas elásticas 8
2.2. Velocidad de onda de corte (V s) 9
2.3. Ondas de superficie 9
Ondas de superficie en depósitos de suelos u
3.1. Diversos métodos de análisis u
3.2. Refracción de Microtremores (ReMi) 12
Aplicaciones prácticas 14
4.1. Caracterización sísmica de depósitos de suelos 14
4.2. Evaluación de asentamiento de zapatas en arenas 19
S. Conclusiones 21
Referencias 24
Agradecimientos 27
Currículum vitae 28
Especialidad: Ingeniería Civil 2
Caracterización de suelos arenosos mediante análisis de ondas de superficie
RESUMEN E)ECUTIVO
Las arenas son suelos que poseen estructuras naturales con características tales
que, para fines prácticos, impiden ser muestreadas en forma inalterada para su
posterior estudio en laboratorio. Por esta razón, desde los inicios de la mecánica
de suelos en la primera mitad del siglo XX, se optó por evaluar las propiedades
de los depósitos arenosos recurriendo a pruebas in situ o de campo. La prueba de
penetración estándar fue una de las primeras empleadas para dichos fines, y
sigue siendo ampliamente utilizada, pero también fuertemente criticada por la
inconsistencia en sus resultados. A dicha prueba mecánica le siguieron otras,
entre las que se encuentran principalmente los conos dinámico y estático,
presiómetro y dilatómetro, entre otros. Desde principios de la década de 1970,
gracias al avance de la electrónica, se comenzaron a utilizar pruebas geofísicas,
principalmente de tipo sísmico, para estudiar suelos. Los primeros métodos
geofísicos usados fueron refracción sísmica, crosshole y downhole. En la década
de 1980 se incorporó el uso de análisis de ondas de superficie al campo de la
caracterización de suelos. Esta es una técnica no invasiva, en la cual se colocan
sensores en la superficie del terreno para registrar la llegada de diversos tipos de
ondas, y mediante diversos métodos de análisis se pueden obtener perfiles de
variación de velocidad de onda de corte (y5) a profundidad. Algunos de estos
métodos son SASW (Spectral Analysis of Surface Wave), MASW (Multi-channel
Anal ysis of Surface Wave) y ReM1 (Refraction Microtremor).
La utilidad primaria de las pruebas geofísicas sísmicas en el campo de la
geotecnia es la determinación de variaciones en la velocidad de onda de corte
(y5) a profundidad. Conocidas las V, es posible calcular la rigidez de la
estructura de los.suelos (módulos de cortante - G - y elástico - E) que pueden
ser usados tanto en problemas dinámicos (cimentación de maquinaria, sismos
leves, etc.) como en diseño de cimentaciones ante cargas estáticas. Otra
aplicación es la caracterización de depósitos de suelo ante sismos.
En este trabajo se presentarán varias experiencias en suelos arenosos de
Guadalajara y de la costa de Jalisco y Nayarit, en donde se utilizó la técnica ReMi
para determinar velocidades de onda de corte (y5) y a partir de esta información
se caracterizó el comportamiento sísmico de suelos y se estimaron magnitudes
de asentamientos de zapatas.
La técnica ReMi en particular, y en general los métodos de análisis de onda de
superficie (SASW, MASW, etc.), prometen ser herramientas valiosas para
utilizarse en la caracterización de depósitos de suelos arenosos, junto con una o
más pruebas de campo (penetración estándar, conos estático y dinámico,
presiómetro, dilatómetro, crosshole, downhole, etc.).
Palabras clave: caracterización, arenas, ondas de superficie, onda de corte (y 5),
refracción de microtremores (ReMi)
Especialidad: Ingeniería Civil
Caracterización de suelos arenosos mediante análisis de ondas de superficie
.
e 1. CARACTERIZACIÓN DE SUELOS
En este trabajo se presenta el análisis de ondas de superficie como una
herramienta que en los últimos 25 años se ha comenzado a aplicar en la
caracterización de suelos. Aquí nos enfocaremos en particular a su uso en suelos
arenosos.
. Para poder introducirnos al tema, es conveniente partir de una breve definición
de conceptos. La Real Academia Española define "caracterizar" como "determinar
los atributos peculiares de alguien o de algo, de modo que claramente se distinga
de los demás". En este contexto, la caracterización de suelos se entiende como la
e determinación de propiedades peculiares o particulares de estos materiales.
e Por arenas entenderemos lo que establece el Sistema Unificado de Clasificación
de Suelos (SUCS): son partículas de suelo cuyas dimensiones fluctúan entre
0.075 mm (malla No. 200) y 4.75 mm (malla No. 4). Partículas mayores a 4.75
mm pero menores de 75 mm se les llama gravas, y a las partículas menores de
0.075 mm se les llama suelos finos, y pueden ser arcillas o limos, dependiendo
de su plasticidad.
El SUCS nombra a un suelo arena cuando el 50% de sus partículas están
comprendidas en el rango de 0.075 a 4.75 mm. Cuando las arenas tienes menos
de 5% de finos, se subdividen en bien graduadas (SW) y uniformes o mal
graduadas (SP), dependiendo de sus curvas granulométricas. Cuando el
contenido de finos es mayor a 12%, se les llama arenas arcillosas (SC) o limosas
(SM), dependiendo de la plasticidad de los suelos finos. Finalmente, cuando el
contenido de finos en un suelo arenoso fluctúa entre 5 y 12%, se usa símbolo
doble que incluye información tanto de la granulometría como de la plasticidad de
los finos (SW-SM, SW-SC, SP-SM, SP-SC).
En suelos arenosos, al igual que en gravas, la obtención de muestras inalteradas
es prácticamente imposible. Esta particularidad, aunada a otros factores como
costos y tiempos, han hecho que las pruebas de campo tengan en la actualidad
un papel importante en la caracterización de depósitos de arenas.
1.1. Caracterización mediante pruebas mecánicas
Desde mucho tiempo antes del inicio formal de la mecánica de suelos en la
década de 1920, había interés entre los constructores en determinar las
características de los suelos (caracterización de suelos), para poder diagnosticar
el comportamiento de éstos al construir sobre ellos, con ellos o dentro de ellos. A
finales del siglo XVII se desarrolló en Alemania a la que se puede considerar
como precursora de las pruebas de penetración, y consistía en hincar mediante
impactos una varilla que terminaba en punta. De esta prueba dinámica de
penetración nació el cono dinámico (DP, del inglés dinamíc probing) e
indirectamente la prueba de penetración estándar (SPT, del inglés standard
penetration test), desarrollada en los Estados Unidos a principios del siglo XX y
estandarizada en 1930 (Broms y Floding, 1988).
La prueba de penetración estándar en términos generales consiste en hincar un
tubo de acero de 51 mm de diámetro externo y 35 mm de diámetro interno,
Especialidad: Ingeniería Civil 4
Caracterización de suelos arenosos mediante análisis de ondas de superficie
mediante impactos con un martinete de 63.5 kg, dejándolo caer libremente de
una altura de 76 cm (ver Figura 1). Se cuenta el número de golpes requeridos
para un hincado de 30 cm y a ese valor se le conoce como resistencia a la
penetración estándar y se simboliza como N. Es la prueba más usada para
determinar las propiedades de arenas en campo, pero también ha sido
fuertemente cuestionada por la inconsistencia en los resultados, ya que es muy
vulnerable y sensible al proceso de ejecución (Decourt et al., 1988). El uso de
martinetes automáticos y los dispositivos para medir la eficiencia de la prueba
han ayudado a disminuir la incertidumbre, pero quizá su popularidad disminuirá
en los próximos años, debido a la cada vez mayor aceptación de otras pruebas
que se han desarrollado.
La prueba de cono dinámico, al igual que en la de penetración estándar, se
avanza utilizando un martinete con caída libre, pero en vez de hincar un tubo, se
hinca un cono de acero. Está estandarizado en varios países (Alemania, España,
Gran Bretaña, etc.), y en el Simposio Internacional de Pruebas de penetración
(Stefanoff et al., 1988) de 1988 se propuso una estandarización mundial que
contempla cuatro variantes, dependiendo de la energía aplicada y de las
dimensiones de los conos. Es una prueba rápida y económica que puede ser de
mucha utilidad, sobre todo si se usa en combinación con una o más pruebas de
campo.
En México ha sido relativamente limitado el uso del cono dinámico y hay pocas
publicaciones relacionadas a dicha prueba (Santoyo et al., 1989; Lazcano, 1995;
Dumas González, 1998). En fechas recientes se ha usado en algunos proyectos
un equipo de un cono dinámico computarizado llamado PANDA que se desarrolló
en Francia (Luna Gonzalez et al., 2004).
Casi al mismo tiempo que la prueba de penetración estándar, en Holanda se
desarrolló el cono holandés o estático (CPT, del inglés cone penetration test)
(Broms y Floding, 1988), el cual ha evolucionado en una manera importante
gracias a los avances de la electrónica, que han permitido incorporar en el cono
diferentes sensores para medir presión de punta y lateral, presión de poro, arribo
de ondas elásticas, etc.
La prueba de cono consiste, a grandes rasgos, en hincar a presión un cono de
acero de 35.7 mm de diámetro (10 cm 2 de sección transversal), cuya punta tiene
un ángulo de 600 . El cono estático es la prueba de campo que ha tenido una
mayor aceptación en los últimos años por la consistencia en sus resultados y las
hasta un máximo de cinco mediciones independientes que proporciona. Tiene la
desventaja de la dificultad de penetrar en suelos con rigideces altas.
El cono estático ha sido ampliamente usado en suelos blandos de la Ciudad de
México y en otros sitios del país y hay decenas de artículos publicados que
presentan las experiencias que se han obtenido. Santoyo et al. (1989) hicieron
una interesante publicación en donde se presenta algo de la experiencia obtenida
con esta prueba.
En fechas recientes se inventaron otros tipos de pruebas de campo para
caracterización de suelos, como son el presiómetro (PMT) desarrollado en Francia
por Menard en 1955, y el dilatómetro plano (DMT) diseñado por Marchetti en
Italia, en la década de 1970 (Marchetti, 1980).
Especialidad: Ingeniería Civil 5
Caracterización de suelos arenosos mediante análisis de ondas de superficie
Al presiómetro y al dilatómetro se les considera pruebas de expansión, pero hay
diferencias importantes entre una y otra. El presiómetro (PMT) es un dispositivo
que ejerce presión radial contra el suelo circundante y se lleva un registro de
presión radial contra deformación que ocurre (ver Figura 1). Hay equipos que
requieren perforación previa para su introducción y otros que se introducen a
presión o a presión y con aspas para facilitar el avance. La realización de esta
prueba requiere de personal altamente capacitado, lo que ha frenado su
desarrollo. Por otro lado, el presiómetro tiene el atractivo de poder ser usado en
suelos blando a muy duros, e inclusive en rocas blandas.
e
'e
I e
A 1
+ $
II..II
e
e
1
1
$
flH SPT CPT DMT
Standard Cone FW Plate
Pendration Penra1ion DiIatomer
Test Test Teat
>MT
Pratored
Teat
Figura 1. Principales pruebas de campo de tipo mecánico (adaptado de
Mayne et al, 2001).
El dilatómetro plano (DMT), también llamado de Marchetti, es una paleta afilada
de acero de 95 mm de ancho y 15 mm de espesor, que en una de sus caras tiene
una delgada membrana circular de acero de 60 mm de diámetro (ver Figura 1).
Esta paleta se hinca en el suelo a presión o mediante impactos, y una vez que se
alcanza la profundidad deseada se hace una pequeña prueba de carga lateral.
Algunas de las aplicaciones de esta prueba son la predicción de asentamientos,
determinación del ángulo de fricción interna en arenas, resistencia no drenada de
arcillas y determinación de parámetros para elementos finitos.
Al igual que en el caso del cono estático, hay dilatómetro sísmico, al cual se le
incorporó un sensor de vibración para determinar velocidades de onda de corte
en suelos, en forma similar a la pruebas geofísicas tipo downhole que se tratarán
en la siguiente sección.
Especialidad: Ingeniería Civil 6
Caracterización de suelos arenosos mediante análisis de ondas de superficie
1.2. Caracterización mediante pruebas geofísicas
Hasta aquí se han mencionado las principales pruebas mecánicas de campo (DP,
SPT, CPT, PMT, DMT). A partir de la década de 1960, en el campo de la geotecnia
se han ido incorporando gradualmente diversas pruebas geofísicas,
principalmente las de tipo sísmico y eléctrico.
El incremento en el uso de métodos geofísicos para caracterización de suelos es
tal, que las memorias del la 2a Conferencia Internacional sobre Caracterización
las titularon: "Caracterización Geotécnica y Geofísica en Campo" (da Fonseca y
Mayne, 2004). Ahí se presentaron 36 artículos relacionados con el empleo de
métodos geofísicos en la geotecnia, que representó el 16% de los trabajos
presentados.
En las pruebas geofísicas sísmicas se trabaja con la propagación de las ondas
elásticas y en las pruebas eléctricas con ondas electro-magnéticas. Estas pruebas
se pueden usar tanto en campo como en laboratorio y proporcionan información
complementaria a cerca de los suelos, que equivale a "verlos" y "oirlos"
(Santamarina et al., 2001).
Las pruebas geofísicas sísmicas de campo que principalmente se usan en
geotecnia son: refracción sísmica, downhole, crossho!e y diversos métodos de
onda de superficie. Las tres primeras se han usado desde la década de 1970,
mientras que las ondas de superficie a partir de 1980.
La prueba de refracción sísmica consiste en colocar varios sensores (geófonos) a
lo largo de una línea, y en un punto se genera vibración. Los geófonos se
conectan a un sismógrafo, en donde se registra la llegada de las ondas elásticas.
Conocida la distancia desde la fuente de vibración hasta los geófonos y el tiempo,
que se obtiene de los sismogramas, es posible determinar la velocidad de
propagación de las ondas.
Con la refracción sísmica se determina la velocidad de ondas primarias o de
compresión (Vp), pero es muy difícil evaluar la velocidad de ondas secundarias o
de corte (y5). Además, sólo es posible detectar estratos con rigideces
progresivamente mayores con la profundidad.
La refracción sísmica se utiliza generalmente para encontrar la profundidad de la
roca y para estimar el proceso de excavación de suelos y rocas.
Previa a la ejecución de la prueba geofísica sísmica tipo downhole se debe
realizar una perforación, en la cual se introduce uno o varios sensores (geófonos)
que se conectan a un sismógrafo. En la superficie se genera vibración con alguna
fuente, y se hacen mediciones de tiempos de llegada de ésta a diferentes
profundidades. Con esta prueba downhole se pueden determinar velocidades de
ondas primarias (Vp) y secundarias (y5).
El cono estático sísmico y el dilatómetro sísmico arriba mencionados son
variantes de esta prueba geofísica downhole.
Para la prueba geofísica crosshole se deben realizar al menos dos perforaciones,
y preferentemente tres. En una de las perforaciones se introduce uno o varios
sensores (geófonos) que se conectan a un sismógrafo y en la otra perforación se
Especialidad: Ingeniería Civil 7
e
e
e
e
e
o
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
Caracterización de suelos arenosos mediante análisis de ondas de superficie
genera vibración y se hacen mediciones de tiempos de llegada de ésta a
diferentes profundidades.
Con la prueba crosshoie, al igual que con la downhole, se pueden determinar
velocidades de ondas primarias (Vp) y secundarias (V s).
2. ONDAS ELÁSTICAS EN DEPÓSITOS DE SUELOS
2.1. Tipos de ondas elásticas
Pequeñas perturbaciones mecánicas en depósitos de suelos, tales como el
impacto de un marro, causan la propagación de ondas elásticas que no alteran
prácticamente las condiciones del suelo. Las ondas elásticas se dividen en dos
grandes grupos, las de cuerpo, que viaje en el interior del medio elástico, y las
de superficie, que se propagan a lo largo de la superficie horizontal de un medio
semi-infinito, como un depósito de suelos. Las ondas de cuerpo se subdividen a
su vez en ondas de compresión o primarias (V e) y de corte o secundarias (Vs)
(ver Figura 2). Las ondas Vp viaja a una velocidad entre 70 y 140% mayor que
las V5, para valores de la relación de Poisson (jt) de entre 0.25 y 0.4, rango
frecuente en suelos y rocas.
._ - Cnmnrsitn . .
(.1
Ondas S
Longitud -
de onda
1 ti
Figura 2. Onda de cuerpo que se dividen en primarias o de compresión (Vp) y
secundarias o de cortes (y 5). La velocidad de onda de compresión en suelos y
rocas puede ser entre 70 y 140% mayor que la de onda de corte.
Especialidad: Ingeniería Civil 8
u
Caracterización de suelos arenosos mediante análisis de ondas de superficie
Por lo que respecta a ondas de superficie, hay varios tipos, siendo la más
importante en geotecnia las ondas Rayleigh, cuya velocidad (V R) es de alrededor
de 93% de las ondas de corte (V5).
La velocidad de onda de compresión (Vp) se determinar usualmente con la
prueba de refracción sísmica y la velocidad de onda de corte (y 5) con las pruebas
downhole y crosshole. Para encontrar la velocidad de propagación de ondas de
superficie tipo Rayleigh (V R) hay varios métodos que se presentarán más delante.
4iI}
2.2. Velocidad de onda de corte (Vs)
La determinación de la velocidad de propagación de las ondas de corte (y 5) es de
gran utilidad en la geotecnia, ya que con este valor se puede: 1) determinar el
módulo de rigidez al esfuerzo cortante (G), 2) inferir densidad en campo, 3)
estimar el estado de esfuerzos, 4) estimar la cementación natural o 5) evaluar la
alteración de una muestra (Stokoe et al., 1989).
t La relación entre Vs y el módulo de cortante (G) está dada por la siguiente
ecuación:
G = pVs2 (1)
En donde: p = densidad; Vs = velocidad de onda de corte.
Como las deformaciones causadas por las pruebas geofísicas son muy pequeñas,
el módulo de cortante que se obtiene con la V 5 determinada con dichas pruebas
viene siendo el valor máximo (G 0), y sufre una degradación mayor o menor,
dependiendo del suelo y de la deformación inducida. Este tipo de comportamiento
de materiales se le conoce como elástico no-lineal, está asociado con suelos y
t rocas blandas, y se ha avanzado mucho en la comprensión de este fenómeno
especialmente en los últimos años (Matthews et al., 1996), por lo que los valores
de Vs y G0 tienen aplicaciones tanto para análisis geotécnicos tanto estáticos
como dinámicos.
t
e 2.3. Ondas de superficie
Cuando se golpea en la superficie de un depósito de suelos, se generan ondas
elásticas tanto de cuerpo (compresión y corte) como de superficie
(principalmente tipo Rayleigh). 67% de la energía aplicada se propaga como
ondas Rayleigh, 27% como ondas de corte y 7% como ondas de compresión
(Woods, 1968). Esto se conocía desde hacía tiempo, pero no había tecnología
suficiente para monitorear las ondas de superficie, por lo que durante muchos
años los métodos geofísicos sísmicos estuvieron enfocados únicamente al registro
y análisis de ondas de compresión y corte, y las de superficie se consideraba el
"ruido" que había que filtrar.
En la década de 1940 Hvorslev presentó una revisión del estado-del-arte
respecto a las pruebas de ondas de superficie y concluyó el método estaba
estancado en su desarrollo, pero tenía interesantes posibilidades a futuro
(Hvorslev, 1949). Los avances en desarrollos teóricos en ondas de superficie
L (Thomson, 1950; Haskell, 1953), así como desarrollos tecnológicos, sobre todo
el
Especialidad: Ingeniería Civil 9
'
t
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
Caracterización de suelos arenosos mediante análisis de ondas de superficie
en la electrónica, ayudaron a que en la década de 1980 4<3s pruebas con ondas de
superficie salieran del estancamiento al que se refirió Hvorslev.
La onda Rayleigh se puede visualizar como las ondas en la superficie de un
estanque de agua (ver Figura 3); el movimiento de partícula es en una elipse
vertical, paralela a la dirección de propagación que es a lo largo de la superficie
y con dirección retrógrada hasta cierta profundidad en que se vuelve prógrada
(ver Figura 4).
Figura 3. Onda de superficie tipo Rayleigh. Se propagan en la frontera de un
medio elástico.
Movimiento normalizado de partículas
----i
lo
retrócirado
Movimiento
.O .
12
&
1.t
(yO
O I
vertical
-J
ti
Dt 1
r
o
- r
Movimiento
—1 .2
' 1
7 .
horizontal
7 9 prócirado
—14
Figura 4. Ondas Rayleigh y movimiento de partículas. Desplazamientos
horizontales y verticales normalizados con respecto a desplazamientos verticales
en la superficie (Adaptado de Richart, Hall y Woods, 1970).
En un depósito de suelos perfectamente homogéneo, la onda Rayleigh viaja a
una velocidad que es independiente de su longitud de onda. Sin embargo, si en el
Especialidad: Ingeniería Civil 10
Caracterización de suelos arenosos mediante análisis de ondas de superficie
suelo hay estratos con rigideces, densidades o relaciones de Poisson variables,
entonces la velocidad de la onda de Rayleigh dependerá de su longitud de onda.
Cuando la velocidad y la frecuencia (o longitud de onda) de una onda son
dependientes entre sí, se dice que la onda es dispersiva. Este comportamiento
que exhiben las ondas Rayleigh en materiales no uniformes, es el principio en el
que se fundamentan los diferentes métodos de análisis de onda de superficie
(Matthews et al., 1996).
La mayor parte de la energía de las ondas de superficie esta contenida dentro de
una zona que se extiende a una profundidad de aproximadamente una longitud
de onda. De esta manera, las frecuencias cortas permiten caracterizar los
estratos profundos de suelo mientras que las frecuencias largas los materiales
cercanos a la superficie
3. ONDAS DE SUPERFICIE EN DEPÓSITOS DE SUELOS
La naturaleza dispersiva de la propagación de las ondas de superficie en un semi-
espacio elástico y estratificado, constituye, como ya se dijo, las bases de los
métodos de análisis de dichas ondas. Si se generan ondas de superficie en un
rango amplio de frecuencias, se puede inferir un perfil con la variación de
velocidades de ondas Rayleigh (VR) a profundidad. Como la velocidad de las
ondas Rayleigh es ligeramente menor (alrededor de 7%) que la de corte (y 5),
para fines prácticos se consideran equivalentes.
3.1. Diversos métodos de análisis
El primer método moderno de análisis de onda de superficie se desarrolló en la
Universidad de Texas en Austin, y se llama SASW (Spectral Analysis of Surface
Waves). Emplea una fuente de energía dinámica vertical y dos sensores que se
colocan con separaciones que varía de 1 a 60 m o más, dependiendo de la
profundidad que se quiera explorar, que viene siendo aproximadamente la mitad
de la separación de los sensores (Nazarian y Stokoe, 1984). Casi al mismo
tiempo, en Inglaterra se desarrolló un método similar llamado CSW (Continuous
Surface-Wave), en el cual la fuente de energía es un vibrador de frecuencia
variable y se usan dos o más sensores (Abbiss, 1981; Mattheus et al., 1996).
Posteriormente se desarrolló el método MASW (Multichannel Analysís of Surface
Waves), que utiliza al menos 12 sensores con separaciones fijas de entre 1 a 2 m
(Park et al., 1999). Hay otro método similar al MASW que se llama ReMi
(Refraction Microtremor), que analiza vibración pasiva (llamada comúnmente
microtremores) y/o activa (Louie, 2001) y se describirá en la siguiente sección.
Además de los métodos SASW, CSW, MASW y ReMi, se han propuesto otras
variantes en Italia, Alemania, Francia, Irlanda, Australia, Japón, Taiwán y Estados
Unidos, entre otros países. Esto muestra la creciente aceptación de la utilización
de ondas de superficie en la geotecnia.
A todos estos métodos de análisis de onda de superficie se les conoce con el
nombre genérico de métodos de onda de superficie (SWM - Surface Wave
Method).. Cada método tiene ventajas y desventajas en aspectos como:
precisión, profundidad de exploración, capacidad para detectar múltiples
Especialidad: Ingeniería Civil 11
.4
00 J25
Caracterización de suelos arenosos mediante análisis de ondas de superficie
estratos, posibilidad de trabajar en lugares con mucho ruido ambiental, rapidez y
costo.
3.2. Refracción de Mícrotremores (ReM1)
La técnica de refracción de microtremores (ReMi) (Loule, 2001) utiliza tendido y
equipo para registro similar al de la prueba de refracción sísmica, pero se
analizan las ondas con una técnica que permite separar las ondas Rayleigh de
otras ondas elásticas y finalmente determina la variación de velocidad de onda de
corte (Va) a profundidad.
Para la realización de la prueba ReMi se coloca un tendido lineal con 12 o más
geófonos, el registro de la vibración se realiza con un sismógrafo digital, y se
registra tanto vibración ambiental (microtremores) como vibración superficial
inducida (impactos, vehículos en circulación, etc.).
( A diferencia de la prueba tradicional de refracción sísmica, ReMi puede usarse sin
1 problemas en ambientes urbanos, y de hecho mientras más ruido haya, funciona
mejor. Además, ReMi puede detectar estratos blandos entre estratos con
1 rigideces mayores, mientras que refracción sísmica sólo puede detectar variación
— de rigideces progresivamente mayores.
Una vez realizado el registro en campo, el primer paso del análisis ReMi consiste
en generar un espectro de velocidad de frecuencias contra tardanzas (inverso de
la velocidad), llamado espectro p-f, como se ilustra en la Figura 5. En este
espectro p-f se detecta con facilidad el primer modo de vibrar de las ondas
Rayleigh, que es un trazo que va de la esquina superior izquierda de la gráfica
hacia la inferior derecha, y se escogen manualmente puntos en la frontera
inferior, que sirven para el posterior proceso de inversión.
WW) VI.Qvspec 1 .J;. k. ir! Ur' • jJt1PPr.,PIfÑ. , l once QJ.Sgy • Pp. 3 Mep . J Slep ¿ %. 4.
'o
Figura S. Espectro de velocidad (frecuencia-tardanza) derivado de los
registros de microtremores, mediante la técnica ReMi.
Especialidad: Ingeniería Civil 12
• • u .- -
• L
u -
.1
ji'..
!:=
e
t
e.
t
e.
e.
e.
e.
e.
e.
e.
e.
e.
e..
e..
e.
e.,
e.
e.
e.
e.
e.
e.
e.
Caracterización de suelos arenosos mediante análisis de ondas de superficie
Especialidad: Ingeniería Civil 13
-10
tu
-15
f20
-5
E
-30
Mi
o 400
300w o
Q
.2 200
>
o
o
Vs (ReMi)
N - VS (Ohta y Goto)3
E Relleno de arena y escombro
Arena pumítica limosa (SM)
Arcilla de plasticidad media (CL)
Arena pumítica limosa y limo
arenoso (SM, ML)
Roca baáItica, p rosa
500
100
o
-- Dispersión calculada L
[intos de dispersiónj .
-
- •*•.-.-, r*
Velocidad de onda de corte (Vs), mis
200 400 600 800 1000 1200 1400
0.05 0.1 0.15 0.2 0.25 0.3
Período, s
Después del espectro p-f sigue el segundo paso que consiste en determinar la
gráfica de períodos contra velocidad de fase de onda Rayleigh (Figura 6). Por se
los períodos el inverso de las frecuencias de la Figura 5, la curva pasa de ser
descendente de izquierda a derecha a ascendente. La velocidad de fase (V r) es la
distancia que viaja una onda en un ciclo (VF = . / T).
Finalmente, mediante un modelo interactivo con la gráfica período-velocidad de
fase de onda Rayleigh se traza la curva de dispersión y con ella se establecen los
espesores de los diferentes estratos y la velocidad de onda de corte (y 5), tal
como se puede aprecia en la Figura 7.
Figura 6. Gráfica período-velocidad de fase de onda Rayleigh del método
ReMi, que incluye la curva de dispersión.
Figura 7. Perfil unidimensional de velocidad de onda de corte (y5) contra
profundidad obtenido interactivamente con la curva de dispersión de la Figura 6.
91Í :.m. 0
Caracterización de suelos arenosos mediante análisis de ondas de superficie
Las gráficas de las Figuras 5 a 7 se determinaron en la Biblioteca Pública del Edo.
de Jalisco, frente al parque del Agua Azul, en Guadalajara, Jal. Ahí, además de
• tendidos geofísicos ReMi se realizaron sondeos directos con pruebas de
penetración estándar y sondeos con cono dinámico según la norma alemana DIN
4094. Por esta razón, en la Figura 7, además de las Vs obtenidas con ReMi, se
.r muestra la estratigrafía general, profundidad a la roca y velocidades de onda de•
corte (Va) inferidas a partir de las resistencias a la penetración estándar,
utilizando la ecuación propuesta por Ohta y Goto (1978):
Vs = 96 N° ' 7 D°2 (2)
En donde: N: resistencia a la penetración estándar; D: profundidad en metros.
4. APLICACIONES PRACTICAS
La velocidad de onda de corte (V s) que se obtiene en las diversas pruebas
geofísicas, es la que corresponde a deformaciones angulares pequeñas (10%).
Por esta razón, el módulo de rigidez al cortante que se puede calcular partiendo
de esta velocidad (ver ecuación 1) es el máximo o inicial y se simboliza
generalmente como G 0.
Tradicionalmente en el campo de la geotecnia se ha considerado que el módulo
de cortante máximo (G 0) se puede utilizar únicamente en problemas dinámicos,
como cimentación de maquinarias o sismos de muy bajas magnitudes. Sin
embargo, investigaciones realizadas en los últimos veinte años (Jardine et al.,
1986; Batagglio y Jamiolkowsky, 1987; Burland, 1989; Fahey y Carter, 1993;
Mayne, 2001) han demostrado que valores de G0 corregidos para niveles de
deformación apropiados, pueden ser de utilidad para problemas geotécnicos
estáticos, como es el diseño de cimentaciones.
A continuación se presentan dos campos de aplicación de los resultados
obtenidos en los métodos de análisis de ondas de superficie en general, y de la
técnica de refracción de microtremores (ReMi) en particular.
4.1. Caracterización sísmica de depósitos de suelos
La técnica de refracción de microtremores (ReMi) permite, con relativa facilidad,
determinar perfiles de velocidad de onda de corte hasta entre 40 y 80 m, en
ambientes ruidosos como son las ciudades. Por ésta razón, en los últimos años
ha sido utilizada en varios proyectos para realizar la caracterización sísmica de
suelos (Pullammanappallil et al., 2003a; Pullammanappallil et al., 2003b
Veronese y Garban, 2004; Stephenson et al., 2005).
-II
En varios sitios con suelos arenosos de Guadalajara y la costa de Jalisco y Nayarit
Ij hemos utilizado la prueba ReMi, junto con sondeos directos con pruebas de
penetración estándar, para caracterizarlos sísmicamente. Ya en las Figuras 5 a 7
se presentaron resultados de la prueba ReMi en la Biblioteca Pública, y en la
U Figura 8 están los resultados de otro sitio en la zona metropolitana de
Guadalajara, cerca del cruce de las Avs. Patria y Acueducto. En este segundo
sitio la roca está a alrededor de 40 m de profundidad, mientras que en la
- Biblioteca está a 24 m.
Especialidad: Ingeniería Civil 14
-5
-10
E -15
600
4
>.
500
a
400
1300
200
4
>
100
t 1 1Dispersión calculada
r Puntos dispersión H
•
- -
I7
0 002 004 006 008 0.1 012 0.14 016 018 02
40Periodo, a
Paso 2: Ajuste de curva de dispersión
ion -
a
0 200 400 600 800 1000
-20
c
4-
o
-30
-35
Caracterización de suelos arenosos mediante análisis de ondas de superficie
Paso 1: Espectro retardamiento-frecuencla (p4) Paso 3:
con puntos para el modelado de dispersión
Velocidad de onda de corte (Vs), mis
I4MOI.VJU Vspect CMrI.w,s s, NeE sUWJaQVts docarnwtø$Wt2QO&QSQ t1iN-,€a2Q! y Sfrp 1 4 5
Figura 8. Espectro de velocidad (paso 1), gráfica período-velocidad de fase
de onda Rayleigh (paso 2) y perfil de velocidad de onda de corte en un sitio
cercano al cruce de las Avs. Patria y Acueducto, en Zapopan, Jal.
Por la aceptación que los lineamientos del NEHRP (1993) han tenido tanto en los
Estados Unidos (IBC, 2006), como Canadá, Colombia, Turquía, Taiwán y otros
países, la caracterización sísmica de suelos la hemos hecho apegándonos a ellos.
Para clasificar tipos de suelo, los lineamientos del NEHRP (1993) establecen que
hay que determinar la velocidad promedio de onda de corte en los 30 m
superficiales (Vs 30), y una vez con esta información se tienen los siguientes de
terreno dependiendo de su comportamiento ante sismos:
Tabla1 Caracterizaciónsísmicadesuelos,segúnNEHRP(1993)
Tipo y530 (mis) Descripción
A >1,500 Rocadura
B 760 - 1,500 Roca
C 360 - 760 Suelomuydensoyrocablanda
D 180 - 360 Suelorígido
E <180 Sueloblando
F Suelos especiales (licuables, colapsables, arcillas de muy alta plasticidad,
suelos orgánicos de más de 3 m de espesor)
Especialidad: Ingeniería Civil 15
-JJ
OlaR,
:t~ i ~--1
3
12 /
, s
o
 ---' - .- - - . - •;• /
OCST
• Çfl.() OC • .CrIc.RO •
!. 6 /• ___J_ c/ '
3 IARCO
EST •pOT NOA,,.
14 - - • -'&: •; --. /
1
1
ç
L SUR
-
-
.,- -e,--

44
/ CST. 4. ,AROINJCS
--
o ,
e
1
e
1 U
e
Ij II_
e
e
L
e
ri
.L 1
e
Caracterización de suelos arenosos mediante anIisis de ondas de superficie
En la Figura 9 y Tabla 2 se presentan la ubicación de ocho sitios estudiados y los
resultados obtenidos.
Figura 9. Mapa de la sección poniente de Guadalajara en donde se indican
con un círculo con estrella la ubicación de estaciones acelerogrficas y con
cuadros ocho sitios en donde se han realizado pruebas ReMi.
Especialidad: Ingeniería Civil 16
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
Caracterización de suelos arenosos mediante análisis de ondas de superficie
Tabla 2. Ubicación de sitios estudiados con la prueba ReMi en la zona metropolitana de
Guadalajara.
Sitio 1 2 3 4
Lugar Biblioteca Pública Rotonda, junto a
Catedral
Jardines del
Bosque
Torrena
Prof.
(m)
Vs
(mis)
Prof.
(m)
Vs
(m/s)
Prof.
(m)
Vs
(m/s)
Prof.
(m) (m/s)
V
c 0-4 180 0-1.5 110 0-2 154 0-3 185
4-9 123 15-4 180 2-9 249 3-11 260
9-25 309 4-21 255 9-44 383 11-25 445
>25 1,304 21-31 435 >44 1,152 25-74 450
>31 880 >74 800
V 30 260 262 311 339
Tipo F D D D
T5 (s) 0.47 0,53 0.80
Sitio 5 6 7 8
Lugar Gran Plaza Avs. Eulogio Parra
y Pablo Casals
Avs. Patria y
Acueducto
Universidad
Panamericana
Prof.
(m)
VS
(m/s)
Prof.
( m)
VS
(m/s)
Prof.
(m) (m/s)
y5 Prof.
(m)
y5
(m/s)
c 0-5 165 0-1.5 95 0-2 125 0-6 175
5-11 290 1.5-4.5 215 2-5 183 6-11 260
11-57 575 4.5-7.5 255 5-23 489 11-24 420
>57 1,060 7.5-60 570 23-38 548 24-62 610
_____ >60 1,000 >38 908 >62 860
Vs30 357 353 375 321
Tipo D-C D C D
Ts(s) 0.52 0.53 0.39 0.63
El sitio Biblioteca Pública es terreno tipo F por el potencial de licuación en el
estrato arenoso sumergido que se extiende de 2.5 a 5.5 m de profundidad. Las
resistencia a la penetración estándar van de 3 a 12 y la Vs es de 123 m/s. Para el
peligro sísmico de Guadalajara arenas con resistencias a la penetración menores
de 14 pueden licuarse, y para y5 menor a 160 m/s se consideran también suelos
licuables (Robertson et al., 1992).
Tabla 3. Ubicación de sitios estudiados con la prueba ReMi en la costa de Jalisco y
Nayarit.
Sitio 1 2 3 4
Lugar Jaluco, cerca de Desembocadura Nuevo Vallarta, Flamingos, Nay.
Barra de Navidad, Cuale, Puerto Nay.
Jal. Vallarta, Jal.
Prof. V5 Prof. V5 Prof. VS Prof. V
(m) (m/s) (m) (m/s) (m) (m/s) (m) (m/s)
0-4 180 0-2 116 0-1.5 115 0-1.5 132
4-9 123 2-13 277 15-22 218 1.5-12 223
9-25 308 13-27 330 22-27 143 12-19
>25 1,304 27-51 547 27-50 531 19-28 281
_______ _______ >51 816 28-81 457
81-90 1,685
V 30 260 291 205 221
Tipo F D F D
T5 (s) 0.57 ? 1
Especialidad: Ingeniería Civil 17
Caracterización de suelos arenosos mediante análisis de ondas de superficie
El sitio Jaluco es terreno tipo F por el potencial de licuación en el estrato arenoso
sumergido que se encuentra de 1.5 a 9 m de profundidad, que está sumergido
(el nivel freático está a 1.5 m) y tiene Vs de 180 y 123 m/s, ya que para sismos
de magnitud 7.5 se considera que un depósito de arenas se puede licuar si V 5 es
menor a 200 m/s (Robertson et al., 1992; Andrus y Stokoe, 2000). De hecho, en
durante el sismo de octubre de 1995 (M = 7.6) se presentó el fenómeno de
licuación en dicha población, ocasionando fuertes daños (Lazcano, 1996).
El sitio Nuevo Vallarta es terreno tipo F porque se encontró un estrato de suelo
orgánico de alrededor de 4 m de espesor. En las V s inferidas con ReMi hay un
valor de 143 m/s de 22 a 27 m de profundidad, que es la profundidad
aproximada a la que se encontró el suelo orgánico. En estos casos el NEHRP
destaca la necesidad de determinar espectro de sitio.
En el sitio Flamingos se pudo explorar hasta 90 m de profundidad, debido
posiblemente a que el terreno estaba a la orilla del mar, y el oleaje genera
frecuencias cortas que favorecen la exploración a profundidad.
Los períodos fundamentales de vibración del suelo (T5) que se presentan en las
Tabla 2 se calcularon en forma aproximada con la siguiente ecuación:
Ts4H/Vsprom (3)
En donde: H: espesor del depósito de suelos; V s prom velocidad promedio de onda
de corte desde la superficie hasta la roca basal.
Para calcular las velocidades promedio de onda de corte se utilizó la siguiente
ecuación:
V5prom H / ( hi / Vsi) (4)
En donde: H: espesor total del depósito de suelos (o 30 m para clasificación
NEHRP); hi: espesor de los diferentes estratos de suelo; V 5i: velocidad de onda
de corte de cada estrato.
La determinación del período fundamental de vibración de un depósito de suelos
es de gran importancia, ya que debe evitarse que el suelo y la edificación a
construirse tengan períodos semejantes, para que no entren en resonancia. Hay
métodos más elaborados para determinar no sólo los períodos de vibración sino
también otros aspectos, entre otros, espectros de respuesta. Una de la
información más importante para la aplicación de estos métodos es la velocidad
de onda de onda de corte de los diferentes estratos que forman el depósito de
suelos, y en este aspecto la prueba de refracción de microtremores (ReMi) es de
gran ayuda.
Uno de los métodos más utilizados para analizar el comportamiento de depósitos
de suelo sometidos a cargas sísmicas es el SHAKE (Schnabel et al., 1972), al cual
se le han hecho posteriores adaptaciones como SHAKE91 (Seed y Sun, 1992),
ProShake y SHAKE2000, entre otras. Es importante recalcar que para aplicar el
SHAKE, o programas que de él se derivan, se deben tener en cuenta al menos las
siguientes limitaciones:
• La topografía superficial y los estratos de suelo deben ser
aproximadamente horizontales.
Especialidad: Ingeniería Civil 18
e
Caracterización de suelos arenosos mediante análisis de ondas de superficie
• La profundidad del depósito de suelos debe ser menor a 150 m.
• Las aceleraciones máximas que se pueden presentar en la roca basal no
deben exceder de 0.4 g.
• No debe haber estratos de suelos licuables.
4.2. Evaluación de asentamientos de zapatas en arenas
Como ya se mencionó arriba, en la geotecnia tradicionalmente se ha considerado
que el módulo de cortante máximo (G 0) se puede utilizar únicamente en
problemas dinámicos, como cimentación de maquinarias o sismos de muy bajas
magnitudes. Sin embargo, en los últimos veinte años (Jardine et al., 1986;
Batagglio y Jamiolkowsky, 1987; Burland, 1989; Fahey y Carter, 1993; Matthews
et al., 1996; Mayne, 2001) se ha demostrado que valores de G 0 corregidos para
niveles de deformación apropiados pueden ser de utilidad para problemas
geotécnicos estáticos, como es el diseño de cimentaciones.
Conocidas la variación de la velocidad de onda de corte (y 5) y la densidad en un
depósito de suelos, se puede calcular fácilmente el módulo de rigidez al cortante
máximo o inicial (Go) utilizando la ecuación 1, y con este valor se puede calcular
el módulo de elasticidad ante pequeñas deformaciones o máximo (E0) utilizando
la siguiente ecuación:
e
E0 = 2G0 (1+t) ii 2.7 p Vs 2 (5)
La relación de Poisson (ii) para la mayoría de los suelos varía de 0.25 a 0.49, y
es razonable tomar un valor de 0.35.
Tanto G0 como E0 son valores máximos, para deformaciones angulares (y) del
orden de iü°i. Sin embargo, se ha encontrado que la deformación angular
0. promedio en cimentaciones bien diseñadas es de alrededor de 10%. Por lo
tanto, para estimar asentamientos en suelos partiendo de parámetros elásticos
t máximos (Go y E0), hay que reducirlos.
t ,- GecçhycaI
t w
J.
Unlod.Re1oad PMT
.2 -
Int
.
aI La~9 PMT Peie1ratI1
- .
iO 10.2 10 1
Deformación angular (y)
Figura 10. Reducción de módulo de cortante (G) contra deformación angular
(y) (tomado de Mayne, 2001).
C. Especialidad: Ingeniería Civil 19
.
Caracterización de suelos arenosos mediante análisis de ondas de superficie
En la Figura 10 se muestra la curva de disminución del módulo de cortante (G)
en función de la deformación angular (y). Se indican además valores a lo largo de
la curva que pueden obtenerse con diferentes pruebas de campo.
De la Figura 10 tenemos que las pruebas geofísicas (ReMi entre ellas) dan
información de G para deformaciones pequeñas, y que el dilatómetro plano
(DMT) y el presiómetro (PMT) para deformaciones mayores. Esto es un ejemplo
claro de la complementariedad de las pruebas de campo.
Para el análisis de asentamiento de zapatas y losas de cimentación en arenas es
conveniente que se use el módulo de cortante que corresponde a una
deformación angular de 0.1% (Go. l%). Fahey y Carter (1993) y Mayne (2001)
proponen un valor de G o1% del 20% del de G0. De aquí tenemos que el módulo
de elasticidad que deberá usarse para estimar asentamientos en arenas (E o. l%)
debe ser de:
E01% ni 0.54 p Vs2 (6)
Por lo tanto, partiendo de los perfiles de velocidad de onda de corte (y 5) contra
profundidad obtenidos con ReMi, MASW, CSW, SASW, crosshole, downhole, etc.,
es posible estimar la magnitud de asentamientos en suelos arenosos. Es
conveniente que los resultados así obtenidos se comparen con lo estimado con
pruebas mecánicas de campo, como penetración estándar, conos dinámico o
estático, dilatómetro, presiómetro, etc.
A continuación se presenta la estimación de asentamientos en el sitio Rotonda,
junto a la Catedral de Guadalajara. Se sabe que las torres de Catedral están
cimentadas mediante una losa de mampostería de piedra desplantada a 4 m
abajo del nivel de banqueta. El peso total de cada torre es de alrededor de 6,300
ton y el área de la losa de cimentación es de 126 m 2, por lo que el esfuerzo
promedio que se transmite al suelo es de 5 kg/cm 2 (Padilla Corona et al., 1980;
Lazcano, 2004)
El suelo bajo la Catedral es arena limosa, pumítica, y la roca basal se encuentra a
31 m de profundidad. De la Tabla 2 y ecuación 6 tenemos los siguientes datos
Tabla 4. Caracterización del suelo bajo la Catedral de Guadalajara.
Prof. (m) VS (mis) E01% (MPa)
0-1.5 110 9
1.5-4 180 24
4-21 255 50
21-31 435 151
>31 880
Para el análisis de asentamiento utilizamos el criterio propuesto por
Schmertmann (1970) y Schmertmann et al. (1978). La propuesta original está
planteada para utilizarse junto con el cono estático, y a partir de la resistencia de
cono (qe) se evalúa el módulo de elasticidad del suelo (E 5). Aquí se evaluó el
módulo del elasticidad para una deformación angulas de 0.1% (E o1%) con base
en las velocidades de onda de corte (y5) medidas en la prueba ReMi (Tabla 4).
Especialidad: Ingeniería Civil 20
lo
Caracterización de suelos arenosos mediante análisis de ondas de superficie
• El método de Schmertmann (1970) y Schmertmann et al. (1978) se basa en
. dividir el suelo bajo la cimentación en capas, y se calcula el asentamientos (S)
sumando las deformaciones ocurridas en cada capa. Para evaluar la deformación
. en cada capa se considera el incremento en la presión efectiva (iq), el factor de
influencia por deformación (Ii), el módulo de elasticidad del suelo (E s) y el
S
espesor de cada capa (Az). La siguiente ecuación es el planteamiento general del
método:
• S = Lq E (Iz / Es) ¿Z (7)
• En la Tabla 5 están los datos de la dimensión de la losa de cimentación (11 x 11
S
m), la profundidad de desplante (Df) de 4 m, el esfuerzo (q) estimado contra el
terreno de 500 kPa (5 kg/cm2) y el peso volumétrico (y) del suelo arriba y abajo
• del nivel de desplante (14 y 14.5 kN/m3). Los asentamientos ocurren en el suelo
que hay de 4 a 25 m de profundidad, y este espesor se subdividió en estratos de
S 2.2 m de espesor. Al centro de cada estrato se calculó la profundidad (Zi), el
módulo de elasticidad (E 5) y el factor de influencia por deformación (Iz) definido
• en el criterio de Schmertmann.
• Tabla S. Análisis de asentamiento de las torres de la Catedral de Guadalajara.
• DATOS: CALCULOS: Prof. Zi Es
B = 11 m j (M Pa) Iz
. L/B= 1 5.1 1.10 50 0.22 0.004
Df= 4 m 7.3 3.30 50 0.45 0.009
• g .QQ kPa 9.5 5.50 50 0.68 0.014
yl = 14 kN/m3 11.7 7.70 50 0.59 0.012
• y2 = 14.5 kN/m3 13.9 9.90 50 0.50 0.010
16.1 12.10 50 0.41 0.008
• 18.3 14.30 50 0.32 0.006
20.5 16.50 100 0.23 0.002
• 22.7 18.70 151 0.14 0.001
24.9 20.90 151 005 0.000
• 26.0 22.00 E= 0.067
S(mm) 61
e
e El asentamiento total estimado es de alrededor de 6 cm, que es un valor
razonable debió haber evolucionado gradualmente durante el largo período de
e construcción.
e
e S. CONCLUSIONES
C
. La velocidad de onda de corte (y 5) es un parámetro de gran utilidad para
caracterizar suelos, ya que con este valor se puede determinar directamente
e el módulo de rigidez al cortante para pequeñas deformaciones (G 0).
C
. El módulo G0 tiene múltiples aplicaciones en la geotecnia, entre otras, sirve
para inferir densidad en campo, determinar el estado de esfuerzos, estimar la
e cementación natural de depósitos de suelo o evaluar la alteración de
muestras a ensayarse en laboratorio (Stokoe et al., 1989).
e
C Especialidad: Ingeniería Civil 21
e
Caracterización de suelos arenosos mediante análisis de ondas de superficie
Tradicionalmente se ha considerado que el módulo G0 sólo tiene su aplicación
en el campo de la dinámica de suelos, sin embargo, investigaciones realizadas
en los últimos 20 años han su utilidad también para problemas estáticos
(Jardine et al., 1986; Batagglio y Jamiolkowsky, 1987; Burland, 1989; Fahey
y Carter, 1993; Matthews et al., 1996; Mayne, 2001). Conocido el valor de G 0
se pueden estimar módulos de rigidez al cortante (G) y elásticos (E) para
diferentes rangos de deformaciones, y con ellos analizar diferentes problemas
geotécnicos, entre ellos el diseño de cimentaciones.
Gracias a diferentes avances tecnológicos, entre ellos desarrollos teóricos en
ondas de superficie (Thomson, 1950; Haskell, 1953) y avances en la
electrónica, se han podido desarrollar métodos de análisis de ondas de
superficie que en la década de 1940 se les intuía de utilidad, pero no había
equipos apropiados para su registro y análisis (Hvorslev, 1949).
• El método de refracción de
de onda de superficie, son
manera rápida y confiable.
microtremores (ReMi), y en general los métodos
una interesante alternativa para determinar V s de
Los métodos de onda de superficie (ReMi, MASW, CSW, SASW, etc.) se basan
en el principio de que en un medio elástico estratificado, como son los
depósitos de suelo, la velocidad de las ondas Rayleigh varían en función de
las frecuencias. Entonces, si se determina esta variación de velocidades con
las frecuencias y se aplica un proceso de inversión, es posible determinar la
velocidad de las ondas Rayleigh (VR) a profundidad. Como la velocidad VR es
ligeramente menor (alrededor de 7%) a la velocidad de onda de corte (y5),
estas dos velocidades se coman como equivalentes.
• Una de las principales ventajas de los métodos de onda de superficie es que
son pruebas no invasivas, por lo que se puede evaluar la estructura natural
de los suelos sin producir prácticamente deformaciones en los mismos,
contrariamente a lo que ocurre con las pruebas de penetración y la mayoría
de las pruebas de campo.
• A diferencia de la prueba tradicional de refracción sísmica, ReMi puede usarse
sin problemas en ambientes urbanos, y de hecho mientras más ruido haya,
funciona mejor. Además, ReMi puede detectar estratos blandos entre estratos
con rigideces mayores, mientras que refracción sísmica sólo puede detectar
variación de rigideces progresivamente mayores.
• Al comparar las V s obtenidas en métodos de ondas de superficie con otras
pruebas geofísicas como crosshole y downhole, debe tomarse en cuenta los
primeros métodos estudian un volumen de suelos mucho mayor que con las
dos últimas pruebas.
• Cuando se requiere de detalle mayor en la determinación de velocidad de
onda de corte, más que los métodos de onda de superficie deben utilizarse
pruebas geofísicas tipo downhole o crosshole.
• Una de sus aplicaciones en donde más se ha utilizado ReMi es para la
clasificación de suelos de acuerdo al NEHRP (1993). La prueba ReMi, y en
general los métodos de onda de superficie, son apropiados para determinar el
Especialidad: Ingeniería Civil 22
Caracterización de suelos arenosos mediante análisis de ondas de superficie
comportamiento de depósitos de suelo ante sismos porque involucran a un
volumen grande de suelos.
• La caracterización sísmica determinada en los doce sitios presentados, es
congruente con la información obtenida en sondeos de penetración estándar y
cono dinámico, así como con el contexto geológico.
• La profundidad de la roca basal inferida mediante ReMi está a alrededor del
lOdo de diferencia de la profundidad real constatada en sondeos directos.
Esta profundidad, junto con las V s determinadas, ayudan a evaluar períodos
de vibración de suelos.
• En el caso presentado de Jaluco, las velocidades de onda de corte
determinadas con ReMi indican el potencial de licuación, como de hecho
ocurrió durante el sismo de octubre de 1995 (Lazcano, 1996). De 1.5 a 9 m
de profundidad se tienen arenas sumergidas y con una velocidad de onda de
corte de 123 a 180 m/s, valores menor a los 200 m/s, considerada la frontera
superior de los suelos licuables (Robertson et al., 1992; Andrus y Stokoe,
2000).
• Considerando la experiencias de Jaluco mencionada en el punto anterior y
criterios propuestos por Robertson et al. (1992) y Andrus y Stokoe (2000), se
concluye que el sitio de la Biblioteca Publica en Guadalajara pudiera sufrir
licuación en el estrato arenoso comprendido entre 2.5 y 5.5 m.
• El método de análisis de asentamientos en arenas propuesto por
Schmertmann (1970) y Schmertmann et al. (1978), junto con la información
de la prueba ReMi o en general con la determinación de velocidad de onda de
corte (y5), parece ser una herramienta útil para usarse conjuntamente con
otros criterios.
• Es muy importante que para el análisis de los resultados obtenidos con ReMi
y otros métodos de onda de superficie se tenga en cuenta el contexto
geológico y se realicen además sondeos directos para determinar
estratigrafía.
Especialidad: Ingeniería Civil 23
e
e
e
Caracterización de suelos arenosos mediante análisis de ondas de superficie
REFERENCIAS:
Abbiss C.P. (1981). "Shear wave measurements of the elasticity of the ground",
Geotechnique, 31(1): 91-104.
Andrus R.D. y Stokoe K.H. 11(2000). "Evaluating liquefaction resistance using
shear wave velocity measurements and simplified procedures",
Transportation Research Board, 78th annual meeting, workshop on new
approaches to liquefaction analysis.
Batagglio M. y Jamiolkowsk M. (1987). "Analisi delle deformazioni", XIII Ciclo
Conferenze di Geotechnica di Tormo, Italia.
Burland J.B. (1989). "Small is beautiful - the stiffness of soils at small strains",
Canadian Geotech. Jour., 26: 499-516.
Broms B.B. y Fioding N. (1988). "History of soil penetration testing", Proc. V t mt.
Sympo. On Penetration Testing, Orlando, Florida, E.U.A., 1: 157-220.
da Fonseca y Mayne (2004). "Geotechnical and Geophysical Site
Characterization", Oporto, Portugal, dos volúmenes.
Decourt, Muromachi, Nixon, Schmertmann, Thornburn y Zolkov (1988).
"Standard penetration test (SPT): International reference test procedure",
Proc. 1st
mt. Sympo. On Penetration Testing, Orlando, Florida, E.U.A., 1:
3-26.
Dumas González C. (1998). "Estudio de la cimentación para líneas de transmisión
de energía eléctrica con ayuda del penetrómetro dinámico", Memo. XIX
Reunión Nacional de Mecánica de Suelos, Puebla, México, 1: 217-222.
Fahey M. y Carter 3.P. (1993). "A finite element study of the pressurometer in
sand using non-linear elastic plastic model", Canadian Geotech. Jour., 30:
348-362.
Haskell N.A. (1953). "The dispersion of surface waves on multilayered medium",
Buil. Seismoligical Soc. America, 43 (1): 17-34.
Hvorslev M.J. (1949). "Subsurface exploration and sampling of soils for civil
engineering purposes", Waterways Experiment Station, E.U.A.
IBC (International Building Code) (2006).
Idriss I.M. y Sun J.I. (1992). "SHAKE91", U. of California, Davis, California.
Jardine W.J., Potts D.M., Fourie A.B. y Burland J.B. (1986). "Studies of the
Influence of Non-Linear Stress-Strain Characteristics in Soil Structure
Interaction", Geotechnique, 36, 3.
Lazcano S. (1995). "Experiencias con cono dinámico en suelos pumíticos", Memo.
X Congreso Panamericano Mec. Suelos e Ing. Cimentaciones, Guadalajara,
1: 244-251.
Lazcano S. (1996). "Licuación de arenas en Jaluco, Jal., durante el sismo de
octubre de 1995", Memo. XVIII Reunión Nacional Mec. Suelos, Morelia,
México, 1: 89-92.
Lazcano S. (2004). "Contexto histórico y geotécnico de Guadalajara", Memo. XXII
Reunión Nacional Mec. Suelos, Guadalajara, México, 1: 53-66.
Especialidad: Ingeniería Civil 24
Caracterización de suelos arenosos mediante análisis de ondas de superficie
• "Faster,Louie J.N. (2001). better: shear-wave velocity to 100 meters depth from
e refraction microtremors arrays", Buli. Seismological Soc. America, 91:
347-364.
O Luna Gonzalez 0.3., Ibarra Razo E., Rangel Núñez J.L. y Auvinet Guichard G.
(2004). "Caracterización geotécnica superficial mediante ensayes con cono
• dinámico manual", Memo. XXII Reunión Nacional Mec. Suelos,
Guadalajara, México, 1:229-236.
O Mayne P.W. (2001). "Stress-strain-strength-flow parameters from enhanced in-
situ tests", Proc. mt. Conf. on In-Situ Measurements of Soil Properties and
Case Histories, Bali, Indonesia, 27-48.
• Menard L. (1955). "The Menard Pressuremeter: interpretation and application of
the pressuremeter test results to foundations design", Sols-Soils No. 26.
O Marchetti S. (1980). "In Situ Test by FIat Dilatometer", Jour. Geotech. Engr.,
• ASCE,GT3.
Matthews M.C., Hope V.S. y Clayton C.R.I. (1996). "The use of surface waves in
O the determination of ground stiffness profiles", Proc. Institute of Civil
Engineers, Geotechnical Engineering, London, 119: 84-95.
e Nazarian S. y Stokoe K.H. (1984). "In Situ Shear Wave Velocities From Spectral
e Analysis of Surface Waves", Proc. 8th
World Conf. on Earthquake Engr.,
San Francisco, California, III: 31-38.
O Ohta Y. y Goto N. (1978). "Empirical Shear Wave Velocity Equations in Terms of
Characteristic Soil Indexes", Earthquake Engineering and Structural
O Dynamics, Vol. 6.
• Padilla Corona E., Zambrano H. y de la Mora F. (1980). "Experiencias en la
construcción de un túnel vehicular en suelos pumíticos", Memo. XIV
e Reunión Nacional Mec. Suelos, Monterrey, México, 1:.
Park C.B., Miller R.D. y Xia 3. (1999). "Multi-channel analysis of surface waves",
e Geophysics, 64 (3): 800-808.
e Pullammanappallil 5., Honjas B. y Louie J.N. (2003a). "Determination of
shear wave velocities using refraction microtremor method", Proc. 3rd mt.
e Conf. Application Geophysical Methodologies and NDT to transportation
and infrastructure, Orlando, Florida, E.U.A.
O Pullammanappallil S., Honjas B., Louie J.N., Siemens J.A. y Miura H. (2003b).
"Comparative study of the refraction microtremor (ReMi) method: using
O seismic noise and standard P-wave refraction equipment for deriving 1-D
S-wave profiles", 6th mt. SEG-J conference, Tokio, Ja pon.
C Richart F.E., Hall J.R. y Woods R.D. (1970). "Vibrations of Soils and
e Foundations", Prentice Hall.
Robertson P.K., Woeller D.J. y Finn W.D.L. (1992). "Seismic cone penetration test
e for evaluating liquefaction potential under cyclic loading", Canadian Geo.
o
Jour., 29: 686-695.
Santamarina J.C. (2001). "Soils and waves", John Wiley & Sons.
O Santoyo E., Lin-Xue R., Ovando S.E. (1989). "El cono en la exploración
geotécnica", México, TGC Geotecnia.
e
Especialidad: Ingeniería Clvii 25
o
Caracterización de suelos arenosos mediante análisis de ondas de superficie
Schmertmann J.H. (1970). "Static cone to compute static settlements over
sand", Jour. Soil Mech., ASCE, 96 (SM3): 1011-1043.
Schmertmann J.H., Hartman J.P. y Brown P.R. (1978). "Improved strain influence
factor diagrams", Jour. Geotech, Engr., ASCE, 104 (8): 1131-1135.
Schnabel B., Lysmer J. y Seed H.B. (1972). "SHAKE", Reporte EERC 72-12,
Earthquake Engineering Research Center, U. de California, Berkeley.
Stefanoff, Sanglerart, Bergdahl y Melzer (1988). "Dynamic probing (DP):
International reference test procedure", Proc. 1st mt. Sympo. Qn
Penetration Testing, Orlando, Florida, E.U.A., 1: 53-70.
Stephenson W.J., Louie J.N., Pullammanappallil S., Williams R.A. y Odum J.K.
(2005). "Blind shear-wave velocity comparison of ReMi and MASW results
with boreholes to 200m in Santa Clara Valley: implications for earth
ground motion assessment", BulI. Seismoligical Soc. America, 95 (6):
2506-2516.
Stokoe K.H. II, Rix G.J. y Nazarias S. (1989). "In-Situ seismic testing with
surface waves", Proc. 12th mt. Conf. Soil Mech. Fond. Engr., Río de
Janeiro, Brasil, 1: 331-334.
Thomson W.T. (1950). "Transmission of elastic waves through a stratified solid
medium", Jour. Applied Physics, 21: 89-93.
Veronese L. y Garban T. (2004). "Esperienze de misura Vs30 con la tecnica
Refraction Microtremor (ReMi), Convegno La Geofisca e La Nuova
Normativa Sismica.
Woods R.D. (1968). wScreening of Surface Waves in Soils", Jour. Soil Mech.,
ASCE, 94 (4): 951-979.
'o
Especialidad: Ingeniería Civil 26
Caracterización de suelos arenosos mediante análisis de ondas de superficie
1
1
1
1
1
1
1
AGRADECIMIENTOS:
A Lety mi esposa y a mis hijos Moni, Salvador y Bere
Amis padres
1
A mis amigos
1
A mis tíos, primos y sobrinos cercanos
A mis compañeros de trabajo
1 A mis profesores, compañeros de estudio y alumnos
1
A las universidades ITESO, de Illinois y Panamericana campus Guadalajara
1
1
'o
1
1 •
1
1
1 Especialidad: Ingeniería Civil 27
Caracterización de suelos arenosos mediante análisis de ondas de superficie
CURRICULUM VITAE:
Salvador Lazcano Díaz del Castillo nació en Guadalajara, Jal., en 1958. Obtuvo la
licenciatura en Ingeniería Civil en el ITESO en 1981. En 1984 obtuvo el grado de
Maestro en Ciencias, área geotecnia, por la Universidad de Illinois en Urbana-
Champaign. En 1988 llevó a cabo una especialización en mecánica de suelos y
cimentaciones en Madrid, en el CEDEX.
Desde 1985 es director de Suelo-Estructura, compañía de consultoría en
ingeniería geotécnica y sísmica que ha realizado más de 2,600 estudios en 26
Estados de la República Mexicana y el Caribe. La consultoría ha sido en las áreas
de cimentaciones, contenciones y taludes, así como estudios sismo-geotécnicos
(aproximadamente 50) para determinar el comportamiento del subsuelo ante
cargas sísmicas (espectros de sitio, licuación, etc.).
Ha asistido a más de 25 cursos y simposios nacionales e internacionales, en el
área de geotecnía en general, y en temas particulares como caracterización de
suelos y geotecnia sísmica.
Es autor de diez artículos técnicos y ha sido conferenciante en diversos
congresos. Además, participó en la elaboración del actual reglamento de
construcción de Guadalajara y Zapopan.
Catedrático en el ITESO y en la Universidad Panamericana campus Guadalajara.
Pertenece a las siguientes agrupaciones: Sociedad Mexicana de Mecánica de
Suelos, Sociedad Canadiense de Geotecnia, Instituto de Investigación de
' Ingeniería Sísmica (EERI), Instituto Geo de la Sociedad Americana de Ingeniería
Civil y Asociación Europea de Geocientíficos e Ingenieros (EAGE).
o
o
e
Especialidad: Ingeniería Civil 28
ACADEMIA DE INGENIERÍA
COMENTARIOS DEL ING. JUAN ARMANDO DUARTE ALONZO
AL TRABAJO DE INGRESO
DEL MC. SALVADOR LAZCANO DÍAZ DEL CASTILLO
TITULADO:
"CARACTERIZACIÓN DE SUELOS ARENOSOS MEDIANTE ANÁLISIS DE ONDAS DE
SUPERFICIE"
AGRADEZCO A NUESTRO BUEN AMIGO, MC. SALVADOR LAZCANO DÍAZ DEL CASTiLLO LA
INVITACIÓN Y OPORTUNIDAD DE PARTICIPAR EN ESTA REUNIÓN DE GRAN
TRASCENDENCIA EN SU VIDA PROFESIONAL Y ACADÉMICA, LA CUAL REPRESENTA SU
INGRESO A LA ACADEMIA DE INGENIERÍA EN LA ESPECIALIDAD DE INGENIERÍA CIVIL.
LA POBLACIÓN MUNDIAL DEL ORDEN DE 6,600 MILLONES CRECE DÍA A DÍA Y SU
ASENTAMIENTO EN LOS CENTROS URBANOS ES CADA VEZ MAYOR Y NUESTRO PAÍS NO
ES LA EXCEPCIÓN, CONCENTRANDO LAS ZONAS URBANAS DEL ORDEN DEL 75 DE LA
POBLACIÓN TOTAL DEL PAÍS QUE ALCANZÓ LOS 103 MILLONES DE HABITANTES EN EL
2005, CON TODOS LOS PROBLEMAS QUE ELLO CONLLEVA, ESTA CONCENTRACIÓN
URBANA EN POBLACIONES DE MÁS DE 2,500 HABITANTES ORIGINA LA CREACIÓN DE
NUEVAS CONSTRUCCIONES COMO ESCUELAS, EDIFICIOS DE OFICINAS Y HABITACIÓN,
PUENTES Y PASOS A DESNIVEL, VIALIDADES Y TRANSPORTE, ACUEDUCTOS Y
COLECTORES ,ETC. QUE DEBEN SATISFACER LAS NECESIDADES OCASIONADAS POR LoS
NUEVOS ASENTAMIENTOS HUMANOS Y REGENERAR LOS EXISTENTES, ACTIVIDADES
QUE ESTÁN VINCULADAS CON LA INGENIERÍA CIVIL Y CON LA GEOTECNIA Y LA
MECÁNICA DE SUELOS.
EL TEMA "CARACTERIZACIÓN DE SUELOS ARENOSOS MEDIANTE ANÁLISIS DE ONDAS SE
SUPERFICIE", NOS LLEVA A PENSAR DE INMEDIATO EN LA GEOTECNIA UNA DE LAS
RAMAS ESENCIALES DE LA INGENIERÍA CIVIL, YA QUE UNO DE LOS PROBLEIAS QUE
SIEMPRE HAN PREOCUPADO AL INGENIERO , AL ENFRENTARSE CON LA CONSTRUCCIÓN
. EDIFICACIÓN DE UNA OBRA SEA GRANDE O PEQUEÑA, ES EL CONOCER LAS
PROPIEDADES DEL SUBSUELO Y SU COMPORTAMIENTO ANTE LAS CARGAS O EMPUJES
QUE DEBERÁ RECIBIR, Y POR OTRO LADO A IMPLEMENTAR UN CAMINO o
PROCEDIMIENTO PARA ENCONTRAR DICHAS PROPIEDADES O CARACTERÍSTICAS CON
UN GRADO RAZONABLE DE CERTIDUMBRE EN DICHA EVALUCACIÓN.
ES LARGO EL TRAYECTO QUE SE HA RECORRIDO DESDE LOS PRIMEROS
INVESTIGADORES DEL ELEMENTO TIERRA, COMO COULOMB, COLLIN, RANKINE, MUHR,
PARA CITAR ALGUNOS QUIENES CON SUS INVESTIGACIONES DIERON FUNDAMENTO A
LO QUE POSTERIOMENTE SE DENOMINÓ "MECÁNICA DE SUELOS" EN BASE AL LIBRO
ESCRITO POR KARL TERZAGHI EN EL AÑO DE 1925 PRECISAMENTE CON ESE NOMBRE, Y
QUE DEBIDO A ESTE DOCUMENTO Y SUS POSTERIORES APORTACIONES A DICHA
CIENCIA, LE HAN MERECIDO EL TITULO DE "PAIJRE DE LA MECÁNICA DE SUELOS".
EL AVANCE CONTINUO EN LA INVESTIGACIÓN Y EXPERIMENTACIÓN DE LOS SUELOS,
ASÍ COMO, LOS LOGROS EN LA APLICACIÓN TECNOLÓGICA HAN HECHO POSIBLE LA
UTILIZACIÓN DE TÉCNICAS Y MÉTODOS QUE HACE ALGUNOS AÑOS NO SE PODIAN
REALIZAR AUNQUE SE CONOCIERA LA PARTE CONCEPTUAL DEL MISMO.
ES POR ESO IMPORTANTE EL TRABAJO DESARROLLADO POR EL M. C. LAZCANO EN LA
APLICACIÓN DEL MÉTODO DE ANÁLISIS DE ONDAS SUPERFICIE CON LA TÉCNICA DE
REFRACCIÓN DE MICROTREMORES (REFRACTION MICROTREMOR) Y
COLOQUIALMENETE CONOCIDO COMO ReMi , EN LA ZONA URBANA DE GUADALAJARA Y
LA COSTA DE JALISCO DONDE SE PRESENTAN SUELOS CON CARACTERISTICAS PROPIAS
DE LOS SUELOS ARENOSOS, SEGUN EL SISTEMA UNIFICADO DE CLASIFICACIÓN SUELOS
(SUCS) , OBTENIENDO RESULTADOS CONGRUENTES CON LOS SISTEMAS TRADICIONALES
DE PENETRACIÓN STANDARD Y CONO DINÁMICO.
EL TRABAJO ADEMÁS NOS RECUERDA DE UNA MANERA SINTÉTICA Y CLARA LOS
PROCEDIMIENTOS UTILIZADOS CON PRUEBAS MECÁNICAS COMO EL DE PENETRACIÓN
ESTANDAR, EL CONO DINÁMICO, EL CONO ESTÁTICO, EL PRESIÓMETPO Y EL
DILATÓMETRO, Y PRUEBAS GEOFÍSICAS COMO LA REFRACCIÓN SÍSMICA, DOWNHOLE,
CROSSHOLE Y METODOS DE ONDAS DE SUPERFICIE PARA OBTENER LAS PROPIEDADES Y
CARACTERÍSTICAS DE LOS SUELOS, ASÍ COMO, ENCONTRAR LA VELOCIDAD DE
PROPAGACIÓN DE LAS ONDAS DE SUPERFICIE DE CORTE A DIFERENTE PROFUNDIDAD
LO CUAL PERMITE CONOCER LA RIGIDEZ DE LA ESTRUCTURA DEL SUELO Y LOS
MODULOS ELÁSTICO Y DE RIGIDEZ AL CORTANTE, PARA CON ELLO APLICAR
SOLUCIONES A PROBLEMAS DE CIMENTACIÓNES
ESOS MÉTODOS DE ANÁLISIS DE ONDAS DE SUPERFICIE, BASADOS EN LOS
CONOCIMIENTOS DE LA INGENIERÍA SÍSMICA Y LA PROPAGACIÓN DE LAS ONDAS
GENERADAS POR UN SISMO, SIENDO ESTAS ONDAS ELÁSTICAS DIVIDIDAS EN ONDAS DE
CUERPO Y SUPERFICIALES; LAS ONDAS DE CUERPO SE DIVIDEN EN ONDAS PRIidARAS U
ONDAS "P" LAS CUALES ORIGINAN COMPRESIONES Y TENSIONES EN LOS ESTRATOS POR
2
LOS QUE SE PROPAGA POR LOQUE TAMBIÉN SE LES CONOCE COMO ONDAS
LONGITUDINALES, Y ONDAS SECUNDARIAS U ONDAS "S" QUE GENERAN ESFUERZOS DE
CORTE EN EL TERRENO; LAS VELOCIDADES DE LAS ONDAS "5" SON MENORES QUE LAS
ONDAS "P", ESTA DIFERENCIA DE VELOCIDAD HA SIDO UTILIZADA PARA CONOCER
MEDIANTE REGISTROS EN UNA ESTACIÓN SISMOLÓGICA LA DISTANCIA EPICENTRAI,
CUANDO SE GENERA UN SISMO.
LAS ONDAS SUPERFICIALES SE DIVIDEN EN ONDAS RAYLEIGH Y ONDAS LOV", AMBOS
NOMBRES EN FUNCIÓN DE LOS CIENTIFICOS QUE LAS ESTUDIARON, Y DEBIDO A SU BAJA
FRECUENCIA SON LAS CAUSANTES DE MAYOR DAÑO EN LOS EDIFICIOS.
ESTE CONOCIMIENTO DE LAS ONDAS SISMICAS TAMBIEN SE APLICA EN LA INDUSTRIA
PETROLERA EN LA BUSQUEDA DE YACIMIENTOS DE PETRÓLEO Y DESDE HACE ALGUNOS
AÑOS EN LA RESOLUCIÓN DE PROBLEMAS DE MECÁNICA DE SUELOS COMO LO HA
PRESENTADO EL M.C. SALVADOR LAZCANO EN SU TRABAJO DE INGRESO.
ESTOS METODOS DE ANALISIS BASADOS EN LA GENERACION DE ONDAS DE SUPERFICIE
EN UN RANGO AMPLIO DE FRECUENCIAS, LO CUAL PERMITE ELABORAR UN PERFIL CON
LA VARIACIÓN DE VELOCIDADES DE LAS ONDAS RAYLEIGH A DIFERENTES
PROFUNDIDADES, SE HAN DESARROLLADO A PARTIR DE LA DECADA DE LO. 80 SE
ESTAN GENERALIZANDO CADA VEZ MÁS Y SU APLICACIÓN EN ZONAS URBANAS EN
CONSTANTE CRECIMIENTO LES DA VENTAJA CON RELACIÓN A OTRAS PRUEBAS DE
CAMPO SIN OLVIDAR SU CORRELACIÓN CON SONDEOS DIRECTOS.
SUS CONCLUSIONES BASADAS EN SU AMPLIA EXPERIENCIA Y EN ESTUDIOS DE MECANICA
DE SUELOS POR ÉL ELABORADOS Y EN LA APLICACIÓN DE UNO DE ESTOS MÉTODOS DE
ANALISIS DE ONDAS DE SUPERFICIE, EN TERRENOS ARENOSOS DE GUADALAJARA Y LA
COSTA DE JALISCO, NOS CONDUCEN A VALORAR CON TODA ATENCIÓN ESTAS
HERRAMIENTAS DE TRABAJO DE LA GEOTÉCNIA.
FELICITAMOS AL M.C. SALVADOR LAZCANO DÍAZ DEL CASTILLO, POR LA PRESENTACIÓN
DE SU EXCELENTE TRABAJO, EXHORTANDOLO A QUE CONTINUE CON SU LABOR
ACADÉMICA Y PROFESIONAL EN ESTE CAMPO DE LA GEOTÉCNIA QUE TANTAS
INCERTIDUMBRES TIENE QUE AFRONTAR Y QUE POR OTRO LADO EVOLUCIONA DE
MANERA IMPORTANTE DÍA A DÍA.
20 DE SEPTIEMBRE DE 2007.
LCíi1 ACADEMIA DE INGENIERIA
México
Ciudad de México, 06 de septiembre de 2007
N DAIO5.20071297
Sr. M.C. Salvador Lazcano Díaz del
Presente.
I
Muy estimado amigo y futuro colega:
y / (IPAM7-
Con la presente tengo el gusto de enviar a usted 50 invitaciones para la ceremonia en la que,
mediante la presentación del trabajo que estipula nuestro Estatuto, será usted designado Académico
Titular, dentro de la Comisión de Especialidad de Ingeniería Civil y se le entregarán las preseas que
lo acreditan como tal,
La Academia por conducto de esta Dirección, ha enviado a cada uno de los Presidentes de
Comisión y Coordinaciones de Programa, para que a su vez la hagan del conocimiento de los
integrantes de las mismas, una invitación similar a las que usted recibe. Sin embargo, se ha
observado que la falta de comunicación oportuna suele originar, un ausentismo pronunciado, por lo
que, para garantizar el éxito de la ceremonia que la Academia dedica especialmente a ustedes, es
muy importante la labor que desarrolle para que asistan los Académicos de la Especialidad a la que
usted ingresará, sus amigos y familiares, en número considerable.
Muy Cordialmente
Ing. Norberto Domínguez Aguirre,
Director Administrativo.
Anexos: los que se indican,
c.c.p. Sr. Ing. Ricardo Pérez Ruiz, Presidente de la Comisión de Especialidad de Ingeniería Civil,
Al.- Ciudad.
c.c.p.. Sr. Dr. Ernesto Alfonso Heredia Zavoni, Secretario de la Comisión de Especialidad de
Ingeniería Civil.- Al. - Ciudad.
c.c.p. Expedienteminutario.
Tacuba 5, Centro Histórico, 06000 México, D.F. Telfax 5521 4404, 5521 6790, 5518 4918
www.ai.org.mx aingenieriaprodigy.net.mx
El
4
PROGRAMA
1 Apertura de la sesión por el Dr. Luis Esteva Maraboto
Expresidente de la Academia Nacional de Ingeniería
Explicación del sistema para la elección de un Candidato a Ingresar a la Academia
ng. Ricardo Pérez Ruiz
Presidente de la Comisión de Especialidad de Ingeniería Civil
Presentación del Académico Titular a cargo del
Ing. Ricardo Pérez Ruiz
Presidente de la Comisión de Especialidad de Ingeniería Civil
"CARACTERIZACIÓN DE SUELOS ARENOSOS MEDIANTE
ANÁLISIS DE ONDAS DE SUPERFICIE"
M. C. Salvador Lazcano Díaz del Castillo
Comentarios al trabajo de ingreso a cargo de:
Ing. Enrique Tamez González, Académico de Honor
Ing. Raúl Gómez Treman, Académico Titular
Ing. Gabriel Auvinet Guichard, Académico Titular
Palabras del Ing. Ricardo Pérez Ruiz
Presidente de la Comisión de Especialidad de Ingeniería Civil
Comentarios del Dr. Luis Esteva Maraboto
Expresidente de la Academia Nacional de Ingeniería
Ceremonia Protocolaria
En esta solemne ceremonia el M. C. Salvador Lazcano Díaz del Castillo será investido
Académico Titular con la Insignia y le será entregado el Diploma por el Presidente de la
Academia, M. en C. Gerardo Ferrando Bravo, en el Salón de Actos del Palacio de Minería,
de 19:30 a 20:30 horas.
Vino de Honor
R.S.V.P. 55-21-44-04
55-21-67-90 Se ruega portar traje oscuro e Insignia
LA ACADEMIA DE INGENIERIA
invita a usted
al Coloquio de Ingreso en el cual ingresará como
ACADE MICO TITULAR
el señor
M. C. SALVADOR LAZCANO DÍAZ DEL CASTILLO
que se celebrará el día 20 de septiembre de 2007,
a partir de las 15:00 horas en punto, en el
Salón de Rectores en el Palacio de Minería,
sito en Tacuba No. 5 de esta ciudad.
El Presidente
M. en C. Gerardo Ferrando Bravo

Más contenido relacionado

La actualidad más candente

Analisis de estabilidad_de_taludes_rocosos
Analisis de estabilidad_de_taludes_rocososAnalisis de estabilidad_de_taludes_rocosos
Analisis de estabilidad_de_taludes_rocososJEORGE ESROM CHAMBI
 
Perforacion diamantina -_tesis
Perforacion diamantina -_tesisPerforacion diamantina -_tesis
Perforacion diamantina -_tesisCesar Villegas
 
Peso específico y absorción de agregado grueso y fino
Peso específico y absorción de agregado grueso y finoPeso específico y absorción de agregado grueso y fino
Peso específico y absorción de agregado grueso y finobustamante199403
 
Informe de compresion simle
Informe de compresion simleInforme de compresion simle
Informe de compresion simleFredy Ortiz
 
Filtrado de métodos potenciales: gravimetría y magnetometría en el dominio de...
Filtrado de métodos potenciales: gravimetría y magnetometría en el dominio de...Filtrado de métodos potenciales: gravimetría y magnetometría en el dominio de...
Filtrado de métodos potenciales: gravimetría y magnetometría en el dominio de...Academia de Ingeniería de México
 
Clasificacion geomecanica q de barton (practica)
Clasificacion geomecanica q de barton (practica)Clasificacion geomecanica q de barton (practica)
Clasificacion geomecanica q de barton (practica)Luis Vera Valderrama
 
Propiedades Fisico Mecanicas En Macizos Rocosos
Propiedades Fisico Mecanicas En Macizos RocososPropiedades Fisico Mecanicas En Macizos Rocosos
Propiedades Fisico Mecanicas En Macizos Rocososutplcbcm1
 
Determinación de la Gravedad Específica de Partículas Sólidas
Determinación de la Gravedad Específica de  Partículas SólidasDeterminación de la Gravedad Específica de  Partículas Sólidas
Determinación de la Gravedad Específica de Partículas Sólidasguest7fb308
 

La actualidad más candente (20)

análisis granulométrico
análisis granulométricoanálisis granulométrico
análisis granulométrico
 
Analisis de estabilidad_de_taludes_rocosos
Analisis de estabilidad_de_taludes_rocososAnalisis de estabilidad_de_taludes_rocosos
Analisis de estabilidad_de_taludes_rocosos
 
Perforacion diamantina -_tesis
Perforacion diamantina -_tesisPerforacion diamantina -_tesis
Perforacion diamantina -_tesis
 
Ensayo de compresion uniaxial
Ensayo de compresion uniaxialEnsayo de compresion uniaxial
Ensayo de compresion uniaxial
 
Informe ensayo proctor estándar
Informe  ensayo proctor estándarInforme  ensayo proctor estándar
Informe ensayo proctor estándar
 
Peso específico y absorción de agregado grueso y fino
Peso específico y absorción de agregado grueso y finoPeso específico y absorción de agregado grueso y fino
Peso específico y absorción de agregado grueso y fino
 
MACIZOS ROCOSOS
MACIZOS ROCOSOSMACIZOS ROCOSOS
MACIZOS ROCOSOS
 
Informe de compresion simle
Informe de compresion simleInforme de compresion simle
Informe de compresion simle
 
Filtrado de métodos potenciales: gravimetría y magnetometría en el dominio de...
Filtrado de métodos potenciales: gravimetría y magnetometría en el dominio de...Filtrado de métodos potenciales: gravimetría y magnetometría en el dominio de...
Filtrado de métodos potenciales: gravimetría y magnetometría en el dominio de...
 
Flujos de agua en los macizos rocosos
Flujos de agua en los macizos rocososFlujos de agua en los macizos rocosos
Flujos de agua en los macizos rocosos
 
Capitulo 3: Exploracion y Muestreo.
Capitulo 3: Exploracion y Muestreo.Capitulo 3: Exploracion y Muestreo.
Capitulo 3: Exploracion y Muestreo.
 
Resistencia y deformabilidad de roca
Resistencia y deformabilidad de  rocaResistencia y deformabilidad de  roca
Resistencia y deformabilidad de roca
 
Clasificacion geomecanica q de barton (practica)
Clasificacion geomecanica q de barton (practica)Clasificacion geomecanica q de barton (practica)
Clasificacion geomecanica q de barton (practica)
 
Informe triaxial
Informe triaxialInforme triaxial
Informe triaxial
 
Propiedades Fisico Mecanicas En Macizos Rocosos
Propiedades Fisico Mecanicas En Macizos RocososPropiedades Fisico Mecanicas En Macizos Rocosos
Propiedades Fisico Mecanicas En Macizos Rocosos
 
Exploracion de suelos converted
Exploracion de suelos convertedExploracion de suelos converted
Exploracion de suelos converted
 
Determinación de la Gravedad Específica de Partículas Sólidas
Determinación de la Gravedad Específica de  Partículas SólidasDeterminación de la Gravedad Específica de  Partículas Sólidas
Determinación de la Gravedad Específica de Partículas Sólidas
 
Licuefacción de-suelos
Licuefacción de-suelosLicuefacción de-suelos
Licuefacción de-suelos
 
Mecánica de Rocas
Mecánica de RocasMecánica de Rocas
Mecánica de Rocas
 
Compactacion
CompactacionCompactacion
Compactacion
 

Destacado

Paisaje en zonas secas
Paisaje en zonas secasPaisaje en zonas secas
Paisaje en zonas secaspepe.moranco
 
Trabajo traxial-cd
Trabajo traxial-cdTrabajo traxial-cd
Trabajo traxial-cdDENIS TURPO
 
EMIN SG - Catalogo de Geomallas TriAx Tensar
EMIN SG - Catalogo de Geomallas TriAx TensarEMIN SG - Catalogo de Geomallas TriAx Tensar
EMIN SG - Catalogo de Geomallas TriAx TensarEMIN Sistemas Geotecnicos
 
PROPIEDADES HIDRAULICAS DE LOS SUELOS
PROPIEDADES HIDRAULICAS DE LOS SUELOSPROPIEDADES HIDRAULICAS DE LOS SUELOS
PROPIEDADES HIDRAULICAS DE LOS SUELOSUNEFA
 
Caracterizacion de suelos arenosos mediante analisis de ondas de superficie
Caracterizacion de suelos arenosos mediante analisis de ondas de superficieCaracterizacion de suelos arenosos mediante analisis de ondas de superficie
Caracterizacion de suelos arenosos mediante analisis de ondas de superficieMiguel Yepez
 
EMIN SG - Sistema Mejoramiento Carreteras TriAx de Tensar
EMIN SG - Sistema Mejoramiento Carreteras TriAx de TensarEMIN SG - Sistema Mejoramiento Carreteras TriAx de Tensar
EMIN SG - Sistema Mejoramiento Carreteras TriAx de TensarEMIN Sistemas Geotecnicos
 
Ensayo edometrico o de consolidacion
Ensayo edometrico o de consolidacionEnsayo edometrico o de consolidacion
Ensayo edometrico o de consolidacionatlasss
 
Recursos de la biosfera y el suelo
Recursos de la biosfera y el sueloRecursos de la biosfera y el suelo
Recursos de la biosfera y el suelopepe.moranco
 
Ensayo de compactación -Mecánica de Suelos
Ensayo de compactación -Mecánica de SuelosEnsayo de compactación -Mecánica de Suelos
Ensayo de compactación -Mecánica de SuelosLeidy Mena Ruiz
 
Compactacion suelos
Compactacion suelosCompactacion suelos
Compactacion sueloslopez1031106
 
ESTRUCTURA DEL PAVIMENTO
ESTRUCTURA DEL PAVIMENTOESTRUCTURA DEL PAVIMENTO
ESTRUCTURA DEL PAVIMENTOguest4be40f
 

Destacado (20)

Paisaje en zonas secas
Paisaje en zonas secasPaisaje en zonas secas
Paisaje en zonas secas
 
Trabajo traxial-cd
Trabajo traxial-cdTrabajo traxial-cd
Trabajo traxial-cd
 
EMIN SG - Catalogo de Geomallas TriAx Tensar
EMIN SG - Catalogo de Geomallas TriAx TensarEMIN SG - Catalogo de Geomallas TriAx Tensar
EMIN SG - Catalogo de Geomallas TriAx Tensar
 
PROPIEDADES HIDRAULICAS DE LOS SUELOS
PROPIEDADES HIDRAULICAS DE LOS SUELOSPROPIEDADES HIDRAULICAS DE LOS SUELOS
PROPIEDADES HIDRAULICAS DE LOS SUELOS
 
Caracterizacion de suelos arenosos mediante analisis de ondas de superficie
Caracterizacion de suelos arenosos mediante analisis de ondas de superficieCaracterizacion de suelos arenosos mediante analisis de ondas de superficie
Caracterizacion de suelos arenosos mediante analisis de ondas de superficie
 
EMIN SG - Sistema Mejoramiento Carreteras TriAx de Tensar
EMIN SG - Sistema Mejoramiento Carreteras TriAx de TensarEMIN SG - Sistema Mejoramiento Carreteras TriAx de Tensar
EMIN SG - Sistema Mejoramiento Carreteras TriAx de Tensar
 
El suelo
El sueloEl suelo
El suelo
 
La desertizacion-presentacion-
La desertizacion-presentacion-La desertizacion-presentacion-
La desertizacion-presentacion-
 
Ensayo edometrico o de consolidacion
Ensayo edometrico o de consolidacionEnsayo edometrico o de consolidacion
Ensayo edometrico o de consolidacion
 
EQUIPOS DE COMPACTACIÓN - (SECCIÓN 6-2)
EQUIPOS DE COMPACTACIÓN - (SECCIÓN 6-2)EQUIPOS DE COMPACTACIÓN - (SECCIÓN 6-2)
EQUIPOS DE COMPACTACIÓN - (SECCIÓN 6-2)
 
1 clase de suelos
1 clase de suelos1 clase de suelos
1 clase de suelos
 
Recursos de la biosfera y el suelo
Recursos de la biosfera y el sueloRecursos de la biosfera y el suelo
Recursos de la biosfera y el suelo
 
Ensayo de compactación -Mecánica de Suelos
Ensayo de compactación -Mecánica de SuelosEnsayo de compactación -Mecánica de Suelos
Ensayo de compactación -Mecánica de Suelos
 
Presentacion ensayo para suelos
Presentacion ensayo para suelosPresentacion ensayo para suelos
Presentacion ensayo para suelos
 
Compactacion suelos
Compactacion suelosCompactacion suelos
Compactacion suelos
 
COMPACTACION DE SUELOS
COMPACTACION DE SUELOSCOMPACTACION DE SUELOS
COMPACTACION DE SUELOS
 
7. permeabilidad en suelossss
7. permeabilidad en suelossss7. permeabilidad en suelossss
7. permeabilidad en suelossss
 
ESTRUCTURA DEL PAVIMENTO
ESTRUCTURA DEL PAVIMENTOESTRUCTURA DEL PAVIMENTO
ESTRUCTURA DEL PAVIMENTO
 
TIPOS DE PAVIMENTOS
TIPOS DE PAVIMENTOSTIPOS DE PAVIMENTOS
TIPOS DE PAVIMENTOS
 
Buen tipos de fundaciones
Buen tipos de fundacionesBuen tipos de fundaciones
Buen tipos de fundaciones
 

Similar a Caracterización de suelos arenosos mediante análisis de ondas de superficie

Caracterizacion de suelos arenosos mediante analisis de ondas de superficie
Caracterizacion de suelos arenosos mediante analisis de ondas de superficieCaracterizacion de suelos arenosos mediante analisis de ondas de superficie
Caracterizacion de suelos arenosos mediante analisis de ondas de superficieGabriela Gauto
 
Exploracion de suelos katherine-morales
Exploracion de suelos katherine-moralesExploracion de suelos katherine-morales
Exploracion de suelos katherine-moralesKatherineMorales69
 
Diseno Cimentaciones-ConceptosTeóricosyAplicacionesPrácticas (1).pptx
Diseno Cimentaciones-ConceptosTeóricosyAplicacionesPrácticas (1).pptxDiseno Cimentaciones-ConceptosTeóricosyAplicacionesPrácticas (1).pptx
Diseno Cimentaciones-ConceptosTeóricosyAplicacionesPrácticas (1).pptxBRANDONRAFAELATENCIO
 
Exploracion de suelos
Exploracion de suelosExploracion de suelos
Exploracion de suelosJuniorPalza
 
exposición de veleta grupo 3 (1).pdf
exposición de veleta grupo 3 (1).pdfexposición de veleta grupo 3 (1).pdf
exposición de veleta grupo 3 (1).pdfArmandMaxiMenzala
 
Ensayo de veleta grupo 3.docx
Ensayo de veleta grupo 3.docxEnsayo de veleta grupo 3.docx
Ensayo de veleta grupo 3.docxArmandMaxiMenzala
 
Trabajo de geologia suelos
Trabajo de geologia suelosTrabajo de geologia suelos
Trabajo de geologia sueloszarrey
 
Estudio de Suelos Hojarasca
Estudio de Suelos HojarascaEstudio de Suelos Hojarasca
Estudio de Suelos HojarascaJminmobiliaria
 
INVESTIGACIÓN IN SITU DEL MACIZO.ppt
INVESTIGACIÓN IN SITU DEL MACIZO.pptINVESTIGACIÓN IN SITU DEL MACIZO.ppt
INVESTIGACIÓN IN SITU DEL MACIZO.pptDAVIDESCOBARGARCA2
 

Similar a Caracterización de suelos arenosos mediante análisis de ondas de superficie (20)

Caracterizacion de suelos arenosos mediante analisis de ondas de superficie
Caracterizacion de suelos arenosos mediante analisis de ondas de superficieCaracterizacion de suelos arenosos mediante analisis de ondas de superficie
Caracterizacion de suelos arenosos mediante analisis de ondas de superficie
 
Exploracion de suelos katherine-morales
Exploracion de suelos katherine-moralesExploracion de suelos katherine-morales
Exploracion de suelos katherine-morales
 
LA GEOTECNOLOGÍA
LA GEOTECNOLOGÍALA GEOTECNOLOGÍA
LA GEOTECNOLOGÍA
 
Lab. suelos 1
Lab. suelos 1Lab. suelos 1
Lab. suelos 1
 
Diseno Cimentaciones-ConceptosTeóricosyAplicacionesPrácticas (1).pptx
Diseno Cimentaciones-ConceptosTeóricosyAplicacionesPrácticas (1).pptxDiseno Cimentaciones-ConceptosTeóricosyAplicacionesPrácticas (1).pptx
Diseno Cimentaciones-ConceptosTeóricosyAplicacionesPrácticas (1).pptx
 
Exploracion de suelos
Exploracion de suelosExploracion de suelos
Exploracion de suelos
 
Exploracion de suelos
Exploracion de suelosExploracion de suelos
Exploracion de suelos
 
exposición de veleta grupo 3 (1).pdf
exposición de veleta grupo 3 (1).pdfexposición de veleta grupo 3 (1).pdf
exposición de veleta grupo 3 (1).pdf
 
Ensayo de veleta grupo 3.docx
Ensayo de veleta grupo 3.docxEnsayo de veleta grupo 3.docx
Ensayo de veleta grupo 3.docx
 
Trabajo de geologia suelos
Trabajo de geologia suelosTrabajo de geologia suelos
Trabajo de geologia suelos
 
EXPLORACION DE SUELOS.PPT
EXPLORACION DE SUELOS.PPTEXPLORACION DE SUELOS.PPT
EXPLORACION DE SUELOS.PPT
 
TRAZO DE TALADROS corregido.pptx
TRAZO DE TALADROS corregido.pptxTRAZO DE TALADROS corregido.pptx
TRAZO DE TALADROS corregido.pptx
 
Poma rp
Poma rpPoma rp
Poma rp
 
Diseno cimentaciones cip ppt
Diseno cimentaciones cip pptDiseno cimentaciones cip ppt
Diseno cimentaciones cip ppt
 
Exploracion de suelos
Exploracion de suelosExploracion de suelos
Exploracion de suelos
 
Exploracion de suelos
Exploracion de suelosExploracion de suelos
Exploracion de suelos
 
Exploracion de campo
Exploracion de campoExploracion de campo
Exploracion de campo
 
INTERPRETACION DE PERFILES
INTERPRETACION DE PERFILESINTERPRETACION DE PERFILES
INTERPRETACION DE PERFILES
 
Estudio de Suelos Hojarasca
Estudio de Suelos HojarascaEstudio de Suelos Hojarasca
Estudio de Suelos Hojarasca
 
INVESTIGACIÓN IN SITU DEL MACIZO.ppt
INVESTIGACIÓN IN SITU DEL MACIZO.pptINVESTIGACIÓN IN SITU DEL MACIZO.ppt
INVESTIGACIÓN IN SITU DEL MACIZO.ppt
 

Más de Academia de Ingeniería de México

Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...
Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...
Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...Academia de Ingeniería de México
 
Ground deformation effects on subsurface pipelines and infrastructure
Ground deformation effects on subsurface pipelines and infrastructureGround deformation effects on subsurface pipelines and infrastructure
Ground deformation effects on subsurface pipelines and infrastructureAcademia de Ingeniería de México
 
From force-based to displacement-based seismic design. What comes next?
From force-based to displacement-based seismic design. What comes next?From force-based to displacement-based seismic design. What comes next?
From force-based to displacement-based seismic design. What comes next?Academia de Ingeniería de México
 
New Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, Recyclable
New Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, RecyclableNew Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, Recyclable
New Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, RecyclableAcademia de Ingeniería de México
 
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...Academia de Ingeniería de México
 
Economic Assessment and Value Maximizations of a Mining Operation based on an...
Economic Assessment and Value Maximizations of a Mining Operation based on an...Economic Assessment and Value Maximizations of a Mining Operation based on an...
Economic Assessment and Value Maximizations of a Mining Operation based on an...Academia de Ingeniería de México
 
Desarrollo de la Ingeniería de Proyecto como un cambio de paradigma en México
Desarrollo de la Ingeniería de Proyecto como un cambio de paradigma en MéxicoDesarrollo de la Ingeniería de Proyecto como un cambio de paradigma en México
Desarrollo de la Ingeniería de Proyecto como un cambio de paradigma en MéxicoAcademia de Ingeniería de México
 
Desarrollo de Indicadores de Desempeño para Centrales Nucleares
Desarrollo de Indicadores de Desempeño para Centrales NuclearesDesarrollo de Indicadores de Desempeño para Centrales Nucleares
Desarrollo de Indicadores de Desempeño para Centrales NuclearesAcademia de Ingeniería de México
 
Administración de activos físicos: Nuevos paradigmas para la conservación de ...
Administración de activos físicos: Nuevos paradigmas para la conservación de ...Administración de activos físicos: Nuevos paradigmas para la conservación de ...
Administración de activos físicos: Nuevos paradigmas para la conservación de ...Academia de Ingeniería de México
 
Creación de capacidades de Innovación en México desde la perspectiva de la em...
Creación de capacidades de Innovación en México desde la perspectiva de la em...Creación de capacidades de Innovación en México desde la perspectiva de la em...
Creación de capacidades de Innovación en México desde la perspectiva de la em...Academia de Ingeniería de México
 
Proceso de optimización de reservas minables de un depósito de oro orogénico
Proceso de optimización de reservas minables de un depósito de oro orogénicoProceso de optimización de reservas minables de un depósito de oro orogénico
Proceso de optimización de reservas minables de un depósito de oro orogénicoAcademia de Ingeniería de México
 
Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...
Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...
Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...Academia de Ingeniería de México
 
Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...
Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...
Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...Academia de Ingeniería de México
 

Más de Academia de Ingeniería de México (20)

Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...
Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...
Anomalías de flujo de calor terrestre y la definición de la provincia geotérm...
 
Nanoscale Properties of Biocompatible materials
Nanoscale Properties of Biocompatible materialsNanoscale Properties of Biocompatible materials
Nanoscale Properties of Biocompatible materials
 
Ground deformation effects on subsurface pipelines and infrastructure
Ground deformation effects on subsurface pipelines and infrastructureGround deformation effects on subsurface pipelines and infrastructure
Ground deformation effects on subsurface pipelines and infrastructure
 
Engineering the Future
Engineering the FutureEngineering the Future
Engineering the Future
 
From force-based to displacement-based seismic design. What comes next?
From force-based to displacement-based seismic design. What comes next?From force-based to displacement-based seismic design. What comes next?
From force-based to displacement-based seismic design. What comes next?
 
Impact of Earthquaker Duration on Bridge Performance
Impact of Earthquaker Duration on Bridge PerformanceImpact of Earthquaker Duration on Bridge Performance
Impact of Earthquaker Duration on Bridge Performance
 
New Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, Recyclable
New Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, RecyclableNew Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, Recyclable
New Paradigm in Earthquaker Engineering of Bridges-Resilient, Fast, Recyclable
 
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...
 
Economic Assessment and Value Maximizations of a Mining Operation based on an...
Economic Assessment and Value Maximizations of a Mining Operation based on an...Economic Assessment and Value Maximizations of a Mining Operation based on an...
Economic Assessment and Value Maximizations of a Mining Operation based on an...
 
Desarrollo de la Ingeniería de Proyecto como un cambio de paradigma en México
Desarrollo de la Ingeniería de Proyecto como un cambio de paradigma en MéxicoDesarrollo de la Ingeniería de Proyecto como un cambio de paradigma en México
Desarrollo de la Ingeniería de Proyecto como un cambio de paradigma en México
 
El mundo real y la interdisciplina
El mundo real y la interdisciplinaEl mundo real y la interdisciplina
El mundo real y la interdisciplina
 
Desarrollo de Indicadores de Desempeño para Centrales Nucleares
Desarrollo de Indicadores de Desempeño para Centrales NuclearesDesarrollo de Indicadores de Desempeño para Centrales Nucleares
Desarrollo de Indicadores de Desempeño para Centrales Nucleares
 
Administración de activos físicos: Nuevos paradigmas para la conservación de ...
Administración de activos físicos: Nuevos paradigmas para la conservación de ...Administración de activos físicos: Nuevos paradigmas para la conservación de ...
Administración de activos físicos: Nuevos paradigmas para la conservación de ...
 
Creación de capacidades de Innovación en México desde la perspectiva de la em...
Creación de capacidades de Innovación en México desde la perspectiva de la em...Creación de capacidades de Innovación en México desde la perspectiva de la em...
Creación de capacidades de Innovación en México desde la perspectiva de la em...
 
Modelo educativo para la industria 4.0
Modelo educativo para la industria 4.0Modelo educativo para la industria 4.0
Modelo educativo para la industria 4.0
 
Proceso de optimización de reservas minables de un depósito de oro orogénico
Proceso de optimización de reservas minables de un depósito de oro orogénicoProceso de optimización de reservas minables de un depósito de oro orogénico
Proceso de optimización de reservas minables de un depósito de oro orogénico
 
El camino real de la plata
El camino real de la plataEl camino real de la plata
El camino real de la plata
 
Importancia de la Geomecánica petrolera profunda
Importancia de la Geomecánica petrolera profundaImportancia de la Geomecánica petrolera profunda
Importancia de la Geomecánica petrolera profunda
 
Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...
Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...
Tecnología de captura, uso y almacenamiento de CO2 (CCUS) con registros geofí...
 
Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...
Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...
Modelo conceptual para el pronóstico del funcionamiento hidráulico del sistem...
 

Último

TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfTAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfAntonioGonzalezIzqui
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPJosLuisFrancoCaldern
 
sistema de construcción Drywall semana 7
sistema de construcción Drywall semana 7sistema de construcción Drywall semana 7
sistema de construcción Drywall semana 7luisanthonycarrascos
 
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaProyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaXjoseantonio01jossed
 
Seleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSeleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSaulSantiago25
 
clases de dinamica ejercicios preuniversitarios.pdf
clases de dinamica ejercicios preuniversitarios.pdfclases de dinamica ejercicios preuniversitarios.pdf
clases de dinamica ejercicios preuniversitarios.pdfDanielaVelasquez553560
 
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfPresentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfMirthaFernandez12
 
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kVEl proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kVSebastianPaez47
 
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaSesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaXimenaFallaLecca1
 
Magnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principiosMagnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principiosMarceloQuisbert6
 
Curso intensivo de soldadura electrónica en pdf
Curso intensivo de soldadura electrónica  en pdfCurso intensivo de soldadura electrónica  en pdf
Curso intensivo de soldadura electrónica en pdfFernandaGarca788912
 
Caldera Recuperadora de químicos en celulosa tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa  tipos y funcionamientoCaldera Recuperadora de químicos en celulosa  tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa tipos y funcionamientoRobertoAlejandroCast6
 
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)ssuser563c56
 
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptxGARCIARAMIREZCESAR
 
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...SuannNeyraChongShing
 
SSOMA, seguridad y salud ocupacional. SST
SSOMA, seguridad y salud ocupacional. SSTSSOMA, seguridad y salud ocupacional. SST
SSOMA, seguridad y salud ocupacional. SSTGestorManpower
 
Manual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfManual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfedsonzav8
 
Introducción a los sistemas neumaticos.ppt
Introducción a los sistemas neumaticos.pptIntroducción a los sistemas neumaticos.ppt
Introducción a los sistemas neumaticos.pptEduardoCorado
 
Flujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxFlujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxEduardoSnchezHernnde5
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALKATHIAMILAGRITOSSANC
 

Último (20)

TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfTAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
 
sistema de construcción Drywall semana 7
sistema de construcción Drywall semana 7sistema de construcción Drywall semana 7
sistema de construcción Drywall semana 7
 
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaProyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
 
Seleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSeleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusibles
 
clases de dinamica ejercicios preuniversitarios.pdf
clases de dinamica ejercicios preuniversitarios.pdfclases de dinamica ejercicios preuniversitarios.pdf
clases de dinamica ejercicios preuniversitarios.pdf
 
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdfPresentación Proyecto Trabajo Creativa Profesional Azul.pdf
Presentación Proyecto Trabajo Creativa Profesional Azul.pdf
 
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kVEl proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
 
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaSesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
 
Magnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principiosMagnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principios
 
Curso intensivo de soldadura electrónica en pdf
Curso intensivo de soldadura electrónica  en pdfCurso intensivo de soldadura electrónica  en pdf
Curso intensivo de soldadura electrónica en pdf
 
Caldera Recuperadora de químicos en celulosa tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa  tipos y funcionamientoCaldera Recuperadora de químicos en celulosa  tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa tipos y funcionamiento
 
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)
 
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
4.6 DEFINICION DEL PROBLEMA DE ASIGNACION.pptx
 
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
Polimeros.LAS REACCIONES DE POLIMERIZACION QUE ES COMO EN QUIMICA LLAMAMOS A ...
 
SSOMA, seguridad y salud ocupacional. SST
SSOMA, seguridad y salud ocupacional. SSTSSOMA, seguridad y salud ocupacional. SST
SSOMA, seguridad y salud ocupacional. SST
 
Manual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfManual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdf
 
Introducción a los sistemas neumaticos.ppt
Introducción a los sistemas neumaticos.pptIntroducción a los sistemas neumaticos.ppt
Introducción a los sistemas neumaticos.ppt
 
Flujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxFlujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptx
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
 

Caracterización de suelos arenosos mediante análisis de ondas de superficie

  • 1. 1: IP 111 L .1 e e lI I c e H 1 • e HH e MEXICO Caracterización de suelos arenosos mediante análisis de ondas de superficie ESPECIALIDAD: Ingeniería Civil Salvador Lazcano Díaz del Castillo Maestro en Ciencias 20 de septiembre del 2007
  • 2. Caracterización de suelos arenosos mediante análisis de ondas de superficie CONTENIDO: Resumen ejecutivo 3 Caracterización de suelos 4 1.1. Caracterización mediante pruebas mecánicas 4 1.2. Caracterización mediante pruebas geofísicas 7 Ondas elásticas en depósitos de suelos 8 2.1. Tipos de ondas elásticas 8 2.2. Velocidad de onda de corte (V s) 9 2.3. Ondas de superficie 9 Ondas de superficie en depósitos de suelos u 3.1. Diversos métodos de análisis u 3.2. Refracción de Microtremores (ReMi) 12 Aplicaciones prácticas 14 4.1. Caracterización sísmica de depósitos de suelos 14 4.2. Evaluación de asentamiento de zapatas en arenas 19 S. Conclusiones 21 Referencias 24 Agradecimientos 27 Currículum vitae 28 Especialidad: Ingeniería Civil 2
  • 3. Caracterización de suelos arenosos mediante análisis de ondas de superficie RESUMEN E)ECUTIVO Las arenas son suelos que poseen estructuras naturales con características tales que, para fines prácticos, impiden ser muestreadas en forma inalterada para su posterior estudio en laboratorio. Por esta razón, desde los inicios de la mecánica de suelos en la primera mitad del siglo XX, se optó por evaluar las propiedades de los depósitos arenosos recurriendo a pruebas in situ o de campo. La prueba de penetración estándar fue una de las primeras empleadas para dichos fines, y sigue siendo ampliamente utilizada, pero también fuertemente criticada por la inconsistencia en sus resultados. A dicha prueba mecánica le siguieron otras, entre las que se encuentran principalmente los conos dinámico y estático, presiómetro y dilatómetro, entre otros. Desde principios de la década de 1970, gracias al avance de la electrónica, se comenzaron a utilizar pruebas geofísicas, principalmente de tipo sísmico, para estudiar suelos. Los primeros métodos geofísicos usados fueron refracción sísmica, crosshole y downhole. En la década de 1980 se incorporó el uso de análisis de ondas de superficie al campo de la caracterización de suelos. Esta es una técnica no invasiva, en la cual se colocan sensores en la superficie del terreno para registrar la llegada de diversos tipos de ondas, y mediante diversos métodos de análisis se pueden obtener perfiles de variación de velocidad de onda de corte (y5) a profundidad. Algunos de estos métodos son SASW (Spectral Analysis of Surface Wave), MASW (Multi-channel Anal ysis of Surface Wave) y ReM1 (Refraction Microtremor). La utilidad primaria de las pruebas geofísicas sísmicas en el campo de la geotecnia es la determinación de variaciones en la velocidad de onda de corte (y5) a profundidad. Conocidas las V, es posible calcular la rigidez de la estructura de los.suelos (módulos de cortante - G - y elástico - E) que pueden ser usados tanto en problemas dinámicos (cimentación de maquinaria, sismos leves, etc.) como en diseño de cimentaciones ante cargas estáticas. Otra aplicación es la caracterización de depósitos de suelo ante sismos. En este trabajo se presentarán varias experiencias en suelos arenosos de Guadalajara y de la costa de Jalisco y Nayarit, en donde se utilizó la técnica ReMi para determinar velocidades de onda de corte (y5) y a partir de esta información se caracterizó el comportamiento sísmico de suelos y se estimaron magnitudes de asentamientos de zapatas. La técnica ReMi en particular, y en general los métodos de análisis de onda de superficie (SASW, MASW, etc.), prometen ser herramientas valiosas para utilizarse en la caracterización de depósitos de suelos arenosos, junto con una o más pruebas de campo (penetración estándar, conos estático y dinámico, presiómetro, dilatómetro, crosshole, downhole, etc.). Palabras clave: caracterización, arenas, ondas de superficie, onda de corte (y 5), refracción de microtremores (ReMi) Especialidad: Ingeniería Civil
  • 4. Caracterización de suelos arenosos mediante análisis de ondas de superficie . e 1. CARACTERIZACIÓN DE SUELOS En este trabajo se presenta el análisis de ondas de superficie como una herramienta que en los últimos 25 años se ha comenzado a aplicar en la caracterización de suelos. Aquí nos enfocaremos en particular a su uso en suelos arenosos. . Para poder introducirnos al tema, es conveniente partir de una breve definición de conceptos. La Real Academia Española define "caracterizar" como "determinar los atributos peculiares de alguien o de algo, de modo que claramente se distinga de los demás". En este contexto, la caracterización de suelos se entiende como la e determinación de propiedades peculiares o particulares de estos materiales. e Por arenas entenderemos lo que establece el Sistema Unificado de Clasificación de Suelos (SUCS): son partículas de suelo cuyas dimensiones fluctúan entre 0.075 mm (malla No. 200) y 4.75 mm (malla No. 4). Partículas mayores a 4.75 mm pero menores de 75 mm se les llama gravas, y a las partículas menores de 0.075 mm se les llama suelos finos, y pueden ser arcillas o limos, dependiendo de su plasticidad. El SUCS nombra a un suelo arena cuando el 50% de sus partículas están comprendidas en el rango de 0.075 a 4.75 mm. Cuando las arenas tienes menos de 5% de finos, se subdividen en bien graduadas (SW) y uniformes o mal graduadas (SP), dependiendo de sus curvas granulométricas. Cuando el contenido de finos es mayor a 12%, se les llama arenas arcillosas (SC) o limosas (SM), dependiendo de la plasticidad de los suelos finos. Finalmente, cuando el contenido de finos en un suelo arenoso fluctúa entre 5 y 12%, se usa símbolo doble que incluye información tanto de la granulometría como de la plasticidad de los finos (SW-SM, SW-SC, SP-SM, SP-SC). En suelos arenosos, al igual que en gravas, la obtención de muestras inalteradas es prácticamente imposible. Esta particularidad, aunada a otros factores como costos y tiempos, han hecho que las pruebas de campo tengan en la actualidad un papel importante en la caracterización de depósitos de arenas. 1.1. Caracterización mediante pruebas mecánicas Desde mucho tiempo antes del inicio formal de la mecánica de suelos en la década de 1920, había interés entre los constructores en determinar las características de los suelos (caracterización de suelos), para poder diagnosticar el comportamiento de éstos al construir sobre ellos, con ellos o dentro de ellos. A finales del siglo XVII se desarrolló en Alemania a la que se puede considerar como precursora de las pruebas de penetración, y consistía en hincar mediante impactos una varilla que terminaba en punta. De esta prueba dinámica de penetración nació el cono dinámico (DP, del inglés dinamíc probing) e indirectamente la prueba de penetración estándar (SPT, del inglés standard penetration test), desarrollada en los Estados Unidos a principios del siglo XX y estandarizada en 1930 (Broms y Floding, 1988). La prueba de penetración estándar en términos generales consiste en hincar un tubo de acero de 51 mm de diámetro externo y 35 mm de diámetro interno, Especialidad: Ingeniería Civil 4
  • 5. Caracterización de suelos arenosos mediante análisis de ondas de superficie mediante impactos con un martinete de 63.5 kg, dejándolo caer libremente de una altura de 76 cm (ver Figura 1). Se cuenta el número de golpes requeridos para un hincado de 30 cm y a ese valor se le conoce como resistencia a la penetración estándar y se simboliza como N. Es la prueba más usada para determinar las propiedades de arenas en campo, pero también ha sido fuertemente cuestionada por la inconsistencia en los resultados, ya que es muy vulnerable y sensible al proceso de ejecución (Decourt et al., 1988). El uso de martinetes automáticos y los dispositivos para medir la eficiencia de la prueba han ayudado a disminuir la incertidumbre, pero quizá su popularidad disminuirá en los próximos años, debido a la cada vez mayor aceptación de otras pruebas que se han desarrollado. La prueba de cono dinámico, al igual que en la de penetración estándar, se avanza utilizando un martinete con caída libre, pero en vez de hincar un tubo, se hinca un cono de acero. Está estandarizado en varios países (Alemania, España, Gran Bretaña, etc.), y en el Simposio Internacional de Pruebas de penetración (Stefanoff et al., 1988) de 1988 se propuso una estandarización mundial que contempla cuatro variantes, dependiendo de la energía aplicada y de las dimensiones de los conos. Es una prueba rápida y económica que puede ser de mucha utilidad, sobre todo si se usa en combinación con una o más pruebas de campo. En México ha sido relativamente limitado el uso del cono dinámico y hay pocas publicaciones relacionadas a dicha prueba (Santoyo et al., 1989; Lazcano, 1995; Dumas González, 1998). En fechas recientes se ha usado en algunos proyectos un equipo de un cono dinámico computarizado llamado PANDA que se desarrolló en Francia (Luna Gonzalez et al., 2004). Casi al mismo tiempo que la prueba de penetración estándar, en Holanda se desarrolló el cono holandés o estático (CPT, del inglés cone penetration test) (Broms y Floding, 1988), el cual ha evolucionado en una manera importante gracias a los avances de la electrónica, que han permitido incorporar en el cono diferentes sensores para medir presión de punta y lateral, presión de poro, arribo de ondas elásticas, etc. La prueba de cono consiste, a grandes rasgos, en hincar a presión un cono de acero de 35.7 mm de diámetro (10 cm 2 de sección transversal), cuya punta tiene un ángulo de 600 . El cono estático es la prueba de campo que ha tenido una mayor aceptación en los últimos años por la consistencia en sus resultados y las hasta un máximo de cinco mediciones independientes que proporciona. Tiene la desventaja de la dificultad de penetrar en suelos con rigideces altas. El cono estático ha sido ampliamente usado en suelos blandos de la Ciudad de México y en otros sitios del país y hay decenas de artículos publicados que presentan las experiencias que se han obtenido. Santoyo et al. (1989) hicieron una interesante publicación en donde se presenta algo de la experiencia obtenida con esta prueba. En fechas recientes se inventaron otros tipos de pruebas de campo para caracterización de suelos, como son el presiómetro (PMT) desarrollado en Francia por Menard en 1955, y el dilatómetro plano (DMT) diseñado por Marchetti en Italia, en la década de 1970 (Marchetti, 1980). Especialidad: Ingeniería Civil 5
  • 6. Caracterización de suelos arenosos mediante análisis de ondas de superficie Al presiómetro y al dilatómetro se les considera pruebas de expansión, pero hay diferencias importantes entre una y otra. El presiómetro (PMT) es un dispositivo que ejerce presión radial contra el suelo circundante y se lleva un registro de presión radial contra deformación que ocurre (ver Figura 1). Hay equipos que requieren perforación previa para su introducción y otros que se introducen a presión o a presión y con aspas para facilitar el avance. La realización de esta prueba requiere de personal altamente capacitado, lo que ha frenado su desarrollo. Por otro lado, el presiómetro tiene el atractivo de poder ser usado en suelos blando a muy duros, e inclusive en rocas blandas. e 'e I e A 1 + $ II..II e e 1 1 $ flH SPT CPT DMT Standard Cone FW Plate Pendration Penra1ion DiIatomer Test Test Teat >MT Pratored Teat Figura 1. Principales pruebas de campo de tipo mecánico (adaptado de Mayne et al, 2001). El dilatómetro plano (DMT), también llamado de Marchetti, es una paleta afilada de acero de 95 mm de ancho y 15 mm de espesor, que en una de sus caras tiene una delgada membrana circular de acero de 60 mm de diámetro (ver Figura 1). Esta paleta se hinca en el suelo a presión o mediante impactos, y una vez que se alcanza la profundidad deseada se hace una pequeña prueba de carga lateral. Algunas de las aplicaciones de esta prueba son la predicción de asentamientos, determinación del ángulo de fricción interna en arenas, resistencia no drenada de arcillas y determinación de parámetros para elementos finitos. Al igual que en el caso del cono estático, hay dilatómetro sísmico, al cual se le incorporó un sensor de vibración para determinar velocidades de onda de corte en suelos, en forma similar a la pruebas geofísicas tipo downhole que se tratarán en la siguiente sección. Especialidad: Ingeniería Civil 6
  • 7. Caracterización de suelos arenosos mediante análisis de ondas de superficie 1.2. Caracterización mediante pruebas geofísicas Hasta aquí se han mencionado las principales pruebas mecánicas de campo (DP, SPT, CPT, PMT, DMT). A partir de la década de 1960, en el campo de la geotecnia se han ido incorporando gradualmente diversas pruebas geofísicas, principalmente las de tipo sísmico y eléctrico. El incremento en el uso de métodos geofísicos para caracterización de suelos es tal, que las memorias del la 2a Conferencia Internacional sobre Caracterización las titularon: "Caracterización Geotécnica y Geofísica en Campo" (da Fonseca y Mayne, 2004). Ahí se presentaron 36 artículos relacionados con el empleo de métodos geofísicos en la geotecnia, que representó el 16% de los trabajos presentados. En las pruebas geofísicas sísmicas se trabaja con la propagación de las ondas elásticas y en las pruebas eléctricas con ondas electro-magnéticas. Estas pruebas se pueden usar tanto en campo como en laboratorio y proporcionan información complementaria a cerca de los suelos, que equivale a "verlos" y "oirlos" (Santamarina et al., 2001). Las pruebas geofísicas sísmicas de campo que principalmente se usan en geotecnia son: refracción sísmica, downhole, crossho!e y diversos métodos de onda de superficie. Las tres primeras se han usado desde la década de 1970, mientras que las ondas de superficie a partir de 1980. La prueba de refracción sísmica consiste en colocar varios sensores (geófonos) a lo largo de una línea, y en un punto se genera vibración. Los geófonos se conectan a un sismógrafo, en donde se registra la llegada de las ondas elásticas. Conocida la distancia desde la fuente de vibración hasta los geófonos y el tiempo, que se obtiene de los sismogramas, es posible determinar la velocidad de propagación de las ondas. Con la refracción sísmica se determina la velocidad de ondas primarias o de compresión (Vp), pero es muy difícil evaluar la velocidad de ondas secundarias o de corte (y5). Además, sólo es posible detectar estratos con rigideces progresivamente mayores con la profundidad. La refracción sísmica se utiliza generalmente para encontrar la profundidad de la roca y para estimar el proceso de excavación de suelos y rocas. Previa a la ejecución de la prueba geofísica sísmica tipo downhole se debe realizar una perforación, en la cual se introduce uno o varios sensores (geófonos) que se conectan a un sismógrafo. En la superficie se genera vibración con alguna fuente, y se hacen mediciones de tiempos de llegada de ésta a diferentes profundidades. Con esta prueba downhole se pueden determinar velocidades de ondas primarias (Vp) y secundarias (y5). El cono estático sísmico y el dilatómetro sísmico arriba mencionados son variantes de esta prueba geofísica downhole. Para la prueba geofísica crosshole se deben realizar al menos dos perforaciones, y preferentemente tres. En una de las perforaciones se introduce uno o varios sensores (geófonos) que se conectan a un sismógrafo y en la otra perforación se Especialidad: Ingeniería Civil 7
  • 8. e e e e e o e e e e e e e e e e e e e e e e e e e e e e e e Caracterización de suelos arenosos mediante análisis de ondas de superficie genera vibración y se hacen mediciones de tiempos de llegada de ésta a diferentes profundidades. Con la prueba crosshoie, al igual que con la downhole, se pueden determinar velocidades de ondas primarias (Vp) y secundarias (V s). 2. ONDAS ELÁSTICAS EN DEPÓSITOS DE SUELOS 2.1. Tipos de ondas elásticas Pequeñas perturbaciones mecánicas en depósitos de suelos, tales como el impacto de un marro, causan la propagación de ondas elásticas que no alteran prácticamente las condiciones del suelo. Las ondas elásticas se dividen en dos grandes grupos, las de cuerpo, que viaje en el interior del medio elástico, y las de superficie, que se propagan a lo largo de la superficie horizontal de un medio semi-infinito, como un depósito de suelos. Las ondas de cuerpo se subdividen a su vez en ondas de compresión o primarias (V e) y de corte o secundarias (Vs) (ver Figura 2). Las ondas Vp viaja a una velocidad entre 70 y 140% mayor que las V5, para valores de la relación de Poisson (jt) de entre 0.25 y 0.4, rango frecuente en suelos y rocas. ._ - Cnmnrsitn . . (.1 Ondas S Longitud - de onda 1 ti Figura 2. Onda de cuerpo que se dividen en primarias o de compresión (Vp) y secundarias o de cortes (y 5). La velocidad de onda de compresión en suelos y rocas puede ser entre 70 y 140% mayor que la de onda de corte. Especialidad: Ingeniería Civil 8
  • 9. u Caracterización de suelos arenosos mediante análisis de ondas de superficie Por lo que respecta a ondas de superficie, hay varios tipos, siendo la más importante en geotecnia las ondas Rayleigh, cuya velocidad (V R) es de alrededor de 93% de las ondas de corte (V5). La velocidad de onda de compresión (Vp) se determinar usualmente con la prueba de refracción sísmica y la velocidad de onda de corte (y 5) con las pruebas downhole y crosshole. Para encontrar la velocidad de propagación de ondas de superficie tipo Rayleigh (V R) hay varios métodos que se presentarán más delante. 4iI} 2.2. Velocidad de onda de corte (Vs) La determinación de la velocidad de propagación de las ondas de corte (y 5) es de gran utilidad en la geotecnia, ya que con este valor se puede: 1) determinar el módulo de rigidez al esfuerzo cortante (G), 2) inferir densidad en campo, 3) estimar el estado de esfuerzos, 4) estimar la cementación natural o 5) evaluar la alteración de una muestra (Stokoe et al., 1989). t La relación entre Vs y el módulo de cortante (G) está dada por la siguiente ecuación: G = pVs2 (1) En donde: p = densidad; Vs = velocidad de onda de corte. Como las deformaciones causadas por las pruebas geofísicas son muy pequeñas, el módulo de cortante que se obtiene con la V 5 determinada con dichas pruebas viene siendo el valor máximo (G 0), y sufre una degradación mayor o menor, dependiendo del suelo y de la deformación inducida. Este tipo de comportamiento de materiales se le conoce como elástico no-lineal, está asociado con suelos y t rocas blandas, y se ha avanzado mucho en la comprensión de este fenómeno especialmente en los últimos años (Matthews et al., 1996), por lo que los valores de Vs y G0 tienen aplicaciones tanto para análisis geotécnicos tanto estáticos como dinámicos. t e 2.3. Ondas de superficie Cuando se golpea en la superficie de un depósito de suelos, se generan ondas elásticas tanto de cuerpo (compresión y corte) como de superficie (principalmente tipo Rayleigh). 67% de la energía aplicada se propaga como ondas Rayleigh, 27% como ondas de corte y 7% como ondas de compresión (Woods, 1968). Esto se conocía desde hacía tiempo, pero no había tecnología suficiente para monitorear las ondas de superficie, por lo que durante muchos años los métodos geofísicos sísmicos estuvieron enfocados únicamente al registro y análisis de ondas de compresión y corte, y las de superficie se consideraba el "ruido" que había que filtrar. En la década de 1940 Hvorslev presentó una revisión del estado-del-arte respecto a las pruebas de ondas de superficie y concluyó el método estaba estancado en su desarrollo, pero tenía interesantes posibilidades a futuro (Hvorslev, 1949). Los avances en desarrollos teóricos en ondas de superficie L (Thomson, 1950; Haskell, 1953), así como desarrollos tecnológicos, sobre todo el Especialidad: Ingeniería Civil 9 ' t
  • 10. e e e e e e e e e e e e e e e e e e e e e e e e e e e e e Caracterización de suelos arenosos mediante análisis de ondas de superficie en la electrónica, ayudaron a que en la década de 1980 4<3s pruebas con ondas de superficie salieran del estancamiento al que se refirió Hvorslev. La onda Rayleigh se puede visualizar como las ondas en la superficie de un estanque de agua (ver Figura 3); el movimiento de partícula es en una elipse vertical, paralela a la dirección de propagación que es a lo largo de la superficie y con dirección retrógrada hasta cierta profundidad en que se vuelve prógrada (ver Figura 4). Figura 3. Onda de superficie tipo Rayleigh. Se propagan en la frontera de un medio elástico. Movimiento normalizado de partículas ----i lo retrócirado Movimiento .O . 12 & 1.t (yO O I vertical -J ti Dt 1 r o - r Movimiento —1 .2 ' 1 7 . horizontal 7 9 prócirado —14 Figura 4. Ondas Rayleigh y movimiento de partículas. Desplazamientos horizontales y verticales normalizados con respecto a desplazamientos verticales en la superficie (Adaptado de Richart, Hall y Woods, 1970). En un depósito de suelos perfectamente homogéneo, la onda Rayleigh viaja a una velocidad que es independiente de su longitud de onda. Sin embargo, si en el Especialidad: Ingeniería Civil 10
  • 11. Caracterización de suelos arenosos mediante análisis de ondas de superficie suelo hay estratos con rigideces, densidades o relaciones de Poisson variables, entonces la velocidad de la onda de Rayleigh dependerá de su longitud de onda. Cuando la velocidad y la frecuencia (o longitud de onda) de una onda son dependientes entre sí, se dice que la onda es dispersiva. Este comportamiento que exhiben las ondas Rayleigh en materiales no uniformes, es el principio en el que se fundamentan los diferentes métodos de análisis de onda de superficie (Matthews et al., 1996). La mayor parte de la energía de las ondas de superficie esta contenida dentro de una zona que se extiende a una profundidad de aproximadamente una longitud de onda. De esta manera, las frecuencias cortas permiten caracterizar los estratos profundos de suelo mientras que las frecuencias largas los materiales cercanos a la superficie 3. ONDAS DE SUPERFICIE EN DEPÓSITOS DE SUELOS La naturaleza dispersiva de la propagación de las ondas de superficie en un semi- espacio elástico y estratificado, constituye, como ya se dijo, las bases de los métodos de análisis de dichas ondas. Si se generan ondas de superficie en un rango amplio de frecuencias, se puede inferir un perfil con la variación de velocidades de ondas Rayleigh (VR) a profundidad. Como la velocidad de las ondas Rayleigh es ligeramente menor (alrededor de 7%) que la de corte (y 5), para fines prácticos se consideran equivalentes. 3.1. Diversos métodos de análisis El primer método moderno de análisis de onda de superficie se desarrolló en la Universidad de Texas en Austin, y se llama SASW (Spectral Analysis of Surface Waves). Emplea una fuente de energía dinámica vertical y dos sensores que se colocan con separaciones que varía de 1 a 60 m o más, dependiendo de la profundidad que se quiera explorar, que viene siendo aproximadamente la mitad de la separación de los sensores (Nazarian y Stokoe, 1984). Casi al mismo tiempo, en Inglaterra se desarrolló un método similar llamado CSW (Continuous Surface-Wave), en el cual la fuente de energía es un vibrador de frecuencia variable y se usan dos o más sensores (Abbiss, 1981; Mattheus et al., 1996). Posteriormente se desarrolló el método MASW (Multichannel Analysís of Surface Waves), que utiliza al menos 12 sensores con separaciones fijas de entre 1 a 2 m (Park et al., 1999). Hay otro método similar al MASW que se llama ReMi (Refraction Microtremor), que analiza vibración pasiva (llamada comúnmente microtremores) y/o activa (Louie, 2001) y se describirá en la siguiente sección. Además de los métodos SASW, CSW, MASW y ReMi, se han propuesto otras variantes en Italia, Alemania, Francia, Irlanda, Australia, Japón, Taiwán y Estados Unidos, entre otros países. Esto muestra la creciente aceptación de la utilización de ondas de superficie en la geotecnia. A todos estos métodos de análisis de onda de superficie se les conoce con el nombre genérico de métodos de onda de superficie (SWM - Surface Wave Method).. Cada método tiene ventajas y desventajas en aspectos como: precisión, profundidad de exploración, capacidad para detectar múltiples Especialidad: Ingeniería Civil 11
  • 12. .4 00 J25 Caracterización de suelos arenosos mediante análisis de ondas de superficie estratos, posibilidad de trabajar en lugares con mucho ruido ambiental, rapidez y costo. 3.2. Refracción de Mícrotremores (ReM1) La técnica de refracción de microtremores (ReMi) (Loule, 2001) utiliza tendido y equipo para registro similar al de la prueba de refracción sísmica, pero se analizan las ondas con una técnica que permite separar las ondas Rayleigh de otras ondas elásticas y finalmente determina la variación de velocidad de onda de corte (Va) a profundidad. Para la realización de la prueba ReMi se coloca un tendido lineal con 12 o más geófonos, el registro de la vibración se realiza con un sismógrafo digital, y se registra tanto vibración ambiental (microtremores) como vibración superficial inducida (impactos, vehículos en circulación, etc.). ( A diferencia de la prueba tradicional de refracción sísmica, ReMi puede usarse sin 1 problemas en ambientes urbanos, y de hecho mientras más ruido haya, funciona mejor. Además, ReMi puede detectar estratos blandos entre estratos con 1 rigideces mayores, mientras que refracción sísmica sólo puede detectar variación — de rigideces progresivamente mayores. Una vez realizado el registro en campo, el primer paso del análisis ReMi consiste en generar un espectro de velocidad de frecuencias contra tardanzas (inverso de la velocidad), llamado espectro p-f, como se ilustra en la Figura 5. En este espectro p-f se detecta con facilidad el primer modo de vibrar de las ondas Rayleigh, que es un trazo que va de la esquina superior izquierda de la gráfica hacia la inferior derecha, y se escogen manualmente puntos en la frontera inferior, que sirven para el posterior proceso de inversión. WW) VI.Qvspec 1 .J;. k. ir! Ur' • jJt1PPr.,PIfÑ. , l once QJ.Sgy • Pp. 3 Mep . J Slep ¿ %. 4. 'o Figura S. Espectro de velocidad (frecuencia-tardanza) derivado de los registros de microtremores, mediante la técnica ReMi. Especialidad: Ingeniería Civil 12
  • 13. • • u .- - • L u - .1 ji'.. !:= e t e. t e. e. e. e. e. e. e. e. e. e.. e.. e. e., e. e. e. e. e. e. e. Caracterización de suelos arenosos mediante análisis de ondas de superficie Especialidad: Ingeniería Civil 13 -10 tu -15 f20 -5 E -30 Mi o 400 300w o Q .2 200 > o o Vs (ReMi) N - VS (Ohta y Goto)3 E Relleno de arena y escombro Arena pumítica limosa (SM) Arcilla de plasticidad media (CL) Arena pumítica limosa y limo arenoso (SM, ML) Roca baáItica, p rosa 500 100 o -- Dispersión calculada L [intos de dispersiónj . - - •*•.-.-, r* Velocidad de onda de corte (Vs), mis 200 400 600 800 1000 1200 1400 0.05 0.1 0.15 0.2 0.25 0.3 Período, s Después del espectro p-f sigue el segundo paso que consiste en determinar la gráfica de períodos contra velocidad de fase de onda Rayleigh (Figura 6). Por se los períodos el inverso de las frecuencias de la Figura 5, la curva pasa de ser descendente de izquierda a derecha a ascendente. La velocidad de fase (V r) es la distancia que viaja una onda en un ciclo (VF = . / T). Finalmente, mediante un modelo interactivo con la gráfica período-velocidad de fase de onda Rayleigh se traza la curva de dispersión y con ella se establecen los espesores de los diferentes estratos y la velocidad de onda de corte (y 5), tal como se puede aprecia en la Figura 7. Figura 6. Gráfica período-velocidad de fase de onda Rayleigh del método ReMi, que incluye la curva de dispersión. Figura 7. Perfil unidimensional de velocidad de onda de corte (y5) contra profundidad obtenido interactivamente con la curva de dispersión de la Figura 6.
  • 14. 91Í :.m. 0 Caracterización de suelos arenosos mediante análisis de ondas de superficie Las gráficas de las Figuras 5 a 7 se determinaron en la Biblioteca Pública del Edo. de Jalisco, frente al parque del Agua Azul, en Guadalajara, Jal. Ahí, además de • tendidos geofísicos ReMi se realizaron sondeos directos con pruebas de penetración estándar y sondeos con cono dinámico según la norma alemana DIN 4094. Por esta razón, en la Figura 7, además de las Vs obtenidas con ReMi, se .r muestra la estratigrafía general, profundidad a la roca y velocidades de onda de• corte (Va) inferidas a partir de las resistencias a la penetración estándar, utilizando la ecuación propuesta por Ohta y Goto (1978): Vs = 96 N° ' 7 D°2 (2) En donde: N: resistencia a la penetración estándar; D: profundidad en metros. 4. APLICACIONES PRACTICAS La velocidad de onda de corte (V s) que se obtiene en las diversas pruebas geofísicas, es la que corresponde a deformaciones angulares pequeñas (10%). Por esta razón, el módulo de rigidez al cortante que se puede calcular partiendo de esta velocidad (ver ecuación 1) es el máximo o inicial y se simboliza generalmente como G 0. Tradicionalmente en el campo de la geotecnia se ha considerado que el módulo de cortante máximo (G 0) se puede utilizar únicamente en problemas dinámicos, como cimentación de maquinarias o sismos de muy bajas magnitudes. Sin embargo, investigaciones realizadas en los últimos veinte años (Jardine et al., 1986; Batagglio y Jamiolkowsky, 1987; Burland, 1989; Fahey y Carter, 1993; Mayne, 2001) han demostrado que valores de G0 corregidos para niveles de deformación apropiados, pueden ser de utilidad para problemas geotécnicos estáticos, como es el diseño de cimentaciones. A continuación se presentan dos campos de aplicación de los resultados obtenidos en los métodos de análisis de ondas de superficie en general, y de la técnica de refracción de microtremores (ReMi) en particular. 4.1. Caracterización sísmica de depósitos de suelos La técnica de refracción de microtremores (ReMi) permite, con relativa facilidad, determinar perfiles de velocidad de onda de corte hasta entre 40 y 80 m, en ambientes ruidosos como son las ciudades. Por ésta razón, en los últimos años ha sido utilizada en varios proyectos para realizar la caracterización sísmica de suelos (Pullammanappallil et al., 2003a; Pullammanappallil et al., 2003b Veronese y Garban, 2004; Stephenson et al., 2005). -II En varios sitios con suelos arenosos de Guadalajara y la costa de Jalisco y Nayarit Ij hemos utilizado la prueba ReMi, junto con sondeos directos con pruebas de penetración estándar, para caracterizarlos sísmicamente. Ya en las Figuras 5 a 7 se presentaron resultados de la prueba ReMi en la Biblioteca Pública, y en la U Figura 8 están los resultados de otro sitio en la zona metropolitana de Guadalajara, cerca del cruce de las Avs. Patria y Acueducto. En este segundo sitio la roca está a alrededor de 40 m de profundidad, mientras que en la - Biblioteca está a 24 m. Especialidad: Ingeniería Civil 14
  • 15. -5 -10 E -15 600 4 >. 500 a 400 1300 200 4 > 100 t 1 1Dispersión calculada r Puntos dispersión H • - - I7 0 002 004 006 008 0.1 012 0.14 016 018 02 40Periodo, a Paso 2: Ajuste de curva de dispersión ion - a 0 200 400 600 800 1000 -20 c 4- o -30 -35 Caracterización de suelos arenosos mediante análisis de ondas de superficie Paso 1: Espectro retardamiento-frecuencla (p4) Paso 3: con puntos para el modelado de dispersión Velocidad de onda de corte (Vs), mis I4MOI.VJU Vspect CMrI.w,s s, NeE sUWJaQVts docarnwtø$Wt2QO&QSQ t1iN-,€a2Q! y Sfrp 1 4 5 Figura 8. Espectro de velocidad (paso 1), gráfica período-velocidad de fase de onda Rayleigh (paso 2) y perfil de velocidad de onda de corte en un sitio cercano al cruce de las Avs. Patria y Acueducto, en Zapopan, Jal. Por la aceptación que los lineamientos del NEHRP (1993) han tenido tanto en los Estados Unidos (IBC, 2006), como Canadá, Colombia, Turquía, Taiwán y otros países, la caracterización sísmica de suelos la hemos hecho apegándonos a ellos. Para clasificar tipos de suelo, los lineamientos del NEHRP (1993) establecen que hay que determinar la velocidad promedio de onda de corte en los 30 m superficiales (Vs 30), y una vez con esta información se tienen los siguientes de terreno dependiendo de su comportamiento ante sismos: Tabla1 Caracterizaciónsísmicadesuelos,segúnNEHRP(1993) Tipo y530 (mis) Descripción A >1,500 Rocadura B 760 - 1,500 Roca C 360 - 760 Suelomuydensoyrocablanda D 180 - 360 Suelorígido E <180 Sueloblando F Suelos especiales (licuables, colapsables, arcillas de muy alta plasticidad, suelos orgánicos de más de 3 m de espesor) Especialidad: Ingeniería Civil 15
  • 16. -JJ OlaR, :t~ i ~--1 3 12 / , s o ---' - .- - - . - •;• / OCST • Çfl.() OC • .CrIc.RO • !. 6 /• ___J_ c/ ' 3 IARCO EST •pOT NOA,,. 14 - - • -'&: •; --. / 1 1 ç L SUR - - .,- -e,-- 44 / CST. 4. ,AROINJCS -- o , e 1 e 1 U e Ij II_ e e L e ri .L 1 e Caracterización de suelos arenosos mediante anIisis de ondas de superficie En la Figura 9 y Tabla 2 se presentan la ubicación de ocho sitios estudiados y los resultados obtenidos. Figura 9. Mapa de la sección poniente de Guadalajara en donde se indican con un círculo con estrella la ubicación de estaciones acelerogrficas y con cuadros ocho sitios en donde se han realizado pruebas ReMi. Especialidad: Ingeniería Civil 16
  • 17. e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e Caracterización de suelos arenosos mediante análisis de ondas de superficie Tabla 2. Ubicación de sitios estudiados con la prueba ReMi en la zona metropolitana de Guadalajara. Sitio 1 2 3 4 Lugar Biblioteca Pública Rotonda, junto a Catedral Jardines del Bosque Torrena Prof. (m) Vs (mis) Prof. (m) Vs (m/s) Prof. (m) Vs (m/s) Prof. (m) (m/s) V c 0-4 180 0-1.5 110 0-2 154 0-3 185 4-9 123 15-4 180 2-9 249 3-11 260 9-25 309 4-21 255 9-44 383 11-25 445 >25 1,304 21-31 435 >44 1,152 25-74 450 >31 880 >74 800 V 30 260 262 311 339 Tipo F D D D T5 (s) 0.47 0,53 0.80 Sitio 5 6 7 8 Lugar Gran Plaza Avs. Eulogio Parra y Pablo Casals Avs. Patria y Acueducto Universidad Panamericana Prof. (m) VS (m/s) Prof. ( m) VS (m/s) Prof. (m) (m/s) y5 Prof. (m) y5 (m/s) c 0-5 165 0-1.5 95 0-2 125 0-6 175 5-11 290 1.5-4.5 215 2-5 183 6-11 260 11-57 575 4.5-7.5 255 5-23 489 11-24 420 >57 1,060 7.5-60 570 23-38 548 24-62 610 _____ >60 1,000 >38 908 >62 860 Vs30 357 353 375 321 Tipo D-C D C D Ts(s) 0.52 0.53 0.39 0.63 El sitio Biblioteca Pública es terreno tipo F por el potencial de licuación en el estrato arenoso sumergido que se extiende de 2.5 a 5.5 m de profundidad. Las resistencia a la penetración estándar van de 3 a 12 y la Vs es de 123 m/s. Para el peligro sísmico de Guadalajara arenas con resistencias a la penetración menores de 14 pueden licuarse, y para y5 menor a 160 m/s se consideran también suelos licuables (Robertson et al., 1992). Tabla 3. Ubicación de sitios estudiados con la prueba ReMi en la costa de Jalisco y Nayarit. Sitio 1 2 3 4 Lugar Jaluco, cerca de Desembocadura Nuevo Vallarta, Flamingos, Nay. Barra de Navidad, Cuale, Puerto Nay. Jal. Vallarta, Jal. Prof. V5 Prof. V5 Prof. VS Prof. V (m) (m/s) (m) (m/s) (m) (m/s) (m) (m/s) 0-4 180 0-2 116 0-1.5 115 0-1.5 132 4-9 123 2-13 277 15-22 218 1.5-12 223 9-25 308 13-27 330 22-27 143 12-19 >25 1,304 27-51 547 27-50 531 19-28 281 _______ _______ >51 816 28-81 457 81-90 1,685 V 30 260 291 205 221 Tipo F D F D T5 (s) 0.57 ? 1 Especialidad: Ingeniería Civil 17
  • 18. Caracterización de suelos arenosos mediante análisis de ondas de superficie El sitio Jaluco es terreno tipo F por el potencial de licuación en el estrato arenoso sumergido que se encuentra de 1.5 a 9 m de profundidad, que está sumergido (el nivel freático está a 1.5 m) y tiene Vs de 180 y 123 m/s, ya que para sismos de magnitud 7.5 se considera que un depósito de arenas se puede licuar si V 5 es menor a 200 m/s (Robertson et al., 1992; Andrus y Stokoe, 2000). De hecho, en durante el sismo de octubre de 1995 (M = 7.6) se presentó el fenómeno de licuación en dicha población, ocasionando fuertes daños (Lazcano, 1996). El sitio Nuevo Vallarta es terreno tipo F porque se encontró un estrato de suelo orgánico de alrededor de 4 m de espesor. En las V s inferidas con ReMi hay un valor de 143 m/s de 22 a 27 m de profundidad, que es la profundidad aproximada a la que se encontró el suelo orgánico. En estos casos el NEHRP destaca la necesidad de determinar espectro de sitio. En el sitio Flamingos se pudo explorar hasta 90 m de profundidad, debido posiblemente a que el terreno estaba a la orilla del mar, y el oleaje genera frecuencias cortas que favorecen la exploración a profundidad. Los períodos fundamentales de vibración del suelo (T5) que se presentan en las Tabla 2 se calcularon en forma aproximada con la siguiente ecuación: Ts4H/Vsprom (3) En donde: H: espesor del depósito de suelos; V s prom velocidad promedio de onda de corte desde la superficie hasta la roca basal. Para calcular las velocidades promedio de onda de corte se utilizó la siguiente ecuación: V5prom H / ( hi / Vsi) (4) En donde: H: espesor total del depósito de suelos (o 30 m para clasificación NEHRP); hi: espesor de los diferentes estratos de suelo; V 5i: velocidad de onda de corte de cada estrato. La determinación del período fundamental de vibración de un depósito de suelos es de gran importancia, ya que debe evitarse que el suelo y la edificación a construirse tengan períodos semejantes, para que no entren en resonancia. Hay métodos más elaborados para determinar no sólo los períodos de vibración sino también otros aspectos, entre otros, espectros de respuesta. Una de la información más importante para la aplicación de estos métodos es la velocidad de onda de onda de corte de los diferentes estratos que forman el depósito de suelos, y en este aspecto la prueba de refracción de microtremores (ReMi) es de gran ayuda. Uno de los métodos más utilizados para analizar el comportamiento de depósitos de suelo sometidos a cargas sísmicas es el SHAKE (Schnabel et al., 1972), al cual se le han hecho posteriores adaptaciones como SHAKE91 (Seed y Sun, 1992), ProShake y SHAKE2000, entre otras. Es importante recalcar que para aplicar el SHAKE, o programas que de él se derivan, se deben tener en cuenta al menos las siguientes limitaciones: • La topografía superficial y los estratos de suelo deben ser aproximadamente horizontales. Especialidad: Ingeniería Civil 18
  • 19. e Caracterización de suelos arenosos mediante análisis de ondas de superficie • La profundidad del depósito de suelos debe ser menor a 150 m. • Las aceleraciones máximas que se pueden presentar en la roca basal no deben exceder de 0.4 g. • No debe haber estratos de suelos licuables. 4.2. Evaluación de asentamientos de zapatas en arenas Como ya se mencionó arriba, en la geotecnia tradicionalmente se ha considerado que el módulo de cortante máximo (G 0) se puede utilizar únicamente en problemas dinámicos, como cimentación de maquinarias o sismos de muy bajas magnitudes. Sin embargo, en los últimos veinte años (Jardine et al., 1986; Batagglio y Jamiolkowsky, 1987; Burland, 1989; Fahey y Carter, 1993; Matthews et al., 1996; Mayne, 2001) se ha demostrado que valores de G 0 corregidos para niveles de deformación apropiados pueden ser de utilidad para problemas geotécnicos estáticos, como es el diseño de cimentaciones. Conocidas la variación de la velocidad de onda de corte (y 5) y la densidad en un depósito de suelos, se puede calcular fácilmente el módulo de rigidez al cortante máximo o inicial (Go) utilizando la ecuación 1, y con este valor se puede calcular el módulo de elasticidad ante pequeñas deformaciones o máximo (E0) utilizando la siguiente ecuación: e E0 = 2G0 (1+t) ii 2.7 p Vs 2 (5) La relación de Poisson (ii) para la mayoría de los suelos varía de 0.25 a 0.49, y es razonable tomar un valor de 0.35. Tanto G0 como E0 son valores máximos, para deformaciones angulares (y) del orden de iü°i. Sin embargo, se ha encontrado que la deformación angular 0. promedio en cimentaciones bien diseñadas es de alrededor de 10%. Por lo tanto, para estimar asentamientos en suelos partiendo de parámetros elásticos t máximos (Go y E0), hay que reducirlos. t ,- GecçhycaI t w J. Unlod.Re1oad PMT .2 - Int . aI La~9 PMT Peie1ratI1 - . iO 10.2 10 1 Deformación angular (y) Figura 10. Reducción de módulo de cortante (G) contra deformación angular (y) (tomado de Mayne, 2001). C. Especialidad: Ingeniería Civil 19 .
  • 20. Caracterización de suelos arenosos mediante análisis de ondas de superficie En la Figura 10 se muestra la curva de disminución del módulo de cortante (G) en función de la deformación angular (y). Se indican además valores a lo largo de la curva que pueden obtenerse con diferentes pruebas de campo. De la Figura 10 tenemos que las pruebas geofísicas (ReMi entre ellas) dan información de G para deformaciones pequeñas, y que el dilatómetro plano (DMT) y el presiómetro (PMT) para deformaciones mayores. Esto es un ejemplo claro de la complementariedad de las pruebas de campo. Para el análisis de asentamiento de zapatas y losas de cimentación en arenas es conveniente que se use el módulo de cortante que corresponde a una deformación angular de 0.1% (Go. l%). Fahey y Carter (1993) y Mayne (2001) proponen un valor de G o1% del 20% del de G0. De aquí tenemos que el módulo de elasticidad que deberá usarse para estimar asentamientos en arenas (E o. l%) debe ser de: E01% ni 0.54 p Vs2 (6) Por lo tanto, partiendo de los perfiles de velocidad de onda de corte (y 5) contra profundidad obtenidos con ReMi, MASW, CSW, SASW, crosshole, downhole, etc., es posible estimar la magnitud de asentamientos en suelos arenosos. Es conveniente que los resultados así obtenidos se comparen con lo estimado con pruebas mecánicas de campo, como penetración estándar, conos dinámico o estático, dilatómetro, presiómetro, etc. A continuación se presenta la estimación de asentamientos en el sitio Rotonda, junto a la Catedral de Guadalajara. Se sabe que las torres de Catedral están cimentadas mediante una losa de mampostería de piedra desplantada a 4 m abajo del nivel de banqueta. El peso total de cada torre es de alrededor de 6,300 ton y el área de la losa de cimentación es de 126 m 2, por lo que el esfuerzo promedio que se transmite al suelo es de 5 kg/cm 2 (Padilla Corona et al., 1980; Lazcano, 2004) El suelo bajo la Catedral es arena limosa, pumítica, y la roca basal se encuentra a 31 m de profundidad. De la Tabla 2 y ecuación 6 tenemos los siguientes datos Tabla 4. Caracterización del suelo bajo la Catedral de Guadalajara. Prof. (m) VS (mis) E01% (MPa) 0-1.5 110 9 1.5-4 180 24 4-21 255 50 21-31 435 151 >31 880 Para el análisis de asentamiento utilizamos el criterio propuesto por Schmertmann (1970) y Schmertmann et al. (1978). La propuesta original está planteada para utilizarse junto con el cono estático, y a partir de la resistencia de cono (qe) se evalúa el módulo de elasticidad del suelo (E 5). Aquí se evaluó el módulo del elasticidad para una deformación angulas de 0.1% (E o1%) con base en las velocidades de onda de corte (y5) medidas en la prueba ReMi (Tabla 4). Especialidad: Ingeniería Civil 20
  • 21. lo Caracterización de suelos arenosos mediante análisis de ondas de superficie • El método de Schmertmann (1970) y Schmertmann et al. (1978) se basa en . dividir el suelo bajo la cimentación en capas, y se calcula el asentamientos (S) sumando las deformaciones ocurridas en cada capa. Para evaluar la deformación . en cada capa se considera el incremento en la presión efectiva (iq), el factor de influencia por deformación (Ii), el módulo de elasticidad del suelo (E s) y el S espesor de cada capa (Az). La siguiente ecuación es el planteamiento general del método: • S = Lq E (Iz / Es) ¿Z (7) • En la Tabla 5 están los datos de la dimensión de la losa de cimentación (11 x 11 S m), la profundidad de desplante (Df) de 4 m, el esfuerzo (q) estimado contra el terreno de 500 kPa (5 kg/cm2) y el peso volumétrico (y) del suelo arriba y abajo • del nivel de desplante (14 y 14.5 kN/m3). Los asentamientos ocurren en el suelo que hay de 4 a 25 m de profundidad, y este espesor se subdividió en estratos de S 2.2 m de espesor. Al centro de cada estrato se calculó la profundidad (Zi), el módulo de elasticidad (E 5) y el factor de influencia por deformación (Iz) definido • en el criterio de Schmertmann. • Tabla S. Análisis de asentamiento de las torres de la Catedral de Guadalajara. • DATOS: CALCULOS: Prof. Zi Es B = 11 m j (M Pa) Iz . L/B= 1 5.1 1.10 50 0.22 0.004 Df= 4 m 7.3 3.30 50 0.45 0.009 • g .QQ kPa 9.5 5.50 50 0.68 0.014 yl = 14 kN/m3 11.7 7.70 50 0.59 0.012 • y2 = 14.5 kN/m3 13.9 9.90 50 0.50 0.010 16.1 12.10 50 0.41 0.008 • 18.3 14.30 50 0.32 0.006 20.5 16.50 100 0.23 0.002 • 22.7 18.70 151 0.14 0.001 24.9 20.90 151 005 0.000 • 26.0 22.00 E= 0.067 S(mm) 61 e e El asentamiento total estimado es de alrededor de 6 cm, que es un valor razonable debió haber evolucionado gradualmente durante el largo período de e construcción. e e S. CONCLUSIONES C . La velocidad de onda de corte (y 5) es un parámetro de gran utilidad para caracterizar suelos, ya que con este valor se puede determinar directamente e el módulo de rigidez al cortante para pequeñas deformaciones (G 0). C . El módulo G0 tiene múltiples aplicaciones en la geotecnia, entre otras, sirve para inferir densidad en campo, determinar el estado de esfuerzos, estimar la e cementación natural de depósitos de suelo o evaluar la alteración de muestras a ensayarse en laboratorio (Stokoe et al., 1989). e C Especialidad: Ingeniería Civil 21 e
  • 22. Caracterización de suelos arenosos mediante análisis de ondas de superficie Tradicionalmente se ha considerado que el módulo G0 sólo tiene su aplicación en el campo de la dinámica de suelos, sin embargo, investigaciones realizadas en los últimos 20 años han su utilidad también para problemas estáticos (Jardine et al., 1986; Batagglio y Jamiolkowsky, 1987; Burland, 1989; Fahey y Carter, 1993; Matthews et al., 1996; Mayne, 2001). Conocido el valor de G 0 se pueden estimar módulos de rigidez al cortante (G) y elásticos (E) para diferentes rangos de deformaciones, y con ellos analizar diferentes problemas geotécnicos, entre ellos el diseño de cimentaciones. Gracias a diferentes avances tecnológicos, entre ellos desarrollos teóricos en ondas de superficie (Thomson, 1950; Haskell, 1953) y avances en la electrónica, se han podido desarrollar métodos de análisis de ondas de superficie que en la década de 1940 se les intuía de utilidad, pero no había equipos apropiados para su registro y análisis (Hvorslev, 1949). • El método de refracción de de onda de superficie, son manera rápida y confiable. microtremores (ReMi), y en general los métodos una interesante alternativa para determinar V s de Los métodos de onda de superficie (ReMi, MASW, CSW, SASW, etc.) se basan en el principio de que en un medio elástico estratificado, como son los depósitos de suelo, la velocidad de las ondas Rayleigh varían en función de las frecuencias. Entonces, si se determina esta variación de velocidades con las frecuencias y se aplica un proceso de inversión, es posible determinar la velocidad de las ondas Rayleigh (VR) a profundidad. Como la velocidad VR es ligeramente menor (alrededor de 7%) a la velocidad de onda de corte (y5), estas dos velocidades se coman como equivalentes. • Una de las principales ventajas de los métodos de onda de superficie es que son pruebas no invasivas, por lo que se puede evaluar la estructura natural de los suelos sin producir prácticamente deformaciones en los mismos, contrariamente a lo que ocurre con las pruebas de penetración y la mayoría de las pruebas de campo. • A diferencia de la prueba tradicional de refracción sísmica, ReMi puede usarse sin problemas en ambientes urbanos, y de hecho mientras más ruido haya, funciona mejor. Además, ReMi puede detectar estratos blandos entre estratos con rigideces mayores, mientras que refracción sísmica sólo puede detectar variación de rigideces progresivamente mayores. • Al comparar las V s obtenidas en métodos de ondas de superficie con otras pruebas geofísicas como crosshole y downhole, debe tomarse en cuenta los primeros métodos estudian un volumen de suelos mucho mayor que con las dos últimas pruebas. • Cuando se requiere de detalle mayor en la determinación de velocidad de onda de corte, más que los métodos de onda de superficie deben utilizarse pruebas geofísicas tipo downhole o crosshole. • Una de sus aplicaciones en donde más se ha utilizado ReMi es para la clasificación de suelos de acuerdo al NEHRP (1993). La prueba ReMi, y en general los métodos de onda de superficie, son apropiados para determinar el Especialidad: Ingeniería Civil 22
  • 23. Caracterización de suelos arenosos mediante análisis de ondas de superficie comportamiento de depósitos de suelo ante sismos porque involucran a un volumen grande de suelos. • La caracterización sísmica determinada en los doce sitios presentados, es congruente con la información obtenida en sondeos de penetración estándar y cono dinámico, así como con el contexto geológico. • La profundidad de la roca basal inferida mediante ReMi está a alrededor del lOdo de diferencia de la profundidad real constatada en sondeos directos. Esta profundidad, junto con las V s determinadas, ayudan a evaluar períodos de vibración de suelos. • En el caso presentado de Jaluco, las velocidades de onda de corte determinadas con ReMi indican el potencial de licuación, como de hecho ocurrió durante el sismo de octubre de 1995 (Lazcano, 1996). De 1.5 a 9 m de profundidad se tienen arenas sumergidas y con una velocidad de onda de corte de 123 a 180 m/s, valores menor a los 200 m/s, considerada la frontera superior de los suelos licuables (Robertson et al., 1992; Andrus y Stokoe, 2000). • Considerando la experiencias de Jaluco mencionada en el punto anterior y criterios propuestos por Robertson et al. (1992) y Andrus y Stokoe (2000), se concluye que el sitio de la Biblioteca Publica en Guadalajara pudiera sufrir licuación en el estrato arenoso comprendido entre 2.5 y 5.5 m. • El método de análisis de asentamientos en arenas propuesto por Schmertmann (1970) y Schmertmann et al. (1978), junto con la información de la prueba ReMi o en general con la determinación de velocidad de onda de corte (y5), parece ser una herramienta útil para usarse conjuntamente con otros criterios. • Es muy importante que para el análisis de los resultados obtenidos con ReMi y otros métodos de onda de superficie se tenga en cuenta el contexto geológico y se realicen además sondeos directos para determinar estratigrafía. Especialidad: Ingeniería Civil 23
  • 24. e e e Caracterización de suelos arenosos mediante análisis de ondas de superficie REFERENCIAS: Abbiss C.P. (1981). "Shear wave measurements of the elasticity of the ground", Geotechnique, 31(1): 91-104. Andrus R.D. y Stokoe K.H. 11(2000). "Evaluating liquefaction resistance using shear wave velocity measurements and simplified procedures", Transportation Research Board, 78th annual meeting, workshop on new approaches to liquefaction analysis. Batagglio M. y Jamiolkowsk M. (1987). "Analisi delle deformazioni", XIII Ciclo Conferenze di Geotechnica di Tormo, Italia. Burland J.B. (1989). "Small is beautiful - the stiffness of soils at small strains", Canadian Geotech. Jour., 26: 499-516. Broms B.B. y Fioding N. (1988). "History of soil penetration testing", Proc. V t mt. Sympo. On Penetration Testing, Orlando, Florida, E.U.A., 1: 157-220. da Fonseca y Mayne (2004). "Geotechnical and Geophysical Site Characterization", Oporto, Portugal, dos volúmenes. Decourt, Muromachi, Nixon, Schmertmann, Thornburn y Zolkov (1988). "Standard penetration test (SPT): International reference test procedure", Proc. 1st mt. Sympo. On Penetration Testing, Orlando, Florida, E.U.A., 1: 3-26. Dumas González C. (1998). "Estudio de la cimentación para líneas de transmisión de energía eléctrica con ayuda del penetrómetro dinámico", Memo. XIX Reunión Nacional de Mecánica de Suelos, Puebla, México, 1: 217-222. Fahey M. y Carter 3.P. (1993). "A finite element study of the pressurometer in sand using non-linear elastic plastic model", Canadian Geotech. Jour., 30: 348-362. Haskell N.A. (1953). "The dispersion of surface waves on multilayered medium", Buil. Seismoligical Soc. America, 43 (1): 17-34. Hvorslev M.J. (1949). "Subsurface exploration and sampling of soils for civil engineering purposes", Waterways Experiment Station, E.U.A. IBC (International Building Code) (2006). Idriss I.M. y Sun J.I. (1992). "SHAKE91", U. of California, Davis, California. Jardine W.J., Potts D.M., Fourie A.B. y Burland J.B. (1986). "Studies of the Influence of Non-Linear Stress-Strain Characteristics in Soil Structure Interaction", Geotechnique, 36, 3. Lazcano S. (1995). "Experiencias con cono dinámico en suelos pumíticos", Memo. X Congreso Panamericano Mec. Suelos e Ing. Cimentaciones, Guadalajara, 1: 244-251. Lazcano S. (1996). "Licuación de arenas en Jaluco, Jal., durante el sismo de octubre de 1995", Memo. XVIII Reunión Nacional Mec. Suelos, Morelia, México, 1: 89-92. Lazcano S. (2004). "Contexto histórico y geotécnico de Guadalajara", Memo. XXII Reunión Nacional Mec. Suelos, Guadalajara, México, 1: 53-66. Especialidad: Ingeniería Civil 24
  • 25. Caracterización de suelos arenosos mediante análisis de ondas de superficie • "Faster,Louie J.N. (2001). better: shear-wave velocity to 100 meters depth from e refraction microtremors arrays", Buli. Seismological Soc. America, 91: 347-364. O Luna Gonzalez 0.3., Ibarra Razo E., Rangel Núñez J.L. y Auvinet Guichard G. (2004). "Caracterización geotécnica superficial mediante ensayes con cono • dinámico manual", Memo. XXII Reunión Nacional Mec. Suelos, Guadalajara, México, 1:229-236. O Mayne P.W. (2001). "Stress-strain-strength-flow parameters from enhanced in- situ tests", Proc. mt. Conf. on In-Situ Measurements of Soil Properties and Case Histories, Bali, Indonesia, 27-48. • Menard L. (1955). "The Menard Pressuremeter: interpretation and application of the pressuremeter test results to foundations design", Sols-Soils No. 26. O Marchetti S. (1980). "In Situ Test by FIat Dilatometer", Jour. Geotech. Engr., • ASCE,GT3. Matthews M.C., Hope V.S. y Clayton C.R.I. (1996). "The use of surface waves in O the determination of ground stiffness profiles", Proc. Institute of Civil Engineers, Geotechnical Engineering, London, 119: 84-95. e Nazarian S. y Stokoe K.H. (1984). "In Situ Shear Wave Velocities From Spectral e Analysis of Surface Waves", Proc. 8th World Conf. on Earthquake Engr., San Francisco, California, III: 31-38. O Ohta Y. y Goto N. (1978). "Empirical Shear Wave Velocity Equations in Terms of Characteristic Soil Indexes", Earthquake Engineering and Structural O Dynamics, Vol. 6. • Padilla Corona E., Zambrano H. y de la Mora F. (1980). "Experiencias en la construcción de un túnel vehicular en suelos pumíticos", Memo. XIV e Reunión Nacional Mec. Suelos, Monterrey, México, 1:. Park C.B., Miller R.D. y Xia 3. (1999). "Multi-channel analysis of surface waves", e Geophysics, 64 (3): 800-808. e Pullammanappallil 5., Honjas B. y Louie J.N. (2003a). "Determination of shear wave velocities using refraction microtremor method", Proc. 3rd mt. e Conf. Application Geophysical Methodologies and NDT to transportation and infrastructure, Orlando, Florida, E.U.A. O Pullammanappallil S., Honjas B., Louie J.N., Siemens J.A. y Miura H. (2003b). "Comparative study of the refraction microtremor (ReMi) method: using O seismic noise and standard P-wave refraction equipment for deriving 1-D S-wave profiles", 6th mt. SEG-J conference, Tokio, Ja pon. C Richart F.E., Hall J.R. y Woods R.D. (1970). "Vibrations of Soils and e Foundations", Prentice Hall. Robertson P.K., Woeller D.J. y Finn W.D.L. (1992). "Seismic cone penetration test e for evaluating liquefaction potential under cyclic loading", Canadian Geo. o Jour., 29: 686-695. Santamarina J.C. (2001). "Soils and waves", John Wiley & Sons. O Santoyo E., Lin-Xue R., Ovando S.E. (1989). "El cono en la exploración geotécnica", México, TGC Geotecnia. e Especialidad: Ingeniería Clvii 25 o
  • 26. Caracterización de suelos arenosos mediante análisis de ondas de superficie Schmertmann J.H. (1970). "Static cone to compute static settlements over sand", Jour. Soil Mech., ASCE, 96 (SM3): 1011-1043. Schmertmann J.H., Hartman J.P. y Brown P.R. (1978). "Improved strain influence factor diagrams", Jour. Geotech, Engr., ASCE, 104 (8): 1131-1135. Schnabel B., Lysmer J. y Seed H.B. (1972). "SHAKE", Reporte EERC 72-12, Earthquake Engineering Research Center, U. de California, Berkeley. Stefanoff, Sanglerart, Bergdahl y Melzer (1988). "Dynamic probing (DP): International reference test procedure", Proc. 1st mt. Sympo. Qn Penetration Testing, Orlando, Florida, E.U.A., 1: 53-70. Stephenson W.J., Louie J.N., Pullammanappallil S., Williams R.A. y Odum J.K. (2005). "Blind shear-wave velocity comparison of ReMi and MASW results with boreholes to 200m in Santa Clara Valley: implications for earth ground motion assessment", BulI. Seismoligical Soc. America, 95 (6): 2506-2516. Stokoe K.H. II, Rix G.J. y Nazarias S. (1989). "In-Situ seismic testing with surface waves", Proc. 12th mt. Conf. Soil Mech. Fond. Engr., Río de Janeiro, Brasil, 1: 331-334. Thomson W.T. (1950). "Transmission of elastic waves through a stratified solid medium", Jour. Applied Physics, 21: 89-93. Veronese L. y Garban T. (2004). "Esperienze de misura Vs30 con la tecnica Refraction Microtremor (ReMi), Convegno La Geofisca e La Nuova Normativa Sismica. Woods R.D. (1968). wScreening of Surface Waves in Soils", Jour. Soil Mech., ASCE, 94 (4): 951-979. 'o Especialidad: Ingeniería Civil 26
  • 27. Caracterización de suelos arenosos mediante análisis de ondas de superficie 1 1 1 1 1 1 1 AGRADECIMIENTOS: A Lety mi esposa y a mis hijos Moni, Salvador y Bere Amis padres 1 A mis amigos 1 A mis tíos, primos y sobrinos cercanos A mis compañeros de trabajo 1 A mis profesores, compañeros de estudio y alumnos 1 A las universidades ITESO, de Illinois y Panamericana campus Guadalajara 1 1 'o 1 1 • 1 1 1 Especialidad: Ingeniería Civil 27
  • 28. Caracterización de suelos arenosos mediante análisis de ondas de superficie CURRICULUM VITAE: Salvador Lazcano Díaz del Castillo nació en Guadalajara, Jal., en 1958. Obtuvo la licenciatura en Ingeniería Civil en el ITESO en 1981. En 1984 obtuvo el grado de Maestro en Ciencias, área geotecnia, por la Universidad de Illinois en Urbana- Champaign. En 1988 llevó a cabo una especialización en mecánica de suelos y cimentaciones en Madrid, en el CEDEX. Desde 1985 es director de Suelo-Estructura, compañía de consultoría en ingeniería geotécnica y sísmica que ha realizado más de 2,600 estudios en 26 Estados de la República Mexicana y el Caribe. La consultoría ha sido en las áreas de cimentaciones, contenciones y taludes, así como estudios sismo-geotécnicos (aproximadamente 50) para determinar el comportamiento del subsuelo ante cargas sísmicas (espectros de sitio, licuación, etc.). Ha asistido a más de 25 cursos y simposios nacionales e internacionales, en el área de geotecnía en general, y en temas particulares como caracterización de suelos y geotecnia sísmica. Es autor de diez artículos técnicos y ha sido conferenciante en diversos congresos. Además, participó en la elaboración del actual reglamento de construcción de Guadalajara y Zapopan. Catedrático en el ITESO y en la Universidad Panamericana campus Guadalajara. Pertenece a las siguientes agrupaciones: Sociedad Mexicana de Mecánica de Suelos, Sociedad Canadiense de Geotecnia, Instituto de Investigación de ' Ingeniería Sísmica (EERI), Instituto Geo de la Sociedad Americana de Ingeniería Civil y Asociación Europea de Geocientíficos e Ingenieros (EAGE). o o e Especialidad: Ingeniería Civil 28
  • 29. ACADEMIA DE INGENIERÍA COMENTARIOS DEL ING. JUAN ARMANDO DUARTE ALONZO AL TRABAJO DE INGRESO DEL MC. SALVADOR LAZCANO DÍAZ DEL CASTILLO TITULADO: "CARACTERIZACIÓN DE SUELOS ARENOSOS MEDIANTE ANÁLISIS DE ONDAS DE SUPERFICIE" AGRADEZCO A NUESTRO BUEN AMIGO, MC. SALVADOR LAZCANO DÍAZ DEL CASTiLLO LA INVITACIÓN Y OPORTUNIDAD DE PARTICIPAR EN ESTA REUNIÓN DE GRAN TRASCENDENCIA EN SU VIDA PROFESIONAL Y ACADÉMICA, LA CUAL REPRESENTA SU INGRESO A LA ACADEMIA DE INGENIERÍA EN LA ESPECIALIDAD DE INGENIERÍA CIVIL. LA POBLACIÓN MUNDIAL DEL ORDEN DE 6,600 MILLONES CRECE DÍA A DÍA Y SU ASENTAMIENTO EN LOS CENTROS URBANOS ES CADA VEZ MAYOR Y NUESTRO PAÍS NO ES LA EXCEPCIÓN, CONCENTRANDO LAS ZONAS URBANAS DEL ORDEN DEL 75 DE LA POBLACIÓN TOTAL DEL PAÍS QUE ALCANZÓ LOS 103 MILLONES DE HABITANTES EN EL 2005, CON TODOS LOS PROBLEMAS QUE ELLO CONLLEVA, ESTA CONCENTRACIÓN URBANA EN POBLACIONES DE MÁS DE 2,500 HABITANTES ORIGINA LA CREACIÓN DE NUEVAS CONSTRUCCIONES COMO ESCUELAS, EDIFICIOS DE OFICINAS Y HABITACIÓN, PUENTES Y PASOS A DESNIVEL, VIALIDADES Y TRANSPORTE, ACUEDUCTOS Y COLECTORES ,ETC. QUE DEBEN SATISFACER LAS NECESIDADES OCASIONADAS POR LoS NUEVOS ASENTAMIENTOS HUMANOS Y REGENERAR LOS EXISTENTES, ACTIVIDADES QUE ESTÁN VINCULADAS CON LA INGENIERÍA CIVIL Y CON LA GEOTECNIA Y LA MECÁNICA DE SUELOS. EL TEMA "CARACTERIZACIÓN DE SUELOS ARENOSOS MEDIANTE ANÁLISIS DE ONDAS SE SUPERFICIE", NOS LLEVA A PENSAR DE INMEDIATO EN LA GEOTECNIA UNA DE LAS RAMAS ESENCIALES DE LA INGENIERÍA CIVIL, YA QUE UNO DE LOS PROBLEIAS QUE SIEMPRE HAN PREOCUPADO AL INGENIERO , AL ENFRENTARSE CON LA CONSTRUCCIÓN . EDIFICACIÓN DE UNA OBRA SEA GRANDE O PEQUEÑA, ES EL CONOCER LAS PROPIEDADES DEL SUBSUELO Y SU COMPORTAMIENTO ANTE LAS CARGAS O EMPUJES QUE DEBERÁ RECIBIR, Y POR OTRO LADO A IMPLEMENTAR UN CAMINO o PROCEDIMIENTO PARA ENCONTRAR DICHAS PROPIEDADES O CARACTERÍSTICAS CON UN GRADO RAZONABLE DE CERTIDUMBRE EN DICHA EVALUCACIÓN.
  • 30. ES LARGO EL TRAYECTO QUE SE HA RECORRIDO DESDE LOS PRIMEROS INVESTIGADORES DEL ELEMENTO TIERRA, COMO COULOMB, COLLIN, RANKINE, MUHR, PARA CITAR ALGUNOS QUIENES CON SUS INVESTIGACIONES DIERON FUNDAMENTO A LO QUE POSTERIOMENTE SE DENOMINÓ "MECÁNICA DE SUELOS" EN BASE AL LIBRO ESCRITO POR KARL TERZAGHI EN EL AÑO DE 1925 PRECISAMENTE CON ESE NOMBRE, Y QUE DEBIDO A ESTE DOCUMENTO Y SUS POSTERIORES APORTACIONES A DICHA CIENCIA, LE HAN MERECIDO EL TITULO DE "PAIJRE DE LA MECÁNICA DE SUELOS". EL AVANCE CONTINUO EN LA INVESTIGACIÓN Y EXPERIMENTACIÓN DE LOS SUELOS, ASÍ COMO, LOS LOGROS EN LA APLICACIÓN TECNOLÓGICA HAN HECHO POSIBLE LA UTILIZACIÓN DE TÉCNICAS Y MÉTODOS QUE HACE ALGUNOS AÑOS NO SE PODIAN REALIZAR AUNQUE SE CONOCIERA LA PARTE CONCEPTUAL DEL MISMO. ES POR ESO IMPORTANTE EL TRABAJO DESARROLLADO POR EL M. C. LAZCANO EN LA APLICACIÓN DEL MÉTODO DE ANÁLISIS DE ONDAS SUPERFICIE CON LA TÉCNICA DE REFRACCIÓN DE MICROTREMORES (REFRACTION MICROTREMOR) Y COLOQUIALMENETE CONOCIDO COMO ReMi , EN LA ZONA URBANA DE GUADALAJARA Y LA COSTA DE JALISCO DONDE SE PRESENTAN SUELOS CON CARACTERISTICAS PROPIAS DE LOS SUELOS ARENOSOS, SEGUN EL SISTEMA UNIFICADO DE CLASIFICACIÓN SUELOS (SUCS) , OBTENIENDO RESULTADOS CONGRUENTES CON LOS SISTEMAS TRADICIONALES DE PENETRACIÓN STANDARD Y CONO DINÁMICO. EL TRABAJO ADEMÁS NOS RECUERDA DE UNA MANERA SINTÉTICA Y CLARA LOS PROCEDIMIENTOS UTILIZADOS CON PRUEBAS MECÁNICAS COMO EL DE PENETRACIÓN ESTANDAR, EL CONO DINÁMICO, EL CONO ESTÁTICO, EL PRESIÓMETPO Y EL DILATÓMETRO, Y PRUEBAS GEOFÍSICAS COMO LA REFRACCIÓN SÍSMICA, DOWNHOLE, CROSSHOLE Y METODOS DE ONDAS DE SUPERFICIE PARA OBTENER LAS PROPIEDADES Y CARACTERÍSTICAS DE LOS SUELOS, ASÍ COMO, ENCONTRAR LA VELOCIDAD DE PROPAGACIÓN DE LAS ONDAS DE SUPERFICIE DE CORTE A DIFERENTE PROFUNDIDAD LO CUAL PERMITE CONOCER LA RIGIDEZ DE LA ESTRUCTURA DEL SUELO Y LOS MODULOS ELÁSTICO Y DE RIGIDEZ AL CORTANTE, PARA CON ELLO APLICAR SOLUCIONES A PROBLEMAS DE CIMENTACIÓNES ESOS MÉTODOS DE ANÁLISIS DE ONDAS DE SUPERFICIE, BASADOS EN LOS CONOCIMIENTOS DE LA INGENIERÍA SÍSMICA Y LA PROPAGACIÓN DE LAS ONDAS GENERADAS POR UN SISMO, SIENDO ESTAS ONDAS ELÁSTICAS DIVIDIDAS EN ONDAS DE CUERPO Y SUPERFICIALES; LAS ONDAS DE CUERPO SE DIVIDEN EN ONDAS PRIidARAS U ONDAS "P" LAS CUALES ORIGINAN COMPRESIONES Y TENSIONES EN LOS ESTRATOS POR 2
  • 31. LOS QUE SE PROPAGA POR LOQUE TAMBIÉN SE LES CONOCE COMO ONDAS LONGITUDINALES, Y ONDAS SECUNDARIAS U ONDAS "S" QUE GENERAN ESFUERZOS DE CORTE EN EL TERRENO; LAS VELOCIDADES DE LAS ONDAS "5" SON MENORES QUE LAS ONDAS "P", ESTA DIFERENCIA DE VELOCIDAD HA SIDO UTILIZADA PARA CONOCER MEDIANTE REGISTROS EN UNA ESTACIÓN SISMOLÓGICA LA DISTANCIA EPICENTRAI, CUANDO SE GENERA UN SISMO. LAS ONDAS SUPERFICIALES SE DIVIDEN EN ONDAS RAYLEIGH Y ONDAS LOV", AMBOS NOMBRES EN FUNCIÓN DE LOS CIENTIFICOS QUE LAS ESTUDIARON, Y DEBIDO A SU BAJA FRECUENCIA SON LAS CAUSANTES DE MAYOR DAÑO EN LOS EDIFICIOS. ESTE CONOCIMIENTO DE LAS ONDAS SISMICAS TAMBIEN SE APLICA EN LA INDUSTRIA PETROLERA EN LA BUSQUEDA DE YACIMIENTOS DE PETRÓLEO Y DESDE HACE ALGUNOS AÑOS EN LA RESOLUCIÓN DE PROBLEMAS DE MECÁNICA DE SUELOS COMO LO HA PRESENTADO EL M.C. SALVADOR LAZCANO EN SU TRABAJO DE INGRESO. ESTOS METODOS DE ANALISIS BASADOS EN LA GENERACION DE ONDAS DE SUPERFICIE EN UN RANGO AMPLIO DE FRECUENCIAS, LO CUAL PERMITE ELABORAR UN PERFIL CON LA VARIACIÓN DE VELOCIDADES DE LAS ONDAS RAYLEIGH A DIFERENTES PROFUNDIDADES, SE HAN DESARROLLADO A PARTIR DE LA DECADA DE LO. 80 SE ESTAN GENERALIZANDO CADA VEZ MÁS Y SU APLICACIÓN EN ZONAS URBANAS EN CONSTANTE CRECIMIENTO LES DA VENTAJA CON RELACIÓN A OTRAS PRUEBAS DE CAMPO SIN OLVIDAR SU CORRELACIÓN CON SONDEOS DIRECTOS. SUS CONCLUSIONES BASADAS EN SU AMPLIA EXPERIENCIA Y EN ESTUDIOS DE MECANICA DE SUELOS POR ÉL ELABORADOS Y EN LA APLICACIÓN DE UNO DE ESTOS MÉTODOS DE ANALISIS DE ONDAS DE SUPERFICIE, EN TERRENOS ARENOSOS DE GUADALAJARA Y LA COSTA DE JALISCO, NOS CONDUCEN A VALORAR CON TODA ATENCIÓN ESTAS HERRAMIENTAS DE TRABAJO DE LA GEOTÉCNIA. FELICITAMOS AL M.C. SALVADOR LAZCANO DÍAZ DEL CASTILLO, POR LA PRESENTACIÓN DE SU EXCELENTE TRABAJO, EXHORTANDOLO A QUE CONTINUE CON SU LABOR ACADÉMICA Y PROFESIONAL EN ESTE CAMPO DE LA GEOTÉCNIA QUE TANTAS INCERTIDUMBRES TIENE QUE AFRONTAR Y QUE POR OTRO LADO EVOLUCIONA DE MANERA IMPORTANTE DÍA A DÍA. 20 DE SEPTIEMBRE DE 2007.
  • 32. LCíi1 ACADEMIA DE INGENIERIA México Ciudad de México, 06 de septiembre de 2007 N DAIO5.20071297 Sr. M.C. Salvador Lazcano Díaz del Presente. I Muy estimado amigo y futuro colega: y / (IPAM7- Con la presente tengo el gusto de enviar a usted 50 invitaciones para la ceremonia en la que, mediante la presentación del trabajo que estipula nuestro Estatuto, será usted designado Académico Titular, dentro de la Comisión de Especialidad de Ingeniería Civil y se le entregarán las preseas que lo acreditan como tal, La Academia por conducto de esta Dirección, ha enviado a cada uno de los Presidentes de Comisión y Coordinaciones de Programa, para que a su vez la hagan del conocimiento de los integrantes de las mismas, una invitación similar a las que usted recibe. Sin embargo, se ha observado que la falta de comunicación oportuna suele originar, un ausentismo pronunciado, por lo que, para garantizar el éxito de la ceremonia que la Academia dedica especialmente a ustedes, es muy importante la labor que desarrolle para que asistan los Académicos de la Especialidad a la que usted ingresará, sus amigos y familiares, en número considerable. Muy Cordialmente Ing. Norberto Domínguez Aguirre, Director Administrativo. Anexos: los que se indican, c.c.p. Sr. Ing. Ricardo Pérez Ruiz, Presidente de la Comisión de Especialidad de Ingeniería Civil, Al.- Ciudad. c.c.p.. Sr. Dr. Ernesto Alfonso Heredia Zavoni, Secretario de la Comisión de Especialidad de Ingeniería Civil.- Al. - Ciudad. c.c.p. Expedienteminutario. Tacuba 5, Centro Histórico, 06000 México, D.F. Telfax 5521 4404, 5521 6790, 5518 4918 www.ai.org.mx aingenieriaprodigy.net.mx
  • 33. El 4 PROGRAMA 1 Apertura de la sesión por el Dr. Luis Esteva Maraboto Expresidente de la Academia Nacional de Ingeniería Explicación del sistema para la elección de un Candidato a Ingresar a la Academia ng. Ricardo Pérez Ruiz Presidente de la Comisión de Especialidad de Ingeniería Civil Presentación del Académico Titular a cargo del Ing. Ricardo Pérez Ruiz Presidente de la Comisión de Especialidad de Ingeniería Civil "CARACTERIZACIÓN DE SUELOS ARENOSOS MEDIANTE ANÁLISIS DE ONDAS DE SUPERFICIE" M. C. Salvador Lazcano Díaz del Castillo Comentarios al trabajo de ingreso a cargo de: Ing. Enrique Tamez González, Académico de Honor Ing. Raúl Gómez Treman, Académico Titular Ing. Gabriel Auvinet Guichard, Académico Titular Palabras del Ing. Ricardo Pérez Ruiz Presidente de la Comisión de Especialidad de Ingeniería Civil Comentarios del Dr. Luis Esteva Maraboto Expresidente de la Academia Nacional de Ingeniería Ceremonia Protocolaria En esta solemne ceremonia el M. C. Salvador Lazcano Díaz del Castillo será investido Académico Titular con la Insignia y le será entregado el Diploma por el Presidente de la Academia, M. en C. Gerardo Ferrando Bravo, en el Salón de Actos del Palacio de Minería, de 19:30 a 20:30 horas. Vino de Honor R.S.V.P. 55-21-44-04 55-21-67-90 Se ruega portar traje oscuro e Insignia LA ACADEMIA DE INGENIERIA invita a usted al Coloquio de Ingreso en el cual ingresará como ACADE MICO TITULAR el señor M. C. SALVADOR LAZCANO DÍAZ DEL CASTILLO que se celebrará el día 20 de septiembre de 2007, a partir de las 15:00 horas en punto, en el Salón de Rectores en el Palacio de Minería, sito en Tacuba No. 5 de esta ciudad. El Presidente M. en C. Gerardo Ferrando Bravo