SlideShare una empresa de Scribd logo
1 de 33
Descargar para leer sin conexión
1
UNIVERSIDAD EXPERIMENTAL NACIONAL
“FRANCISCO DE MIRANDA”
ÁREA DE TECNOLOGÍA
PROGRAMA INGENIERIA CIVIL
TRABAJO PRESENTADO COMO REQUISITO
PARA OPTAR A LA CATEGORÍA DE
PROFESOR ASOCIADO
AUTOR
ZULAY ROSENDO DE MORA
Santa Ana de Coro, Enero 2006
2
INDICE
INTRODUCCIÒN…………………………………………………………3
Presentación………………………………………………………………5
Objetivo General…………………………………………………….……6
Objetivos Específicos…………………………………………………….6
Justificación……………………………………………………………….7
Metodología……………………………………………………………….8
UNIDAD I
Introducción al Análisis Estructural………….………………………...10
Ejemplos de Aplicación…………………………………………………29
UNIDAD II
Métodos de Trabajo Virtual……………………………………………35
Aplicación del Principio de las Fuerzas Virtuales…………………...43
Método Analítico……………………….………………………………..43
Ejemplos de aplicación……………….………………………………...44
Método Grafico…………………………………………………………..65
Ejemplos de Aplicación…………………………………………………67
UNIDADIII
Métodos para Resolver Sistemas Indeterminados….………………74
Método de las Fuerzas…………………………………………………77
Ejemplos de Aplicación…………………………………………………81
Método de los Desplazamientos………………………………………91
Ejemplos de Aplicación…………………………………………………97
BIBLIOGRAFÍA……………...…………………………………………104
3
INTRODUCCIÓN:
Con la realización de este texto se pretende ayudar al estudiante y al
profesional de Ingeniería civil, en cuanto a la disposición de un material de
apoyo específico y detallado en relación a los métodos básicos para el análisis
estructural.
No obstante, Su contenido esta completamente actualizado, por lo que el
desarrollo de los problemas se enfocan y orientan de acuerdo con la filosofía y
nuevas técnicas de la enseñanza de la teoría estructural. En atención a este
criterio se citan como características más resaltantes en la realización de este
texto, las siguientes:
1. Los contenidos se exponen de manera que los conocimientos
están ordenados en complejidad creciente, es decir, de lo mas
sencillo a lo mas complejo.
2. Los diferentes temas tratados en los problemas se desarrollan de
modo que el aspecto formativo predomine sobre el aspecto
puramente informativo, por lo que el estudiante se encontrará
frecuentemente ante situaciones en las cuales debe tomar una
actitud reflexiva y científica que le permita obtener conclusiones
satisfactorias.
3. Los ejemplos de aplicación se realizan considerando una relación
entre los conocimientos alcanzados en las unidades curriculares
que prelan. a la unidad curricular Estructura I, tales como:
Estática, mecánica Racional, Resistencia de los materiales, de tal
manera que el análisis se presenta como una unidad integral y no
como un conjunto de parcelas aisladas.
4. La solución de los ejemplos se desarrolla siguiendo
metodológicamente el procedimiento respectivo a cada tema y
explicado en detalle y en forma esquematizada.
Consta de tres (3) capítulos, dispuestos de la siguiente manera:
4
1. Introducción al Análisis Estructural
2. Trabajo Virtual:
 Método Analítico
 Método Gráfico.
3. Métodos para Resolver Sistemas Indeterminados
 Método de las Fuerzas
 Método de los Desplazamientos
Cada capitulo se inicia con los objetivos de la unidad, la introducción,
algunas definiciones de la terminología básica, la descripción del método, un
resumen del procedimiento y dos ejemplos por cada tema tratado
esquematizados.
5
OBJETIVO GENERAL:
Diseñar un texto denominado “Métodos Básicos de Análisis Estructural”
adaptado a la unidad curricular Estructura I del Programa de Ingeniería Civil de
la UNEFM.
OBJETIVOS ESPECIFICOS:
 Seleccionar los temas más relevantes adaptados a los objetivos de la
Unidad Curricular Estructura I
 Revisión actualizada de la bibliografía existente tanto por medios
tradicionales como por medios electrónicos.
 Describir y Esquematizar los métodos Básicos de análisis estructural
considerando el orden de asimilación del aprendizaje desde lo más
sencillo a lo más complejo.
 Diseñar el texto atendiendo al uso de las herramientas gráficas
actualizadas para una mejor comprensión del aprendizaje.
6
JUSTIFICACIÓN:
Con la presentación de este trabajo se pretende ayudar al estudiante en
cuanto a la disposición de un material de apoyo claro, preciso y detallado para
la unidad curricular Estructura I, el cual será de gran utilidad tanto para el
alumnado como para el profesorado y profesionales afines, ya que viene a
llenar un vació, por cuanto, a las características que presenta, es difícil
conseguirlo y menos aún en nuestra biblioteca en donde existe actualmente una
escasez en bibliografía, sobre todo en estructuras.
Cabe destacar además, que es el profesor universitario, quien esta en
plena capacidad, según su experiencia y años de servicio, de editar los textos
especializados para el uso del estudiantado y de los profesionales en general.
Todo esto resultaría muy provechoso tanto para el estudiante como para la
UNEFM, por cuanto se mejoraría el rendimiento académico estudiantil y la
proyección y el renombre que tendría la Universidad por la nueva bibliografía
editada por sus propios profesores.
7
PRESENTACION
Durante los 17 años de experiencia del Autor, como docente en esta
Casa de Estudios Superiores, donde ha impartido diferentes Unidades
Curriculares, tales como: Física, Mecánica Racional, Estática, Mecánica de
Fluidos, Resistencia de Materiales y Estructura I; ha observado como los
estudiantes han tenido que conformarse muchas veces con los apuntes que les
proporciona el profesor, por la falta de bibliografía existente, sobre todo en las
unidades curriculares profesionales. Sin embargo últimamente con el uso de
la herramienta del Internet, se pueden realizar ciertas investigaciones
atendiendo a la información teórica, pero no es posible obtener un texto
especialmente adaptado a la Unidad Curricular Estructura I de la UNEFM, como
el que se presenta en este trabajo de investigación, lo cual impulsaría al
estudiante a elevar su índice académico y lograr con éxito los objetivos
propuestos en dichos programas de estudio.
Es mi aspiración que los objetivos especificados se logren y que este
texto sea una ayuda eficaz para los estudiantes, un auxiliar útil para los colegas
profesores y profesionales afines. Recibiré con agrado las sugerencias que
hagan con el objeto de mejorar este trabajo.
EL AUTOR
8
METODOLOGÍA
 Se seleccionaron los temas concernientes a los métodos Básicos de
Análisis estructural más relevantes adaptados a los objetivos de la
Unidad Curricular Estructura I
 Se realizó una exhaustiva revisión bibliografía, tanto por medios
tradicionales como por medios electrónicos.
 Se procedió a describir los métodos Básicos de análisis estructural
considerando el orden de asimilación del aprendizaje desde lo más
sencillo a lo más complejo.
 Se diseñó el texto atendiendo al uso de las herramientas gráficas
actualizadas para una mejor comprensión del aprendizaje.
9
10
UNIDAD I: INTRODUCCIÓN AL ANALISIS ESTRUCTURAL
OBJETIVOS:
1. Aplicar las suposiciones básicas y limitaciones fundamentales de la
ingeniería estructural.
2. Definir los conceptos básicos: Estructura, grado de libertad, juntas,
vínculos y miembros estructurales o elementos.
3. Diferenciar las unidades de vinculación tanto interna como externa que
aportan los diferentes tipos de vínculos.
4. Aplicar las ecuaciones fundamentales del equilibrio estático.
5. Calcular el grado de indeterminación estática de los sistemas
estructurales planos y tridimensionales.
11
INTRODUCCIÓN:
El análisis estructural tiene como finalidad principal la determinación de
los esfuerzos o fuerzas internas producidas en los miembros de una estructura,
a saber, momentos de flexión y de torsión, fuerzas de corte y axiales; así como
también los desplazamientos y deformaciones de las juntas y miembros de la
estructura. Estos esfuerzos y deformaciones se producen a consecuencia de
acciones externas (cargas) que actúan sobre la estructura.
La ingeniería estructural en términos simples, se refiere a las etapas
tanto del análisis como del diseño de las estructuras
DEFINICIÓN DE TERMINOLOGÍA BÁSICA
Para una mejor comprensión de los temas posteriores se hace
indispensable el manejo de la siguiente terminología básica y así poder iniciarse
en el cálculo estructural:
CARGAS:
 Carga Muerta o carga permanente: es aquella producida por el peso
propio de los elementos.
 Carga Variable o carga viva: es aquella producida por personas, equipos,
nieve y otros.
 Cargas Especiales: son aquellas producidas por sismo, viento, por el
terreno, asentamientos, cambios de temperatura, hidráulicas., errores de
fabricación y construcción.
A las cargas vivas y especiales, también se les denomina sobrecarga, y
actúan de una forma menos permanente y de magnitudes no constantes en el
tiempo.
SISTEMA ESTRUCTURAL:
 Consiste en un ensamblaje de miembros, llamada armazón o estructura
armada, con el objeto de resistir en forma segura, las cargas a las cuales
estará sometida.
12
 Sistema compuesto de uno o varios elementos resistentes dispuestos de
tal forma que tanto la estructura total como sus componentes sean
capaces de mantenerse sin cambios apreciables en su geometría
durante la carga y la descarga.
SISTEMAS CONTINUOS:
 Son aquellos sistemas para los que no existe una estructura identificable,
sin embargo son estructuras que pueden analizarse con los principios
básicos y métodos del análisis estructural, últimamente, se está
utilizando el método de los elementos finitos para su calculo. Como
ejemplo de estos sistemas, se tienen: Cascarones, Domos, Placas,
Presas, Muros de Contención, Torres enfriadoras y Tanque de
almacenamiento.
EJEMPLOS DE ESTRUCTURAS: Entre las estructuras más comunes se tienen:
edificios, Puentes, Torres de Transmisión, Naves espaciales, Aviación, Muros.
OBJETIVO DEL ANALISIS ESTRUCTURAL:
El objetivo técnico del análisis estructural, es en forma general, la
determinación de las fuerzas y desplazamientos de una estructura dada. El
análisis completo de una estructura suele requerir de un conocimiento de todos
sus miembros, los cuales están determinados por las dimensiones de diseño.
El objetivo técnico del diseño estructural es la selección y el detalle de los
componentes que conforman el sistema estructural. Diseñar una estructura
envuelve muchas consideraciones, entre las cuales se persiguen dos objetivos
principales:
1. La estructura debe cumplir los requisitos de funcionalidad, es decir
suministrar el espacio para viviendas, fábricas y otros usos.
2. La estructura debe soportar las cargas en condiciones seguras, es decir,
mantener el equilibrio bajo su propio peso más las cargas provenientes
de la cubierta, del viento, del sismo y de la nieve, cualquiera sea el caso.
13
En la práctica el análisis y el diseño de una estructura son inseparables,
ya que las dimensiones obtenidas del diseño se basan en el conocimiento de
las fuerzas internas de la estructura que resulta de un análisis.
PASOS PARA OBTENER EL DISEÑO COMPLETO DE UNA ESTRUCTURA:
El diseño completo de una estructura esta conformado por los siguientes
pasos:
1. Determinación de la Forma General: depende de los siguientes
factores:
 Funcionalidad: El uso al cual va a estar destinado.
 Aspectos Económicos, estéticos, legales y financieros.
2. Investigación de las Cargas: Se obtiene considerando
Especificaciones y Normas vigentes, dependiendo del uso.
3. Análisis de esfuerzos: Determinación de las fuerzas internas y
deformaciones.
4. Selección de Materiales y Dimensiones: Considerando los resultados
del análisis de esfuerzos, Normas y Especificaciones.
5. Dibujos y Detalles: Proporcionan información necesaria para la
construcción de la estructura.
FASES PARA LA EJECUCIÓN DE PROYECTOS DE INGENIERÍA
En un sentido mas amplio la ingeniería estructural va mas alla del diseño
y del análisis. La mayor parte de los proyectos de ingeniería incluyen las
siguientes fases:
 Planeación General
 Estimación de Tiempos
 Fabricación
 Construcción
 Inspección de una Estructura.
El ingeniero en estructuras puede participar en cualquiera de esos
niveles para utilizar sus habilidades y funciones cualitativas.
14
El objetivo final del ingeniero en estructuras, es obtener una estructura
segura y económica. Los errores cometidos en alto grado en el análisis durante
cualquier fase de un proyecto pueden ser catastróficos generando perdidas de
vida o de dinero. Es por ello que los análisis son revisados y comprobados muy
a menudo por diferentes individuos dentro de una misma empresa.
MODELADO Y SIMBOLOGÍA EN ESTRUCTURAS
El modelado de una estructura significa la formulación de un modelo de
la estructura real, susceptible de un tratamiento matemático relativamente
sencillo. Son idealizaciones y simplificaciones adoptadas para reducir la
complejidad del problema.
 Se idealizan descripciones geométricas de la estructura real
 Se idealiza el comportamiento del material
 Se idealiza la forma en que están conectados entre si los miembros
individuales de una estructura
 Se idealiza la forma como están sujetos los elementos de las fronteras o
los soportes del sistema.
SUPOSICIONES E HIPOTESIS FUNDAMENTALES
La teoría de las estructuras se caracteriza por considerar las siguientes
suposiciones e hipótesis en su metodología:
 Cálculo Estático y Dinámico: Generalmente el cálculo se realiza
considerando la carga estática; sin embargo, los efectos dinámicos
causados por las cargas en movimiento como: los sismos, vientos,
explosiones de bombas, se estudian en el análisis dinámico de las
estructuras.
 Consideraciones en el Plano y en el Espacio: Las estructuras para su
análisis pueden ser consideras en el plano o en el espacio, siempre y
cuando el sistema de cargas que actúan sobre ellas están contenidas en
el plano o en el espacio, respectivamente.
 Estructuras de Comportamiento Lineal y no Lineal: Se dice que el
material con que están hechos los elementos de una estructura tiene un
15
comportamiento lineal (fig.a), cuando existe una proporcionalidad directa
entre el esfuerzo y la deformación, es decir, cumple la ley de Hooke, y
esa relación constante ó la pendiente del diagrama esfuerzo deformación
es igual al modulo de elasticidad del material (E), caso contrario, se dice
que el material tiene un comportamiento no lineal (fig.b).
Lineal No Lineal
Fig.a fig.b
 Comportamiento Elástico e Inelástico: Se dice que la estructura tiene un
comportamiento elástico (fig. c y d), cuando al ser sometida a un sistema
de cargas esta se deforma, pero al ser descargada, regresa a su
posición original siguiendo la misma trayectoria seguida durante el
proceso de carga. Si la estructura cargada, al ser descargada no
regresa a su posición original siguiendo la misma trayectoria que durante
el proceso de carga, se dice que tiene un comportamiento inelástico (fig.
e y f).
Fig.c Elasticamente fig.d. Elasticamente Fig.e Inelasticamente Fig.f Inelasticamente
lineal no Lineal no lineal lineal
 Principio de superposición: La aplicación de este principio esta
condicionada a que el material tenga un comportamiento lineal, es decir
que se cumpla con la ley de Hooke, y establece que: “La respuesta de
una estructura debida a un número de cargas aplicadas
simultáneamente, es igual a la suma de las respuestas de las cargas
individuales aplicadas por separado, Fig.g. Entendiéndose por la
respuesta de una estructura ante la acción de un sistema de cargas, la
16
 medida de los esfuerzos y deformaciones desarrollados en los miembros
y juntas de dicha estructura.
 Teoría De Los Desplazamientos Pequeños: Esta teoría se basa en que
los desplazamientos de una estructura debida a un sistema de cargas
actuantes son tan pequeños que la forma de la estructura permanece sin
variar apreciablemente, antes y después de la aplicación de las cargas.
Generalmente se limitan hasta unas dos órdenes de magnitud de la
dimensión característica (10-2
). Es denominada también “Teoría de
Primer Orden”, ya que toma en cuenta solo los efectos de primer orden,
considerando despreciables los efectos del segundo orden como por
ejemplo: el fenómeno de pandeo, el cual toma importancia cuando los
elementos son esbeltos sometidos a grandes cargas; y también el efecto
de corte, que es importante considerarlo en miembros de gran peralte.
 Estructuras Estáticamente Determinadas e Indeterminadas: Las
estructuras, de acuerdo al grado de indeterminación estática se clasifican
en: Estáticamente determinadas y estáticamente indeterminadas, lo cual
es necesario para su análisis estructural, únicamente establecer las
ecuaciones de equilibrio estático, al sistema considerado, si esta es
determinada, mientras que si la estructura es indeterminada, requiere de
ecuaciones adicionales para igualar al número de incógnitas y resolver el
sistema de ecuaciones planteado. Estas ecuaciones adicionales pueden
obtenerse mediante las relaciones entre las fuerzas y los
desplazamientos y la aplicación del principio de superposición. Existen
q
q
= + +
P1 P2
P1 P2
Fig.g
17
varios métodos para resolver estos sistemas indeterminados y la
diferencia radica en la manipulación de estas relaciones, entre las
fuerzas y los desplazamientos, entre los cuales se trataran en este curso:
el método de las fuerzas y el método de los desplazamientos.
TIPOS DE ELEMENTOS A ANALIZAR
 Vigas: Elemento horizontal recto sometido solamente a cargas
transversales y queda analizada completamente cuando se determinan
los valores del momento flector y las fuerzas cortantes.
 Cerchas: Se componen de elementos rectos o barras unidas a través de
articulaciones libres de fricción, formando triángulos, y las cargas son
aplicadas en los nodos y cada barra se considera sometida
exclusivamente a fuerzas axiales.
 Marcos o Pórticos Rígidos: Esta compuesto de elementos horizontales y
verticales, unidos mediante juntas rígidas capaces de resistir momento.
Los elementos de un pórtico rígido generalmente están sometidos a
momentos flectores, fuerzas cortantes y fuerzas axiales.
SISTEMAS DE VINCULACIÓN
Vinculo: Condición geométrica que limita o restringe el movimiento de los
cuerpos (vinculo real).
Grado de Libertad:
 Posibilidad de movimiento que puede tener un cuerpo
 Número de coordenadas generalizadas libres e independientes
necesarias para definir la posición o configuración de un cuerpo o
sistema.
 Viene dado por el número mínimo de unidades de vinculación que se le
debe adicionar a un sistema para llevarlo a condiciones de equilibrio
estático.
Un cuerpo analizado en el plano tiene tres posibilidades de movimientos
independientes:
 Un desplazamiento vertical
18
 Un desplazamiento horizontal
 Un desplazamiento angular o rotacional alrededor del eje
perpendicular al plano del cuerpo.
Un cuerpo analizado en el espacio tiene seis posibilidades de movimiento
independientes:
 Tres desplazamientos lineales: uno en el eje X, dx, otro en el eje
Y, dy, y otro en el eje Z, dz.
 Tres desplazamientos angulares o rotacionales alrededor de los
tres ejes ortogonales: uno alrededor del eje X, öx, otro alrededor
del eje Y, y, y el otro alrededor del eje Z, z.
Miembro: Es el elemento que forma cada pieza del sistema o estructura, y
dependiendo de su forma, pueden ser:
 De Eje Recto:
 De Eje Curvo:
 De Sección Constante:
 De Sección Variable:
Vínculos Internos: Son aquellos que limitan la capacidad de movimiento de un
miembro con respecto a otro, se clasifican en:
a) Vínculos de Primera Especie: Restringen un solo grado de libertad,
ejemplo: los rodillos, permiten la traslación en la dirección de acción de
los rodillos y la rotación relativa entre los miembros conectados y restringe
la otra traslación (fig.h); y el empotramiento libre, vínculo que permite
toda traslación relativa, restringiendo solo la rotación relativa entre los
miembros conectados fig.i).
Fig.h fig.i
19
b) Vínculos de segunda especie: Restringen dos grados de libertad, ejemplo:
el empotramiento móvil, restringe la rotación relativa y un
desplazamiento lineal, permite solo una traslación relativa (fig.j); y la rótula
o articulación, la cual solo permite la rotación relativa entre los miembros
que vincula (fig k).
Fig.j fig.k
c) Vínculos de Tercera Especie: Restringen tres grados de libertad, ejemplo:
El empotramiento interno, el cual no permite que halla desplazamiento
relativo, es equivalente a señalar ambos elementos como uno solo (fig.l)
Fig.l
Vínculos Externos: Son aquellos que restringen el movimiento de un cuerpo o
miembro con la lámina tierra, esta se supone fija, y se clasifican en:
a) Vínculos de Primera Especie: Restringe un solo grado de libertad,
ejemplo: el rodillo o articulación móvil, permite la rotación y
desplazamientos lineales, restringiendo solo un desplazamiento lineal en
dirección perpendicular a la acción de los rodillos (fig.m); y el
empotramiento libre, el cual permite solo traslación, ya que su rotación
con respecto a la lámina tierra es nula (fig.n).
Fig.m fig.n
20
b) Vínculos de Segunda Especie: ejemplo: la articulación, la cual solo
permite desplazamientos angulares o rotacionales, los cuales se
producen alrededor de un punto O, impidiendo toda traslación (fig.o); y el
empotramiento móvil, el cual solo permite la traslación en el sentido de
acción de los rodillos (fig.p).
o
fig.o fig.p
c) Vínculos de Tercera Especie: Restringe todo grado de libertad, ejemplo:
el empotramiento fijo o simplemente empotramiento, (fig.q)
Vinculo Aparente: Es aquel que no introduce restricciones adicionales a las ya
existentes dentro de un mecanismo cinemático, el cual, es un sistema
hipostático o inestable (fig.r).
Vínculo Aparente Uno de los tres es Aparente Vínculo Superfluos o superabundante
Fig.r Fig. s
Vinculos Superfluos O Superabundante: Son vínculos adicionales al número
mínimo que se requiere para llevar a condiciones de equilibrio un mecanismo
A B
C
Fig.q
21
cinemático. En la siguiente figura s, el vínculo A es superabundante, ya que el
elemento se encuentra en condiciones de equilibrio estático mediante los
vínculos dispuestos en B y en C.
APOYOS Y SUS REACCIONES
TIPO REPRESENT.
GRAFICA
#REACCIONES
PLANO ESPACIO
RODILLO
1 1
APOYO FIJO
2 3
EMPOTRAMIENTO
PERFECTO 3 6
EMPOTRAMIENTO
MOVIL 2 4
EQUILIBRIO, ESTABILIDAD, DETERMINACIÓN ESTATICA Y GEOMETRICA
DE ESTRUCTURAS.
EQUILIBRIO ESTÁTICO
Se dice que un cuerpo se encuentra en equilibrio estático si permanece
en reposo durante y después de la aplicación de las cargas, y matemáticamente
puede expresarse como: “la resultante de todas las fuerzas y momentos que
actúan sobre dicho cuerpo sea igual a cero”, es decir,
∑F = 0,
R1
R1
R2
R1
Rx
Ry
Rz
Ry
22
∑M = 0.
Estas ecuaciones representan las ecuaciones de equilibrio estático. Si el
cuerpo está restringido a moverse en el plano, estará en equilibrio estático si
satisface las tres ecuaciones siguientes:
∑Fx = 0
∑Fy = 0
∑Mz = 0
Si el cuerpo está contenido en el espacio, estará en equilibrio estático si
se satisfacen las seis ecuaciones siguientes:
∑Fx = 0 ∑Mx = 0
∑Fy = 0 ∑My = 0
∑Fz = 0 ∑Mz = 0
Estas ecuaciones también pueden ser expresadas vectorialmente:
∑F = Fx i + Fy j + Fz k
∑M = Mx i + My j + Mz k
Donde I, j, k son los vectores unitarios en el sistema cartesiano de los
ejes x, y y z respectivamente.
Representación de Fuerzas y Representación de fuerzas en el plano XY
Momentos generales en el espacio
Fx
Fy
Fz
Mx
Mz
X
Y
Z
Mz
Fx
Fy
X
Y
23
ESTABILIDAD Y DETERMINACION
La estabilidad y grado de indeterminación de las estructuras debe
juzgarse tanto por el número y disposición de los apoyos como por el número y
disposición de sus elementos y las uniones de la estructura. Puede ser
determinado por simple inspección o por medio de formulas.
ESTABILIDAD: Una estructura se dice que es estable cuando sea capaz
de soportar cualquier sistema concebible de cargas, resistiendo estas cargas en
forma elástica e inmediatamente a su aplicación, considerando infinita la
resistencia de todos los miembros y la capacidad de todos los soportes
(Ferguson, P. 1965). En otras palabras la estabilidad de una estructura depende
del número y disposición de las componentes de reacción y partes
componentes más que de la resistencia de los apoyos y partes de la estructura.
Requisitos de Estabilidad:
1) Si el número de incógnitas escalares independientes escalares
independientes es menor que el número de ecuaciones escalares
independientes, no triviales de la estática, el sistema es inestable.
2) Si el número de incógnitas escalares independientes es igual al número
de ecuaciones escalares independientes no triviales de la estática,
entonces:
a) El sistema es estable si puede hablarse de una solución única
para las incógnitas escalares, donde su determinante es diferente
de cero, D ≠ 0.
b) El sistema es inestable, si no puede hallarse una solución única
para las incógnitas escalares, esto indica que su determinante es
igual a cero, D = 0.
3) Cuando el número de incógnitas escalares independientes (n) es mayor
que el número de ecuaciones escalares independientes (q), no triviales
de la estática, el sistema se clasifica como estáticamente indeterminado
de grado (n-q).
24
Determinación de la estabilidad de un sistema usando la aproximación
matemática a la inestabilidad:
Una condición necesaria pero no suficiente para que un sistema sea
estable, es que deben existir al menos tantas reacciones independientes para la
estructura, como ecuaciones independientes, no triviales de la estática hallan.
La solución algebraica de un sistema general de tres ecuaciones
simultaneas; dado el sistema:
a11X1 + a12X2 + a13X3 = C1
a21X1 + a22X2 + a23X3 = C2
a31X1 + a23X2 + a33X3 = C3
Se determina X1, X2 y X3, mediante el siguiente procedimiento:
Siendo:
Y
Se usa la regla de Cramer para resolver los determinantes y así calcular
las incógnitas del problema, siempre y cuando el determinante, D, sea diferente
de cero.
Sea la siguiente viga determinar matemáticamente si es estable o no.
P
30º
a b c
y
z
o
33333
23221
13111
2
aCa
aCa
aCa
D 
33323
23222
13121
1
aaC
aaC
aaC
D 
33231
22221
11211
3
Caa
Caa
Caa
D 
333231
232221
131211
aaa
aaa
aaa
D 
F1 F3F2
D
D
X
2
2 
D
D
X
3
3 
D
D
X
1
1
25
D= , por lo tanto el sistema es
inestable, ya que no puede
hallarse una solución única para las incógnitas.
Físicamente un sistema es Inestables: cuando no existe limitación alguna al
movimiento inmediatamente después de aplicarse una carga.
Casos de Inestabilidad:
a)
b)
En fin, Una estructura es estable o inestable, y determinada o
indeterminada, dependiendo del número y disposiciones de las partes
componentes internas y de las componentes de reacción externas.
Puede desplazarse
Puede girar alrededor del centro
de rotación, o, donde se
interceptan las tres líneas de
acción.
o
Puede girar o balancearse
PyFFFFy  3020100
PzFFFFz  3121110
    aPzFcbaFbaFMo  32100
cbaba 0
111
000
D=0
26
Inestabilidad Geométrica: se produce cuando se introducen uniones internas
en una estructura generalmente estable, así se tiene:
Isostatica y estable isotatica y geométricamente inestable
INDETERMINACION ESTÁTICA: Una estructura indeterminada puede
definirse como aquella para la que las componentes de reacción y esfuerzos no
pueden determinarse completamente mediante la aplicación de las ecuaciones
de condición para el equilibrio estático.
1.1.- Grados de Indeterminación Estática o Grado de Hiperestaticidad:
Es el número de componentes de reacción de los vínculos superfluos o
superabundantes, y se denota por, “Ie”.
Se define también como la diferencia entre el número de fuerzas
desconocidas o redundantes (incógnitas) y el número disponible de
ecuaciones de equilibrio para obtener estas incógnitas.
Es simplemente el número de incógnitas que supera el número
disponible de ecuaciones de equilibrio estático, y matemáticamente
puede expresarse así:
Ie = Nº Incog – Nº EED
Siendo Nº Incog: Número de incógnitas
Nº EED: Número de ecuaciones de equilibrio disponibles
Deducción De la Ecuación del Grado de indeterminación Estática: En
marcos, armaduras o cerchas tanto planos como espaciales.
Marcos Planos: En un marco plano en equilibrio estático, solo hay tres
fuerzas independientes desconocidas para cada uno de sus miembros, la
fuerza axial, la fuerza de corte y el momento flector, como se muestra a
continuación:
27
Entonces la cantidad de incógnitas del sistema de marcos planos
consiste en el número de fuerzas independientes de cada miembro más el
número de reacciones de sistema dado, así se tiene la siguiente ecuación:
Nº Incog = 3NM + NR
Siendo: NM: Número de miembros del sistema
NR: Número de reacciones del sistema
Para determinar el número de ecuaciones de equilibrio disponibles, se
tiene que aplicar primeramente las tres ecuaciones del equilibrio estático:
∑Fx=0, ∑Fy = 0, ∑Mz = 0, por cada junta tanto interna como externa de la
estructura. Por lo tanto, queda definido por: Nº EED = 3NJ.
Esto indica que el grado de indeterminación quedaría expresado así:
Ie = 3NM + NR – 3NJ
Siendo NJ: Número de juntas del sistema
Esta condición es aplicable a cualquier marco plano que tenga miembros
continuos y juntas rígidas internas. Sin embargo existen condiciones especiales
de construcción que pueden reducir el número de incógnitas y por tanto el
grado de indeterminación de una estructura, tal es el caso de las juntas
articuladas o con pasadores. Considerando que una articulación contribuye con
otra ecuación adicional, como lo es, ∑M = 0, es decir, que la sumatoria de los
momentos en la articulación debe ser cero para asegurar el equilibrio estático.
Esto implica que la ecuación general para determinar los grados de
indeterminación estática de un marco plano es la siguiente:
Siendo NC: Número de ecuaciones de condición y viene expresada por:
NC = (n – 1)
Donde n: Número de miembros que llegan a la junta articulada
Ie = 3NM + NR – 3NJ - NC
28
Marcos Espaciales: Cada miembro de un marco espacial tiene seis
fuerzas internas independientes (una fuerza axial, dos fuerzas de corte, dos
momentos flectores y un momento torsor); además dispone de seis ecuaciones
de equilibrio estático por cada junta (∑Fx=0, ∑Fy=0, ∑Fz=0, ∑Mx=0, ∑My=0,
Mz=0) más las ecuaciones de condición por juntas articuladas en el sistema.
Entonces la ecuación para determinar los grados de indeterminación estática de
este sistema, queda definida por:
Donde NC = 3(n – 1)
Armaduras Planas: Las armaduras están compuestas por miembros que
soportan solo fuerzas axiales, es decir que por cada miembro hay solo una
fuerza interna independiente desconocida. La cantidad total de incógnitas
consiste en la fuerza de cada miembro más las componentes independientes de
reacción. Además para cada junta articulada no existen momentos y solo hay
dos ecuaciones de equilibrio disponibles para cada junta, ∑Fx=0 y ∑Fy=0.
Entonces la ecuación para definir los grados de indeterminación estática para
una armadura plana queda expresada así:
Armaduras Espaciales: En este caso sigue existiendo una sola fuerza
axial desconocida para cada miembro (fig), pero en cada junta hay ahora tres
ecuaciones de equilibrio, ∑Fx=0, ∑Fy=0, ∑Fz=0. Por tanto, la expresión para
determinar el grado de indeterminación estática en este sistema es:
Ie = 6NM + NR – 6NJ –NC
Ie = NM + NR – 2NJ
Ie = NM + NR – 3Nj
29
EJEMPLOS:
1. Calcular el grado de indeterminación estática de la viga mostrada.
1. Se cuenta el número de miembros, de junta a junta se tiene un miembro.
2. Se determina el número de reacciones que aportan los apoyos
3. se cuentan las juntas
4. Se analizan las juntas articuladas, para determinar las ecuaciones de
condición aportadas por cada una de estas, y se totalizan.
5. Se aplica la ecuación para determinar el grado de indeterminación
correspondiente al tipo de estructura, en este caso para una viga.
NM = 3 miembros
NR = 3 en A + 3 en B
NR = 6 unidades de vinculación
NJ = 4 juntas
NC(a) = n-1 = 2-1 = 1
NC(b) = n-1 = 2-1 = 1
NC = 2
Ie = 3 x 3 + 6 – 3 x 4 – 2 = 9 + 6 – 12 – 2 = 15 – 14 =1º
Ie = 1º lo que indica que esta viga es indeterminada en 1º grado
Ie = 3NM + NR – 3NJ - NC
A B
a b
30
2. Calcular el grado de indeterminación estática del siguiente pórtico
plano.
NM = 24 miembros
NR = 1 en A + 2 en B + 2 en C + 2 en D + 3 en E
NR = 10 unidades de vinculación
NJ = 19 juntas, considerando el extremo libre F como junta, la cual también
puede ser obviada conjuntamente con el miembro FG y el resultado no se
altera.
NC = n -1
NC(a) = 3 – 1 = 2
NC(b) = 4 – 1 = 3
NC(c) = 3 - 1 = 2
NC = 7
Ie = 3x24 +10 – 3x19 – 7 = 82 – 64 = 18 Ie = 18 º
Esta estructura es indeterminada en 18º grados
A B C D E
F G
a b
c
Ie = 3NM + NR – 3NJ - NC
31
3. Calcular el grado de indeterminación estática del siguiente pórtico
espacial.
NM = 28 miembros
NR = 6 en A + 3 en B + 6 en C + 6 en F + 3 en E + 6 en D + 4 en G + 1 en H
NR = 35 unidades de vinculación
NJ = 20 juntas
NC = 3 (n-1)
NC(a) = 3 (5 - 1) = 12
NC(b) = 3(4 – 1) = 9
NC = 21
Ie = 6x28 + 35 – 6x20 – 21 = 62 Ie = 62 º
Esta estructura es indeterminada en 62º grados
A B C
D E F
H
G
a
b
Ie = 6NM + NR – 6NJ –NC
32
4. Calcular el grado de indeterminación estática de la siguiente cercha
plana.
NM = 12 miembros,
Nótese que los miembros se cuentan por cada dos juntas
Articulada.
NR = 2 en A + 1 en B
NR = 3 uv
NJ = 6 juntas
Ie = 12 + 3 – 2x6 Ie = 3º
Esta estructura es indeterminada en 3º grado
A B
Ie = NM + NR – 2NJ
33
5. Calcular el grado de indeterminación estática de la siguiente cercha
espacial.
NM = 42 miembros
NR = 3 x 4 = 12 uv
NJ = 12 juntas
Ie = 42 + 12 – 3x12 Ie = 54 – 36 = 18º
Esta estructura es indeterminada en 18º grados.
A B
C
D
Ie = NM + NR – 3Nj

Más contenido relacionado

La actualidad más candente

Libro ingenieria-sismo-resistente-prc3a1cticas-y-exc3a1menes-upc
Libro ingenieria-sismo-resistente-prc3a1cticas-y-exc3a1menes-upcLibro ingenieria-sismo-resistente-prc3a1cticas-y-exc3a1menes-upc
Libro ingenieria-sismo-resistente-prc3a1cticas-y-exc3a1menes-upcisraelmilward
 
Losas unidireccional y bidireccional estructura3
Losas unidireccional y bidireccional estructura3Losas unidireccional y bidireccional estructura3
Losas unidireccional y bidireccional estructura3JuliaDiaz_14
 
SISTEMAS ESTRUCTURALES, ARMONÍA ESTRUCTURAL, EJEMPLOS DE EDIFICIOS ALTOS EN V...
SISTEMAS ESTRUCTURALES, ARMONÍA ESTRUCTURAL, EJEMPLOS DE EDIFICIOS ALTOS EN V...SISTEMAS ESTRUCTURALES, ARMONÍA ESTRUCTURAL, EJEMPLOS DE EDIFICIOS ALTOS EN V...
SISTEMAS ESTRUCTURALES, ARMONÍA ESTRUCTURAL, EJEMPLOS DE EDIFICIOS ALTOS EN V...Karéh Karina Hernandez
 
DOSIFICACIONES DE TARRAJEO.pdf
DOSIFICACIONES DE TARRAJEO.pdfDOSIFICACIONES DE TARRAJEO.pdf
DOSIFICACIONES DE TARRAJEO.pdfCarlosSand2
 
Sistemas industrializados
Sistemas industrializadosSistemas industrializados
Sistemas industrializadosUGC / ULSA / UA
 
Analsisi de edificico 5 pisos con sap2000
Analsisi de edificico 5 pisos con sap2000Analsisi de edificico 5 pisos con sap2000
Analsisi de edificico 5 pisos con sap2000Miguel Angel Balcazar
 
Mapa Conceptual de Construcción I
Mapa Conceptual de Construcción IMapa Conceptual de Construcción I
Mapa Conceptual de Construcción IJose Ramirez
 
Grafica de iteraciones para columnas de concreto reforzado
Grafica de iteraciones para columnas de concreto reforzadoGrafica de iteraciones para columnas de concreto reforzado
Grafica de iteraciones para columnas de concreto reforzadomoyoguano
 
Losa de cimentacion
Losa de cimentacionLosa de cimentacion
Losa de cimentacionlisaarteagam
 
Diseño y construcción de estructuras de acero cap1a
Diseño y construcción de estructuras de acero cap1aDiseño y construcción de estructuras de acero cap1a
Diseño y construcción de estructuras de acero cap1aTomás Amateco Reyes
 
obras preliminares y provisionales.docx
obras preliminares y provisionales.docxobras preliminares y provisionales.docx
obras preliminares y provisionales.docxBrayanAgama
 
ESTRUCTURA ISOSTATICAS
ESTRUCTURA ISOSTATICAS ESTRUCTURA ISOSTATICAS
ESTRUCTURA ISOSTATICAS Valerìa Lopez
 
Diseño de una vivienda de 6 pisos de concreto armado
Diseño de una vivienda de 6 pisos de concreto armado Diseño de una vivienda de 6 pisos de concreto armado
Diseño de una vivienda de 6 pisos de concreto armado George Aquino
 
DISEÑO ESTRUCTURAL DE UNA VIVIENDA DE 5mx20m DE 5 NIVELES
DISEÑO ESTRUCTURAL DE UNA VIVIENDA DE 5mx20m DE 5 NIVELESDISEÑO ESTRUCTURAL DE UNA VIVIENDA DE 5mx20m DE 5 NIVELES
DISEÑO ESTRUCTURAL DE UNA VIVIENDA DE 5mx20m DE 5 NIVELESYbilder Vasquez
 

La actualidad más candente (20)

Cargas
CargasCargas
Cargas
 
Libro ingenieria-sismo-resistente-prc3a1cticas-y-exc3a1menes-upc
Libro ingenieria-sismo-resistente-prc3a1cticas-y-exc3a1menes-upcLibro ingenieria-sismo-resistente-prc3a1cticas-y-exc3a1menes-upc
Libro ingenieria-sismo-resistente-prc3a1cticas-y-exc3a1menes-upc
 
Losas unidireccional y bidireccional estructura3
Losas unidireccional y bidireccional estructura3Losas unidireccional y bidireccional estructura3
Losas unidireccional y bidireccional estructura3
 
SISTEMAS ESTRUCTURALES, ARMONÍA ESTRUCTURAL, EJEMPLOS DE EDIFICIOS ALTOS EN V...
SISTEMAS ESTRUCTURALES, ARMONÍA ESTRUCTURAL, EJEMPLOS DE EDIFICIOS ALTOS EN V...SISTEMAS ESTRUCTURALES, ARMONÍA ESTRUCTURAL, EJEMPLOS DE EDIFICIOS ALTOS EN V...
SISTEMAS ESTRUCTURALES, ARMONÍA ESTRUCTURAL, EJEMPLOS DE EDIFICIOS ALTOS EN V...
 
Muros de corte o placas
Muros de corte o placasMuros de corte o placas
Muros de corte o placas
 
DOSIFICACIONES DE TARRAJEO.pdf
DOSIFICACIONES DE TARRAJEO.pdfDOSIFICACIONES DE TARRAJEO.pdf
DOSIFICACIONES DE TARRAJEO.pdf
 
Sistemas industrializados
Sistemas industrializadosSistemas industrializados
Sistemas industrializados
 
Analsisi de edificico 5 pisos con sap2000
Analsisi de edificico 5 pisos con sap2000Analsisi de edificico 5 pisos con sap2000
Analsisi de edificico 5 pisos con sap2000
 
Mapa Conceptual de Construcción I
Mapa Conceptual de Construcción IMapa Conceptual de Construcción I
Mapa Conceptual de Construcción I
 
1 criterios estructuracion
1 criterios estructuracion1 criterios estructuracion
1 criterios estructuracion
 
Grafica de iteraciones para columnas de concreto reforzado
Grafica de iteraciones para columnas de concreto reforzadoGrafica de iteraciones para columnas de concreto reforzado
Grafica de iteraciones para columnas de concreto reforzado
 
Losa de cimentacion
Losa de cimentacionLosa de cimentacion
Losa de cimentacion
 
Diseño y construcción de estructuras de acero cap1a
Diseño y construcción de estructuras de acero cap1aDiseño y construcción de estructuras de acero cap1a
Diseño y construcción de estructuras de acero cap1a
 
obras preliminares y provisionales.docx
obras preliminares y provisionales.docxobras preliminares y provisionales.docx
obras preliminares y provisionales.docx
 
Rigidez tipos de estructuras
Rigidez tipos de estructurasRigidez tipos de estructuras
Rigidez tipos de estructuras
 
ESTRUCTURA ISOSTATICAS
ESTRUCTURA ISOSTATICAS ESTRUCTURA ISOSTATICAS
ESTRUCTURA ISOSTATICAS
 
Diseño de una vivienda de 6 pisos de concreto armado
Diseño de una vivienda de 6 pisos de concreto armado Diseño de una vivienda de 6 pisos de concreto armado
Diseño de una vivienda de 6 pisos de concreto armado
 
Fuerzas Horizontales
Fuerzas HorizontalesFuerzas Horizontales
Fuerzas Horizontales
 
DISEÑO ESTRUCTURAL DE UNA VIVIENDA DE 5mx20m DE 5 NIVELES
DISEÑO ESTRUCTURAL DE UNA VIVIENDA DE 5mx20m DE 5 NIVELESDISEÑO ESTRUCTURAL DE UNA VIVIENDA DE 5mx20m DE 5 NIVELES
DISEÑO ESTRUCTURAL DE UNA VIVIENDA DE 5mx20m DE 5 NIVELES
 
Tipologias estructurales
Tipologias estructurales Tipologias estructurales
Tipologias estructurales
 

Similar a Métodos Básicos de Análisis Estructural

Trabajo academico 01 estructuras continuas, reticuladas, articuladas, aportic...
Trabajo academico 01 estructuras continuas, reticuladas, articuladas, aportic...Trabajo academico 01 estructuras continuas, reticuladas, articuladas, aportic...
Trabajo academico 01 estructuras continuas, reticuladas, articuladas, aportic...1236 Apellidos
 
Proyecto de Criterios y Pautas de Evaluación
Proyecto de Criterios y Pautas de EvaluaciónProyecto de Criterios y Pautas de Evaluación
Proyecto de Criterios y Pautas de Evaluaciónadolfo pereira
 
01. Mecánica de Estructuras Autor Miguel Cervera Ruiz y Elena Blanco Díaz.pdf
01. Mecánica de Estructuras Autor Miguel Cervera Ruiz y Elena Blanco Díaz.pdf01. Mecánica de Estructuras Autor Miguel Cervera Ruiz y Elena Blanco Díaz.pdf
01. Mecánica de Estructuras Autor Miguel Cervera Ruiz y Elena Blanco Díaz.pdfssuserf1847f
 
Mecanica de fluidos_1
Mecanica de fluidos_1Mecanica de fluidos_1
Mecanica de fluidos_1Tatum Dmx
 
Plan de Curso 306
Plan de Curso 306Plan de Curso 306
Plan de Curso 306rbrosabelen
 
Proyecto de criterios y pautas de evaluación Aileen, Yasmin y Rafael
Proyecto de criterios y pautas de evaluación Aileen, Yasmin y RafaelProyecto de criterios y pautas de evaluación Aileen, Yasmin y Rafael
Proyecto de criterios y pautas de evaluación Aileen, Yasmin y Rafaelaileenmp
 
Proyecto e learning-evaluacion on-line-saia mod 4 peña, ojeda, silva
Proyecto e learning-evaluacion on-line-saia mod 4 peña, ojeda, silvaProyecto e learning-evaluacion on-line-saia mod 4 peña, ojeda, silva
Proyecto e learning-evaluacion on-line-saia mod 4 peña, ojeda, silvaRafael Luciano Silva Medrano
 
Guia+de+estudio%20 ciberneticaxxxi bis
Guia+de+estudio%20 ciberneticaxxxi bisGuia+de+estudio%20 ciberneticaxxxi bis
Guia+de+estudio%20 ciberneticaxxxi bisAsesor Diplomado
 
Contenido, formato y distribucion programatica listo120616
Contenido, formato y distribucion programatica listo120616Contenido, formato y distribucion programatica listo120616
Contenido, formato y distribucion programatica listo120616Rafael Luciano Silva Medrano
 
Colección de Problemas de Ingeniería Fluidomecánica - Xabier Almandoz.pdf
Colección de Problemas de Ingeniería Fluidomecánica - Xabier Almandoz.pdfColección de Problemas de Ingeniería Fluidomecánica - Xabier Almandoz.pdf
Colección de Problemas de Ingeniería Fluidomecánica - Xabier Almandoz.pdfgustavotineoescorpio
 
Bajada aulica de instrumentacion y control
Bajada aulica de instrumentacion y controlBajada aulica de instrumentacion y control
Bajada aulica de instrumentacion y controlDant Aranda
 
Silabu Introd. a Computación
Silabu Introd. a ComputaciónSilabu Introd. a Computación
Silabu Introd. a ComputaciónVeki Ta
 
Caminos del saber matematicas 6
Caminos del saber matematicas 6Caminos del saber matematicas 6
Caminos del saber matematicas 6Alonso Madrid
 
Silabus computacion
Silabus computacionSilabus computacion
Silabus computacionVeki Ta
 
Silabo de fisica aplicada
Silabo de fisica aplicadaSilabo de fisica aplicada
Silabo de fisica aplicadaGladys Cruz
 
Silabo fisica I
Silabo   fisica ISilabo   fisica I
Silabo fisica IFelix Cuya
 

Similar a Métodos Básicos de Análisis Estructural (20)

Trabajo academico 01 estructuras continuas, reticuladas, articuladas, aportic...
Trabajo academico 01 estructuras continuas, reticuladas, articuladas, aportic...Trabajo academico 01 estructuras continuas, reticuladas, articuladas, aportic...
Trabajo academico 01 estructuras continuas, reticuladas, articuladas, aportic...
 
Fisica 2
Fisica 2Fisica 2
Fisica 2
 
Proyecto de Criterios y Pautas de Evaluación
Proyecto de Criterios y Pautas de EvaluaciónProyecto de Criterios y Pautas de Evaluación
Proyecto de Criterios y Pautas de Evaluación
 
01. Mecánica de Estructuras Autor Miguel Cervera Ruiz y Elena Blanco Díaz.pdf
01. Mecánica de Estructuras Autor Miguel Cervera Ruiz y Elena Blanco Díaz.pdf01. Mecánica de Estructuras Autor Miguel Cervera Ruiz y Elena Blanco Díaz.pdf
01. Mecánica de Estructuras Autor Miguel Cervera Ruiz y Elena Blanco Díaz.pdf
 
Mecanica de fluidos_1
Mecanica de fluidos_1Mecanica de fluidos_1
Mecanica de fluidos_1
 
Plan de Curso 306
Plan de Curso 306Plan de Curso 306
Plan de Curso 306
 
Resistencia materiales
Resistencia materialesResistencia materiales
Resistencia materiales
 
Proyecto de criterios y pautas de evaluación Aileen, Yasmin y Rafael
Proyecto de criterios y pautas de evaluación Aileen, Yasmin y RafaelProyecto de criterios y pautas de evaluación Aileen, Yasmin y Rafael
Proyecto de criterios y pautas de evaluación Aileen, Yasmin y Rafael
 
Proyecto e learning-evaluacion on-line-saia mod 4 peña, ojeda, silva
Proyecto e learning-evaluacion on-line-saia mod 4 peña, ojeda, silvaProyecto e learning-evaluacion on-line-saia mod 4 peña, ojeda, silva
Proyecto e learning-evaluacion on-line-saia mod 4 peña, ojeda, silva
 
Guia+de+estudio%20 ciberneticaxxxi bis
Guia+de+estudio%20 ciberneticaxxxi bisGuia+de+estudio%20 ciberneticaxxxi bis
Guia+de+estudio%20 ciberneticaxxxi bis
 
Contenido, formato y distribucion programatica listo120616
Contenido, formato y distribucion programatica listo120616Contenido, formato y distribucion programatica listo120616
Contenido, formato y distribucion programatica listo120616
 
Colección de Problemas de Ingeniería Fluidomecánica - Xabier Almandoz.pdf
Colección de Problemas de Ingeniería Fluidomecánica - Xabier Almandoz.pdfColección de Problemas de Ingeniería Fluidomecánica - Xabier Almandoz.pdf
Colección de Problemas de Ingeniería Fluidomecánica - Xabier Almandoz.pdf
 
Diseño instruccional 2006
Diseño instruccional 2006Diseño instruccional 2006
Diseño instruccional 2006
 
Sistemas_operativos
Sistemas_operativosSistemas_operativos
Sistemas_operativos
 
Bajada aulica de instrumentacion y control
Bajada aulica de instrumentacion y controlBajada aulica de instrumentacion y control
Bajada aulica de instrumentacion y control
 
Silabu Introd. a Computación
Silabu Introd. a ComputaciónSilabu Introd. a Computación
Silabu Introd. a Computación
 
Caminos del saber matematicas 6
Caminos del saber matematicas 6Caminos del saber matematicas 6
Caminos del saber matematicas 6
 
Silabus computacion
Silabus computacionSilabus computacion
Silabus computacion
 
Silabo de fisica aplicada
Silabo de fisica aplicadaSilabo de fisica aplicada
Silabo de fisica aplicada
 
Silabo fisica I
Silabo   fisica ISilabo   fisica I
Silabo fisica I
 

Más de SistemadeEstudiosMed

Metodologia Aprendizaje Multicanal - ADI22.pdf
Metodologia Aprendizaje Multicanal - ADI22.pdfMetodologia Aprendizaje Multicanal - ADI22.pdf
Metodologia Aprendizaje Multicanal - ADI22.pdfSistemadeEstudiosMed
 
DE-03-BOMBAS Y SISTEMAS DE BOMBEO-2022.pdf
DE-03-BOMBAS Y SISTEMAS DE BOMBEO-2022.pdfDE-03-BOMBAS Y SISTEMAS DE BOMBEO-2022.pdf
DE-03-BOMBAS Y SISTEMAS DE BOMBEO-2022.pdfSistemadeEstudiosMed
 
Clase 1 Estadistica Generalidades.pptx
Clase 1 Estadistica Generalidades.pptxClase 1 Estadistica Generalidades.pptx
Clase 1 Estadistica Generalidades.pptxSistemadeEstudiosMed
 
nociones básicas de la comunicación.pdf
nociones básicas de la comunicación.pdfnociones básicas de la comunicación.pdf
nociones básicas de la comunicación.pdfSistemadeEstudiosMed
 
UNIDAD 2 FASE PLANTEAMIENTO ANTECEDENTES Y BASES TEORICAS.ppt
UNIDAD 2 FASE PLANTEAMIENTO ANTECEDENTES Y BASES TEORICAS.pptUNIDAD 2 FASE PLANTEAMIENTO ANTECEDENTES Y BASES TEORICAS.ppt
UNIDAD 2 FASE PLANTEAMIENTO ANTECEDENTES Y BASES TEORICAS.pptSistemadeEstudiosMed
 
Unidad I SEMINARIO DE INVESTIGACION DE TRABAJO DE GRADO.ppt
Unidad I SEMINARIO DE INVESTIGACION DE TRABAJO DE GRADO.pptUnidad I SEMINARIO DE INVESTIGACION DE TRABAJO DE GRADO.ppt
Unidad I SEMINARIO DE INVESTIGACION DE TRABAJO DE GRADO.pptSistemadeEstudiosMed
 
Lineamientos_Trabajos de Grado_UNEFM-nov-2009.pdf
Lineamientos_Trabajos de Grado_UNEFM-nov-2009.pdfLineamientos_Trabajos de Grado_UNEFM-nov-2009.pdf
Lineamientos_Trabajos de Grado_UNEFM-nov-2009.pdfSistemadeEstudiosMed
 

Más de SistemadeEstudiosMed (20)

Metodologia Aprendizaje Multicanal - ADI22.pdf
Metodologia Aprendizaje Multicanal - ADI22.pdfMetodologia Aprendizaje Multicanal - ADI22.pdf
Metodologia Aprendizaje Multicanal - ADI22.pdf
 
DE-04-COMPRESORES-2022.pdf
DE-04-COMPRESORES-2022.pdfDE-04-COMPRESORES-2022.pdf
DE-04-COMPRESORES-2022.pdf
 
DE-03-BOMBAS Y SISTEMAS DE BOMBEO-2022.pdf
DE-03-BOMBAS Y SISTEMAS DE BOMBEO-2022.pdfDE-03-BOMBAS Y SISTEMAS DE BOMBEO-2022.pdf
DE-03-BOMBAS Y SISTEMAS DE BOMBEO-2022.pdf
 
DE-02-FLUJO DE FLUIDOS-2022.pdf
DE-02-FLUJO DE FLUIDOS-2022.pdfDE-02-FLUJO DE FLUIDOS-2022.pdf
DE-02-FLUJO DE FLUIDOS-2022.pdf
 
DE-01-INTRODUCCION-2022.pdf
DE-01-INTRODUCCION-2022.pdfDE-01-INTRODUCCION-2022.pdf
DE-01-INTRODUCCION-2022.pdf
 
Clase 3 Correlación.ppt
Clase 3 Correlación.pptClase 3 Correlación.ppt
Clase 3 Correlación.ppt
 
Clase 2 Medidas Estadisticas.ppt
Clase 2 Medidas Estadisticas.pptClase 2 Medidas Estadisticas.ppt
Clase 2 Medidas Estadisticas.ppt
 
Clase 1 Estadistica Generalidades.pptx
Clase 1 Estadistica Generalidades.pptxClase 1 Estadistica Generalidades.pptx
Clase 1 Estadistica Generalidades.pptx
 
nociones básicas de la comunicación.pdf
nociones básicas de la comunicación.pdfnociones básicas de la comunicación.pdf
nociones básicas de la comunicación.pdf
 
¿Cómo elaborar un Mapa Mental?
¿Cómo  elaborar un  Mapa Mental?¿Cómo  elaborar un  Mapa Mental?
¿Cómo elaborar un Mapa Mental?
 
Unidad 1 Planificación Docente
Unidad 1 Planificación Docente Unidad 1 Planificación Docente
Unidad 1 Planificación Docente
 
hablemos_pp2_inf.pptx
hablemos_pp2_inf.pptxhablemos_pp2_inf.pptx
hablemos_pp2_inf.pptx
 
UNIDAD 3 FASE METODOLOGICA.pptx
UNIDAD 3 FASE METODOLOGICA.pptxUNIDAD 3 FASE METODOLOGICA.pptx
UNIDAD 3 FASE METODOLOGICA.pptx
 
UNIDAD 2 FASE PLANTEAMIENTO ANTECEDENTES Y BASES TEORICAS.ppt
UNIDAD 2 FASE PLANTEAMIENTO ANTECEDENTES Y BASES TEORICAS.pptUNIDAD 2 FASE PLANTEAMIENTO ANTECEDENTES Y BASES TEORICAS.ppt
UNIDAD 2 FASE PLANTEAMIENTO ANTECEDENTES Y BASES TEORICAS.ppt
 
Unidad I SEMINARIO DE INVESTIGACION DE TRABAJO DE GRADO.ppt
Unidad I SEMINARIO DE INVESTIGACION DE TRABAJO DE GRADO.pptUnidad I SEMINARIO DE INVESTIGACION DE TRABAJO DE GRADO.ppt
Unidad I SEMINARIO DE INVESTIGACION DE TRABAJO DE GRADO.ppt
 
Lineamientos_Trabajos de Grado_UNEFM-nov-2009.pdf
Lineamientos_Trabajos de Grado_UNEFM-nov-2009.pdfLineamientos_Trabajos de Grado_UNEFM-nov-2009.pdf
Lineamientos_Trabajos de Grado_UNEFM-nov-2009.pdf
 
unidad quirurgica.pdf
unidad quirurgica.pdfunidad quirurgica.pdf
unidad quirurgica.pdf
 
Cuidados preoperatorios.pdf
Cuidados preoperatorios.pdfCuidados preoperatorios.pdf
Cuidados preoperatorios.pdf
 
Cirugía..pdf
Cirugía..pdfCirugía..pdf
Cirugía..pdf
 
Cirugía Ambulatoria2.pdf
Cirugía Ambulatoria2.pdfCirugía Ambulatoria2.pdf
Cirugía Ambulatoria2.pdf
 

Último

proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñotapirjackluis
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...JAVIER SOLIS NOYOLA
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMarjorie Burga
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...JonathanCovena1
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSYadi Campos
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoFundación YOD YOD
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfFrancisco158360
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaDecaunlz
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioELIASAURELIOCHAVEZCA1
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...JAVIER SOLIS NOYOLA
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptxFelicitasAsuncionDia
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfPaolaRopero2
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAEl Fortí
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADauxsoporte
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfNancyLoaa
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdfDemetrio Ccesa Rayme
 

Último (20)

proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativo
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
 
Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativa
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literario
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptx
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
 
Medición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptxMedición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptx
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdf
 
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdfTema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdf
 
Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.
 

Métodos Básicos de Análisis Estructural

  • 1. 1 UNIVERSIDAD EXPERIMENTAL NACIONAL “FRANCISCO DE MIRANDA” ÁREA DE TECNOLOGÍA PROGRAMA INGENIERIA CIVIL TRABAJO PRESENTADO COMO REQUISITO PARA OPTAR A LA CATEGORÍA DE PROFESOR ASOCIADO AUTOR ZULAY ROSENDO DE MORA Santa Ana de Coro, Enero 2006
  • 2. 2 INDICE INTRODUCCIÒN…………………………………………………………3 Presentación………………………………………………………………5 Objetivo General…………………………………………………….……6 Objetivos Específicos…………………………………………………….6 Justificación……………………………………………………………….7 Metodología……………………………………………………………….8 UNIDAD I Introducción al Análisis Estructural………….………………………...10 Ejemplos de Aplicación…………………………………………………29 UNIDAD II Métodos de Trabajo Virtual……………………………………………35 Aplicación del Principio de las Fuerzas Virtuales…………………...43 Método Analítico……………………….………………………………..43 Ejemplos de aplicación……………….………………………………...44 Método Grafico…………………………………………………………..65 Ejemplos de Aplicación…………………………………………………67 UNIDADIII Métodos para Resolver Sistemas Indeterminados….………………74 Método de las Fuerzas…………………………………………………77 Ejemplos de Aplicación…………………………………………………81 Método de los Desplazamientos………………………………………91 Ejemplos de Aplicación…………………………………………………97 BIBLIOGRAFÍA……………...…………………………………………104
  • 3. 3 INTRODUCCIÓN: Con la realización de este texto se pretende ayudar al estudiante y al profesional de Ingeniería civil, en cuanto a la disposición de un material de apoyo específico y detallado en relación a los métodos básicos para el análisis estructural. No obstante, Su contenido esta completamente actualizado, por lo que el desarrollo de los problemas se enfocan y orientan de acuerdo con la filosofía y nuevas técnicas de la enseñanza de la teoría estructural. En atención a este criterio se citan como características más resaltantes en la realización de este texto, las siguientes: 1. Los contenidos se exponen de manera que los conocimientos están ordenados en complejidad creciente, es decir, de lo mas sencillo a lo mas complejo. 2. Los diferentes temas tratados en los problemas se desarrollan de modo que el aspecto formativo predomine sobre el aspecto puramente informativo, por lo que el estudiante se encontrará frecuentemente ante situaciones en las cuales debe tomar una actitud reflexiva y científica que le permita obtener conclusiones satisfactorias. 3. Los ejemplos de aplicación se realizan considerando una relación entre los conocimientos alcanzados en las unidades curriculares que prelan. a la unidad curricular Estructura I, tales como: Estática, mecánica Racional, Resistencia de los materiales, de tal manera que el análisis se presenta como una unidad integral y no como un conjunto de parcelas aisladas. 4. La solución de los ejemplos se desarrolla siguiendo metodológicamente el procedimiento respectivo a cada tema y explicado en detalle y en forma esquematizada. Consta de tres (3) capítulos, dispuestos de la siguiente manera:
  • 4. 4 1. Introducción al Análisis Estructural 2. Trabajo Virtual:  Método Analítico  Método Gráfico. 3. Métodos para Resolver Sistemas Indeterminados  Método de las Fuerzas  Método de los Desplazamientos Cada capitulo se inicia con los objetivos de la unidad, la introducción, algunas definiciones de la terminología básica, la descripción del método, un resumen del procedimiento y dos ejemplos por cada tema tratado esquematizados.
  • 5. 5 OBJETIVO GENERAL: Diseñar un texto denominado “Métodos Básicos de Análisis Estructural” adaptado a la unidad curricular Estructura I del Programa de Ingeniería Civil de la UNEFM. OBJETIVOS ESPECIFICOS:  Seleccionar los temas más relevantes adaptados a los objetivos de la Unidad Curricular Estructura I  Revisión actualizada de la bibliografía existente tanto por medios tradicionales como por medios electrónicos.  Describir y Esquematizar los métodos Básicos de análisis estructural considerando el orden de asimilación del aprendizaje desde lo más sencillo a lo más complejo.  Diseñar el texto atendiendo al uso de las herramientas gráficas actualizadas para una mejor comprensión del aprendizaje.
  • 6. 6 JUSTIFICACIÓN: Con la presentación de este trabajo se pretende ayudar al estudiante en cuanto a la disposición de un material de apoyo claro, preciso y detallado para la unidad curricular Estructura I, el cual será de gran utilidad tanto para el alumnado como para el profesorado y profesionales afines, ya que viene a llenar un vació, por cuanto, a las características que presenta, es difícil conseguirlo y menos aún en nuestra biblioteca en donde existe actualmente una escasez en bibliografía, sobre todo en estructuras. Cabe destacar además, que es el profesor universitario, quien esta en plena capacidad, según su experiencia y años de servicio, de editar los textos especializados para el uso del estudiantado y de los profesionales en general. Todo esto resultaría muy provechoso tanto para el estudiante como para la UNEFM, por cuanto se mejoraría el rendimiento académico estudiantil y la proyección y el renombre que tendría la Universidad por la nueva bibliografía editada por sus propios profesores.
  • 7. 7 PRESENTACION Durante los 17 años de experiencia del Autor, como docente en esta Casa de Estudios Superiores, donde ha impartido diferentes Unidades Curriculares, tales como: Física, Mecánica Racional, Estática, Mecánica de Fluidos, Resistencia de Materiales y Estructura I; ha observado como los estudiantes han tenido que conformarse muchas veces con los apuntes que les proporciona el profesor, por la falta de bibliografía existente, sobre todo en las unidades curriculares profesionales. Sin embargo últimamente con el uso de la herramienta del Internet, se pueden realizar ciertas investigaciones atendiendo a la información teórica, pero no es posible obtener un texto especialmente adaptado a la Unidad Curricular Estructura I de la UNEFM, como el que se presenta en este trabajo de investigación, lo cual impulsaría al estudiante a elevar su índice académico y lograr con éxito los objetivos propuestos en dichos programas de estudio. Es mi aspiración que los objetivos especificados se logren y que este texto sea una ayuda eficaz para los estudiantes, un auxiliar útil para los colegas profesores y profesionales afines. Recibiré con agrado las sugerencias que hagan con el objeto de mejorar este trabajo. EL AUTOR
  • 8. 8 METODOLOGÍA  Se seleccionaron los temas concernientes a los métodos Básicos de Análisis estructural más relevantes adaptados a los objetivos de la Unidad Curricular Estructura I  Se realizó una exhaustiva revisión bibliografía, tanto por medios tradicionales como por medios electrónicos.  Se procedió a describir los métodos Básicos de análisis estructural considerando el orden de asimilación del aprendizaje desde lo más sencillo a lo más complejo.  Se diseñó el texto atendiendo al uso de las herramientas gráficas actualizadas para una mejor comprensión del aprendizaje.
  • 9. 9
  • 10. 10 UNIDAD I: INTRODUCCIÓN AL ANALISIS ESTRUCTURAL OBJETIVOS: 1. Aplicar las suposiciones básicas y limitaciones fundamentales de la ingeniería estructural. 2. Definir los conceptos básicos: Estructura, grado de libertad, juntas, vínculos y miembros estructurales o elementos. 3. Diferenciar las unidades de vinculación tanto interna como externa que aportan los diferentes tipos de vínculos. 4. Aplicar las ecuaciones fundamentales del equilibrio estático. 5. Calcular el grado de indeterminación estática de los sistemas estructurales planos y tridimensionales.
  • 11. 11 INTRODUCCIÓN: El análisis estructural tiene como finalidad principal la determinación de los esfuerzos o fuerzas internas producidas en los miembros de una estructura, a saber, momentos de flexión y de torsión, fuerzas de corte y axiales; así como también los desplazamientos y deformaciones de las juntas y miembros de la estructura. Estos esfuerzos y deformaciones se producen a consecuencia de acciones externas (cargas) que actúan sobre la estructura. La ingeniería estructural en términos simples, se refiere a las etapas tanto del análisis como del diseño de las estructuras DEFINICIÓN DE TERMINOLOGÍA BÁSICA Para una mejor comprensión de los temas posteriores se hace indispensable el manejo de la siguiente terminología básica y así poder iniciarse en el cálculo estructural: CARGAS:  Carga Muerta o carga permanente: es aquella producida por el peso propio de los elementos.  Carga Variable o carga viva: es aquella producida por personas, equipos, nieve y otros.  Cargas Especiales: son aquellas producidas por sismo, viento, por el terreno, asentamientos, cambios de temperatura, hidráulicas., errores de fabricación y construcción. A las cargas vivas y especiales, también se les denomina sobrecarga, y actúan de una forma menos permanente y de magnitudes no constantes en el tiempo. SISTEMA ESTRUCTURAL:  Consiste en un ensamblaje de miembros, llamada armazón o estructura armada, con el objeto de resistir en forma segura, las cargas a las cuales estará sometida.
  • 12. 12  Sistema compuesto de uno o varios elementos resistentes dispuestos de tal forma que tanto la estructura total como sus componentes sean capaces de mantenerse sin cambios apreciables en su geometría durante la carga y la descarga. SISTEMAS CONTINUOS:  Son aquellos sistemas para los que no existe una estructura identificable, sin embargo son estructuras que pueden analizarse con los principios básicos y métodos del análisis estructural, últimamente, se está utilizando el método de los elementos finitos para su calculo. Como ejemplo de estos sistemas, se tienen: Cascarones, Domos, Placas, Presas, Muros de Contención, Torres enfriadoras y Tanque de almacenamiento. EJEMPLOS DE ESTRUCTURAS: Entre las estructuras más comunes se tienen: edificios, Puentes, Torres de Transmisión, Naves espaciales, Aviación, Muros. OBJETIVO DEL ANALISIS ESTRUCTURAL: El objetivo técnico del análisis estructural, es en forma general, la determinación de las fuerzas y desplazamientos de una estructura dada. El análisis completo de una estructura suele requerir de un conocimiento de todos sus miembros, los cuales están determinados por las dimensiones de diseño. El objetivo técnico del diseño estructural es la selección y el detalle de los componentes que conforman el sistema estructural. Diseñar una estructura envuelve muchas consideraciones, entre las cuales se persiguen dos objetivos principales: 1. La estructura debe cumplir los requisitos de funcionalidad, es decir suministrar el espacio para viviendas, fábricas y otros usos. 2. La estructura debe soportar las cargas en condiciones seguras, es decir, mantener el equilibrio bajo su propio peso más las cargas provenientes de la cubierta, del viento, del sismo y de la nieve, cualquiera sea el caso.
  • 13. 13 En la práctica el análisis y el diseño de una estructura son inseparables, ya que las dimensiones obtenidas del diseño se basan en el conocimiento de las fuerzas internas de la estructura que resulta de un análisis. PASOS PARA OBTENER EL DISEÑO COMPLETO DE UNA ESTRUCTURA: El diseño completo de una estructura esta conformado por los siguientes pasos: 1. Determinación de la Forma General: depende de los siguientes factores:  Funcionalidad: El uso al cual va a estar destinado.  Aspectos Económicos, estéticos, legales y financieros. 2. Investigación de las Cargas: Se obtiene considerando Especificaciones y Normas vigentes, dependiendo del uso. 3. Análisis de esfuerzos: Determinación de las fuerzas internas y deformaciones. 4. Selección de Materiales y Dimensiones: Considerando los resultados del análisis de esfuerzos, Normas y Especificaciones. 5. Dibujos y Detalles: Proporcionan información necesaria para la construcción de la estructura. FASES PARA LA EJECUCIÓN DE PROYECTOS DE INGENIERÍA En un sentido mas amplio la ingeniería estructural va mas alla del diseño y del análisis. La mayor parte de los proyectos de ingeniería incluyen las siguientes fases:  Planeación General  Estimación de Tiempos  Fabricación  Construcción  Inspección de una Estructura. El ingeniero en estructuras puede participar en cualquiera de esos niveles para utilizar sus habilidades y funciones cualitativas.
  • 14. 14 El objetivo final del ingeniero en estructuras, es obtener una estructura segura y económica. Los errores cometidos en alto grado en el análisis durante cualquier fase de un proyecto pueden ser catastróficos generando perdidas de vida o de dinero. Es por ello que los análisis son revisados y comprobados muy a menudo por diferentes individuos dentro de una misma empresa. MODELADO Y SIMBOLOGÍA EN ESTRUCTURAS El modelado de una estructura significa la formulación de un modelo de la estructura real, susceptible de un tratamiento matemático relativamente sencillo. Son idealizaciones y simplificaciones adoptadas para reducir la complejidad del problema.  Se idealizan descripciones geométricas de la estructura real  Se idealiza el comportamiento del material  Se idealiza la forma en que están conectados entre si los miembros individuales de una estructura  Se idealiza la forma como están sujetos los elementos de las fronteras o los soportes del sistema. SUPOSICIONES E HIPOTESIS FUNDAMENTALES La teoría de las estructuras se caracteriza por considerar las siguientes suposiciones e hipótesis en su metodología:  Cálculo Estático y Dinámico: Generalmente el cálculo se realiza considerando la carga estática; sin embargo, los efectos dinámicos causados por las cargas en movimiento como: los sismos, vientos, explosiones de bombas, se estudian en el análisis dinámico de las estructuras.  Consideraciones en el Plano y en el Espacio: Las estructuras para su análisis pueden ser consideras en el plano o en el espacio, siempre y cuando el sistema de cargas que actúan sobre ellas están contenidas en el plano o en el espacio, respectivamente.  Estructuras de Comportamiento Lineal y no Lineal: Se dice que el material con que están hechos los elementos de una estructura tiene un
  • 15. 15 comportamiento lineal (fig.a), cuando existe una proporcionalidad directa entre el esfuerzo y la deformación, es decir, cumple la ley de Hooke, y esa relación constante ó la pendiente del diagrama esfuerzo deformación es igual al modulo de elasticidad del material (E), caso contrario, se dice que el material tiene un comportamiento no lineal (fig.b). Lineal No Lineal Fig.a fig.b  Comportamiento Elástico e Inelástico: Se dice que la estructura tiene un comportamiento elástico (fig. c y d), cuando al ser sometida a un sistema de cargas esta se deforma, pero al ser descargada, regresa a su posición original siguiendo la misma trayectoria seguida durante el proceso de carga. Si la estructura cargada, al ser descargada no regresa a su posición original siguiendo la misma trayectoria que durante el proceso de carga, se dice que tiene un comportamiento inelástico (fig. e y f). Fig.c Elasticamente fig.d. Elasticamente Fig.e Inelasticamente Fig.f Inelasticamente lineal no Lineal no lineal lineal  Principio de superposición: La aplicación de este principio esta condicionada a que el material tenga un comportamiento lineal, es decir que se cumpla con la ley de Hooke, y establece que: “La respuesta de una estructura debida a un número de cargas aplicadas simultáneamente, es igual a la suma de las respuestas de las cargas individuales aplicadas por separado, Fig.g. Entendiéndose por la respuesta de una estructura ante la acción de un sistema de cargas, la
  • 16. 16  medida de los esfuerzos y deformaciones desarrollados en los miembros y juntas de dicha estructura.  Teoría De Los Desplazamientos Pequeños: Esta teoría se basa en que los desplazamientos de una estructura debida a un sistema de cargas actuantes son tan pequeños que la forma de la estructura permanece sin variar apreciablemente, antes y después de la aplicación de las cargas. Generalmente se limitan hasta unas dos órdenes de magnitud de la dimensión característica (10-2 ). Es denominada también “Teoría de Primer Orden”, ya que toma en cuenta solo los efectos de primer orden, considerando despreciables los efectos del segundo orden como por ejemplo: el fenómeno de pandeo, el cual toma importancia cuando los elementos son esbeltos sometidos a grandes cargas; y también el efecto de corte, que es importante considerarlo en miembros de gran peralte.  Estructuras Estáticamente Determinadas e Indeterminadas: Las estructuras, de acuerdo al grado de indeterminación estática se clasifican en: Estáticamente determinadas y estáticamente indeterminadas, lo cual es necesario para su análisis estructural, únicamente establecer las ecuaciones de equilibrio estático, al sistema considerado, si esta es determinada, mientras que si la estructura es indeterminada, requiere de ecuaciones adicionales para igualar al número de incógnitas y resolver el sistema de ecuaciones planteado. Estas ecuaciones adicionales pueden obtenerse mediante las relaciones entre las fuerzas y los desplazamientos y la aplicación del principio de superposición. Existen q q = + + P1 P2 P1 P2 Fig.g
  • 17. 17 varios métodos para resolver estos sistemas indeterminados y la diferencia radica en la manipulación de estas relaciones, entre las fuerzas y los desplazamientos, entre los cuales se trataran en este curso: el método de las fuerzas y el método de los desplazamientos. TIPOS DE ELEMENTOS A ANALIZAR  Vigas: Elemento horizontal recto sometido solamente a cargas transversales y queda analizada completamente cuando se determinan los valores del momento flector y las fuerzas cortantes.  Cerchas: Se componen de elementos rectos o barras unidas a través de articulaciones libres de fricción, formando triángulos, y las cargas son aplicadas en los nodos y cada barra se considera sometida exclusivamente a fuerzas axiales.  Marcos o Pórticos Rígidos: Esta compuesto de elementos horizontales y verticales, unidos mediante juntas rígidas capaces de resistir momento. Los elementos de un pórtico rígido generalmente están sometidos a momentos flectores, fuerzas cortantes y fuerzas axiales. SISTEMAS DE VINCULACIÓN Vinculo: Condición geométrica que limita o restringe el movimiento de los cuerpos (vinculo real). Grado de Libertad:  Posibilidad de movimiento que puede tener un cuerpo  Número de coordenadas generalizadas libres e independientes necesarias para definir la posición o configuración de un cuerpo o sistema.  Viene dado por el número mínimo de unidades de vinculación que se le debe adicionar a un sistema para llevarlo a condiciones de equilibrio estático. Un cuerpo analizado en el plano tiene tres posibilidades de movimientos independientes:  Un desplazamiento vertical
  • 18. 18  Un desplazamiento horizontal  Un desplazamiento angular o rotacional alrededor del eje perpendicular al plano del cuerpo. Un cuerpo analizado en el espacio tiene seis posibilidades de movimiento independientes:  Tres desplazamientos lineales: uno en el eje X, dx, otro en el eje Y, dy, y otro en el eje Z, dz.  Tres desplazamientos angulares o rotacionales alrededor de los tres ejes ortogonales: uno alrededor del eje X, öx, otro alrededor del eje Y, y, y el otro alrededor del eje Z, z. Miembro: Es el elemento que forma cada pieza del sistema o estructura, y dependiendo de su forma, pueden ser:  De Eje Recto:  De Eje Curvo:  De Sección Constante:  De Sección Variable: Vínculos Internos: Son aquellos que limitan la capacidad de movimiento de un miembro con respecto a otro, se clasifican en: a) Vínculos de Primera Especie: Restringen un solo grado de libertad, ejemplo: los rodillos, permiten la traslación en la dirección de acción de los rodillos y la rotación relativa entre los miembros conectados y restringe la otra traslación (fig.h); y el empotramiento libre, vínculo que permite toda traslación relativa, restringiendo solo la rotación relativa entre los miembros conectados fig.i). Fig.h fig.i
  • 19. 19 b) Vínculos de segunda especie: Restringen dos grados de libertad, ejemplo: el empotramiento móvil, restringe la rotación relativa y un desplazamiento lineal, permite solo una traslación relativa (fig.j); y la rótula o articulación, la cual solo permite la rotación relativa entre los miembros que vincula (fig k). Fig.j fig.k c) Vínculos de Tercera Especie: Restringen tres grados de libertad, ejemplo: El empotramiento interno, el cual no permite que halla desplazamiento relativo, es equivalente a señalar ambos elementos como uno solo (fig.l) Fig.l Vínculos Externos: Son aquellos que restringen el movimiento de un cuerpo o miembro con la lámina tierra, esta se supone fija, y se clasifican en: a) Vínculos de Primera Especie: Restringe un solo grado de libertad, ejemplo: el rodillo o articulación móvil, permite la rotación y desplazamientos lineales, restringiendo solo un desplazamiento lineal en dirección perpendicular a la acción de los rodillos (fig.m); y el empotramiento libre, el cual permite solo traslación, ya que su rotación con respecto a la lámina tierra es nula (fig.n). Fig.m fig.n
  • 20. 20 b) Vínculos de Segunda Especie: ejemplo: la articulación, la cual solo permite desplazamientos angulares o rotacionales, los cuales se producen alrededor de un punto O, impidiendo toda traslación (fig.o); y el empotramiento móvil, el cual solo permite la traslación en el sentido de acción de los rodillos (fig.p). o fig.o fig.p c) Vínculos de Tercera Especie: Restringe todo grado de libertad, ejemplo: el empotramiento fijo o simplemente empotramiento, (fig.q) Vinculo Aparente: Es aquel que no introduce restricciones adicionales a las ya existentes dentro de un mecanismo cinemático, el cual, es un sistema hipostático o inestable (fig.r). Vínculo Aparente Uno de los tres es Aparente Vínculo Superfluos o superabundante Fig.r Fig. s Vinculos Superfluos O Superabundante: Son vínculos adicionales al número mínimo que se requiere para llevar a condiciones de equilibrio un mecanismo A B C Fig.q
  • 21. 21 cinemático. En la siguiente figura s, el vínculo A es superabundante, ya que el elemento se encuentra en condiciones de equilibrio estático mediante los vínculos dispuestos en B y en C. APOYOS Y SUS REACCIONES TIPO REPRESENT. GRAFICA #REACCIONES PLANO ESPACIO RODILLO 1 1 APOYO FIJO 2 3 EMPOTRAMIENTO PERFECTO 3 6 EMPOTRAMIENTO MOVIL 2 4 EQUILIBRIO, ESTABILIDAD, DETERMINACIÓN ESTATICA Y GEOMETRICA DE ESTRUCTURAS. EQUILIBRIO ESTÁTICO Se dice que un cuerpo se encuentra en equilibrio estático si permanece en reposo durante y después de la aplicación de las cargas, y matemáticamente puede expresarse como: “la resultante de todas las fuerzas y momentos que actúan sobre dicho cuerpo sea igual a cero”, es decir, ∑F = 0, R1 R1 R2 R1 Rx Ry Rz Ry
  • 22. 22 ∑M = 0. Estas ecuaciones representan las ecuaciones de equilibrio estático. Si el cuerpo está restringido a moverse en el plano, estará en equilibrio estático si satisface las tres ecuaciones siguientes: ∑Fx = 0 ∑Fy = 0 ∑Mz = 0 Si el cuerpo está contenido en el espacio, estará en equilibrio estático si se satisfacen las seis ecuaciones siguientes: ∑Fx = 0 ∑Mx = 0 ∑Fy = 0 ∑My = 0 ∑Fz = 0 ∑Mz = 0 Estas ecuaciones también pueden ser expresadas vectorialmente: ∑F = Fx i + Fy j + Fz k ∑M = Mx i + My j + Mz k Donde I, j, k son los vectores unitarios en el sistema cartesiano de los ejes x, y y z respectivamente. Representación de Fuerzas y Representación de fuerzas en el plano XY Momentos generales en el espacio Fx Fy Fz Mx Mz X Y Z Mz Fx Fy X Y
  • 23. 23 ESTABILIDAD Y DETERMINACION La estabilidad y grado de indeterminación de las estructuras debe juzgarse tanto por el número y disposición de los apoyos como por el número y disposición de sus elementos y las uniones de la estructura. Puede ser determinado por simple inspección o por medio de formulas. ESTABILIDAD: Una estructura se dice que es estable cuando sea capaz de soportar cualquier sistema concebible de cargas, resistiendo estas cargas en forma elástica e inmediatamente a su aplicación, considerando infinita la resistencia de todos los miembros y la capacidad de todos los soportes (Ferguson, P. 1965). En otras palabras la estabilidad de una estructura depende del número y disposición de las componentes de reacción y partes componentes más que de la resistencia de los apoyos y partes de la estructura. Requisitos de Estabilidad: 1) Si el número de incógnitas escalares independientes escalares independientes es menor que el número de ecuaciones escalares independientes, no triviales de la estática, el sistema es inestable. 2) Si el número de incógnitas escalares independientes es igual al número de ecuaciones escalares independientes no triviales de la estática, entonces: a) El sistema es estable si puede hablarse de una solución única para las incógnitas escalares, donde su determinante es diferente de cero, D ≠ 0. b) El sistema es inestable, si no puede hallarse una solución única para las incógnitas escalares, esto indica que su determinante es igual a cero, D = 0. 3) Cuando el número de incógnitas escalares independientes (n) es mayor que el número de ecuaciones escalares independientes (q), no triviales de la estática, el sistema se clasifica como estáticamente indeterminado de grado (n-q).
  • 24. 24 Determinación de la estabilidad de un sistema usando la aproximación matemática a la inestabilidad: Una condición necesaria pero no suficiente para que un sistema sea estable, es que deben existir al menos tantas reacciones independientes para la estructura, como ecuaciones independientes, no triviales de la estática hallan. La solución algebraica de un sistema general de tres ecuaciones simultaneas; dado el sistema: a11X1 + a12X2 + a13X3 = C1 a21X1 + a22X2 + a23X3 = C2 a31X1 + a23X2 + a33X3 = C3 Se determina X1, X2 y X3, mediante el siguiente procedimiento: Siendo: Y Se usa la regla de Cramer para resolver los determinantes y así calcular las incógnitas del problema, siempre y cuando el determinante, D, sea diferente de cero. Sea la siguiente viga determinar matemáticamente si es estable o no. P 30º a b c y z o 33333 23221 13111 2 aCa aCa aCa D  33323 23222 13121 1 aaC aaC aaC D  33231 22221 11211 3 Caa Caa Caa D  333231 232221 131211 aaa aaa aaa D  F1 F3F2 D D X 2 2  D D X 3 3  D D X 1 1
  • 25. 25 D= , por lo tanto el sistema es inestable, ya que no puede hallarse una solución única para las incógnitas. Físicamente un sistema es Inestables: cuando no existe limitación alguna al movimiento inmediatamente después de aplicarse una carga. Casos de Inestabilidad: a) b) En fin, Una estructura es estable o inestable, y determinada o indeterminada, dependiendo del número y disposiciones de las partes componentes internas y de las componentes de reacción externas. Puede desplazarse Puede girar alrededor del centro de rotación, o, donde se interceptan las tres líneas de acción. o Puede girar o balancearse PyFFFFy  3020100 PzFFFFz  3121110     aPzFcbaFbaFMo  32100 cbaba 0 111 000 D=0
  • 26. 26 Inestabilidad Geométrica: se produce cuando se introducen uniones internas en una estructura generalmente estable, así se tiene: Isostatica y estable isotatica y geométricamente inestable INDETERMINACION ESTÁTICA: Una estructura indeterminada puede definirse como aquella para la que las componentes de reacción y esfuerzos no pueden determinarse completamente mediante la aplicación de las ecuaciones de condición para el equilibrio estático. 1.1.- Grados de Indeterminación Estática o Grado de Hiperestaticidad: Es el número de componentes de reacción de los vínculos superfluos o superabundantes, y se denota por, “Ie”. Se define también como la diferencia entre el número de fuerzas desconocidas o redundantes (incógnitas) y el número disponible de ecuaciones de equilibrio para obtener estas incógnitas. Es simplemente el número de incógnitas que supera el número disponible de ecuaciones de equilibrio estático, y matemáticamente puede expresarse así: Ie = Nº Incog – Nº EED Siendo Nº Incog: Número de incógnitas Nº EED: Número de ecuaciones de equilibrio disponibles Deducción De la Ecuación del Grado de indeterminación Estática: En marcos, armaduras o cerchas tanto planos como espaciales. Marcos Planos: En un marco plano en equilibrio estático, solo hay tres fuerzas independientes desconocidas para cada uno de sus miembros, la fuerza axial, la fuerza de corte y el momento flector, como se muestra a continuación:
  • 27. 27 Entonces la cantidad de incógnitas del sistema de marcos planos consiste en el número de fuerzas independientes de cada miembro más el número de reacciones de sistema dado, así se tiene la siguiente ecuación: Nº Incog = 3NM + NR Siendo: NM: Número de miembros del sistema NR: Número de reacciones del sistema Para determinar el número de ecuaciones de equilibrio disponibles, se tiene que aplicar primeramente las tres ecuaciones del equilibrio estático: ∑Fx=0, ∑Fy = 0, ∑Mz = 0, por cada junta tanto interna como externa de la estructura. Por lo tanto, queda definido por: Nº EED = 3NJ. Esto indica que el grado de indeterminación quedaría expresado así: Ie = 3NM + NR – 3NJ Siendo NJ: Número de juntas del sistema Esta condición es aplicable a cualquier marco plano que tenga miembros continuos y juntas rígidas internas. Sin embargo existen condiciones especiales de construcción que pueden reducir el número de incógnitas y por tanto el grado de indeterminación de una estructura, tal es el caso de las juntas articuladas o con pasadores. Considerando que una articulación contribuye con otra ecuación adicional, como lo es, ∑M = 0, es decir, que la sumatoria de los momentos en la articulación debe ser cero para asegurar el equilibrio estático. Esto implica que la ecuación general para determinar los grados de indeterminación estática de un marco plano es la siguiente: Siendo NC: Número de ecuaciones de condición y viene expresada por: NC = (n – 1) Donde n: Número de miembros que llegan a la junta articulada Ie = 3NM + NR – 3NJ - NC
  • 28. 28 Marcos Espaciales: Cada miembro de un marco espacial tiene seis fuerzas internas independientes (una fuerza axial, dos fuerzas de corte, dos momentos flectores y un momento torsor); además dispone de seis ecuaciones de equilibrio estático por cada junta (∑Fx=0, ∑Fy=0, ∑Fz=0, ∑Mx=0, ∑My=0, Mz=0) más las ecuaciones de condición por juntas articuladas en el sistema. Entonces la ecuación para determinar los grados de indeterminación estática de este sistema, queda definida por: Donde NC = 3(n – 1) Armaduras Planas: Las armaduras están compuestas por miembros que soportan solo fuerzas axiales, es decir que por cada miembro hay solo una fuerza interna independiente desconocida. La cantidad total de incógnitas consiste en la fuerza de cada miembro más las componentes independientes de reacción. Además para cada junta articulada no existen momentos y solo hay dos ecuaciones de equilibrio disponibles para cada junta, ∑Fx=0 y ∑Fy=0. Entonces la ecuación para definir los grados de indeterminación estática para una armadura plana queda expresada así: Armaduras Espaciales: En este caso sigue existiendo una sola fuerza axial desconocida para cada miembro (fig), pero en cada junta hay ahora tres ecuaciones de equilibrio, ∑Fx=0, ∑Fy=0, ∑Fz=0. Por tanto, la expresión para determinar el grado de indeterminación estática en este sistema es: Ie = 6NM + NR – 6NJ –NC Ie = NM + NR – 2NJ Ie = NM + NR – 3Nj
  • 29. 29 EJEMPLOS: 1. Calcular el grado de indeterminación estática de la viga mostrada. 1. Se cuenta el número de miembros, de junta a junta se tiene un miembro. 2. Se determina el número de reacciones que aportan los apoyos 3. se cuentan las juntas 4. Se analizan las juntas articuladas, para determinar las ecuaciones de condición aportadas por cada una de estas, y se totalizan. 5. Se aplica la ecuación para determinar el grado de indeterminación correspondiente al tipo de estructura, en este caso para una viga. NM = 3 miembros NR = 3 en A + 3 en B NR = 6 unidades de vinculación NJ = 4 juntas NC(a) = n-1 = 2-1 = 1 NC(b) = n-1 = 2-1 = 1 NC = 2 Ie = 3 x 3 + 6 – 3 x 4 – 2 = 9 + 6 – 12 – 2 = 15 – 14 =1º Ie = 1º lo que indica que esta viga es indeterminada en 1º grado Ie = 3NM + NR – 3NJ - NC A B a b
  • 30. 30 2. Calcular el grado de indeterminación estática del siguiente pórtico plano. NM = 24 miembros NR = 1 en A + 2 en B + 2 en C + 2 en D + 3 en E NR = 10 unidades de vinculación NJ = 19 juntas, considerando el extremo libre F como junta, la cual también puede ser obviada conjuntamente con el miembro FG y el resultado no se altera. NC = n -1 NC(a) = 3 – 1 = 2 NC(b) = 4 – 1 = 3 NC(c) = 3 - 1 = 2 NC = 7 Ie = 3x24 +10 – 3x19 – 7 = 82 – 64 = 18 Ie = 18 º Esta estructura es indeterminada en 18º grados A B C D E F G a b c Ie = 3NM + NR – 3NJ - NC
  • 31. 31 3. Calcular el grado de indeterminación estática del siguiente pórtico espacial. NM = 28 miembros NR = 6 en A + 3 en B + 6 en C + 6 en F + 3 en E + 6 en D + 4 en G + 1 en H NR = 35 unidades de vinculación NJ = 20 juntas NC = 3 (n-1) NC(a) = 3 (5 - 1) = 12 NC(b) = 3(4 – 1) = 9 NC = 21 Ie = 6x28 + 35 – 6x20 – 21 = 62 Ie = 62 º Esta estructura es indeterminada en 62º grados A B C D E F H G a b Ie = 6NM + NR – 6NJ –NC
  • 32. 32 4. Calcular el grado de indeterminación estática de la siguiente cercha plana. NM = 12 miembros, Nótese que los miembros se cuentan por cada dos juntas Articulada. NR = 2 en A + 1 en B NR = 3 uv NJ = 6 juntas Ie = 12 + 3 – 2x6 Ie = 3º Esta estructura es indeterminada en 3º grado A B Ie = NM + NR – 2NJ
  • 33. 33 5. Calcular el grado de indeterminación estática de la siguiente cercha espacial. NM = 42 miembros NR = 3 x 4 = 12 uv NJ = 12 juntas Ie = 42 + 12 – 3x12 Ie = 54 – 36 = 18º Esta estructura es indeterminada en 18º grados. A B C D Ie = NM + NR – 3Nj