SlideShare una empresa de Scribd logo
1 de 113
Descargar para leer sin conexión
Universidad de Costa Rica
Facultad de Ingeniería
Escuela de Ingeniería Eléctrica
IE – 0502 Proyecto Eléctrico
Análisis de Estabilidad de Voltaje Utilizando el
Método %umérico %o Convencional Predictor-
Corrector.
Por:
Marcia Pamela Elizondo Segura
Ciudad Universitaria Rodrigo Facio
Diciembre del 2008
i
A%ÁLISIS DE ESTABILIDAD DE VOLTAJE
UTILIZA%DO EL MÉTODO %UMÉRICO %O
CO%VE%CIO%AL PREDICTOR-CORRECTOR
Por:
MARCIA PAMELA ELIZO%DO SEGURA
Sometido a la Escuela de Ingeniería Eléctrica
de la Facultad de Ingeniería
de la Universidad de Costa Rica
como requisito parcial para optar por el grado de:
BACHILLER EN INGENIERÍA ELÉCTRICA
Aprobado por el Tribunal:
_________________________________
Ing. Leonardo Montealegre Lobo
Profesor Guía
_________________________________ _________________________________
Ing. Juan Carlos Quesada Lacayo Ing. Alonso Alvarado Alvarado
Profesor lector Profesor lector
ii
DEDICATORIA
A mis padres Marcial Elizondo Salas y Ligia Segura Ramos por todo lo que han hecho por
mí, por sus consejos, por enseñarme a luchar por las cosas y ayudarme a obtener este logro
que también es de ellos.
A mi hermano Kenneth que han sido un gran ejemplo a seguir y un pilar de mi formación
como persona y futura profesional.
A mi hermana Karolina por apoyarme en las situaciones difíciles y por su compañía en
todos los momentos de mi vida.
iii
RECO%OCIMIE%TOS
A Dios un eterno agradecimiento por darme la luz y por poner en mi camino persona que
me han ayudado y motivado a seguir adelante.
Un profundo agradecimiento al Ing. Leonardo Montealegre Lobo, Ing. Alonso Alvarado
Alvarado, Ing. Juan Carlos Quesada Lacayo y a la Ing. Anabelle Zaglul Fiatt, por
confiarme este proyecto y por su compromiso y absoluta disposición de ayudarme en todo
momento.
Al Instituto Costarricense de Eléctricidad ICE por proporcionarnos las herramientas
necesarias para la realización de este proyecto.
A mi compañero Oscar Sánchez por su amistad, por brindarme su ayuda y apoyo en los
momentos difíciles.
A Julio Cortés por sus palabras de motivación en todo momento y por ayudarme a creer
que somos capaces de realizar todo lo que nos propongamos.
Y a mis amigos que de alguna u otra manera han llenado mi vida de buenos momentos y
grandes enseñanzas.
iv
Í%DICE GE%ERAL
Í%DICE DE FIGURAS ..................................................................................... vi
Í%DICE DE TABLAS ......................................................................................vii
%OME%CLATURA .......................................................................................... ix
RESUME%........................................................................................................... x
CAPÍTULO 1: Introducción ............................................................................. 1
1.1. Objetivos.....................................................................................................................3
1.1.1. Objetivo general .................................................................................................3
1.1.2. Objetivos específicos .........................................................................................3
1.2 Metodología................................................................................................................4
CAPÍTULO 2: Métodos Predictor – Corrector ............................................. 6
2.1 Método Numérico Predictor – Corrector.............................................................................7
2.2 Algoritmo Solución del Método Predictor – Corrector......................................................9
2.2.1 Paso Predictor:..................................................................................................14
2.2.2 Paso corrector:..................................................................................................15
2.3 Método Predictor – Corrector y su enfoque a la solución de flujos de potencia..16
CAPÍTULO 3: Estabilidad en Sistemas de Potencia................................... 21
3.1 Estabilidad y los Sistemas de Potencia ...................................................................21
3.2 Estabilidad Angular..................................................................................................22
3.3 Estabilidad de tensión...............................................................................................24
3.4 Metodología para determinar la estabilidad............................................................32
3.4.1 Curvas Q-V(Potencia Reactiva-Tensión).......................................................32
3.4.2 Curvas P-V(Potencia Activa-Tensión) ...........................................................33
CAPÍTULO 4: Análisis de resultados y comparación entre los métodos
numéricos %ewton-Raphson y Predictor -Corrector .................................. 37
4.1 Descripción del caso base ........................................................................................37
4.2 Información del sistema...........................................................................................39
4.3 Algoritmo del programa realizado en Matlab para la solución del flujo de
potencia utilizando el método Predictor - Corrector...............................................................40
4.3.1 Etapa Predictora. ..............................................................................................44
4.3.2 Etapa Correctora...............................................................................................45
4.4 Resultados obtenidos con el programa realizado con el Método Predictor-
Corrector 47
v
CAPÍTULO 5: Conclusiones y Recomendaciones ....................................... 53
5.1 Conclusiones.............................................................................................................53
5.2 Recomendaciones.....................................................................................................55
BIBLIOGRAFÍA............................................................................................... 56
APÉ%DICES...................................................................................................... 60
Apéndice A. Datos de descripción del caso base ......................................... 61
Apéndice B. Resultados de la Simulación en PSS ....................................... 64
Apéndice C: Resultados de la simulación con el Programa Predictor –
Corrector. ........................................................................................................... 65
A%EXOS A. Código Fuente ............................................................................ 76
Anexo B.Programa para obtener la matriz de admitancias....................... 99
vi
Í%DICE DE FIGURAS
Figura 1. Sistema radial [14]....................................................................................................30
Figura 2. Voltaje en la carga, corriente y potencia como funciones de la carga [14]...........31
Figura 3. Característica R
R Q
V − [14].....................................................................................32
Figura 4. Curva P-V [14]..........................................................................................................34
Figura 5. Comportamiento del sistema de la figura 1 al presentarse diferentes factores de
potencia [14]..............................................................................................................................35
Figura 6. Clasificación de estabilidad en sistemas de potencia..............................................36
Figura 7. Diagrama del sistema equivalente de prueba IEEE de 12 barras...........................37
Figura 8. Modelo π de la línea de transimisión.......................................................................39
Figura 9. Diagrama de flujos del método Predictor – Corrector............................................46
Figura 11. Datos Obtenidos de la Simulación en PSS............................................................47
Figura 12. Curva P-V con los datos obtenidos con el método Predictor – Corrector...........49
Figura 13. Número de Iteraciones en función del aumento de carga.....................................51
Figura 14. Comportamiento del Parámetro de Barrera para la simulación del 72.6 % del
aumento de carga del sistema...................................................................................................52
Figura 15. Comportamiento del Parámetro de Barrera ante un aumento mayor al 75% de la
carga del anillo ..........................................................................................................................52
vii
Í%DICE DE TABLAS
Tabla A.1. Características de caso base por barra...................................................................61
Tabla A. 2. Características grupo generación.........................................................................61
Tabla A.3. Características líneas de transmisión.....................................................................62
Tabla A.4. Características transformadores de dos devanados..............................................62
Tabla A.5 Características carga................................................................................................63
Tabla A. 6. Características banco de condensadores..............................................................63
Tabla B.1 Resultados obtenidos de la simulación en PSS......................................................64
Tabla C.1 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga
0%. Potencia=40MW................................................................................................................65
Tabla C.2 Datos obtenidos con:Parámetro de Barrera de 5, Aumento del anillo de carga 5%.
Potencia=45MW........................................................................................................................66
Tabla C.3 Datos obtenidos con:Parámetro de Barrera de 5, Aumento del anillo de carga
10%. Potencia=50MW..............................................................................................................66
Tabla C.4 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga
15%. Potencia=52MW..............................................................................................................67
Tabla C.5 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga
20%. Potencia=55MW..............................................................................................................67
Tabla C.6 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga
25%. Potencia=60MW..............................................................................................................68
Tabla C.7 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga
30%. Potencia=65MW..............................................................................................................68
Tabla C.8 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga
35%. Potencia=68MW..............................................................................................................69
Tabla C.9 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga
40%. Potencia=70MW..............................................................................................................69
Tabla C.10 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga
45%. Potencia=75MW..............................................................................................................70
Tabla C.11 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga
50%. Potencia=75MW..............................................................................................................70
Tabla C.12 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga
55%. Potencia=75MW..............................................................................................................71
Tabla C.13 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga
60%. Potencia=75MW..............................................................................................................71
Tabla C.14 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga
65%. Potencia=75MW..............................................................................................................72
Tabla C.15 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga
70%. Potencia=80MW..............................................................................................................72
viii
Tabla C.15 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga
72%. Potencia=80MW..............................................................................................................73
Tabla C.16 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga
72.5%. Potencia=80MW...........................................................................................................73
Tabla C.16 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga
72.6%. Potencia=80MW...........................................................................................................74
Tabla C.17 Datos obtenidos para la barra 14 en todas las iteraciones...................................75
ix
%OME%CLATURA
UO-U1 Barra 1
DOS-U1 Barra 2
TRES-U1 Barra 3
CUATRO-U1 Barra 4
CICO-U1 Barra 5
SIES-U1 Barra 6
UEVE-U1 Barra 9
DIEZ-U1 Barra 10
OCE -U1 Barra 11
DOCE Barra 12
TRECE-U1 Barra 13
CATORCE-U1 Barra 14
x
RESUME%
El presente trabajo es el resultado de una amplia investigación relacionada con los métodos
numéricos y su aplicación al análisis de estabilidad de voltaje en los sistemas de potencia.
El trabajo se dividió en tres etapas, en la primera de ella se realizó una investigación
bibliográfica correspondiente al estudio de los métodos numéricos relacionados con la
solución de flujos de potencia.
La segunda etapa se enfocó a la aplicación del método numérico Predictor – Corrector en el
estudio de flujos de potencia, se realizó un programa en Matlab y se procedió a comprobar
la efectividad del mismo mediante la solución de un caso base de la IEEE para un sistema
de potencia de 12 barras.
Finalmente, la tercera etapa correspondió al análisis y comparación de resultados, donde se
logró comprobar que es posible realizar un análisis de estabilidad de voltaje utilizando las
curvas PV, a partir de la aplicación métodos numéricos no convencionales. Además, se
pudo observar que mediante la implementación del método numérico Predictor-Corrector
se logró obtener una respuesta satisfactoria con un menor número de iteraciones,
permitiendo precisar el punto de colapso de tensión del sistema de potencia con mayor
precisión.
1
CAPÍTULO 1: Introducción
En la operación de sistemas eléctricos de potencia, se requiere constantemente estudios que
permitan analizar su funcionamiento. Muchas de las herramientas que permiten estudiar su
funcionamiento se basan en la solución de sistemas de potencia a partir de la obtención de
un modelo de todos los elementos del sistema para posteriormente usar un método
numérico iterativo para aproximar las variables eléctricas requeridas. El propósito de este
trabajo es mostrar que existen aplicaciones de los métodos numéricos que facilitan el
análisis de flujos de potencia, dando a su vez, un enfoque que facilite el análisis de
procesos de optimización.
El método Newton Raphson es muy empleado en este tipo de análisis; dado que, resuelve
de forma más simple las ecuaciones diferenciales propuestas para un caso en estudio. Sin
embargo, presenta la particularidad de que en determinadas condiciones la matriz Hessiana
se vuelve singular limitando la posibilidad de obtener la solución del sistema.
Es por esta razón que se incluyen los métodos numéricos de continuación; los cuales, son
capaces de brindar esta solución fundamentándose en valores cercanos de puntos de
análisis. Por ejemplo, desde el punto de estabilidad de voltaje, los métodos de continuidad
permiten desarrollar un procedimiento para determinar el límite de estabilidad de tensión en
estado estable de un sistema, evitando la singularidad en el punto crítico.
2
En este trabajo se realiza un enfoque especial en el método numérico Predictor- Corrector y
se pretende mostrar una aplicación del mismo a los flujos de potencia.
Como complemento se realiza un estudio de estabilidad de tensión que brinde información
relacionada con la capacidad que tiene un sistema eléctrico para mantener niveles
aceptables de la tensión en todas las barras que lo conforman, operando en condiciones
normales o después de una contingencia o perturbación. La inestabilidad de tensión ocurre
cuando una contingencia causa un abatimiento progresivo e incontrolable de la tensión. Lo
anterior se explica con mayor detalle a lo largo del presente trabajo.
3
1.1.Objetivos
1.1.1. Objetivo general
Estudiar las bondades del método numérico no convencional Predictor – Corrector en el
cálculo de flujos de potencia y en el análisis de estabilidad de voltaje.
1.1.2. Objetivos específicos
 Estudiar los conceptos generales sobre Estabilidad de Voltaje en Sistemas de
Potencia.
 Estudiar el algoritmo de solución de flujos de potencia basado en el método
numérico no convencional Predictor – Corrector.
 Evaluar las capacidades del método numérico no convencional Predictor –
Corrector en función del método numérico Newton – Raphson.
 Evaluar la rapidez de convergencia y margen de estabilidad de voltaje mediante la
elaboración de curvas PV para un caso específico de simulación entre ambos
métodos.
4
1.2 Metodología
Para lograr el cumplimiento de los objetivos, este trabajo se divide en cuatro etapas:
1 Conformación del Conocimiento. Se realizó un estudio bibliográfico que se dividió en
dos partes: primeramente se estudió la teoría sobre el método numérico Predictor –
Corrector y se buscaron casos en que haya sido aplicado a la solución de flujos de
potencia para estudiar el algoritmo de solución del flujo de potencia que plantea dicho
método y posteriormente sobre la teoría concerniente a la estabilidad de voltaje. El
objetivo de esta etapa fue relacionar ambos temas en función de la determinación del
punto de colapso de voltaje para un sistema de potencia determinado.
2 Desarrollo de simulaciones. Una vez estudiada la teoría de estabilidad de voltaje y los
algoritmos de solución del flujo de potencia para el método numérico Predictor –
Corrector, se desarrolló un ejercicio de simulación en Matlab® de un sistema de
potencia, que topológicamente y en cuanto a despacho de generación y cantidad de
demanda, representa una condición extrema para simular en términos de convergencia
y estabilidad de voltaje. Una vez que se creó el caso base del sistema de potencia a
simular, se obtuvo la solución del flujo de carga por el método Newton – Raphson y
por el método numérico no convencional Predictor - Corrector. Posteriormente, se
realizó un análisis comparativo entre ambos métodos mediante la elaboración de las
curvas PV.
5
3 Análisis de Resultados. Se estudiaron a fondo los resultados de las simulaciones
propuestas con el objetivo de comparar el desempeño del método numérico estudiado
con respecto al método Newton – Raphson, de forma tal que permitiera determinar sus
ventajas y desventajas en relación al método tradicional. Se valora realizar nuevas
simulaciones para validar resultados o analizar más a fondo algunos resultados
importantes.
4 Conclusiones y Recomendaciones. Una vez hecho el análisis de resultados y luego de
haber realizado todas las simulaciones necesarias para llegar a resultados congruentes,
se desarrolló la etapa de conclusiones y recomendaciones respectivas. Las
conclusiones responden a cada uno de los objetivos específicos que se plantearon al
inicio del proyecto.
6
CAPÍTULO 2: Métodos Predictor – Corrector
En el estudio de un sistema de potencia, es necesaria la implementación de sistemas
matemáticos de ecuaciones diferenciales no lineales; que por lo general, se encuentran
ligadas a restricciones algebraicas.
Estas ecuaciones pueden ser resueltas usando métodos numéricos directos exclusivos para
ecuaciones no lineales, como el método Newton-Raphson. No obstante, ante ciertas
condiciones de operación de un sistema, la utilización de métodos como el Newton-
Raphson presenta limitaciones a la hora de brindar una solución. Es por esta razón que se
incluyen los métodos de continuación, los cuales son métodos numéricos que tienen la
capacidad de encontrar el punto de colapso de tensión además de la información necesaria
del sistema como magnitudes y ángulos de las tensiones en las diferentes barras, partiendo
de un punto de operación estable o de equilibrio.
Conforme se aproxima el punto de colapso, la solución numérica de las ecuaciones de un
sistema se torna compleja. Es aquí donde los métodos de continuación tienen la facilidad de
desarrollarse sin problema alguno ante esta dificultad, utilizando una estrategia numérica
denominada Predictor-Corrector.
7
Los métodos numéricos Predictor-Corrector se componen de dos fases en el proceso de
solución de los problemas. Para la primera parte es necesaria la utilización de un método
numérico que cumpla la función de predecir una posible solución y en la segunda parte es
posible emplear el mismo método que en la parte predictora o uno totalmente diferente, con
el objetivo de que este tome la solución de la primera parte y la corrija, brindando una
respuesta más exacta.
2.1 Método %umérico Predictor – Corrector
Los métodos numéricos son algoritmos de solución ante posibles problemas dados. Se
fundamentan en los algoritmos de Series de Taylor y los Métodos de Runge Kutta.
Dentro de los métodos numéricos se encuentran los métodos multipasos. Los métodos
multipasos tienen la particularidad que para ser utilizados es necesaria la implementación
de dos métodos de un solo paso. Esto implica que debe ser desarrollado realizando un paso
y con los resultados obtenidos en el primero se implementa el segundo paso con el segundo
método seleccionado..
El algoritmo de Taylor de orden k y los métodos de Runge Kutta requieren información
sobre la solución en un sólo punto x = xn, a partir del cual los métodos proceden a obtener
una solución en el punto siguiente x = xn+1.
8
Aunque estos métodos generalmente utilizan información de la evaluación de la función
entre los puntos xn y xn+1, no retienen esta información para usarla directamente en
aproximaciones futuras. Toda la información utilizada por estos métodos se obtiene del
intervalo sobre el cual la solución se está aproximando.
Un método multipaso para resolver el problema de valor inicial
y’ =f(t,y), a ≤ t ≤ b, y(a) = α, (1)
es uno cuya ecuación en diferencias para encontrar la aproximación wn+1 en el punto xn+1
puede representarse con la siguiente ecuación, donde m es un entero mayor que 1:
wn+1=am-1 wn + am-2 wn-1+…+a0 w n+1-m + h[bm f(tn+1, wn+1) + bm-1f(tn,wn)
+…+b0f(tn+1-m, wn+1-m) ] (2)
para n = m-a, m,…, -1, donde los valores iniciales
w0=α, w1=α1, w2=α2 , …, wm-1=αm-1 (3)
están especificados y
9
( )

a
b
h
−
= (3)
Cuando bm=0, el método se llama explícito o abierto, puesto que la ecuación (2)
proporciona wn+1 explícitamente en términos de valores previamente determinados. Cuando
bm≠0, el método se llama implícito o cerrado, puesto que wn+1 se presenta en ambos lados
de la ecuación (2) y se determina sólo de manera implícita.
En la práctica, no se emplean los métodos multipaso implícitos como se describió
anteriormente. Sólo se usan para mejorar aproximaciones obtenidas mediante los métodos
explícitos.
Un método numérico que combina una técnica explícita con una implícita se conoce como
método Predictor-Corrector. Este método explícito predice una aproximación y el método
implícito corrige tal predicción. Éste método se detalla de una forma más amplia en las
siguientes secciones al igual que el método Newton Raphson.
2.2 Algoritmo Solución del Método Predictor – Corrector
El algoritmo Predictor-Corrector se conforma de una serie de ecuaciones e inecuaciones
que corresponden a la función objetivo, las restricciones de igualdad, las restricciones de
10
desigualdad, el vector de variables x , los límites superior e inferior de las variables
nombradas en las restricciones de desigualdad.
Por función objetivo se debe entender la función que se desea resolver o el objetivo del
proyecto. Es decir, una función objetivo puede formularse como la minimización de un
parámetro como las pérdidas de un sistema, el costo de operación o la maximización de
algún parámetro. La función objetivo en este trabajo se denominó f(x) y está dada por la
ecuación (4).
)
(
min x
f (4)
Por otra parte se tienen las condiciones )
(x
g y )
(x
h mostradas en las ecuaciones (5) y (6)
respectivamente. Éstas corresponden a las restricciones del sistema y van a marcar los
límites por medio de los cuales el método Predictor –Corrector puede encontrar la solución.
0
)
( =
x
g (5)
0
)
( ≥
− s
x
h (6)
En las ecuaciones (5) y (6) se muestra que las ecuaciones e inecuaciones son dependientes
del parámetro x . Este parámetro corresponde a un vector x que está conformado por las
variables de estado (magnitudes, ángulo o velocidades de las máquinas del sistema) que
generalmente se van a definir por las variables desconocidas del sistema.
11
Además en la ecuación (6) se incluye un nuevo parámetro s . Se le denomina variable de
holgura y su finalidad es transformar las restricciones de desigualdad en restricciones de
igualdad; dado que 0
≥
s se introducen las condiciones de no negatividad en la función
objetivo como términos de barrera logarítmica. Al igual que el parámetro x , s es un
vector.
Cuando se expresan términos de no negatividad y términos de barrera logarítmica, lo que se
pretende es brindar una nueva función objetivo, como se muestra en la ecuación (7).
∑
=
−
q
i
i
s
x
f
1
ln
)
(
min µ (7)
La ecuación (7) se encuentra sujeta a las ecuaciones (5), (6) y el parámetro de barrera µ .
Su finalidad es limitar la función para aligerar el proceso. Sin embargo, conforme decrece,
se presentan problemas en el proceso iterativo. A medida que el parámetro de barrera tiende
a cero, el óptimo de la función de barrera logarítmica tiende al óptimo de la función
original.
Para poder encontrar la solución deseada y no tener el problema que se presenta con el
parámetro de barrera se plantea la función Lagrangeana de la ecuación (8):
]
)
(
[
)
(
ln
)
(
)
(
1
s
x
h
x
g
s
x
f
y
L T
T
q
i
i −
−
−
−
= ∑
=
π
λ
µ
µ (8)
12
En la ecuación (8) se incluyen los términos multiplicadores de Lagrange λ y el término π
que son denominados las variables duales. La ecuación que caracteriza al Lagrangeano está
en función de y , está conformada por s ,π ,λ , x y corresponde al vector T
x
s
y ]
,
,
,
[ λ
π
= .
Por otro lado, las condiciones obligatorias de optimización de primer orden de Karush-
Kuhn-Tucker (KKT) se obtuvieron igualando el gradiente de la función Lagrangeana a
cero, por esta razón todas las primeras derivadas con respecto a todas las variables se hacen
cero. Una vez definidos todos los vectores, se deriva el Lagrangeano con respecto al vector
y , dando como resultado la siguiente matriz:
0
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
=














−
−
∇
−
+
−
+
−
=














∇
∇
∇
∇
π
λ
π
µ
µ
µ
λ
µ
π
µ
T
g
T
g
x
s
x
J
x
J
x
f
x
g
s
x
h
S
e
y
L
y
L
y
L
y
L
(9)
donde S es la matriz diagonal de los valores del vector s , T
e ]
1
,.....,
1
[
= , )
(x
f
∇ muestra el
gradiente de la función objetivo, T
g x
J )
( corresponde al Hessiano transpuesto de la función
g(x) y T
h x
J )
( se interpreta como el Hessiano transpuesto de la función h(x).
13
Métodos como el Predictor – Corrector son métodos de alto orden, los cuales tienen la
capacidad de predecir la dirección de búsqueda, que es corregida en procedimientos
posteriores para obtener de una forma más eficiente y rápida la solución requerida.
El método Predictor-Corrector es una modificación del Método Primal – Dual, mejorando
el cálculo de las direcciones de búsqueda con el objetivo de acelerar la convergencia del
sistema. Tiene la particularidad de solucionar dos sistemas lineales en cada iteración.
Éste método introduce un nuevo punto de cálculo en cada iteración, y va a estar definido
por y
y
y k
k
∆
+
=
+1
. A partir de este valor y la matriz de la ecuación (9), se establece lo
siguiente:














+
+
∇
−
∆
+
−
∆
+
∆
∆
−
−
=












∆
∆
∆
∆
π
λ
π
π
µ
λ
π
T
g
T
g x
J
x
J
x
f
x
g
x
g
s
x
h
x
h
S
S
e
x
s
H
)
(
)
(
)
(
)
(
)
(
)
(
)
(
(10)
En el sistema de la ecuación (10) se incluyen los términos ∆ que son los términos de orden
superior. Para obtener la solución de (10), es necesario el desarrollo del paso Predictor y el
paso Corrector.
14
2.2.1 Paso Predictor:
Su principal objetivo es obtener los términos de alto orden y realizar una estimación del
parámetro de barrera aunque en esta parte sólo se tienen en cuenta los términos lineales.
Para obtener los términos se resuelve el sistema de la ecuación (8)














+
+
∇
−
−
+
−
=














∆
∆
∆
∆
π
λ
π
λ
π
T
g
T
g
af
af
af
af
x
J
x
J
x
f
x
g
s
x
h
S
x
s
H
)
(
)
(
)
(
)
(
)
(
(11)
Por su parte, el gap de complementariedad del paso predictor está dado por:
T
af
af
T
af
af
af s
s )
(
)
( π
α
π
α
ρ ∆
+
∆
+
= (12)
donde ( )
1
,
0
=∈
af
α y representa la longitud del paso de iteración.
Para finalizar la etapa predictora se estima el parámetro de barrera que se emplea en la
etapa correctora, como se muestra en la ecuación (13).
15
q
af
af
af
ρ
ρ
ρ
µ


















= 2
.
0
,
min
2
(13)
donde π
ρ T
s
= y es aquí donde se da la actualización de todas las variables que se utilizan
en la etapa correctora.
2.2.2 Paso corrector:
Con los resultados del paso predictor se puede calcular los términos no lineales.
( ) ( )
( ) ( )
( ) ( ) ( ) 













+
+
∇
−
∆
+
−
∆
−
∆
∆
−
−
=












∆
∆
∆
∆
Η
π
λ
α
α
π
π
µ
λ
π
T
h
T
g x
J
x
J
x
f
x
g
x
g
s
x
h
x
h
S
S
e
x
s
(14)
Se incluye un nuevo valor α, denominado valor de paso. Corresponde a un escalar y debe
estar comprendido entre 0 y 1. El propósito de su incorporación es establecer intervalos de
cálculo más pequeños con el objetivo de obtener de manera más aproximada el resultado
requerido.
16
2.3 Método Predictor – Corrector y su enfoque a la solución de flujos de
potencia
Cuando se estudian flujos de potencia es de suma importancia conocer las limitaciones del
sistema e incluirlas como pieza primordial en el análisis. Generalmente cuando se realizan
estudios de flujo de potencia óptimo se busca maximizar o minimizar la función objetivo
representada en la ecuación (7) sujeta a restricciones de igualdad y desigualdad expuestas
en las ecuaciones (5) y (6).
Para este caso la función objetivo corresponde a . Ésta función tiene como propósito
principal establecer el menor error posible en el cálculo de potencia activa y potencia
reactiva, es por esta razón que se toma como un escalar que comprende la sumatoria de los
valores de ∆P y ∆Q, como se presenta a continuación:
calc
i
prog
i P
P
P ,
, −
=
∆
(15)
calc
i
prog
i Q
Q
Q ,
, −
=
∆
(16)
Así, se define entonces:
)
(
)
(
)
(
1
,
,
1
,
, ∑
∑ =
=
−
+
−
=

i
calc
i
prog
i

i
calc
i
prog
i Q
Q
P
P
x
f
(17)
17
Se tiene que para las restricciones de igualdad y desigualdad, estas van a estar dadas por el
error presente tanto en la potencia activa como en la potencia reactiva y los valores límite
de la potencia reactiva como se muestra en las ecuaciones (18) y (19):
















∆
∆
=
...
...
...
)
( 1
1
Q
P
x
g (18)
max
min
gi
gi
gi Q
Q
Q ≤
≤ , m
i ,
,
1 K
= (19)
donde min
gi
Q y max
gi
Q son los límites mínimo y máximo respectivamente, de potencia reactiva del
generador i del sistema.
Por otra parte, se tiene que las ecuaciones (18) y (19), se ven restringidas o ligadas a dos
valores y para el caso de la potencia activa y y para el caso de la
potencia reactiva. Los valores de y corresponden a los valores iniciales de
potencia activa y reactiva en cada barra. Por otra parte, y son las restricciones
de potencia del sistema, estos valores se calculan en cada iteración y se denomina . El
vector corresponde a un vector columna; donde cada uno de sus términos va a estar
definido por las diferencias de potencia activa y potencia reactiva en cada barra.
18
Para obtener los valores de y para el caso de la potencia activa y y
para el caso de la potencia reactiva, se crean las siguientes ecuaciones:
( )
i
n
in

n
n
i
in
calc
i V
V
Y
P δ
δ
θ −
+
= ∑
=
cos
1
,
(20)
( )
i
n
in

n
n
i
in
calc
i sen
V
V
Y
Q δ
δ
θ −
+
= ∑
=1
,
(21)
Las ecuaciones anteriores se componen de términos provenientes de la matriz de
admitancias, los valores de las tensiones en las barras y sus respectivos ángulos. Es
importante recordar que la matriz de admitancias se forma a partir de:
ij
sen
Yij
j
ij
Yij
Yij θ
θ +
= cos
(22)
i
Vi
j
i
Vi
Vi δ
δ cos
cos +
=
(23)
n
n
n
n
n V
j
V
V δ
δ cos
cos +
=
(24)
Donde:
• es el valor de la admitancia presente entre la barra i y la barra j.
• es el ángulo de la admitancia.
• y corresponden a las tensiones en las barras de estudio.
19
Por otra parte se crea el Lagrangeano de la ecuación (8), a partir de este se encuentran los
valores de los gradientes del mismo que se incluyen en la ecuación (9) como se muestra a
continuación.
La ecuación de la matriz Hessiana final se representa por:
[ ] 













∂
−
∂
−
−
−
−
−
Π
=
T
h
T
g
T
g
T
h
g
h
k
x
J
x
J
x
f
H
x
J
x
J
x
J
x
J
I
S
y
H
)
(
)
(
)
(
)
(
)
(
0
)
(
0
0
0
)
(
0
0
0
0
)
( (23)
donde








∂
∂
∂
∂
∂
∂
∂
∂
=
∂ λ
λ
λ
λ
n
T
g
T
g
T
g
T
g
g
x
x
J
x
x
J
x
x
J
x
x
J
x
J
)
(
)
(
)
(
)
(
)
(
3
2
1
L
(24)






∂
∂
∂
∂
∂
∂
∂
∂
=
∂ π
π
π
π
n
T
h
T
h
T
h
T
h
g
x
x
J
x
x
J
x
x
J
x
x
J
x
J
)
(
)
(
)
(
)
(
)
(
3
2
1
L (25)
Con estos valores se inicia el paso corrector, al igual que ocurre en el caso de los métodos
de un sólo paso es posible encontrar problemas si el paso α que se utiliza es demasiado
grande para estudiar zonas con irregularidades y demasiado pequeño para estudiar zonas en
20
las que la función objetivo es muy simple. En estos casos resulta interesante cambiar el
paso de integración, dado que este valor α permite aproximar de forma más certera la
solución deseada. Sin embargo, esta tarea, que resultaba sencilla en el caso de los métodos
de un sólo paso, resulta ahora más complicada por el hecho de tener que recalcular los
pasos iniciales con un método de un sólo paso.
En el caso de la estimación del error, esta puede hacerse utilizando un predictor corrector,
el cual como ya se dijo anteriormente dispone de dos aproximaciones del mismo orden para
la solución.
Siguiendo con el análisis, se desarrolla el sistema de la ecuación (23), esta se incluye en la
ecuación (21) y (22). Del sistema de la ecuación (21) se obtiene un nuevo vector que se
evalúa en la función y a su vez se incluye en la ecuación (22). En este punto se
obtienen los resultados correspondientes a los valores que se adicionan a las condiciones
iniciales y en caso de presentarse que los valores absolutos de los errores son menores a la
tolerancia, se llega a una solución deseada, es decir, se despliegan los resultados de
convergencia del sistema.
21
CAPÍTULO 3: Estabilidad en Sistemas de Potencia
El propósito fundamental de establecer un sistema de potencia es poder abastecer a los
diversos clientes el servicio de energía eléctrica. Por lo general se busca que las compañías
encargadas logren brindar un servicio de calidad..
Sin embargo, en algunas circunstancias el ofrecer un servicio contínuo a los clientes se
vuelve una tarea difícil dado que los sistemas de potencia se ven expuestos a sufrir fallas
que generalmente se manifiestan de forma inesperada.
3.1 Estabilidad y los Sistemas de Potencia
La estabilidad es una característica de los sistemas dinámicos. Los sistemas eléctricos
representan grandes sistemas de este tipo. Cuando los sistemas dinámicos son excitados por
un disturbio externo, su estabilidad se ve amenazada por un margen de tiempo que puede
variar en su duración.
La estabilidad entonces, puede definirse en términos generales como la propiedad de un
sistema de potencia que le permite permanecer en un estado de operación de equilibrio bajo
22
condiciones normales de operación y de retomar un estado aceptable de equilibrio, luego de
haber sido sujeto a una perturbación.
Al realizar estudios de estabilidad en un sistema de potencia, el principal objetivo es
evaluar el comportamiento del sistema cuando se presentan perturbaciones. El tiempo de
duración de la perturbación puede ser corto o de largo. Perturbaciones pequeñas de la forma
de cambios en la carga o demanda ocurren constantemente, haciendo que el sistema se
ajuste continuamente a estas condiciones.
Por lo tanto, el análisis de estabilidad es el eje central de la teoría de estudio de los sistemas
dinámicos. La estabilidad de los sistemas dinámicos se puede determinar mediante la
solución de ecuaciones que describen su comportamiento o mediante la aplicación de algún
método directo.
3.2 Estabilidad Angular
La estabilidad angular (en el rotor de las unidades de generación) es la capacidad de las
máquinas síncronas interconectadas de mantenerse en sincronismo. Aquí, el problema de
estabilidad envuelve el estudio de las oscilaciones electromecánicas inherentes en un
sistema de potencia. Un factor fundamental en este problema es la forma como la potencia
de salida de las máquinas síncronas varía conforme el ángulo del rotor oscila.
23
Las variables a monitorear son los ángulos (relativos a una máquina de referencia) de los
rotores de las máquinas que oscilan luego de una perturbación (si el sistema es estable las
máquinas interconectadas permanecen en sincronismo).
Así, dicho ángulo es función del balance entre:
- Potencia mecánica aplicada al rotor (máquina primaria)
-Potencia eléctrica transferida a la red.
Bajo condiciones de estado estable, existe un equilibrio entre el torque mecánico de entrada
y el torque de salida eléctrico de cada máquina y la velocidad permanece constante. Si el
sistema es perturbado, dicho equilibrio también se trastorna, resultando en aceleraciones o
desaceleraciones de las máquinas de acuerdo con las leyes de movimiento y rotación de los
cuerpos.
Cuando una máquina síncrona pierde sincronismo con el resto del sistema, su rotor se
mueve a una velocidad mayor o menor que la requerida para generar voltajes a la
frecuencia del sistema. El deslizamiento entre la velocidad del estator (correspondiente a la
frecuencia del sistema) y la velocidad del rotor, provoca largas fluctuaciones en la potencia
de salida de la máquina, en la corriente y el voltaje, causando que el sistema de
protecciones aísle la máquina inestable del resto del sistema.
24
3.3 Estabilidad de tensión
El análisis de estabilidad de tensión es un tema de los más importantes en el estudio de
sistemas de potencia; dado que, mediante estos se permite conocer y establecer la adecuada
operación del sistema; ya que, un sistema de potencia opera en un ambiente de cambio
constante debido a la diversidad en el comportamiento de la carga.
La estabilidad de voltaje es la capacidad de un sistema de potencia de mantener voltajes
estables en sus barras bajo condiciones normales de operación y luego de haber sido sujeto
a una perturbación.
Un sistema entra en inestabilidad de voltaje cuando una perturbación, incrementa la
demanda del sistema o cambia las condiciones del sistema, causando una progresiva e
incontrolable caída en el voltaje. El factor principal que causa inestabilidad es la
incapacidad del sistema de potencia de generar la cantidad de potencia reactiva necesaria
para que dicha caída en los voltajes no ocurra.
Entre los factores más importantes que influyen en la estabilidad de un sistema se pueden
citar los siguientes:
♦ Variaciones de carga.
25
♦ Salida de generadores.
♦ Salida de líneas.
Cuando se presenta alguna de las condiciones citadas, las variables más afectadas son la
frecuencia, el voltaje, y el ángulo del rotor de los generadores. Esto lleva a que los sistemas
se aproximen o alcancen los límites de operación y por consiguiente se presenten
inestabilidades que pueden terminar en colapsos del sistema.
Para una mayor comprensión del contenido de este capítulo se establecen a continuación
diversas definiciones o conceptos fundamentales relacionados con la estabilidad de tensión.
La IEEE establece la siguiente definición para estabilidad de tensión: “Estabilidad de
tensión es la habilidad de un sistema de potencia en mantener la tensión de manera que
cuando la admitancia de carga se incremente, la potencia de carga aumente, y así ambos,
potencia y tensión sean controlables” [16]
Por otra parte se podría citar la definición que establece Kundur para la estabilidad de
tensión “Habilidad de un sistema de potencia para mantener tensiones aceptables en todas
sus barras bajo condiciones normales de operación y después de ser sometido a una
perturbación” [16]
26
De la misma manera la IEEE establece para colapso de tensión lo siguiente: “El colapso de
tensión es el proceso por el cual la inestabilidad de tensión conduce a la pérdida de
tensión en una parte significante del sistema de potencia”[16]
El estudio de la estabilidad de tensión en los últimos años se ha dedicado a modelar
sistemas de potencia con la finalidad de obtener el punto de colapso. Los análisis de
estabilidad de tensión tienen como finalidad garantizar que se cumplan ciertos criterios
establecidos en cuanto a seguridad operativa; esto es tanto en estado de operación normal o
durante algún evento o contingencia.
Un criterio de estabilidad de tensión es que, para una condición de operación dada y para
cada barra en el sistema, la magnitud de la tensión de una barra incremente en relación con
el incremento en la inyección de potencia reactiva hacía dicha barra. Un sistema se vuelve
inestable en términos de voltaje si, para al menos una barra en el sistema, la magnitud del
voltaje en la barra cae mientras la inyección de potencia reactiva hacia esa barra aumenta.
Caídas progresivas en el voltaje de las barras pueden estar asociadas con problemas en los
ángulos de los rotores, sin embargo el tipo de caída mantenida del voltaje que está asociada
con la inestabilidad de voltaje ocurre cuando la estabilidad angular no juega ningún papel
en el fenómeno. La inestabilidad de voltaje es esencialmente un fenómeno local, sin
embargo, sus consecuencias pueden tener un impacto global dentro del sistema de potencia.
27
El colapso de voltaje es más complejo que la inestabilidad de voltaje y es usualmente el
resultado una serie de eventos consecuentes que acompañan la inestabilidad de voltaje
provocando un perfil de bajo voltaje en una parte significativa del sistema de potencia.
Las técnicas de solución que se aplican para establecer los análisis de estabilidad se basan
en la obtención de diferentes curvas denominadas curvas P-Q y curvas P-V. Por lo general,
estas curvas se realizan cuando el sistema presenta perturbaciones; sin embargo, estas
curvas proporcionan información adicional que será descrita más adelante.
Cuando se opera un sistema de potencia es de suma importancia establecer un control en la
tensión, dado que, la tensión presenta una relación directa con la disponibilidad y
localización de las fuentes encargadas de suministrar las reservas de potencia activa y
reactiva
Teóricamente, “entre mayor sea la reserva de potencia reactiva del generador, se podrá
realizar con mayor eficiencia el control de tensión. Sin embargo, la distancia eléctrica
entre el generador y la carga impide que el control de tensión sea efectivo a partir de
cierta magnitud de la potencia que se transmite” [15]
El término reserva de potencia reactiva corresponde a “la capacidad remanente en los
equipos que realizan la función de control dinámico de tensión del sistema eléctrico” [16];
como ya se indicó, estos equipos corresponden a generadores y condensadores síncronos.
28
Por otro lado, para realizar el control de tensión se utilizan elementos, estos se dividen en:
pasivos y dinámicos. Los elementos dinámicos corresponden a máquinas sincrónicas ya
sean generadores o condensadores. Estos elementos tienen la capacidad de controlar tensión
en las barras por medio de un regulador automático de tensión (AVR). Por su parte, los
elementos pasivos son los que continuamente realizan control de la tensión del nodo donde
están conectados, es decir, estos elementos corresponden a bancos de condensadores y
reactores.
Cuando se conecta un banco de condensadores en una barra, se incrementa el margen de
estabilidad determinado ya que el punto de colapso se obtiene para una mayor transferencia
de potencia. Esto se debe a que los bancos de condensadores se comportan como una fuente
de potencia reactiva.
Por otra parte, los reactores cumplen una función inversa a la del banco de capacitores,
debido a que éstos son implementados para absorber el exceso de potencia reactiva en la
línea de transmisión. Generalmente esos excesos se presentan en horas donde la demanda
es menor.
Cuando se incluyen transformadores con cambiadores de taps en un análisis de tensión,
éstos pueden alterar la estabilidad; debido a que, extraen potencia reactiva de la red de
transmisión de alta tensión y por lo tanto reducen el margen de potencia reactiva. Si se
29
encuentran instalados transformadores con cambiadores de taps automáticos (automatic
underload tap-changing, ULTC), la acción del cambiador de taps trata de llegar al voltaje
de carga establecido, lo cual tiene el efecto de reducir la impedancia. Lo anterior conduce a
una reducción en la magnitud de la tensión. Este hecho es una simple y pura forma de
inestabilidad de voltaje.
Por su parte, los generadores síncronos, tienen la facilidad de controlar la tensión de su
nodo, como se mencionó anteriormente, por la intervención de un regulador automática de
voltaje (AVR), que se encarga de regular la excitación de campo de la máquina. Estos
generadores tiene la capacidad de absorber o de entregar potencia reactiva, según sean las
condiciones de operación del mismo y las de la línea.
Otro elemento que tiene importancia en el análisis de estabilidad es el condensador
síncrono. Su función principal es la de regular tensión y potencia reactiva. Generalmente se
instalan para mantener la tensión del sistema de transmisión dentro de los límites
previamente establecidos. Una vez que ya logra establecer el sistema, su finalidad es la de
aumentar o disminuir la corriente de excitación de campo de la máquina; es decir, se
encarga de determinar si se está consumiendo o entregando potencia reactiva al sistema.
Todas estas máquinas adquieren gran importancia en los estudios de estabilidad de tensión;
dado que, según sea su operación así se va a comportar el sistema. Principalmente se busca
mantener un equilibrio en el sistema.
30
A manera de ejemplo se va a considerar el siguiente sistema:
Figura 1. Sistema radial [14]
Considere una fuente de voltaje constante ( S
E ) supliendo una carga ( LD
Z ) a través de una
línea de transmisión con una impedancia en serie ( L
Z ), como se observa en la figura 1.
Como resultado de un aumento en la demanda del sistema al decrecer LD
Z , R
P aumenta
inmediatamente de forma rápida y luego lentamente antes de alcanzar su máximo valor de
potencia activa que puede ser transmitido a través de la impedancia desde la fuente de
voltaje constante. En la figura 2, se observan las curvas correspondientes al
comportamiento descrito anteriormente, estas se realizaron en función de la carga del
sistema de la figura 1.
31
Figura 2. Voltaje en la carga, corriente y potencia como funciones de la carga [14]
La potencia transmitida es máxima cuando la caída de voltaje en la línea es igual en
magnitud a R
V , esto es cuando 1
/ =
LD
L Z
Z . Conforme LD
Z decrece gradualmente
aumenta I y decae R
V .
La condición de operación crítica correspondiente a la máxima potencia representa el límite
para una operación satisfactoria. Para mayores valores de demanda, el control de potencia
variando la carga sería inestable, esto es, un decaimiento en la impedancia de la carga
reduce la potencia.
El decaimiento progresivo en el voltaje y eventual inestabilidad del sistema dependen de las
características de la carga. Con una característica de carga de impedancia constante, el
sistema se estabiliza a niveles de potencia y voltaje menores que los deseados.
32
Por otro lado, con una característica de carga de potencia constante, el sistema se vuelve
inestable hacia un colapso del voltaje de barra de carga. Con otras características, el voltaje
es determinado por la composición de las características tanto de la línea de transmisión
como de la carga.
3.4 Metodología para determinar la estabilidad
3.4.1 Curvas Q-V(Potencia Reactiva-Tensión)
Estas curvas se utilizan para conocer principalmente la reserva de potencia reactiva en
alguna barra específica del sistema y el nivel de tensión aproximado en que ocurriría el
colapso de tensión.
Figura 3. Característica R
R Q
V − [14]
33
La figura 3 muestra una familia de curvas aplicables al sistema de potencia de la figura 1,
donde cada una de ellas representa la relación entre R
V y R
Q para un valor fijo de R
P . El
sistema es estable en la región donde la derivada R
R dV
dQ / es positiva. El límite de
estabilidad de voltaje (punto de operación crítico) se alcanza cuando la derivada es cero.
Así, las partes de la derecha de las curvas V-Q representan una operación estable y luego
del codo de las curvas, la parte de la izquierda representa una operación inestable del
sistema. Sin embargo, una operación estable en la región donde la derivada R
R dV
dQ / es
negativa puede lograrse sólo con una compensación de potencia reactiva regulada, teniendo
suficiente margen de control y una alta ganancia Q/V con polaridad opuesta a la
normal[14].
3.4.2 Curvas P-V(Potencia Activa-Tensión)
Este método se fundamenta en la variación progresiva de la carga, es decir, de la potencia
activa y reactiva en alguna de las barras del sistema a la cual ya se le habían establecido
valores iniciales para observar de esta forma el cambio o comportamiento de la tensión.
34
Figura 4. Curva P-V [14]
Se utilizan principalmente para poder conocer la magnitud máxima de la potencia activa
que se puede transmitir sin que el sistema llegue al colapso.
Por otro lado, el factor de potencia tiene un efecto significativo en la característica P-V del
sistema. Esto es de esperarse ya que la caída de voltaje en la línea de transmisión es una
función tanto de la transferencia de potencia activa como de potencia reactiva. De hecho, la
estabilidad de voltaje depende de la relación entre la potencia activa P y la potencia
reactiva Q, en función del voltaje V.
35
Figura 5. Comportamiento del sistema de la figura 1 al presentarse diferentes factores
de potencia [14]
La inestabilidad de voltaje no siempre ocurre en su forma más pura. Con frecuencia, la
inestabilidad angular y la inestabilidad de voltaje se presentan de forma complementaria. Es
decir, en algunas circunstancias, una forma de inestabilidad puede conducir a la otra por lo
que la distinción entre estos dos fenómenos puede estar en algunos casos no muy clara.
Sin embargo, una distinción entre la estabilidad angular y la estabilidad de voltaje es
importante para entender las causas subyacentes del problema para desarrollar adecuadas
acciones de diseño y operación del sistema.
36
En el siguiente diagrama se observa un resumen de la clasificación de la estabilidad de los
sistemas de potencia y el período de duración aproximado.
Figura 6. Clasificación de estabilidad en sistemas de potencia
Con la implementación del método Predictor-Corrector en el estudio de los flujos de
potencia y la estabilidad de los mismos, lo que se pretende es obtener los valores necesarios
para poder construir las curvas PV y asi poder realizar análisis de estabilidad y poder
establecer el punto de colapso de tensión del sistema.
37
CAPÍTULO 4: Análisis de resultados y comparación entre los
métodos numéricos %ewton-Raphson y Predictor -Corrector
Con el objetivo de comprobar la efectividad y utilidad del método expuesto en el capítulo 3
para el estudio de estabilidad de tensión, se implementa un caso base o caso de estudio que
corresponde a un sistema de potencia de 12 barras.
4.1 Descripción del caso base
El caso base que se muestra en la figura 7, se presenta como un sistema de prueba de 12
barras, el cual corresponde a un equivalente de un sistema de 14 barras.
Figura 7. Diagrama del sistema equivalente de prueba IEEE de 12 barras
38
El sistema consta de 2 niveles de voltaje. El primero corresponde a la generación y
transmisión a 138 kV, el cual comprende las barras UNO-U1, DOS-U1, TRES-U1,
CUATRO, y CINCO del diagrama de la figura 7. Mientras el segundo corresponde a la
distribución a 34.5 kV que está formado por las barras SEIS-U1, NUEVE, DIEZ, ONCE,
DOCE, TRECE y CATORCE.
De igual forma, se presentan unidades generadoras, que dadas las condiciones del sistema,
operan como condensadores síncronos. Dado que el centro de carga en 34.5 kV está muy
alejado del centro de generación en 138 kV, dichos condensadores están operando a su
capacidad máxima de potencia reactiva para que el voltaje en el anillo de carga no sea muy
bajo.
Se tienen operando como barras de generación la 1, 2, 3 y 6, donde la barra 1 representa la
barra oscilante del sistema, mientras que los generadores instalados en las barras 3 y 6
operan como condensadores síncronos.
En las líneas que se encuentran entre las barras 4 y 9, se muestran transformadores de dos
devanados. Por otro lado, el banco de condensadores instalado en la barra 9 es de una etapa
y está configurado para que siempre esté en operación.
39
4.2 Información del sistema
La Tabla A.1 muestra un resumen de los valores requeridos para simular el caso base. Estos
están dados en por unidad sobre una base de 100 MVA. Se observan los valores
característicos en las barras; es decir, voltaje, ángulo y las potencias respectivas. Indicando
a su vez la clasificación de la barra.
Por otra parte, las características y restricciones de potencia activa como reactiva del grupo
generación, se muestran en la Tabla A.2. Así mismo, la Tabla A.3 proporciona los
parámetros que se utilizaron para modelar las líneas de transmisión de acuerdo con el
modelo de la figura 7.
Para poder establecer las condiciones del sistema, se empleó el modelo π de la línea, éste se
puede observar en la figura 8. Este modelo es indispensable; ya que, a partir de él se
reestructura el circuito y se obtiene los valores necesarios para el análisis.
Figura 8. Modelo π de la línea de transimisión
40
Como se mencionó anteriormente, se tiene en el sistema tres transformadores de diferentes
características, las cuales se incluyen en la Tabla A.4. Es importante mencionar que los
transformadores se modelan únicamente como una reactancia.
Así mismo, la Tabla A.5 muestra la demanda por barra en el sistema. Nótese que hay carga
asociada a generación, como en las barras 2 y 3, y hay un anillo de carga en 34.5 kV
conformado por las barras 6, 9, 10, 11, 12, 13 y 14.
Finalmente, la Tabla A.6 muestra las características principales del banco de condensadores
en la barra 9. El objetivo de dicho banco es inyectar potencia reactiva al anillo de carga de
34.5 kV para soporte de voltaje.
4.3 Algoritmo del programa realizado en Matlab para la solución del
flujo de potencia utilizando el método Predictor - Corrector
Se desarrolló un programa en Matlab, que emplea el método numérico no convencional
Predictor-Corrector para la solución de flujos de carga. El programa desarrollado brinda la
posibilidad de realizar análisis de flujos de potencia fundamentandose en el algoritmo
Predictor-Corrector.
41
Primeramente, deben de establecerse las condiciones iniciales de todas las variables del
sistema, luego mediante soluciones matemáticas procede a realizar una serie de operaciones
que luego van a ser utilizadas en la primera parte del método Predictor-Corrector. Una vez
obtenidos estos valores el programa calcula la segunda parte correspondiente a la parte
correctora y con estos valores verifica si se está cumpliendo con el criterio de convergencia.
De cumplirse la condición de convergencia el programa termina, desplegando soluciones y
mostrando una gráfica del comportamiento del parámetro de barrera.
A continuación se describe el algoritmo empleado para hacer posible la implementación del
método ya mencionado.
Primeramente, se creo la matriz de admitancia que corresponde al sistema de la figura 7,
dado que, es fundamental en la solución de flujos de potencia. De esta matriz se necesitan
los valores de la magnitud y ángulo de la impedancia de cada celda de la matriz como dos
valores independientes. Por lo tanto, se establece que el programa tenga la facultad de
hacerlo. Una vez obtenida esta matriz, se procede a realizar el programa propiamente del
método como tal.
El programa se realizó para que el usuario sea quién ingrese el valor el factor de aumento
de carga del anillo del sistema y el valor de la potencia activa del generador de la barra 2
según como desee hacer el análisis. El aumento del factor de aumento de carga se
42
estableció en aproximadamente 5% hasta alcanzar el 70%, del 70% al 72% en aumentos del
2% y por último, del 72% al 72.6% en aumentos del 0.2%.
Para comenzar se inicializan los valores de las potencias activa y reactiva, las magnitudes
de las tensiones y los ángulos de las mismas, según los datos de las tablas del apéndice A.
A su vez, se establecieron los límites de potencia activa y reactiva, tanto el máximo como el
mínimo, dado que la solución del flujo de carga va a depender de sus límites máximos y
mínimos.
Luego, se establecieron los vectores que corresponden a las variables de holgura y a las
variables duales. Es importante destacar que, el vector π anteriormente mencionado, es
elegido por el usuario. Por el contrario, para obtener el vector s se emplea la siguiente
relación π
ρ T
s
= , con el objetivo de aproximar la solución de manera más exacta. En
cuanto a este método de selección de vectores de holgura, se debe mencionar, que el
criterio de selección es totalmente empírico. Por su parte, los valores de la variable gamma
y sigma se establecen como constantes ya que, según la teoría estos valores no deben de
cambiar.
Una vez establecidos todos los valores, se define el vector de variable incognita que va a
estar dado por los valores de la tensión en magnitud y ángulo.
43
Una vez conocidas las incógnitas, se formulan las ecuaciones de potencia activa y reactiva
de cada una de las barras en estudio. Estas ecuaciones dan origen a la función objetivo dada
por la ecuación (7).
El objetivo principal es minimizar los errores de potencia activa y reactiva en cada una de
las barras por lo que se establece el vector de errores que se formuló en el capítulo 2 como
la ecuación (5).
Seguidamente se formulan las ecuaciones de desigualdad para las diferentes barras como se
decribe en la ecuación (6); estas van a estar expresadas con los límites de potencia, las
potencias calculadas y las potencias correspondientes a la carga.
Posteriormente se calculan el jacobiano del vector de error y del vector de desigualdad, el
gradiente de la función objetivo y las respectivas derivadas de los jacobianos ya calculados.
Cuando se tiene todos estos valores se procede a crear un ciclo que se va a encargar de
realizar las iteraciones en el programa. Aquí se establecen nuevas matrices con los vectores
de las variables de holgura y las variables duales. La primera corresponde a la matriz
diagonal de las variables de holgura s, la segunda a la matriz diagonal de los vectores π y la
última la matriz identidad.
44
Como ya se ha mencionado, el método Predictor – Corrector tiene dos etapas, las cuales se
deben realizar en un respectivo orden, como se muestra a continuación.
4.3.1 Etapa Predictora.
Con la utilización de métodos matemáticos en el análisis de flujos de potencia, lo que se
pretende es establecer el punto de colapso del sistema. Dado que, como se observa en la
figura 4 matemáticamente este punto puede corresponder a muchas soluciones o presentar
una bifurcación. Es por eso que etapa pretende aproximar rectas tangentes al punto de
colapso de tensión con el objetivo de aproximar de forma más presisa este punto. Esto lo
logra al establecer las siguientes condiciones:
a. Se establece el gradiente del Lagrangiano de la ecuación (8) donde T y Th
corresponde a las matrices transpuestas de las derivadas anteriores.
b. Se crea la nueva matriz H de la ecuación (11) y se le calcula la inversa a esta
matriz.
c. Luego se encuentra el vector af
α , af
ρ y af
µ con las ecuaciones (12) y (13).
d. Por consiguiente, se actualizan todas las variables y se forman las nuevas matrices
de desigualdad y el nuevo vector de errores.
45
4.3.2 Etapa Correctora.
En esta etapa se toman los datos solución de la primera etapa y se procede a realizar lo
siguiente:
a. Una vez obtenidos todos lo valores y matrices de la etapa anterior, se procede a
calcular la matriz de la ecuación (14).
b. Luego se verifica la convergencia, esta tiene como requisito que el máximo error del
vector de errores debe ser menor que 0.1 MW y 0.1 MVAr.
c. Se recalculan los valores para la barra oscilante y verifica la convergencia.
d. De lo contrario, se reingresa en el programa y recalcula todo con los nuevos valores.
e. En caso de obtener la convergencia en el punto deseado, se procede a realizar
aumentos en el anillo de carga y en la potencia de la barra 2, con la finalidad de
poder obtener los datos para realizar las curvas requeridas para el estudio de
estabilidad.
En conclusión, el procedimiento anterior se puede resumir en el siguiente diagrama:
46
Figura 9. Diagrama de flujos del método Predictor – Corrector
47
4.4 Resultados obtenidos con el programa realizado con el Método
Predictor-Corrector
Una vez que se realizaron los procedimientos descritos en las secciones anteriores, se quizo
comprobar la efectividad del método y la aplicación del mismo realizado en Matlab. Para
ello se ejecutaron variadas simulaciones incrementando el factor de aumento de carga y la
potencia activa de la barra 2.
En la figura 11, se muestra la curva P-V de la barra 14 correspondiente a los datos
obtenidos de la simulación del sistema en PSS/E (Power System Simulator for Engineers).
Este software se fundamenta en el Método de Newton –Raphson, el cual es muy utilizado
en la solución de flujos de potencia.
Figura 11. Datos Obtenidos de la Simulación en PSS
48
En la figura 11 se observa que el punto de colapso se obtiene para un aumento de carga del
70% aproximadamente. Cuando se simula se obtiene que para que este sistema alcance la
convergencia se deben realizar más de 60 iteraciones, proceso que se vuelve tedioso en
sistemas muy grandes.
Es importante resaltar que cuando el aumento de la carga en el anillo corresponde al 65% el
programa logra obtener la solución deseada en 4 iteraciones; por el contrario, cuando al
sistema se le aumenta la carga en un 80% el programa es incapaz de brindar una solución.
Cuando se realizan las simulaciones en el programa Predictor – Corrector se obtiene que se
alcanza el criterio de convergencia cuando la carga del sistema se aumenta en un 72,6 % y
la potencia alcanza 80MW, esto lo realiza en 4 iteraciones y con una magnitud de tensión
en la barra 14 de 0,5685 pu.
En la figura 12 se muestra las Curvas P-V realizadas por los dos métodos, donde se observa
que el método Predictor-Corrector logra superar las expectativas del método Newton-
Raphson y brinda una mayor información del sistema de potencia en estudio, en cuanto a
que es capaz de predecir con mayor exactitud un punto de colapso de voltaje mediante la
metodología de las curvas P – V.
49
Curva P-V
0
0,2
0,4
0,6
0,8
1
0 20 40 60 80
Aumento de carga (%)
Tensión
(p.u)
New ton-Raphson
Predictor-Corrector
Figura 12. Curva P-V con los datos obtenidos con el método Predictor – Corrector
Es importante resaltar de las curvas de la figura 12 los siguientes aspectos;
♦ El Método de Newton-Rahpson brinda solución hasta cuando se ha establecido un
aumento del anillo de carga del 70% aproximadamente, el método Predictor –
Corrector aproxima la solución a un 72.6% del aumento de carga, estableciendo este
punto como el punto crítico de colapso del sistema
♦ En la gráfica de la figura 14, se muestra que el sistema no puede proporcionar
solución para aumentos mayores al 72.6%; dado que, la región que comprende
50
valores mayores a este, no figuran como posible solución del sistema encontrándose
esos puntos en la zona de inestabilidad.
♦ En la Tabla C.17 se observa que el porcentaje de error entre las soluciones de los
dos algoritmos de solución se encuentra entre 2% y el 0% en algunas iteraciones.
En cuanto a las iteraciones requeridad por cada método se puede observar que el método
Newton-Raphson llega a un punto donde para poder brindar la respuesta solicitada necesita
realizar más de 60 iteraciones; que por el contrario, el método Predictor-Corrector logra
realizar en un máximo de 4 iteraciones. Esto se puede observar en la figura 13.
En la figura 13 se puede apreciar el comportamiento que presenta el número de iteraciones
a las cuales converge el programa cuando se le aplica un aumento en la carga. Se muestra
que mientras se realiza aumentos al porcentaje de carga, el sistema alcanza la convergencia
en un número de iteraciones bastante pequeñas que varían en 2, 3 y 4 iteraciones para el
Predictor - Corrector.
51
Punto de convergencia en función del aumento de
carga
0
2,5
5
7,5
10
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
7
2
,
2
7
2
,
6
Porcentaje de Aumento de Carga
Número
de
Iteraciones
Newton-Rahson
Predictor-Corrector
Figura 13. %úmero de Iteraciones en función del aumento de carga
Por lo tanto, se tiene que aunque ambos métodos logran encontrar una solución para el
sistema en estudio, el método Predictor-Corrector logra brindarla con un menor número de
iteraciones.
La solución en el caso base es obtenida como se muestra en la figura 14 en la segunda
iteración, aquí se puede observar como el parámetro de barrera disminuye de forma
exponencial conforme se aumentan las iteraciones, cumpliéndo con lo establecido en la
teoría.
52
Figura 14. Comportamiento del Parámetro de Barrera para la simulación del 72.6 %
del aumento de carga del sistema
Figura 15. Comportamiento del Parámetro de Barrera ante un aumento mayor al
75% de la carga del anillo
0 5 10 15 20 25 30 35 40 45 50
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
x 10
32
Comportamiento del Parámetro de Barrera en función del número de iteraciones
Número de Iteraciones
Parámetro
de
Barrera
0 0.5 1 1.5 2 2.5 3
0
50
100
150
200
250
Comportamiento del Parámetro de Barrera en función del número de iteraciones
Número de Iteraciones
Parámetro
de
Barrera
53
CAPÍTULO 5: Conclusiones y Recomendaciones
5.1 Conclusiones
Una vez realizadas las simulaciones del caso base con el programa realizado en Matlab y
compararlo con los resultados obtenidos en la simulación del PSS/E, se puede mencionar lo
siguiente:
♦ En cuanto al programa de solución de flujos creado con el método Predictor-
Corrector se manifiesta que este se comporta de la manera esperada; debido a que,
el valor del parámetro de barrera tiende a hacerce cero conforme el sistema avanza
en iteraciones hasta el momento en que cumple con el criterio de convergencia. A
su vez se obtiene que las variables duales, aunque tienden a ser valores muy
pequeños siempre conservan la característica de no negatividad lo que permite el
correcto funcionamiento del programa.
♦ Según los resultados mostrados en la Tabla C17 se muestra los valores en las
tensiones de la barra 14 obtenidos simulando el programa Predictor - Corrector,
presenta, ante un aumento de carga, un porcentaje de error pequeño con respecto a
los datos obtenidos en la simulación del software PSS muy utilizado y vendido
comercialmente. Por lo tanto, se logra comprobar que mediante la debida
54
implementación de un software que se fundamente en métodos como el Predictor –
Corrector se puede precisar la solución de los diferentes sistemas de potencia en
estudio.
♦ Por otra parte, se obtiene que para un mismo caso de estudio, el método Predictor-
Corrector, logra obtener la solución e identificar el punto donde se cumple el
criterio de convergencia en un menor número de iteraciones.
♦ En cuanto a la estabilidad del sistema de potencia se logró obtener que el algoritmo
realizado mediante la utilización del método en estudio aproxima el punto de
colapso con mayor exactitud, dado que, el programa permite realizar variaciones de
la carga hasta lograr apoximar el punto donde el sistema pierde su estabilidad.
♦ En el momento en que el sistema se comporta de manera inadecuada; es decir, los
resultados obtenidos son como se obseva en la figura 15, se puede concluir que el
sistema se encuentra operando en un zona donde no es posible encontrar una
solución.
55
5.2 Recomendaciones
♦ Es importante destacar como se dijo en el capítulo 3, que el criterio de selección de
las variables duales es totalmente empírico; por lo tanto, es necesario realizar un
estudio más minucioso de estas variables.
♦ Se recomienda la aplicación del programa realizado en un sistema real, con la
finalidad de poder realizar un estudio de estabilidad de voltaje que brinde
soluciones mucho más cercanas a las reales.
56
BIBLIOGRAFÍA
[1] Aromataris L. Arnera P. Riubrugent J. “Nueva Metodología estática para el estudio de
la estabilidad de tensión de sistemas eléctricos de potencia” CIGRÉ. Universidad Nacional
de Río Cuarto- Córdaba. Mayo 2003
[2]Arosemena Carlos. “Estabilidad de tensión de un sistema eléctrico de potencia variando
la penetración eólica”. CAEsoft Consulting S.L. Diciembre 2004
[3] Correa C. Bolaños R. Garcés A. “Métodod no-lineales de puntos interiores aplicado al
problema de despacho hidrotérmico”. Universidad Tecnológica de Pereira. Scientia et
Technica. Año XIII. No 34. Mayo 2007.
[4] Castro R. Díaz H. “Estabilidad de tensión en el corto plazo: Fenómeno, Análisis y
Acciones de control”. Universidad U.T.A. Chile. Vol 2. Agosto 2002.
[5] Echavarren F. Lobato E. Rouco L. Rodrígue J. “Colapso de tensión causa y soluciones”.
Universidad Pontificia Comillas. España. Marzo-Abril 2006
[6] F. Capitanescu, M. Glavic, D.Ernst, L. Wehenkel, Interior-point based algorithms for
the solution of optimal power flow problems. Junio 2006. www.sciencedirect.com
57
[7] Gallego L. “Metodología para solucionar el modelo DC para redes de transmisión de
energía eléctrica usando puntos interiores”. Scientia et Technica Año XI No 28 Octubre
2005.
[8] Garcés A. Gómez O. “Solución al problema del despacho hidrotérmico mediante
simulación de Monte Carlo y punto interior” Universidad de Antioquia. N.° 45 pp. 132-
147. Septiembre, 2008
[9] Garzillo A. “The problema of the active and reactive optimun power dispatching
solved by utilizing a primal-dual interior point metod” Electrical Power  Energy
Systems, Vol. 20, No. 6, pp. 427-434, 199
[10]Gómez A. “Estudio de Estabilidad en Sistemas de Potencia: Metodología para la
Evaluación de la Estabilidad de Tensión mediante la aplicación de inteligencia artificial”.
Universidad Industrial de Santander. Bucaramanga. 2006
[11] IEEE The Continuation Power Flow: A Tool for Steady State Voltage Stability
Analysis IEEE Transactions on Power Systems, Vol. 7, No. 1, February 1992.
[12] IEEE A Predictor/Corrector Scheme for Obtaining Q-limit Point for Power Flow
Studies IEEE Lain America Transactions, Vol. 4, No. 3, February 2005.
58
[13] IEEE Herramietas de Análisis del Colapso de Tensión y Aplicaciones IEEE
Transactions on Power Systems, Vol. 20, No. 1, Mayo 2006.
[14] Kundur .P. “Power System Stability and Control”. McGraw-Hill.1994
[15] Ramírez E. Saborío S. “Evaluación de métodos para el análisis de la estabilidad de
tensión y su aplicación al Sistema Eléctrico Nacional”. Universidad de Costa Rica. 2005
[16] Ríos M. Torres A. Torres M. “ Estabilidad de Voltaje en Sistemas de Potencia –Caso
de aplicación a la EEB ” Revista de Ingeniería Uniandes.
[17] Rosehart W. “Stabylity Analysis of Detailed Power System Models ” University of
Waterloo. Waterloo. Ontario. 1997
[17] Sanmiguel E. “El fenómeno de la Autorrotación”. Universidad de Málaga. España.
Diciembre 2002.
[18] Schaerer C. Atlasovich J. “Flujo de Potencia Eléctrica en Torno al Punto Crítico”.
Universidad Nacional de Asunción. Paraguay. Mayo 1995.
59
[19] Sousa A. Torres G. “Globally Convergent Optimal Power Flow by Trust-Region
Interior-Point Methods”.Universidad Federal de Pernambuco, Recife-PE, Brazil.
60
APÉ%DICES
61
Apéndice A. Datos de descripción del caso base
Tabla A.1. Características de caso base por barra
Tabla A. 2. Características grupo generación
%úmero
barra
%ombre
barra
kV
base
Código
Voltaje
[V]
Ángulo
[°]
Pgen
[MW]
Qgen
[MVAr]
Pcarga
[MW]
Qcarga
[MVAr]
1 UNO-U1 138 Oscilante 10.200 0.00 231.54 -22.80 ------ ------
2 DOS-U1 138 PV 10.120 -2.92 40.00 50.00 21.70 12.70
3 TRES-U1 138 PV 0.9822 -11.63 0.00 40.00 94.20 19.00
4 CUATRO 138 PQ 0.9707 -8.93 ------ ------ 47.80 -3.90
5 CINCO 138 PQ 0.9765 -7.61 ------ ------ 7.60 1.60
6 SIES-U1 34.5 PV 0.9637 -14.96 0.00 24.00 11.20 7.50
9 NUEVE 34.5 PQ 0.9289 -16.15 ------ ------ 29.50 16.60
10 DIEZ 34.5 PQ 0.9265 -16.29 ------ ------ 9.00 5.80
11 ONCE 34.5 PQ 0.9408 -15.78 ------ ------ 3.50 1.80
12 DOCE 34.5 PQ 0.9458 -16.04 ------ ------ 6.10 1.60
13 TRECE 34.5 PQ 0.9390 -16.14 ------ ------ 13.50 5.80
14 CATORCE 34.5 PQ 0.9123 -17.48 ------ ------ 14.90 5.00
%úmero
Barra
Grupo
generador
Id
Pgen
[MW]
Pmax
[MW]
Pmin
[MW]
Qgen
[MVAr]
Qmax
[MVAr]
Qmin
[MVAr]
MVA base
[MVA]
1 UNO-U1 H1 231.54 340 0 -22.8 210.71 -210.71 400
2 DOS-U1 H2 40 85 0 50 50 -40 100
3 TRES-U1 H3 0 65 0 40 40 0 76
6 SIES-U1 H4 0
39
0 24 24 -6 46
62
Tabla A.3. Características líneas de transmisión
De la barra A la barra Id R [p.u.] X [p.u.] C [p.u.]
1 UNO-U1 2 DOS-U1 1 0.01938 0.05917 0.0528
1 UNO-U1 2 DOS-U1 2 0.01938 0.05917 0.0528
1 UNO-U1 5 CINCO 1 0.05403 0.22304 0.0492
2 DOS-U1 3 TRES-U1 1 0.04699 0.19797 0.0438
2 DOS-U1 4 CUATRO 1 0.05811 0.17632 0.034
2 DOS-U1 5 CINCO 1 0.05695 0.17388 0.0346
3 TRES-U1 4 CUATRO 1 0.06701 0.17103 0.0128
4 CUATRO 5 CINCO 1 0.01335 0.04211 0.0000
6 SIES-U1 11 ONCE 1 0.09498 0.1989 0.0000
6 SIES-U1 12 DOCE 1 0.12291 0.25581 0.0000
6 SIES-U1 13 TRECE 1 0.06615 0.13027 0.0000
9 NUEVE 10 DIEZ 1 0.03181 0.0845 0.0000
9 NUEVE 14 CATORCE 1 0.12711 0.27038 0.0000
10 DIEZ 11 ONCE 1 0.08205 0.19207 0.0000
12 DOCE 13 TRECE 1 0.22092 0.19988 0.0000
13 TRECE 14 CATORCE 1 0.17093 0.37802 0.0000
Tabla A.4. Características transformadores de dos devanados
De la barra A la barra Id %ombre X [p.u.] MVA base [MVA]
4 CUATRO 9 NUEVE 1 T2 0.55618 195
4 CUATRO 9 NUEVE 2 T1 0.55618 195
5 CINCO 6 SIES-U1 1 T3 0.25202 130
63
Tabla A.5 Características carga
%úmero barra %ombre barra Pcarga [MW] Qcarga [MVAr]
2 DOS-U1 21.7 12.7
3 TRES-U1 94.2 19.0
4 CUATRO 47.8 -3.9
5 CINCO 7.6 1.6
6 SIES-U1 11.2 7.5
9 NUEVE 29.5 16.6
10 DIEZ 9.0 5.8
11 ONCE 3.5 1.8
12 DOCE 6.1 1.6
13 TRECE 13.5 5.8
14 CATORCE 14.9 5.0
Tabla A. 6. Características banco de condensadores
%úmero
barra
%ombre
barra
Modo de
control
Capacidad
[MVA]
Etapas
Capacidad/etapa
[MVAr]
9 NUEVE Fijo 10 1 10
64
Apéndice B. Resultados de la Simulación en PSS
Tabla B.1 Resultados obtenidos de la simulación en PSS
SIES-U1 NUEVE DIEZ ONCE DOCE TRECE CATORCE DOS-U1
Escenarios P
[MW]
Q
[MVAr]
P
[MW]
Q
[MVAr]
P
[MW]
Q
[MVAr]
P
[MW]
Q
[MVAr]
P
[MW]
Q
[MVAr]
P
[MW]
Q
[MVAr]
P
[MW]
Q
[MVAr]
Pgen
[MW]
Caso
Base
11.200 7.500 29.500 16.600 9.000 5.800 3.500 1.800 6.100 1.600 13.500 5.800 14.900 5.000 40.00
Aumento
carga 5%
11.760 7.875 30.975 17.430 9.450 6.090 3.675 1.890 6.405 1.680 14.175 6.090 15.645 5.250 45.00
Aumento
carga 10%
12.320 8.250 32.450 18.260 9.900 6.380 3.850 1.980 6.710 1.760 14.850 6.380 16.390 5.500 50.00
Aumento
carga 15%
12.880 8.625 33.925 19.090 10.350 6.670 4.025 2.070 7.015 1.840 15.525 6.670 17.135 5.750 52.00
Aumento
carga 20%
13.440 9.000 35.400 19.920 10.800 6.960 4.200 2.160 7.320 1.920 16.200 6.960 17.880 6.000 55.00
Aumento
carga 25%
14.000 9.375 36.875 20.750 11.250 7.250 4.375 2.250 7.625 2.000 16.875 7.250 18.625 6.250 60.00
Aumento
carga 30%
14.560 9.750 38.350 21.580 11.700 7.540 4.550 2.340 7.930 2.080 17.550 7.540 19.370 6.500 65.00
Aumento
carga 35%
15.120 10.125 39.825 22.410 12.150 7.830 4.725 2.430 8.235 2.160 18.225 7.830 20.115 6.750 68.00
Aumento
carga 40%
15.680 10.500 41.300 23.240 12.600 8.120 4.900 2.520 8.540 2.240 18.900 8.120 20.860 7.000 70.00
Aumento
carga 45%
16.240 10.875 42.775 24.070 13.050 8.410 5.075 2.610 8.845 2.320 19.575 8.410 21.605 7.250 75.00
Aumento
carga 50%
16.800 11.250 44.250 24.900 13.500 8.700 5.250 2.700 9.150 2.400 20.250 8.700 22.350 7.500 75.00
Aumento
carga 55%
17.360 11.625 45.725 25.730 13.950 8.990 5.425 2.790 9.455 2.480 20.925 8.990 23.095 7.750 75.00
Aumento
carga 60%
17.920 12.000 47.200 26.560 14.400 9.280 5.600 2.880 9.760 2.560 21.600 9.280 23.840 8.000 75.00
Aumento
carga 65%
18.480 12.375 48.675 27.390 14.850 9.570 5.775 2.970 10.065 2.640 22.275 9.570 24.585 8.250 75.00
Aumento
carga 70%
19.040 12.750 50.150 28.220 15.300 9.860 5.950 3.060 10.370 2.720 22.950 9.860 25.330 8.500 80.00
Aumento
carga 75%
19.600 13.125 51.625 29.050 15.750 10.150 6.125 3.150 10.675 2.800 23.625 10.150 26.075 8.750 80.00
Aumento
carga 80%
20.160 13.500 53.100 29.880 16.200 10.440 6.300 3.240 10.980 2.880 24.300 10.440 26.820 9.000 80.00
65
Apéndice C: Resultados de la simulación con el Programa
Predictor –Corrector.
Tabla C.1 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de
carga 0%. Potencia=40MW
Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada
1 1,0200 0 231,5273 -22,8294
2 1,012 -2,9243 39,9978 50,0006
3 0,9823 -11,6252 0 39,9992
4 0,9707 -8,9303 0 0
5 0,9765 -7,6084 0 0
6 0,9637 -14,9565 0 24,0058
9 0,929 -16,1496 0 0
10 0,9266 -16,2915 0 0
11 0,9408 -15,7751 0 0
12 0,9459 -16,0424 0 0
13 0,939 -16,1339 0 0
14 0,9124 -17,4824 0 0
66
Tabla C.2 Datos obtenidos con:Parámetro de Barrera de 5, Aumento del anillo de
carga 5%. Potencia=45MW
Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada
1 1,0200 0 231,3252 -17,4470
2 1,0111 -2,8889 44,9975 50,0007
3 0,9794 -11,6957 0 39,9991
4 0,9664 -9,037 0 0
5 0,9724 -7,7072 0 0
6 0,9553 -15,5085 0 24,0064
9 0,9191 -16,767 0 0
10 0,9164 -16,9229 0 0
11 0,9313 -16,377 0 0
12 0,9364 -16,669 0 0
13 0,9292 -16,7668 0 0
14 0,9012 -18,2056 0 0
Tabla C.3 Datos obtenidos con:Parámetro de Barrera de 5, Aumento del anillo de
carga 10%. Potencia=50MW
Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada
1 1,0200 0 231,1599 -11,7816
2 1,01 -2,8529 49,9972 50,0007
3 0,9765 -11,7682 0 39,999
4 0,9618 -9,1449 0 0
5 0,9681 -7,8067 0 0
6 0,9465 -16,0796 0 24,0073
9 0,9087 -17,4071 0 0
10 0,9058 -17,5779 0 0
11 0.9213 -17,0007 0 0
12 0.9265 -17,3185 0 0
13 0.9189 -17,4229 0 0
14 0.8894 -18,9576 0 0
67
Tabla C.4 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de
carga 15%. Potencia=52MW
Barra
Magnitud de la
tensión Ángulo de la tensión P generada Q generada
1 1,0200 0 234,1340 -5,4563
2 1,0086 -2,8624 51,9966 50,0009
3 0,9731 -11,8891 0 39,9988
4 0,9567 -9,2939 0 0
5 0,9633 -7,9429 0 0
6 0,937 -16,7142 0 24,0088
9 0,8975 -18,1169 0 0
10 0,8943 -18,3032 0 0
11 0,9106 -17,6919 0 0
12 0,9158 -18,0368 0 0
13 0,9078 -18,1481 0 0
14 0,8769 -19,7871 0 0
Tabla C.5 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de
carga 20%. Potencia=55MW
Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada
1 1,0200 0 236,1221 1,1124
2 1,0072 -2,8561 54,9959 50,0010
3 0,9696 -11,9973 0 39,9985
4 0,9515 -9,431 0 0
5 0,9584 -8,0681 0 0
6 0,927 -17,3599 0 24,0111
9 0,8859 -18,8419 0 0
10 0,8824 -19,0448 0 0
11 0,8993 -18,3973 0 0
12 0,9046 -18,7709 0 0
13 0,8962 -18,8897 0 0
14 0,8637 -20,6398 0 0
68
Tabla C.6 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de
carga 25%. Potencia=60MW
Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada
1 1,0200 0 236,0956 7,8409
2 1,006 -2,8184 59,9949 50,0012
3 0,9661 -12,0775 0 39,9982
4 0,9462 -9,543 0 0
5 0,9533 -8,1704 0 0
6 0,9167 -18,0053 0 24,0143
9 0,8738 -19,5705 0 0
10 0,87 -19,7912 0 0
11 0,8877 -19,1054 0 0
12 0,893 -19,5098 0 0
13 0,8841 -19,6364 0 0
14 0,8500 -21,5050 0 0
Tabla C.7 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de
carga 30%. Potencia=65MW
Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada
1 1,0200 0 236,1288 15,0209
2 1,0046 -2,78 64,9935 50,0016
3 0,9624 -12,161 0 39,9977
4 0,9405 -9,6565 0 0
5 0,948 -8,2737 0 0
6 0,9057 -18,6826 0 24,0191
9 0,8609 -20,3375 0 0
10 0,8568 -20,5772 0 0
11 0,8753 -19,8501 0 0
12 0,8808 -20,2872 0 0
13 0,8714 -20,4222 0 0
14 0,8355 -22,4194 0 0
69
Tabla C.8 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de
carga 35%. Potencia=68MW
Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada
1 1,0200 0 238,2994 22,9711
2 1,0029 -2,7716 67,9915 50,0020
3 0,9582 -12,2795 0 39,997
4 0,9343 -9,7989 0 0
5 0,9421 -8,4023 0 0
6 0,8938 -19,4273 0 24,0265
9 0,8469 -21,1811 0 0
10 0,8425 -21,4414 0 0
11 0,8618 -20,6683 0 0
12 0,8674 -21,1407 0 0
13 0,8575 -21,2849 0 0
14 0,8198 -23,4243 0 0
Tabla C.9 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de
carga 40%. Potencia=70MW
Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada
1 1,0200 0 241,5888 31,6757
2 1,001 -2,7777 67,9885 50,0027
3 0,9536 -12,4186 0 39,996
4 0,9275 -9,9571 0 0
5 0,9357 -8,5446 0 0
6 0,8808 -20,2328 0 24,0376
9 0,8317 -22,0958 0 0
10 0,827 -22,3785 0 0
11 0,8472 -21,5544 0 0
12 0,853 -22,0651 0 0
13 0,8425 -22,2196 0 0
14 0,8028 -24,5169 0 0
70
Tabla C.10 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de
carga 45%. Potencia=75MW
Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada
1 1,0200 0 241,9028 41,0273
2 0,9992 -2,7359 75,0000 50,0000
3 0,9488 -12,5186 0 40,0000
4 0,9202 -10,0770 0 0
5 0,9289 -8,6517 0 0
6 0,8667 -12,0790 0 24,0001
9 0,8151 -23,0657 0 0
10 0,8100 -23,3739 0 0
11 0,8313 -23,4919 0 0
12 0,8372 -23,0466 0 0
13 0,8262 -23,2165 0 0
14 0,7842 -25,6975 0 0
Tabla C.11 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de
carga 50%. Potencia=75MW
Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada
1 1,0200 0 247,5157 51,8957
2 0,9966 -2,7703 75,0000 50,0000
3 0,9430 -12,7042 0 40,0000
4 0,9119 -10,2686 0 0
5 0,9210 -8,8219 0 0
6 0,8506 -22,0611 0 24,0002
9 0,7963 -24,1901 0 0
10 0,7909 -24,5271 0 0
11 0,8133 -23,5776 0 0
12 0,8194 -24,1805 0 0
13 0,8077 -24,3637 0 0
14 0,7633 -27,0565 0 0
71
Tabla C.12 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de
carga 55%. Potencia=75MW
Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada
1 1,0200 0 253,3207 64,1752
2 0,9938 -2,8032 74,9999 50,0000
3 0,9365 -12,9010 0 40,0000
4 0,9024 -10,4646 0 0
5 0,9121 -8,9947 0 0
6 0,8325 -23,1511 0 24,0007
9 0,7750 -25,4462 0 0
10 0,7693 -25,8166 0 0
11 0,7930 -25,7878 0 0
12 0,7994 -25,4461 0 0
13 0,7869 -25,6448 0 0
14 0,7396 -28,5892 0 0
Tabla C.13 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de
carga 60%. Potencia=75MW
Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada
1 1,0200 0 259,4051 78,5015
2 0,9905 -2,8335 74,9998 50,0001
3 0,9290 -13,1139 0 39,9999
4 0,8915 -10,6664 0 0
5 0,9018 -9,1706 0 0
6 0,8114 -24,3988 0 24,0022
9 0,7501 -26,8916 0 0
10 0,7440 -27,3070 0 0
11 0,7692 -26,1805 0 0
12 0,7760 -26,9052 0 0
13 0,7626 -27,1227 0 0
14 0,7119 -30,3794 0 0
72
Tabla C.14 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de
carga 65%. Potencia=75MW
Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada
1 1,0200 0 265,9547 96,2238
2 0,9865 -2,8597 74,9990 50,0002
3 0,9198 -13,3531 0 39,9995
4 0,8781 -10,8765 0 0
5 0,8892 -9,3506 0 0
6 0,7851 -25,9100 0 24,0085
9 0,7191 -28,6715 0 0
10 0,7125 -29,1350 0 0
11 0,7397 -27,8789 0 0
12 0,7469 -28,6884 0 0
13 0,7324 -28,9304 0 0
14 0,6774 -32,608 0 0
Tabla C.15 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de
carga 70%. Potencia=80MW
Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada
1 1,0200 0 268,3684 121,0182
2 0,9814 -2,7968 79,9999 50,0000
3 0,9071 -13,5691 0 40,0000
4 0,8595 -11,0308 0 0
5 0,8717 -9,4737 0 0
6 0,7475 -27,9519 0 24,0004
9 0,6745 -31,1242 0 0
10 0,6673 -31,6699 0 0
11 0,6974 -30,2076 0 0
12 0,7054 -31,1457 0 0
13 0,6892 -31,4253 0 0
14 0,6278 -35,7839 0 0
73
Tabla C.15 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de
carga 72%. Potencia=80MW
Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada
1 1,0200 0 272,5609 139,5814
2 0,9774 -2,7922 79,9988 50,0002
3 0,8976 -13.7507 0 39,9994
4 0,8456 -11,1341 0 0
5 0,8587 -9,5523 0 0
6 0,7194 -29,4569 0 24,0064
9 0,6409 -32,9643 0 0
10 0,6333 -33,5748 0 0
11 0,6657 -31,9407 0 0
12 0,6744 -32,9772 0 0
13 0,6569 -33,2871 0 0
14 0,5904 -38,2230 0 0
Tabla C.16 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de
carga 72.5%. Potencia=80MW
Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada
1 1,0200 0 274,1336 148,0204
2 0,9756 -2,7860 79,9958 50,0008
3 0,8933 -13,8242 0 39,9981
4 0,8393 -11,1656 0 0
5 0,8528 -9,5735 0 0
6 0,7065 -30,1286 0 24,0198
9 0,6255 -33,7968 0 0
10 0,6177 -34,4381 0 0
11 0,6511 -32,7204 0 0
12 0,6601 -33,8028 0 0
13 0,6421 -34,1270 0 0
14 0,5732 -39,3468 0 0
74
Tabla C.16 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de
carga 72.6%. Potencia=80MW
Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada
1 1,0200 0 274,5321 150,3139
2 0,9751 -2,7840 79,9944 50,0011
3 0,8921 -13,8434 0 39,9975
4 0,8376 -11,1727 0 0
5 0,8512 -9,5779 0 0
6 0,7029 -30,3097 0 24,0261
9 0,6212 -34,0222 0 0
10 0,6134 -34,6720 0 0
11 0,6471 -32,9311 0 0
12 0,6563 -34,0261 0 0
13 0,6381 -34,3542 0 0
14 0,5685 -39,6529 0 0
75
Tabla C.17 Datos obtenidos para la barra 14 en todas las iteraciones
Método Predictor-Corrector Método Newton-Raphson
Aumento de
carga Tensión Potencia Iteraciones Tensión Potencia Iteraciones
Margen de
Error
0 0,9124 40 2 0,912 40 4 0,044
5 0,9012 45 2 0,9011 45 4 0,011
10 0,8894 50 2 0,8894 50 4 0,000
15 0,8769 52 2 0,8767 52 4 0,023
20 0,8637 55 2 0,8636 55 4 0,012
25 0,85 60 2 0,8499 60 4 0,012
30 0,8355 65 2 0,8355 65 4 0,000
35 0,8198 68 2 0,8196 68 4 0,024
40 0,8028 70 2 0,8025 70 4 0,037
45 0,7849 75 3 0,7841 75 4 0,102
50 0,7633 75 3 0,7633 75 4 0,000
55 0,7396 75 3 0,7396 75 4 0,000
60 0,7119 75 3 0,7122 75 4 0,042
65 0,6774 75 3 0,6778 75 5 0,059
70 0,6278 80 4 0,6393 80 58 1,799
76
A%EXOS A. Código Fuente
%Proyecto Eléctrico
%Programa que utiliza el Método Predictor-Corrector para un sistema de
doce barras
clc,clear;
disp('Programa que utiliza el Método Predictor-Corrector para un sistema
de doce barras')
fprintf('
n.......................................................................
.............................nn')
date;
%Introducción de Variables
n=0;
gamma=0.99995;
sigma=0.2;
m=4; %Numero con generadores
%Matriz de admitancias
Y=Matriz_admitancias(n);
%Valores de la matriz de admitancias necesarios para el programa
for q=1:1:12
for w=1:1:12
Ym(q,w)=abs(Y(q,w));
C(q,w)=angle(Y(q,w));
end
end
%Factor de aumento de carga en el anillo de carga
fc=input('Digite el factor de aumento de carga en el anillo de 34,5kV
');
fprintf(' n')
Pg2=input('Digite la potencia activa que entregara el generador de la
barra 2 ');
fprintf(' n')
%Valores de las potencias activas y reactivas en barras
P1c=0;
77
Q1c=0;
P2=Pg2/100-0.217;
P2c=-0.217;
P3=-0.942;
P3c=P3;
P4=-0.478;
P5=-0.076;
P6c=(1+fc/100)*-0.112;
P6=P6c;
P9=(1+fc/100)*-0.295;
P10=(1+fc/100)*-0.09;
P11=(1+fc/100)*-0.035;
P12=(1+fc/100)*-0.061;
P13=(1+fc/100)*-0.135;
P14=(1+fc/100)*-0.149;
Q2=0.373;
Q2c=-0.127;
Q3c=-0.19;
Q3=0.21;
Q4=0.039;
Q5=-0.016;
Q6=(1+fc/100)*-0.075+0.24;
Q6c=(1+fc/100)*-0.075;
Q9=(1+fc/100)*-0.166;
Q10=(1+fc/100)*-0.058;
Q11=(1+fc/100)*-0.018;
Q12=(1+fc/100)*-0.016;
Q13=(1+fc/100)*-0.058;
Q14=(1+fc/100)*-0.05;
Q2c=-0.127;
P1gmin=0;
P1gmax=3.4;
P2gmin=0;
P2gmax=0.85;
P3gmin=0;
P3gmax=0.65;
P6gmin=0;
P6gmax=0.39;
Q1gmin=-2.1071;
Q1gmax=2.1071;
Q2gmin=-0.4;
Q2gmax=0.5;
Q3gmin=0;
Q3gmax=0.4;
Q6gmin=-0.06;
Q6gmax=0.24;
%Condiciones iniciales de las tensiones y sus respectivos ángulos
78
V1=1.02;
V2=1.017;
V3=1.005;
V4=0.97;
V5=0.99;
V6=0.98;
V9=0.933;
V10=0.94;
V11=1;
V12=0.96;
V13=0.97;
V14=0.95;
AV1=0;
AV2=-0.0145;
AV3=-0.06;
AV4=-0.031;
AV5=-0.1;
AV6=-0.055;
AV9=-0.04;
AV10=0;
AV11=0;
AV12=0;
AV13=-0.12;
AV14=0;
% Definicion de vectores landa, pi, s y e
l=[1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1];
s=[0.95;2.44;0.62;0.22;0.63;0.015;0.079;0.31;2.02;2.19;0.71;0.18;3;0.0019
;0.15;10];
pp=[5;2.4;0.05;37;1.2;15.6;30.6;0.1;2.3;0.6;20;2;10;0.3;50;2];
e=[1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1];
%Introducción del parámetro de barrera
u=200;
%Valores de la matriz de admitancia necesarios para el programa
Y11=Ym(1,1);
Y12=Ym(1,2);
Y13=Ym(1,3);
Y14=Ym(1,4);
Y15=Ym(1,5);
Y16=Ym(1,6);
79
Y17=Ym(1,7);
Y18=Ym(1,8);
Y19=Ym(1,9);
Y110=Ym(1,10);
Y111=Ym(1,11);
Y112=Ym(1,12);
Y21=Ym(2,1);
Y22=Ym(2,2);
Y23=Ym(2,3);
Y24=Ym(2,4);
Y25=Ym(2,5);
Y26=Ym(2,6);
Y27=Ym(2,7);
Y28=Ym(2,8);
Y29=Ym(2,9);
Y210=Ym(2,10);
Y211=Ym(2,11);
Y212=Ym(2,12);
Y31=Ym(3,1);
Y32=Ym(3,2);
Y33=Ym(3,3);
Y34=Ym(3,4);
Y35=Ym(3,5);
Y36=Ym(3,6);
Y37=Ym(3,7);
Y38=Ym(3,8);
Y39=Ym(3,9);
Y310=Ym(3,10);
Y311=Ym(3,11);
Y312=Ym(3,12);
Y41=Ym(4,1);
Y42=Ym(4,2);
Y43=Ym(4,3);
Y44=Ym(4,4);
Y45=Ym(4,5);
Y46=Ym(4,6);
Y47=Ym(4,7);
Y48=Ym(4,8);
Y49=Ym(4,9);
Y410=Ym(4,10);
Y411=Ym(4,11);
Y412=Ym(4,12);
Y51=Ym(5,1);
Y52=Ym(5,2);
Y53=Ym(5,3);
Y54=Ym(5,4);
Y55=Ym(5,5);
80
Y56=Ym(5,6);
Y57=Ym(5,7);
Y58=Ym(5,8);
Y59=Ym(5,9);
Y510=Ym(5,10);
Y511=Ym(5,11);
Y512=Ym(5,12);
Y61=Ym(6,1);
Y62=Ym(6,2);
Y63=Ym(6,3);
Y64=Ym(6,4);
Y65=Ym(6,5);
Y66=Ym(6,6);
Y67=Ym(6,7);
Y68=Ym(6,8);
Y69=Ym(6,9);
Y610=Ym(6,10);
Y611=Ym(6,11);
Y612=Ym(6,12);
Y71=Ym(7,1);
Y72=Ym(7,2);
Y73=Ym(7,3);
Y74=Ym(7,4);
Y75=Ym(7,5);
Y76=Ym(7,6);
Y77=Ym(7,7);
Y78=Ym(7,8);
Y79=Ym(7,9);
Y710=Ym(7,10);
Y711=Ym(7,11);
Y712=Ym(7,12);
Y81=Ym(8,1);
Y82=Ym(8,2);
Y83=Ym(8,3);
Y84=Ym(8,4);
Y85=Ym(8,5);
Y86=Ym(8,6);
Y87=Ym(8,7);
Y88=Ym(8,8);
Y89=Ym(8,9);
Y810=Ym(8,10);
Y811=Ym(8,11);
Y812=Ym(8,12);
Y91=Ym(9,1);
Y92=Ym(9,2);
Y93=Ym(9,3);
Y94=Ym(9,4);
81
Y95=Ym(9,5);
Y96=Ym(9,6);
Y97=Ym(9,7);
Y98=Ym(9,8);
Y99=Ym(9,9);
Y910=Ym(9,10);
Y911=Ym(9,11);
Y912=Ym(9,12);
Y101=Ym(10,1);
Y102=Ym(10,2);
Y103=Ym(10,3);
Y104=Ym(10,4);
Y105=Ym(10,5);
Y106=Ym(10,6);
Y107=Ym(10,7);
Y108=Ym(10,8);
Y109=Ym(10,9);
Y1010=Ym(10,10);
Y1011=Ym(10,11);
Y1012=Ym(10,12);
Y111=Ym(11,1);
Y112=Ym(11,2);
Y113=Ym(11,3);
Y114=Ym(11,4);
Y115=Ym(11,5);
Y116=Ym(11,6);
Y117=Ym(11,7);
Y118=Ym(11,8);
Y119=Ym(11,9);
Y1110=Ym(11,10);
Y1111=Ym(11,11);
Y1112=Ym(11,12);
Y121=Ym(12,1);
Y122=Ym(12,2);
Y123=Ym(12,3);
Y124=Ym(12,4);
Y125=Ym(12,5);
Y126=Ym(12,6);
Y127=Ym(12,7);
Y128=Ym(12,8);
Y129=Ym(12,9);
Y1210=Ym(12,10);
Y1211=Ym(12,11);
Y1212=Ym(12,12);
C11=C(1,1);
C12=C(1,2);
C13=C(1,3);
82
C14=C(1,4);
C15=C(1,5);
C16=C(1,6);
C17=C(1,7);
C18=C(1,8);
C19=C(1,9);
C110=C(1,10);
C111=C(1,11);
C112=C(1,12);
C21=C(2,1);
C22=C(2,2);
C23=C(2,3);
C24=C(2,4);
C25=C(2,5);
C26=C(2,6);
C27=C(2,7);
C28=C(2,8);
C29=C(2,9);
C210=C(2,10);
C211=C(2,11);
C212=C(2,12);
C31=C(3,1);
C32=C(3,2);
C33=C(3,3);
C34=C(3,4);
C35=C(3,5);
C36=C(3,6);
C37=C(3,7);
C38=C(3,8);
C39=C(3,9);
C310=C(3,10);
C311=C(3,11);
C312=C(3,12);
C41=C(4,1);
C42=C(4,2);
C43=C(4,3);
C44=C(4,4);
C45=C(4,5);
C46=C(4,6);
C47=C(4,7);
C48=C(4,8);
C49=C(4,9);
C410=C(4,10);
C411=C(4,11);
C412=C(4,12);
C51=C(5,1);
C52=C(5,2);
83
C53=C(5,3);
C54=C(5,4);
C55=C(5,5);
C56=C(5,6);
C57=C(5,7);
C58=C(5,8);
C59=C(5,9);
C510=C(5,10);
C511=C(5,11);
C512=C(5,12);
C61=C(6,1);
C62=C(6,2);
C63=C(6,3);
C64=C(6,4);
C65=C(6,5);
C66=C(6,6);
C67=C(6,7);
C68=C(6,8);
C69=C(6,9);
C610=C(6,10);
C611=C(6,11);
C612=C(6,12);
C71=C(7,1);
C72=C(7,2);
C73=C(7,3);
C74=C(7,4);
C75=C(7,5);
C76=C(7,6);
C77=C(7,7);
C78=C(7,8);
C79=C(7,9);
C710=C(7,10);
C711=C(7,11);
C712=C(7,12);
C81=C(8,1);
C82=C(8,2);
C83=C(8,3);
C84=C(8,4);
C85=C(8,5);
C86=C(8,6);
C87=C(8,7);
C88=C(8,8);
C89=C(8,9);
C810=C(8,10);
C811=C(8,11);
C812=C(8,12);
C91=C(9,1);
84
C92=C(9,2);
C93=C(9,3);
C94=C(9,4);
C95=C(9,5);
C96=C(9,6);
C97=C(9,7);
C98=C(9,8);
C99=C(9,9);
C910=C(9,10);
C911=C(9,11);
C912=C(9,12);
C101=C(10,1);
C102=C(10,2);
C103=C(10,3);
C104=C(10,4);
C105=C(10,5);
C106=C(10,6);
C107=C(10,7);
C108=C(10,8);
C109=C(10,9);
C1010=C(10,10);
C1011=C(10,11);
C1012=C(10,12);
C111=C(11,1);
C112=C(11,2);
C113=C(11,3);
C114=C(11,4);
C115=C(11,5);
C116=C(11,6);
C117=C(11,7);
C118=C(11,8);
C119=C(11,9);
C1110=C(11,10);
C1111=C(11,11);
C1112=C(11,12);
C121=C(12,1);
C122=C(12,2);
C123=C(12,3);
C124=C(12,4);
C125=C(12,5);
C126=C(12,6);
C127=C(12,7);
C128=C(12,8);
C129=C(12,9);
C1210=C(12,10);
C1211=C(12,11);
C1212=C(12,12);
85
%Vector de incognitas
x=sym('[AV2 V3 AV3 V4 AV4 V5 AV5 V6 AV6 V9 AV9 V10 AV10 V11
AV11 V12 AV12 V13 AV13 V14 AV14 V2]');
%Valores calculados para la barra 2
P1calc=sym('(V1*Y12*V2*cos(C12+AV2-
AV1)+(V1^2)*Y11*cos(C11)+V1*Y13*V3*cos(C13+AV3-
AV1)+V1*Y14*V4*cos(C14+AV4-AV1)+V1*Y15*V5*cos(C15+AV5-
AV1)+V1*Y16*V6*cos(C16+AV6-AV1)+V1*Y17*V9*cos(C17+AV9-
AV1)+V1*Y18*V10*cos(C18+AV10-AV1)+V1*Y19*V11*cos(C19+AV11-
AV1)+V1*Y110*V12*cos(C110+AV12-AV1)+V1*Y111*V13*cos(C111+AV13-
AV1)+V1*Y112*V14*cos(C112+AV14-AV1))');
Q1calc=sym('-1*(V1*Y12*V2*sin(C12+AV2-
AV1)+(V1^2)*Y11*sin(C11)+V1*Y13*V3*sin(C13+AV3-
AV1)+V1*Y14*V4*sin(C14+AV4-AV1)+V1*Y15*V5*sin(C15+AV5-
AV1)+V1*Y16*V6*sin(C16+AV6-AV1)+V1*Y17*V9*sin(C17+AV9-
AV1)+V1*Y18*V10*sin(C18+AV10-AV1)+V1*Y19*V11*sin(C19+AV11-
AV1)+V1*Y110*V12*sin(C110+AV12-AV1)+V1*Y111*V13*sin(C111+AV13-
AV1)+V1*Y112*V14*sin(C112+AV14-AV1))');
P2calc=sym('V2*Y21*V1*cos(C21+AV1-
AV2)+(V2^2)*Y22*cos(C22)+V2*Y23*V3*cos(C23+AV3-
AV2)+V2*Y24*V4*cos(C24+AV4-AV2)+V2*Y25*V5*cos(C25+AV5-AV2)');
Q2calc=sym('-1*(V2*Y21*V1*sin(C21+AV1-
AV2)+(V2^2)*Y22*sin(C22)+V2*Y23*V3*sin(C23+AV3-
AV2)+V2*Y24*V4*sin(C24+AV4-AV2)+V2*Y25*V5*sin(C25+AV5-
AV2)+V2*Y26*V6*sin(C26+AV6-AV2)+V2*Y27*V9*sin(C27+AV9-
AV2)+V2*Y28*V10*sin(C28+AV10-AV2)+V2*Y29*V11*sin(C29+AV11-
AV2)+V2*Y210*V12*sin(C210+AV12-AV2)+V2*Y211*V13*sin(C211+AV13-
AV2)+V2*Y212*V14*sin(C212+AV14-AV2))');
P3calc=sym('(V3^2)*Y33*cos(C33)+V3*Y32*V2*cos(C32+AV2-
AV3)+V3*Y34*V4*cos(C34+AV4-AV3)');
Q3calc=sym('-(V3^2)*Y33*sin(C33)-V3*Y32*V2*sin(C32+AV2-AV3)-
V3*Y34*V4*sin(C34+AV4-AV3)');
P4calc=sym('(V4^2)*Y44*cos(C44)+V4*Y42*V2*cos(C42+AV2-
AV4)+V4*Y43*V3*cos(C43+AV3-AV4)+V4*Y45*V5*cos(C45+AV5-
AV4)+V4*Y47*V9*cos(C47+AV9-AV4)');
Q4calc=sym('-(V4^2)*Y44*sin(C44)-V4*Y42*V2*sin(C42+AV2-AV4)-
V4*Y43*V3*sin(C43+AV3-AV4)-V4*Y45*V5*sin(C45+AV5-AV4)-
V4*Y47*V9*sin(C47+AV9-AV4)');
P5calc=sym('V5*Y51*V1*cos(C51+AV1-
AV5)+(V5^2)*Y55*cos(C55)+V5*Y52*V2*cos(C52+AV2-
AV5)+V5*Y54*V4*cos(C54+AV4-AV5)+V5*Y56*V6*cos(C56+AV6-AV5)');
Q5calc=sym('-V5*Y51*V1*sin(C51+AV1-AV5)-(V5^2)*Y55*sin(C55)-
V5*Y52*V2*sin(C52+AV2-AV5)-V5*Y54*V4*sin(C54+AV4-AV5)-
V5*Y56*V6*sin(C56+AV6-AV5)');
P6calc=sym('(V6^2)*Y66*cos(C66)+V6*Y65*V5*cos(C65+AV5-
AV6)+V6*Y69*V11*cos(C69+AV11-AV6)+V6*Y610*V12*cos(C610+AV12-
AV6)+V6*Y611*V13*cos(C611+AV13-AV6)');
matriz de 12.pdf
matriz de 12.pdf
matriz de 12.pdf
matriz de 12.pdf
matriz de 12.pdf
matriz de 12.pdf
matriz de 12.pdf
matriz de 12.pdf
matriz de 12.pdf
matriz de 12.pdf
matriz de 12.pdf
matriz de 12.pdf
matriz de 12.pdf
matriz de 12.pdf
matriz de 12.pdf
matriz de 12.pdf
matriz de 12.pdf

Más contenido relacionado

Similar a matriz de 12.pdf

Proyecto_para_Electromedicina.pdf
Proyecto_para_Electromedicina.pdfProyecto_para_Electromedicina.pdf
Proyecto_para_Electromedicina.pdfCristhian30295
 
Proyecto_para_Electromedicina.pdf
Proyecto_para_Electromedicina.pdfProyecto_para_Electromedicina.pdf
Proyecto_para_Electromedicina.pdfCristhian30295
 
Proyecto_para_Electromedicina.pdf
Proyecto_para_Electromedicina.pdfProyecto_para_Electromedicina.pdf
Proyecto_para_Electromedicina.pdfCristhian30295
 
Proyecto para electromedicina
Proyecto para electromedicinaProyecto para electromedicina
Proyecto para electromedicinacamilo vivancos
 
Electrónica industrial josé rodríguez
Electrónica industrial  josé rodríguezElectrónica industrial  josé rodríguez
Electrónica industrial josé rodríguezWashington Amores
 
Electronica industrial
Electronica industrialElectronica industrial
Electronica industrialalex Tipan
 
Control de temperatura con el plc s7 200 (4)
Control de temperatura con el plc s7 200 (4)Control de temperatura con el plc s7 200 (4)
Control de temperatura con el plc s7 200 (4)Moi Torres
 
Informe final de circuitos electronicos i xd
Informe final de circuitos electronicos i xdInforme final de circuitos electronicos i xd
Informe final de circuitos electronicos i xddiegoedwin258
 
2016-03-18_09-37-48133257.pdf
2016-03-18_09-37-48133257.pdf2016-03-18_09-37-48133257.pdf
2016-03-18_09-37-48133257.pdfOscarPardoPardo
 
Minicentrales hidroelectricas
Minicentrales hidroelectricasMinicentrales hidroelectricas
Minicentrales hidroelectricasjiron19
 
digital_38795.pdf
digital_38795.pdfdigital_38795.pdf
digital_38795.pdfYoniBaena
 
diseño e implentacion de diferentes sistemas de tierra
diseño e implentacion de diferentes sistemas de tierradiseño e implentacion de diferentes sistemas de tierra
diseño e implentacion de diferentes sistemas de tierraoscarcondori3
 
Juliana_EscobarRestrepo_2007.pdf
Juliana_EscobarRestrepo_2007.pdfJuliana_EscobarRestrepo_2007.pdf
Juliana_EscobarRestrepo_2007.pdfLinaRodrguezGamboa
 

Similar a matriz de 12.pdf (20)

Proyecto_para_Electromedicina.pdf
Proyecto_para_Electromedicina.pdfProyecto_para_Electromedicina.pdf
Proyecto_para_Electromedicina.pdf
 
Proyecto_para_Electromedicina.pdf
Proyecto_para_Electromedicina.pdfProyecto_para_Electromedicina.pdf
Proyecto_para_Electromedicina.pdf
 
Proyecto_para_Electromedicina.pdf
Proyecto_para_Electromedicina.pdfProyecto_para_Electromedicina.pdf
Proyecto_para_Electromedicina.pdf
 
PLC: Practicas de rslogix 5000
PLC: Practicas de rslogix 5000PLC: Practicas de rslogix 5000
PLC: Practicas de rslogix 5000
 
Proyecto para electromedicina
Proyecto para electromedicinaProyecto para electromedicina
Proyecto para electromedicina
 
8721
87218721
8721
 
LIBRO LANCHA SOLAR A ESCALA REAL
LIBRO LANCHA SOLAR A ESCALA REALLIBRO LANCHA SOLAR A ESCALA REAL
LIBRO LANCHA SOLAR A ESCALA REAL
 
Electrónica industrial josé rodríguez
Electrónica industrial  josé rodríguezElectrónica industrial  josé rodríguez
Electrónica industrial josé rodríguez
 
Electronica industrial
Electronica industrialElectronica industrial
Electronica industrial
 
Electronica industrial
Electronica industrialElectronica industrial
Electronica industrial
 
Proyectobe
ProyectobeProyectobe
Proyectobe
 
Luminotecnia carrion
Luminotecnia carrionLuminotecnia carrion
Luminotecnia carrion
 
Control de temperatura con el plc s7 200 (4)
Control de temperatura con el plc s7 200 (4)Control de temperatura con el plc s7 200 (4)
Control de temperatura con el plc s7 200 (4)
 
Informe final de circuitos electronicos i xd
Informe final de circuitos electronicos i xdInforme final de circuitos electronicos i xd
Informe final de circuitos electronicos i xd
 
2016-03-18_09-37-48133257.pdf
2016-03-18_09-37-48133257.pdf2016-03-18_09-37-48133257.pdf
2016-03-18_09-37-48133257.pdf
 
Minicentrales hidroelectricas
Minicentrales hidroelectricasMinicentrales hidroelectricas
Minicentrales hidroelectricas
 
digital_38795.pdf
digital_38795.pdfdigital_38795.pdf
digital_38795.pdf
 
diseño e implentacion de diferentes sistemas de tierra
diseño e implentacion de diferentes sistemas de tierradiseño e implentacion de diferentes sistemas de tierra
diseño e implentacion de diferentes sistemas de tierra
 
Juliana_EscobarRestrepo_2007.pdf
Juliana_EscobarRestrepo_2007.pdfJuliana_EscobarRestrepo_2007.pdf
Juliana_EscobarRestrepo_2007.pdf
 
Biodigestores$28gu$c3$a da$29
Biodigestores$28gu$c3$a da$29Biodigestores$28gu$c3$a da$29
Biodigestores$28gu$c3$a da$29
 

Más de SolitarioFredd

ANALISIS DE SISTEMAS DE POTENCIA-WWW.FREELIBROS.COM.pdf
ANALISIS DE SISTEMAS DE POTENCIA-WWW.FREELIBROS.COM.pdfANALISIS DE SISTEMAS DE POTENCIA-WWW.FREELIBROS.COM.pdf
ANALISIS DE SISTEMAS DE POTENCIA-WWW.FREELIBROS.COM.pdfSolitarioFredd
 
Stevenson William - Analisis De Sistemas Electricos De Potencia.pdf
Stevenson William - Analisis De Sistemas Electricos De Potencia.pdfStevenson William - Analisis De Sistemas Electricos De Potencia.pdf
Stevenson William - Analisis De Sistemas Electricos De Potencia.pdfSolitarioFredd
 
1_IntroduccionTransformadores.pdf
1_IntroduccionTransformadores.pdf1_IntroduccionTransformadores.pdf
1_IntroduccionTransformadores.pdfSolitarioFredd
 
COMANDOS EJEMPLOS DE MATLAB.pdf
COMANDOS EJEMPLOS DE MATLAB.pdfCOMANDOS EJEMPLOS DE MATLAB.pdf
COMANDOS EJEMPLOS DE MATLAB.pdfSolitarioFredd
 
diapositivas del cubano hoy.....pptx
diapositivas del cubano hoy.....pptxdiapositivas del cubano hoy.....pptx
diapositivas del cubano hoy.....pptxSolitarioFredd
 
codigo de seis nodos.pdf
codigo de seis nodos.pdfcodigo de seis nodos.pdf
codigo de seis nodos.pdfSolitarioFredd
 

Más de SolitarioFredd (12)

ANALISIS DE SISTEMAS DE POTENCIA-WWW.FREELIBROS.COM.pdf
ANALISIS DE SISTEMAS DE POTENCIA-WWW.FREELIBROS.COM.pdfANALISIS DE SISTEMAS DE POTENCIA-WWW.FREELIBROS.COM.pdf
ANALISIS DE SISTEMAS DE POTENCIA-WWW.FREELIBROS.COM.pdf
 
Stevenson William - Analisis De Sistemas Electricos De Potencia.pdf
Stevenson William - Analisis De Sistemas Electricos De Potencia.pdfStevenson William - Analisis De Sistemas Electricos De Potencia.pdf
Stevenson William - Analisis De Sistemas Electricos De Potencia.pdf
 
1_IntroduccionTransformadores.pdf
1_IntroduccionTransformadores.pdf1_IntroduccionTransformadores.pdf
1_IntroduccionTransformadores.pdf
 
malat.pdf
malat.pdfmalat.pdf
malat.pdf
 
pttransmision_mr.pdf
pttransmision_mr.pdfpttransmision_mr.pdf
pttransmision_mr.pdf
 
COMANDOS EJEMPLOS DE MATLAB.pdf
COMANDOS EJEMPLOS DE MATLAB.pdfCOMANDOS EJEMPLOS DE MATLAB.pdf
COMANDOS EJEMPLOS DE MATLAB.pdf
 
poyecto 2 matlab.docx
poyecto 2 matlab.docxpoyecto 2 matlab.docx
poyecto 2 matlab.docx
 
diapositivas del cubano hoy.....pptx
diapositivas del cubano hoy.....pptxdiapositivas del cubano hoy.....pptx
diapositivas del cubano hoy.....pptx
 
codigo de seis nodos.pdf
codigo de seis nodos.pdfcodigo de seis nodos.pdf
codigo de seis nodos.pdf
 
clear.docx
clear.docxclear.docx
clear.docx
 
3.- Crucigrama.pdf
3.- Crucigrama.pdf3.- Crucigrama.pdf
3.- Crucigrama.pdf
 
1.- Crucigrama.pdf
1.- Crucigrama.pdf1.- Crucigrama.pdf
1.- Crucigrama.pdf
 

Último

CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALKATHIAMILAGRITOSSANC
 
Residente de obra y sus funciones que realiza .pdf
Residente de obra y sus funciones que realiza  .pdfResidente de obra y sus funciones que realiza  .pdf
Residente de obra y sus funciones que realiza .pdfevin1703e
 
Tinciones simples en el laboratorio de microbiología
Tinciones simples en el laboratorio de microbiologíaTinciones simples en el laboratorio de microbiología
Tinciones simples en el laboratorio de microbiologíaAlexanderimanolLencr
 
aCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.pptaCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.pptCRISTOFERSERGIOCANAL
 
Reporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacaReporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacajeremiasnifla
 
Clase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVIL
Clase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVILClase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVIL
Clase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVILProblemSolved
 
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIASTEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIASfranzEmersonMAMANIOC
 
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERASDOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERASPersonalJesusGranPod
 
Principales aportes de la carrera de William Edwards Deming
Principales aportes de la carrera de William Edwards DemingPrincipales aportes de la carrera de William Edwards Deming
Principales aportes de la carrera de William Edwards DemingKevinCabrera96
 
desarrollodeproyectoss inge. industrial
desarrollodeproyectoss  inge. industrialdesarrollodeproyectoss  inge. industrial
desarrollodeproyectoss inge. industrialGibranDiaz7
 
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023RonaldoPaucarMontes
 
Procesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptx
Procesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptxProcesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptx
Procesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptxJuanPablo452634
 
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptxPPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptxSergioGJimenezMorean
 
Clase 2 Revoluciones Industriales y .pptx
Clase 2 Revoluciones Industriales y .pptxClase 2 Revoluciones Industriales y .pptx
Clase 2 Revoluciones Industriales y .pptxChristopherOlave2
 
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kVEl proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kVSebastianPaez47
 
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdfCristhianZetaNima
 
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.pptARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.pptMarianoSanchez70
 
Calavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdfCalavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdfyoseka196
 
Manual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfManual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfedsonzav8
 
Obras paralizadas en el sector construcción
Obras paralizadas en el sector construcciónObras paralizadas en el sector construcción
Obras paralizadas en el sector construcciónXimenaFallaLecca1
 

Último (20)

CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
 
Residente de obra y sus funciones que realiza .pdf
Residente de obra y sus funciones que realiza  .pdfResidente de obra y sus funciones que realiza  .pdf
Residente de obra y sus funciones que realiza .pdf
 
Tinciones simples en el laboratorio de microbiología
Tinciones simples en el laboratorio de microbiologíaTinciones simples en el laboratorio de microbiología
Tinciones simples en el laboratorio de microbiología
 
aCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.pptaCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.ppt
 
Reporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacaReporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpaca
 
Clase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVIL
Clase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVILClase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVIL
Clase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVIL
 
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIASTEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
 
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERASDOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
 
Principales aportes de la carrera de William Edwards Deming
Principales aportes de la carrera de William Edwards DemingPrincipales aportes de la carrera de William Edwards Deming
Principales aportes de la carrera de William Edwards Deming
 
desarrollodeproyectoss inge. industrial
desarrollodeproyectoss  inge. industrialdesarrollodeproyectoss  inge. industrial
desarrollodeproyectoss inge. industrial
 
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
 
Procesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptx
Procesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptxProcesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptx
Procesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptx
 
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptxPPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
 
Clase 2 Revoluciones Industriales y .pptx
Clase 2 Revoluciones Industriales y .pptxClase 2 Revoluciones Industriales y .pptx
Clase 2 Revoluciones Industriales y .pptx
 
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kVEl proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
 
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
 
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.pptARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
 
Calavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdfCalavera calculo de estructuras de cimentacion.pdf
Calavera calculo de estructuras de cimentacion.pdf
 
Manual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfManual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdf
 
Obras paralizadas en el sector construcción
Obras paralizadas en el sector construcciónObras paralizadas en el sector construcción
Obras paralizadas en el sector construcción
 

matriz de 12.pdf

  • 1. Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica IE – 0502 Proyecto Eléctrico Análisis de Estabilidad de Voltaje Utilizando el Método %umérico %o Convencional Predictor- Corrector. Por: Marcia Pamela Elizondo Segura Ciudad Universitaria Rodrigo Facio Diciembre del 2008
  • 2. i A%ÁLISIS DE ESTABILIDAD DE VOLTAJE UTILIZA%DO EL MÉTODO %UMÉRICO %O CO%VE%CIO%AL PREDICTOR-CORRECTOR Por: MARCIA PAMELA ELIZO%DO SEGURA Sometido a la Escuela de Ingeniería Eléctrica de la Facultad de Ingeniería de la Universidad de Costa Rica como requisito parcial para optar por el grado de: BACHILLER EN INGENIERÍA ELÉCTRICA Aprobado por el Tribunal: _________________________________ Ing. Leonardo Montealegre Lobo Profesor Guía _________________________________ _________________________________ Ing. Juan Carlos Quesada Lacayo Ing. Alonso Alvarado Alvarado Profesor lector Profesor lector
  • 3. ii DEDICATORIA A mis padres Marcial Elizondo Salas y Ligia Segura Ramos por todo lo que han hecho por mí, por sus consejos, por enseñarme a luchar por las cosas y ayudarme a obtener este logro que también es de ellos. A mi hermano Kenneth que han sido un gran ejemplo a seguir y un pilar de mi formación como persona y futura profesional. A mi hermana Karolina por apoyarme en las situaciones difíciles y por su compañía en todos los momentos de mi vida.
  • 4. iii RECO%OCIMIE%TOS A Dios un eterno agradecimiento por darme la luz y por poner en mi camino persona que me han ayudado y motivado a seguir adelante. Un profundo agradecimiento al Ing. Leonardo Montealegre Lobo, Ing. Alonso Alvarado Alvarado, Ing. Juan Carlos Quesada Lacayo y a la Ing. Anabelle Zaglul Fiatt, por confiarme este proyecto y por su compromiso y absoluta disposición de ayudarme en todo momento. Al Instituto Costarricense de Eléctricidad ICE por proporcionarnos las herramientas necesarias para la realización de este proyecto. A mi compañero Oscar Sánchez por su amistad, por brindarme su ayuda y apoyo en los momentos difíciles. A Julio Cortés por sus palabras de motivación en todo momento y por ayudarme a creer que somos capaces de realizar todo lo que nos propongamos. Y a mis amigos que de alguna u otra manera han llenado mi vida de buenos momentos y grandes enseñanzas.
  • 5. iv Í%DICE GE%ERAL Í%DICE DE FIGURAS ..................................................................................... vi Í%DICE DE TABLAS ......................................................................................vii %OME%CLATURA .......................................................................................... ix RESUME%........................................................................................................... x CAPÍTULO 1: Introducción ............................................................................. 1 1.1. Objetivos.....................................................................................................................3 1.1.1. Objetivo general .................................................................................................3 1.1.2. Objetivos específicos .........................................................................................3 1.2 Metodología................................................................................................................4 CAPÍTULO 2: Métodos Predictor – Corrector ............................................. 6 2.1 Método Numérico Predictor – Corrector.............................................................................7 2.2 Algoritmo Solución del Método Predictor – Corrector......................................................9 2.2.1 Paso Predictor:..................................................................................................14 2.2.2 Paso corrector:..................................................................................................15 2.3 Método Predictor – Corrector y su enfoque a la solución de flujos de potencia..16 CAPÍTULO 3: Estabilidad en Sistemas de Potencia................................... 21 3.1 Estabilidad y los Sistemas de Potencia ...................................................................21 3.2 Estabilidad Angular..................................................................................................22 3.3 Estabilidad de tensión...............................................................................................24 3.4 Metodología para determinar la estabilidad............................................................32 3.4.1 Curvas Q-V(Potencia Reactiva-Tensión).......................................................32 3.4.2 Curvas P-V(Potencia Activa-Tensión) ...........................................................33 CAPÍTULO 4: Análisis de resultados y comparación entre los métodos numéricos %ewton-Raphson y Predictor -Corrector .................................. 37 4.1 Descripción del caso base ........................................................................................37 4.2 Información del sistema...........................................................................................39 4.3 Algoritmo del programa realizado en Matlab para la solución del flujo de potencia utilizando el método Predictor - Corrector...............................................................40 4.3.1 Etapa Predictora. ..............................................................................................44 4.3.2 Etapa Correctora...............................................................................................45 4.4 Resultados obtenidos con el programa realizado con el Método Predictor- Corrector 47
  • 6. v CAPÍTULO 5: Conclusiones y Recomendaciones ....................................... 53 5.1 Conclusiones.............................................................................................................53 5.2 Recomendaciones.....................................................................................................55 BIBLIOGRAFÍA............................................................................................... 56 APÉ%DICES...................................................................................................... 60 Apéndice A. Datos de descripción del caso base ......................................... 61 Apéndice B. Resultados de la Simulación en PSS ....................................... 64 Apéndice C: Resultados de la simulación con el Programa Predictor – Corrector. ........................................................................................................... 65 A%EXOS A. Código Fuente ............................................................................ 76 Anexo B.Programa para obtener la matriz de admitancias....................... 99
  • 7. vi Í%DICE DE FIGURAS Figura 1. Sistema radial [14]....................................................................................................30 Figura 2. Voltaje en la carga, corriente y potencia como funciones de la carga [14]...........31 Figura 3. Característica R R Q V − [14].....................................................................................32 Figura 4. Curva P-V [14]..........................................................................................................34 Figura 5. Comportamiento del sistema de la figura 1 al presentarse diferentes factores de potencia [14]..............................................................................................................................35 Figura 6. Clasificación de estabilidad en sistemas de potencia..............................................36 Figura 7. Diagrama del sistema equivalente de prueba IEEE de 12 barras...........................37 Figura 8. Modelo π de la línea de transimisión.......................................................................39 Figura 9. Diagrama de flujos del método Predictor – Corrector............................................46 Figura 11. Datos Obtenidos de la Simulación en PSS............................................................47 Figura 12. Curva P-V con los datos obtenidos con el método Predictor – Corrector...........49 Figura 13. Número de Iteraciones en función del aumento de carga.....................................51 Figura 14. Comportamiento del Parámetro de Barrera para la simulación del 72.6 % del aumento de carga del sistema...................................................................................................52 Figura 15. Comportamiento del Parámetro de Barrera ante un aumento mayor al 75% de la carga del anillo ..........................................................................................................................52
  • 8. vii Í%DICE DE TABLAS Tabla A.1. Características de caso base por barra...................................................................61 Tabla A. 2. Características grupo generación.........................................................................61 Tabla A.3. Características líneas de transmisión.....................................................................62 Tabla A.4. Características transformadores de dos devanados..............................................62 Tabla A.5 Características carga................................................................................................63 Tabla A. 6. Características banco de condensadores..............................................................63 Tabla B.1 Resultados obtenidos de la simulación en PSS......................................................64 Tabla C.1 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 0%. Potencia=40MW................................................................................................................65 Tabla C.2 Datos obtenidos con:Parámetro de Barrera de 5, Aumento del anillo de carga 5%. Potencia=45MW........................................................................................................................66 Tabla C.3 Datos obtenidos con:Parámetro de Barrera de 5, Aumento del anillo de carga 10%. Potencia=50MW..............................................................................................................66 Tabla C.4 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 15%. Potencia=52MW..............................................................................................................67 Tabla C.5 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 20%. Potencia=55MW..............................................................................................................67 Tabla C.6 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 25%. Potencia=60MW..............................................................................................................68 Tabla C.7 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 30%. Potencia=65MW..............................................................................................................68 Tabla C.8 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 35%. Potencia=68MW..............................................................................................................69 Tabla C.9 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 40%. Potencia=70MW..............................................................................................................69 Tabla C.10 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 45%. Potencia=75MW..............................................................................................................70 Tabla C.11 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 50%. Potencia=75MW..............................................................................................................70 Tabla C.12 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 55%. Potencia=75MW..............................................................................................................71 Tabla C.13 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 60%. Potencia=75MW..............................................................................................................71 Tabla C.14 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 65%. Potencia=75MW..............................................................................................................72 Tabla C.15 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 70%. Potencia=80MW..............................................................................................................72
  • 9. viii Tabla C.15 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 72%. Potencia=80MW..............................................................................................................73 Tabla C.16 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 72.5%. Potencia=80MW...........................................................................................................73 Tabla C.16 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 72.6%. Potencia=80MW...........................................................................................................74 Tabla C.17 Datos obtenidos para la barra 14 en todas las iteraciones...................................75
  • 10. ix %OME%CLATURA UO-U1 Barra 1 DOS-U1 Barra 2 TRES-U1 Barra 3 CUATRO-U1 Barra 4 CICO-U1 Barra 5 SIES-U1 Barra 6 UEVE-U1 Barra 9 DIEZ-U1 Barra 10 OCE -U1 Barra 11 DOCE Barra 12 TRECE-U1 Barra 13 CATORCE-U1 Barra 14
  • 11. x RESUME% El presente trabajo es el resultado de una amplia investigación relacionada con los métodos numéricos y su aplicación al análisis de estabilidad de voltaje en los sistemas de potencia. El trabajo se dividió en tres etapas, en la primera de ella se realizó una investigación bibliográfica correspondiente al estudio de los métodos numéricos relacionados con la solución de flujos de potencia. La segunda etapa se enfocó a la aplicación del método numérico Predictor – Corrector en el estudio de flujos de potencia, se realizó un programa en Matlab y se procedió a comprobar la efectividad del mismo mediante la solución de un caso base de la IEEE para un sistema de potencia de 12 barras. Finalmente, la tercera etapa correspondió al análisis y comparación de resultados, donde se logró comprobar que es posible realizar un análisis de estabilidad de voltaje utilizando las curvas PV, a partir de la aplicación métodos numéricos no convencionales. Además, se pudo observar que mediante la implementación del método numérico Predictor-Corrector se logró obtener una respuesta satisfactoria con un menor número de iteraciones, permitiendo precisar el punto de colapso de tensión del sistema de potencia con mayor precisión.
  • 12. 1 CAPÍTULO 1: Introducción En la operación de sistemas eléctricos de potencia, se requiere constantemente estudios que permitan analizar su funcionamiento. Muchas de las herramientas que permiten estudiar su funcionamiento se basan en la solución de sistemas de potencia a partir de la obtención de un modelo de todos los elementos del sistema para posteriormente usar un método numérico iterativo para aproximar las variables eléctricas requeridas. El propósito de este trabajo es mostrar que existen aplicaciones de los métodos numéricos que facilitan el análisis de flujos de potencia, dando a su vez, un enfoque que facilite el análisis de procesos de optimización. El método Newton Raphson es muy empleado en este tipo de análisis; dado que, resuelve de forma más simple las ecuaciones diferenciales propuestas para un caso en estudio. Sin embargo, presenta la particularidad de que en determinadas condiciones la matriz Hessiana se vuelve singular limitando la posibilidad de obtener la solución del sistema. Es por esta razón que se incluyen los métodos numéricos de continuación; los cuales, son capaces de brindar esta solución fundamentándose en valores cercanos de puntos de análisis. Por ejemplo, desde el punto de estabilidad de voltaje, los métodos de continuidad permiten desarrollar un procedimiento para determinar el límite de estabilidad de tensión en estado estable de un sistema, evitando la singularidad en el punto crítico.
  • 13. 2 En este trabajo se realiza un enfoque especial en el método numérico Predictor- Corrector y se pretende mostrar una aplicación del mismo a los flujos de potencia. Como complemento se realiza un estudio de estabilidad de tensión que brinde información relacionada con la capacidad que tiene un sistema eléctrico para mantener niveles aceptables de la tensión en todas las barras que lo conforman, operando en condiciones normales o después de una contingencia o perturbación. La inestabilidad de tensión ocurre cuando una contingencia causa un abatimiento progresivo e incontrolable de la tensión. Lo anterior se explica con mayor detalle a lo largo del presente trabajo.
  • 14. 3 1.1.Objetivos 1.1.1. Objetivo general Estudiar las bondades del método numérico no convencional Predictor – Corrector en el cálculo de flujos de potencia y en el análisis de estabilidad de voltaje. 1.1.2. Objetivos específicos Estudiar los conceptos generales sobre Estabilidad de Voltaje en Sistemas de Potencia. Estudiar el algoritmo de solución de flujos de potencia basado en el método numérico no convencional Predictor – Corrector. Evaluar las capacidades del método numérico no convencional Predictor – Corrector en función del método numérico Newton – Raphson. Evaluar la rapidez de convergencia y margen de estabilidad de voltaje mediante la elaboración de curvas PV para un caso específico de simulación entre ambos métodos.
  • 15. 4 1.2 Metodología Para lograr el cumplimiento de los objetivos, este trabajo se divide en cuatro etapas: 1 Conformación del Conocimiento. Se realizó un estudio bibliográfico que se dividió en dos partes: primeramente se estudió la teoría sobre el método numérico Predictor – Corrector y se buscaron casos en que haya sido aplicado a la solución de flujos de potencia para estudiar el algoritmo de solución del flujo de potencia que plantea dicho método y posteriormente sobre la teoría concerniente a la estabilidad de voltaje. El objetivo de esta etapa fue relacionar ambos temas en función de la determinación del punto de colapso de voltaje para un sistema de potencia determinado. 2 Desarrollo de simulaciones. Una vez estudiada la teoría de estabilidad de voltaje y los algoritmos de solución del flujo de potencia para el método numérico Predictor – Corrector, se desarrolló un ejercicio de simulación en Matlab® de un sistema de potencia, que topológicamente y en cuanto a despacho de generación y cantidad de demanda, representa una condición extrema para simular en términos de convergencia y estabilidad de voltaje. Una vez que se creó el caso base del sistema de potencia a simular, se obtuvo la solución del flujo de carga por el método Newton – Raphson y por el método numérico no convencional Predictor - Corrector. Posteriormente, se realizó un análisis comparativo entre ambos métodos mediante la elaboración de las curvas PV.
  • 16. 5 3 Análisis de Resultados. Se estudiaron a fondo los resultados de las simulaciones propuestas con el objetivo de comparar el desempeño del método numérico estudiado con respecto al método Newton – Raphson, de forma tal que permitiera determinar sus ventajas y desventajas en relación al método tradicional. Se valora realizar nuevas simulaciones para validar resultados o analizar más a fondo algunos resultados importantes. 4 Conclusiones y Recomendaciones. Una vez hecho el análisis de resultados y luego de haber realizado todas las simulaciones necesarias para llegar a resultados congruentes, se desarrolló la etapa de conclusiones y recomendaciones respectivas. Las conclusiones responden a cada uno de los objetivos específicos que se plantearon al inicio del proyecto.
  • 17. 6 CAPÍTULO 2: Métodos Predictor – Corrector En el estudio de un sistema de potencia, es necesaria la implementación de sistemas matemáticos de ecuaciones diferenciales no lineales; que por lo general, se encuentran ligadas a restricciones algebraicas. Estas ecuaciones pueden ser resueltas usando métodos numéricos directos exclusivos para ecuaciones no lineales, como el método Newton-Raphson. No obstante, ante ciertas condiciones de operación de un sistema, la utilización de métodos como el Newton- Raphson presenta limitaciones a la hora de brindar una solución. Es por esta razón que se incluyen los métodos de continuación, los cuales son métodos numéricos que tienen la capacidad de encontrar el punto de colapso de tensión además de la información necesaria del sistema como magnitudes y ángulos de las tensiones en las diferentes barras, partiendo de un punto de operación estable o de equilibrio. Conforme se aproxima el punto de colapso, la solución numérica de las ecuaciones de un sistema se torna compleja. Es aquí donde los métodos de continuación tienen la facilidad de desarrollarse sin problema alguno ante esta dificultad, utilizando una estrategia numérica denominada Predictor-Corrector.
  • 18. 7 Los métodos numéricos Predictor-Corrector se componen de dos fases en el proceso de solución de los problemas. Para la primera parte es necesaria la utilización de un método numérico que cumpla la función de predecir una posible solución y en la segunda parte es posible emplear el mismo método que en la parte predictora o uno totalmente diferente, con el objetivo de que este tome la solución de la primera parte y la corrija, brindando una respuesta más exacta. 2.1 Método %umérico Predictor – Corrector Los métodos numéricos son algoritmos de solución ante posibles problemas dados. Se fundamentan en los algoritmos de Series de Taylor y los Métodos de Runge Kutta. Dentro de los métodos numéricos se encuentran los métodos multipasos. Los métodos multipasos tienen la particularidad que para ser utilizados es necesaria la implementación de dos métodos de un solo paso. Esto implica que debe ser desarrollado realizando un paso y con los resultados obtenidos en el primero se implementa el segundo paso con el segundo método seleccionado.. El algoritmo de Taylor de orden k y los métodos de Runge Kutta requieren información sobre la solución en un sólo punto x = xn, a partir del cual los métodos proceden a obtener una solución en el punto siguiente x = xn+1.
  • 19. 8 Aunque estos métodos generalmente utilizan información de la evaluación de la función entre los puntos xn y xn+1, no retienen esta información para usarla directamente en aproximaciones futuras. Toda la información utilizada por estos métodos se obtiene del intervalo sobre el cual la solución se está aproximando. Un método multipaso para resolver el problema de valor inicial y’ =f(t,y), a ≤ t ≤ b, y(a) = α, (1) es uno cuya ecuación en diferencias para encontrar la aproximación wn+1 en el punto xn+1 puede representarse con la siguiente ecuación, donde m es un entero mayor que 1: wn+1=am-1 wn + am-2 wn-1+…+a0 w n+1-m + h[bm f(tn+1, wn+1) + bm-1f(tn,wn) +…+b0f(tn+1-m, wn+1-m) ] (2) para n = m-a, m,…, -1, donde los valores iniciales w0=α, w1=α1, w2=α2 , …, wm-1=αm-1 (3) están especificados y
  • 20. 9 ( ) a b h − = (3) Cuando bm=0, el método se llama explícito o abierto, puesto que la ecuación (2) proporciona wn+1 explícitamente en términos de valores previamente determinados. Cuando bm≠0, el método se llama implícito o cerrado, puesto que wn+1 se presenta en ambos lados de la ecuación (2) y se determina sólo de manera implícita. En la práctica, no se emplean los métodos multipaso implícitos como se describió anteriormente. Sólo se usan para mejorar aproximaciones obtenidas mediante los métodos explícitos. Un método numérico que combina una técnica explícita con una implícita se conoce como método Predictor-Corrector. Este método explícito predice una aproximación y el método implícito corrige tal predicción. Éste método se detalla de una forma más amplia en las siguientes secciones al igual que el método Newton Raphson. 2.2 Algoritmo Solución del Método Predictor – Corrector El algoritmo Predictor-Corrector se conforma de una serie de ecuaciones e inecuaciones que corresponden a la función objetivo, las restricciones de igualdad, las restricciones de
  • 21. 10 desigualdad, el vector de variables x , los límites superior e inferior de las variables nombradas en las restricciones de desigualdad. Por función objetivo se debe entender la función que se desea resolver o el objetivo del proyecto. Es decir, una función objetivo puede formularse como la minimización de un parámetro como las pérdidas de un sistema, el costo de operación o la maximización de algún parámetro. La función objetivo en este trabajo se denominó f(x) y está dada por la ecuación (4). ) ( min x f (4) Por otra parte se tienen las condiciones ) (x g y ) (x h mostradas en las ecuaciones (5) y (6) respectivamente. Éstas corresponden a las restricciones del sistema y van a marcar los límites por medio de los cuales el método Predictor –Corrector puede encontrar la solución. 0 ) ( = x g (5) 0 ) ( ≥ − s x h (6) En las ecuaciones (5) y (6) se muestra que las ecuaciones e inecuaciones son dependientes del parámetro x . Este parámetro corresponde a un vector x que está conformado por las variables de estado (magnitudes, ángulo o velocidades de las máquinas del sistema) que generalmente se van a definir por las variables desconocidas del sistema.
  • 22. 11 Además en la ecuación (6) se incluye un nuevo parámetro s . Se le denomina variable de holgura y su finalidad es transformar las restricciones de desigualdad en restricciones de igualdad; dado que 0 ≥ s se introducen las condiciones de no negatividad en la función objetivo como términos de barrera logarítmica. Al igual que el parámetro x , s es un vector. Cuando se expresan términos de no negatividad y términos de barrera logarítmica, lo que se pretende es brindar una nueva función objetivo, como se muestra en la ecuación (7). ∑ = − q i i s x f 1 ln ) ( min µ (7) La ecuación (7) se encuentra sujeta a las ecuaciones (5), (6) y el parámetro de barrera µ . Su finalidad es limitar la función para aligerar el proceso. Sin embargo, conforme decrece, se presentan problemas en el proceso iterativo. A medida que el parámetro de barrera tiende a cero, el óptimo de la función de barrera logarítmica tiende al óptimo de la función original. Para poder encontrar la solución deseada y no tener el problema que se presenta con el parámetro de barrera se plantea la función Lagrangeana de la ecuación (8): ] ) ( [ ) ( ln ) ( ) ( 1 s x h x g s x f y L T T q i i − − − − = ∑ = π λ µ µ (8)
  • 23. 12 En la ecuación (8) se incluyen los términos multiplicadores de Lagrange λ y el término π que son denominados las variables duales. La ecuación que caracteriza al Lagrangeano está en función de y , está conformada por s ,π ,λ , x y corresponde al vector T x s y ] , , , [ λ π = . Por otro lado, las condiciones obligatorias de optimización de primer orden de Karush- Kuhn-Tucker (KKT) se obtuvieron igualando el gradiente de la función Lagrangeana a cero, por esta razón todas las primeras derivadas con respecto a todas las variables se hacen cero. Una vez definidos todos los vectores, se deriva el Lagrangeano con respecto al vector y , dando como resultado la siguiente matriz: 0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( =               − − ∇ − + − + − =               ∇ ∇ ∇ ∇ π λ π µ µ µ λ µ π µ T g T g x s x J x J x f x g s x h S e y L y L y L y L (9) donde S es la matriz diagonal de los valores del vector s , T e ] 1 ,....., 1 [ = , ) (x f ∇ muestra el gradiente de la función objetivo, T g x J ) ( corresponde al Hessiano transpuesto de la función g(x) y T h x J ) ( se interpreta como el Hessiano transpuesto de la función h(x).
  • 24. 13 Métodos como el Predictor – Corrector son métodos de alto orden, los cuales tienen la capacidad de predecir la dirección de búsqueda, que es corregida en procedimientos posteriores para obtener de una forma más eficiente y rápida la solución requerida. El método Predictor-Corrector es una modificación del Método Primal – Dual, mejorando el cálculo de las direcciones de búsqueda con el objetivo de acelerar la convergencia del sistema. Tiene la particularidad de solucionar dos sistemas lineales en cada iteración. Éste método introduce un nuevo punto de cálculo en cada iteración, y va a estar definido por y y y k k ∆ + = +1 . A partir de este valor y la matriz de la ecuación (9), se establece lo siguiente:               + + ∇ − ∆ + − ∆ + ∆ ∆ − − =             ∆ ∆ ∆ ∆ π λ π π µ λ π T g T g x J x J x f x g x g s x h x h S S e x s H ) ( ) ( ) ( ) ( ) ( ) ( ) ( (10) En el sistema de la ecuación (10) se incluyen los términos ∆ que son los términos de orden superior. Para obtener la solución de (10), es necesario el desarrollo del paso Predictor y el paso Corrector.
  • 25. 14 2.2.1 Paso Predictor: Su principal objetivo es obtener los términos de alto orden y realizar una estimación del parámetro de barrera aunque en esta parte sólo se tienen en cuenta los términos lineales. Para obtener los términos se resuelve el sistema de la ecuación (8)               + + ∇ − − + − =               ∆ ∆ ∆ ∆ π λ π λ π T g T g af af af af x J x J x f x g s x h S x s H ) ( ) ( ) ( ) ( ) ( (11) Por su parte, el gap de complementariedad del paso predictor está dado por: T af af T af af af s s ) ( ) ( π α π α ρ ∆ + ∆ + = (12) donde ( ) 1 , 0 =∈ af α y representa la longitud del paso de iteración. Para finalizar la etapa predictora se estima el parámetro de barrera que se emplea en la etapa correctora, como se muestra en la ecuación (13).
  • 26. 15 q af af af ρ ρ ρ µ                   = 2 . 0 , min 2 (13) donde π ρ T s = y es aquí donde se da la actualización de todas las variables que se utilizan en la etapa correctora. 2.2.2 Paso corrector: Con los resultados del paso predictor se puede calcular los términos no lineales. ( ) ( ) ( ) ( ) ( ) ( ) ( )               + + ∇ − ∆ + − ∆ − ∆ ∆ − − =             ∆ ∆ ∆ ∆ Η π λ α α π π µ λ π T h T g x J x J x f x g x g s x h x h S S e x s (14) Se incluye un nuevo valor α, denominado valor de paso. Corresponde a un escalar y debe estar comprendido entre 0 y 1. El propósito de su incorporación es establecer intervalos de cálculo más pequeños con el objetivo de obtener de manera más aproximada el resultado requerido.
  • 27. 16 2.3 Método Predictor – Corrector y su enfoque a la solución de flujos de potencia Cuando se estudian flujos de potencia es de suma importancia conocer las limitaciones del sistema e incluirlas como pieza primordial en el análisis. Generalmente cuando se realizan estudios de flujo de potencia óptimo se busca maximizar o minimizar la función objetivo representada en la ecuación (7) sujeta a restricciones de igualdad y desigualdad expuestas en las ecuaciones (5) y (6). Para este caso la función objetivo corresponde a . Ésta función tiene como propósito principal establecer el menor error posible en el cálculo de potencia activa y potencia reactiva, es por esta razón que se toma como un escalar que comprende la sumatoria de los valores de ∆P y ∆Q, como se presenta a continuación: calc i prog i P P P , , − = ∆ (15) calc i prog i Q Q Q , , − = ∆ (16) Así, se define entonces: ) ( ) ( ) ( 1 , , 1 , , ∑ ∑ = = − + − = i calc i prog i i calc i prog i Q Q P P x f (17)
  • 28. 17 Se tiene que para las restricciones de igualdad y desigualdad, estas van a estar dadas por el error presente tanto en la potencia activa como en la potencia reactiva y los valores límite de la potencia reactiva como se muestra en las ecuaciones (18) y (19):                 ∆ ∆ = ... ... ... ) ( 1 1 Q P x g (18) max min gi gi gi Q Q Q ≤ ≤ , m i , , 1 K = (19) donde min gi Q y max gi Q son los límites mínimo y máximo respectivamente, de potencia reactiva del generador i del sistema. Por otra parte, se tiene que las ecuaciones (18) y (19), se ven restringidas o ligadas a dos valores y para el caso de la potencia activa y y para el caso de la potencia reactiva. Los valores de y corresponden a los valores iniciales de potencia activa y reactiva en cada barra. Por otra parte, y son las restricciones de potencia del sistema, estos valores se calculan en cada iteración y se denomina . El vector corresponde a un vector columna; donde cada uno de sus términos va a estar definido por las diferencias de potencia activa y potencia reactiva en cada barra.
  • 29. 18 Para obtener los valores de y para el caso de la potencia activa y y para el caso de la potencia reactiva, se crean las siguientes ecuaciones: ( ) i n in n n i in calc i V V Y P δ δ θ − + = ∑ = cos 1 , (20) ( ) i n in n n i in calc i sen V V Y Q δ δ θ − + = ∑ =1 , (21) Las ecuaciones anteriores se componen de términos provenientes de la matriz de admitancias, los valores de las tensiones en las barras y sus respectivos ángulos. Es importante recordar que la matriz de admitancias se forma a partir de: ij sen Yij j ij Yij Yij θ θ + = cos (22) i Vi j i Vi Vi δ δ cos cos + = (23) n n n n n V j V V δ δ cos cos + = (24) Donde: • es el valor de la admitancia presente entre la barra i y la barra j. • es el ángulo de la admitancia. • y corresponden a las tensiones en las barras de estudio.
  • 30. 19 Por otra parte se crea el Lagrangeano de la ecuación (8), a partir de este se encuentran los valores de los gradientes del mismo que se incluyen en la ecuación (9) como se muestra a continuación. La ecuación de la matriz Hessiana final se representa por: [ ]               ∂ − ∂ − − − − − Π = T h T g T g T h g h k x J x J x f H x J x J x J x J I S y H ) ( ) ( ) ( ) ( ) ( 0 ) ( 0 0 0 ) ( 0 0 0 0 ) ( (23) donde         ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = ∂ λ λ λ λ n T g T g T g T g g x x J x x J x x J x x J x J ) ( ) ( ) ( ) ( ) ( 3 2 1 L (24)       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = ∂ π π π π n T h T h T h T h g x x J x x J x x J x x J x J ) ( ) ( ) ( ) ( ) ( 3 2 1 L (25) Con estos valores se inicia el paso corrector, al igual que ocurre en el caso de los métodos de un sólo paso es posible encontrar problemas si el paso α que se utiliza es demasiado grande para estudiar zonas con irregularidades y demasiado pequeño para estudiar zonas en
  • 31. 20 las que la función objetivo es muy simple. En estos casos resulta interesante cambiar el paso de integración, dado que este valor α permite aproximar de forma más certera la solución deseada. Sin embargo, esta tarea, que resultaba sencilla en el caso de los métodos de un sólo paso, resulta ahora más complicada por el hecho de tener que recalcular los pasos iniciales con un método de un sólo paso. En el caso de la estimación del error, esta puede hacerse utilizando un predictor corrector, el cual como ya se dijo anteriormente dispone de dos aproximaciones del mismo orden para la solución. Siguiendo con el análisis, se desarrolla el sistema de la ecuación (23), esta se incluye en la ecuación (21) y (22). Del sistema de la ecuación (21) se obtiene un nuevo vector que se evalúa en la función y a su vez se incluye en la ecuación (22). En este punto se obtienen los resultados correspondientes a los valores que se adicionan a las condiciones iniciales y en caso de presentarse que los valores absolutos de los errores son menores a la tolerancia, se llega a una solución deseada, es decir, se despliegan los resultados de convergencia del sistema.
  • 32. 21 CAPÍTULO 3: Estabilidad en Sistemas de Potencia El propósito fundamental de establecer un sistema de potencia es poder abastecer a los diversos clientes el servicio de energía eléctrica. Por lo general se busca que las compañías encargadas logren brindar un servicio de calidad.. Sin embargo, en algunas circunstancias el ofrecer un servicio contínuo a los clientes se vuelve una tarea difícil dado que los sistemas de potencia se ven expuestos a sufrir fallas que generalmente se manifiestan de forma inesperada. 3.1 Estabilidad y los Sistemas de Potencia La estabilidad es una característica de los sistemas dinámicos. Los sistemas eléctricos representan grandes sistemas de este tipo. Cuando los sistemas dinámicos son excitados por un disturbio externo, su estabilidad se ve amenazada por un margen de tiempo que puede variar en su duración. La estabilidad entonces, puede definirse en términos generales como la propiedad de un sistema de potencia que le permite permanecer en un estado de operación de equilibrio bajo
  • 33. 22 condiciones normales de operación y de retomar un estado aceptable de equilibrio, luego de haber sido sujeto a una perturbación. Al realizar estudios de estabilidad en un sistema de potencia, el principal objetivo es evaluar el comportamiento del sistema cuando se presentan perturbaciones. El tiempo de duración de la perturbación puede ser corto o de largo. Perturbaciones pequeñas de la forma de cambios en la carga o demanda ocurren constantemente, haciendo que el sistema se ajuste continuamente a estas condiciones. Por lo tanto, el análisis de estabilidad es el eje central de la teoría de estudio de los sistemas dinámicos. La estabilidad de los sistemas dinámicos se puede determinar mediante la solución de ecuaciones que describen su comportamiento o mediante la aplicación de algún método directo. 3.2 Estabilidad Angular La estabilidad angular (en el rotor de las unidades de generación) es la capacidad de las máquinas síncronas interconectadas de mantenerse en sincronismo. Aquí, el problema de estabilidad envuelve el estudio de las oscilaciones electromecánicas inherentes en un sistema de potencia. Un factor fundamental en este problema es la forma como la potencia de salida de las máquinas síncronas varía conforme el ángulo del rotor oscila.
  • 34. 23 Las variables a monitorear son los ángulos (relativos a una máquina de referencia) de los rotores de las máquinas que oscilan luego de una perturbación (si el sistema es estable las máquinas interconectadas permanecen en sincronismo). Así, dicho ángulo es función del balance entre: - Potencia mecánica aplicada al rotor (máquina primaria) -Potencia eléctrica transferida a la red. Bajo condiciones de estado estable, existe un equilibrio entre el torque mecánico de entrada y el torque de salida eléctrico de cada máquina y la velocidad permanece constante. Si el sistema es perturbado, dicho equilibrio también se trastorna, resultando en aceleraciones o desaceleraciones de las máquinas de acuerdo con las leyes de movimiento y rotación de los cuerpos. Cuando una máquina síncrona pierde sincronismo con el resto del sistema, su rotor se mueve a una velocidad mayor o menor que la requerida para generar voltajes a la frecuencia del sistema. El deslizamiento entre la velocidad del estator (correspondiente a la frecuencia del sistema) y la velocidad del rotor, provoca largas fluctuaciones en la potencia de salida de la máquina, en la corriente y el voltaje, causando que el sistema de protecciones aísle la máquina inestable del resto del sistema.
  • 35. 24 3.3 Estabilidad de tensión El análisis de estabilidad de tensión es un tema de los más importantes en el estudio de sistemas de potencia; dado que, mediante estos se permite conocer y establecer la adecuada operación del sistema; ya que, un sistema de potencia opera en un ambiente de cambio constante debido a la diversidad en el comportamiento de la carga. La estabilidad de voltaje es la capacidad de un sistema de potencia de mantener voltajes estables en sus barras bajo condiciones normales de operación y luego de haber sido sujeto a una perturbación. Un sistema entra en inestabilidad de voltaje cuando una perturbación, incrementa la demanda del sistema o cambia las condiciones del sistema, causando una progresiva e incontrolable caída en el voltaje. El factor principal que causa inestabilidad es la incapacidad del sistema de potencia de generar la cantidad de potencia reactiva necesaria para que dicha caída en los voltajes no ocurra. Entre los factores más importantes que influyen en la estabilidad de un sistema se pueden citar los siguientes: ♦ Variaciones de carga.
  • 36. 25 ♦ Salida de generadores. ♦ Salida de líneas. Cuando se presenta alguna de las condiciones citadas, las variables más afectadas son la frecuencia, el voltaje, y el ángulo del rotor de los generadores. Esto lleva a que los sistemas se aproximen o alcancen los límites de operación y por consiguiente se presenten inestabilidades que pueden terminar en colapsos del sistema. Para una mayor comprensión del contenido de este capítulo se establecen a continuación diversas definiciones o conceptos fundamentales relacionados con la estabilidad de tensión. La IEEE establece la siguiente definición para estabilidad de tensión: “Estabilidad de tensión es la habilidad de un sistema de potencia en mantener la tensión de manera que cuando la admitancia de carga se incremente, la potencia de carga aumente, y así ambos, potencia y tensión sean controlables” [16] Por otra parte se podría citar la definición que establece Kundur para la estabilidad de tensión “Habilidad de un sistema de potencia para mantener tensiones aceptables en todas sus barras bajo condiciones normales de operación y después de ser sometido a una perturbación” [16]
  • 37. 26 De la misma manera la IEEE establece para colapso de tensión lo siguiente: “El colapso de tensión es el proceso por el cual la inestabilidad de tensión conduce a la pérdida de tensión en una parte significante del sistema de potencia”[16] El estudio de la estabilidad de tensión en los últimos años se ha dedicado a modelar sistemas de potencia con la finalidad de obtener el punto de colapso. Los análisis de estabilidad de tensión tienen como finalidad garantizar que se cumplan ciertos criterios establecidos en cuanto a seguridad operativa; esto es tanto en estado de operación normal o durante algún evento o contingencia. Un criterio de estabilidad de tensión es que, para una condición de operación dada y para cada barra en el sistema, la magnitud de la tensión de una barra incremente en relación con el incremento en la inyección de potencia reactiva hacía dicha barra. Un sistema se vuelve inestable en términos de voltaje si, para al menos una barra en el sistema, la magnitud del voltaje en la barra cae mientras la inyección de potencia reactiva hacia esa barra aumenta. Caídas progresivas en el voltaje de las barras pueden estar asociadas con problemas en los ángulos de los rotores, sin embargo el tipo de caída mantenida del voltaje que está asociada con la inestabilidad de voltaje ocurre cuando la estabilidad angular no juega ningún papel en el fenómeno. La inestabilidad de voltaje es esencialmente un fenómeno local, sin embargo, sus consecuencias pueden tener un impacto global dentro del sistema de potencia.
  • 38. 27 El colapso de voltaje es más complejo que la inestabilidad de voltaje y es usualmente el resultado una serie de eventos consecuentes que acompañan la inestabilidad de voltaje provocando un perfil de bajo voltaje en una parte significativa del sistema de potencia. Las técnicas de solución que se aplican para establecer los análisis de estabilidad se basan en la obtención de diferentes curvas denominadas curvas P-Q y curvas P-V. Por lo general, estas curvas se realizan cuando el sistema presenta perturbaciones; sin embargo, estas curvas proporcionan información adicional que será descrita más adelante. Cuando se opera un sistema de potencia es de suma importancia establecer un control en la tensión, dado que, la tensión presenta una relación directa con la disponibilidad y localización de las fuentes encargadas de suministrar las reservas de potencia activa y reactiva Teóricamente, “entre mayor sea la reserva de potencia reactiva del generador, se podrá realizar con mayor eficiencia el control de tensión. Sin embargo, la distancia eléctrica entre el generador y la carga impide que el control de tensión sea efectivo a partir de cierta magnitud de la potencia que se transmite” [15] El término reserva de potencia reactiva corresponde a “la capacidad remanente en los equipos que realizan la función de control dinámico de tensión del sistema eléctrico” [16]; como ya se indicó, estos equipos corresponden a generadores y condensadores síncronos.
  • 39. 28 Por otro lado, para realizar el control de tensión se utilizan elementos, estos se dividen en: pasivos y dinámicos. Los elementos dinámicos corresponden a máquinas sincrónicas ya sean generadores o condensadores. Estos elementos tienen la capacidad de controlar tensión en las barras por medio de un regulador automático de tensión (AVR). Por su parte, los elementos pasivos son los que continuamente realizan control de la tensión del nodo donde están conectados, es decir, estos elementos corresponden a bancos de condensadores y reactores. Cuando se conecta un banco de condensadores en una barra, se incrementa el margen de estabilidad determinado ya que el punto de colapso se obtiene para una mayor transferencia de potencia. Esto se debe a que los bancos de condensadores se comportan como una fuente de potencia reactiva. Por otra parte, los reactores cumplen una función inversa a la del banco de capacitores, debido a que éstos son implementados para absorber el exceso de potencia reactiva en la línea de transmisión. Generalmente esos excesos se presentan en horas donde la demanda es menor. Cuando se incluyen transformadores con cambiadores de taps en un análisis de tensión, éstos pueden alterar la estabilidad; debido a que, extraen potencia reactiva de la red de transmisión de alta tensión y por lo tanto reducen el margen de potencia reactiva. Si se
  • 40. 29 encuentran instalados transformadores con cambiadores de taps automáticos (automatic underload tap-changing, ULTC), la acción del cambiador de taps trata de llegar al voltaje de carga establecido, lo cual tiene el efecto de reducir la impedancia. Lo anterior conduce a una reducción en la magnitud de la tensión. Este hecho es una simple y pura forma de inestabilidad de voltaje. Por su parte, los generadores síncronos, tienen la facilidad de controlar la tensión de su nodo, como se mencionó anteriormente, por la intervención de un regulador automática de voltaje (AVR), que se encarga de regular la excitación de campo de la máquina. Estos generadores tiene la capacidad de absorber o de entregar potencia reactiva, según sean las condiciones de operación del mismo y las de la línea. Otro elemento que tiene importancia en el análisis de estabilidad es el condensador síncrono. Su función principal es la de regular tensión y potencia reactiva. Generalmente se instalan para mantener la tensión del sistema de transmisión dentro de los límites previamente establecidos. Una vez que ya logra establecer el sistema, su finalidad es la de aumentar o disminuir la corriente de excitación de campo de la máquina; es decir, se encarga de determinar si se está consumiendo o entregando potencia reactiva al sistema. Todas estas máquinas adquieren gran importancia en los estudios de estabilidad de tensión; dado que, según sea su operación así se va a comportar el sistema. Principalmente se busca mantener un equilibrio en el sistema.
  • 41. 30 A manera de ejemplo se va a considerar el siguiente sistema: Figura 1. Sistema radial [14] Considere una fuente de voltaje constante ( S E ) supliendo una carga ( LD Z ) a través de una línea de transmisión con una impedancia en serie ( L Z ), como se observa en la figura 1. Como resultado de un aumento en la demanda del sistema al decrecer LD Z , R P aumenta inmediatamente de forma rápida y luego lentamente antes de alcanzar su máximo valor de potencia activa que puede ser transmitido a través de la impedancia desde la fuente de voltaje constante. En la figura 2, se observan las curvas correspondientes al comportamiento descrito anteriormente, estas se realizaron en función de la carga del sistema de la figura 1.
  • 42. 31 Figura 2. Voltaje en la carga, corriente y potencia como funciones de la carga [14] La potencia transmitida es máxima cuando la caída de voltaje en la línea es igual en magnitud a R V , esto es cuando 1 / = LD L Z Z . Conforme LD Z decrece gradualmente aumenta I y decae R V . La condición de operación crítica correspondiente a la máxima potencia representa el límite para una operación satisfactoria. Para mayores valores de demanda, el control de potencia variando la carga sería inestable, esto es, un decaimiento en la impedancia de la carga reduce la potencia. El decaimiento progresivo en el voltaje y eventual inestabilidad del sistema dependen de las características de la carga. Con una característica de carga de impedancia constante, el sistema se estabiliza a niveles de potencia y voltaje menores que los deseados.
  • 43. 32 Por otro lado, con una característica de carga de potencia constante, el sistema se vuelve inestable hacia un colapso del voltaje de barra de carga. Con otras características, el voltaje es determinado por la composición de las características tanto de la línea de transmisión como de la carga. 3.4 Metodología para determinar la estabilidad 3.4.1 Curvas Q-V(Potencia Reactiva-Tensión) Estas curvas se utilizan para conocer principalmente la reserva de potencia reactiva en alguna barra específica del sistema y el nivel de tensión aproximado en que ocurriría el colapso de tensión. Figura 3. Característica R R Q V − [14]
  • 44. 33 La figura 3 muestra una familia de curvas aplicables al sistema de potencia de la figura 1, donde cada una de ellas representa la relación entre R V y R Q para un valor fijo de R P . El sistema es estable en la región donde la derivada R R dV dQ / es positiva. El límite de estabilidad de voltaje (punto de operación crítico) se alcanza cuando la derivada es cero. Así, las partes de la derecha de las curvas V-Q representan una operación estable y luego del codo de las curvas, la parte de la izquierda representa una operación inestable del sistema. Sin embargo, una operación estable en la región donde la derivada R R dV dQ / es negativa puede lograrse sólo con una compensación de potencia reactiva regulada, teniendo suficiente margen de control y una alta ganancia Q/V con polaridad opuesta a la normal[14]. 3.4.2 Curvas P-V(Potencia Activa-Tensión) Este método se fundamenta en la variación progresiva de la carga, es decir, de la potencia activa y reactiva en alguna de las barras del sistema a la cual ya se le habían establecido valores iniciales para observar de esta forma el cambio o comportamiento de la tensión.
  • 45. 34 Figura 4. Curva P-V [14] Se utilizan principalmente para poder conocer la magnitud máxima de la potencia activa que se puede transmitir sin que el sistema llegue al colapso. Por otro lado, el factor de potencia tiene un efecto significativo en la característica P-V del sistema. Esto es de esperarse ya que la caída de voltaje en la línea de transmisión es una función tanto de la transferencia de potencia activa como de potencia reactiva. De hecho, la estabilidad de voltaje depende de la relación entre la potencia activa P y la potencia reactiva Q, en función del voltaje V.
  • 46. 35 Figura 5. Comportamiento del sistema de la figura 1 al presentarse diferentes factores de potencia [14] La inestabilidad de voltaje no siempre ocurre en su forma más pura. Con frecuencia, la inestabilidad angular y la inestabilidad de voltaje se presentan de forma complementaria. Es decir, en algunas circunstancias, una forma de inestabilidad puede conducir a la otra por lo que la distinción entre estos dos fenómenos puede estar en algunos casos no muy clara. Sin embargo, una distinción entre la estabilidad angular y la estabilidad de voltaje es importante para entender las causas subyacentes del problema para desarrollar adecuadas acciones de diseño y operación del sistema.
  • 47. 36 En el siguiente diagrama se observa un resumen de la clasificación de la estabilidad de los sistemas de potencia y el período de duración aproximado. Figura 6. Clasificación de estabilidad en sistemas de potencia Con la implementación del método Predictor-Corrector en el estudio de los flujos de potencia y la estabilidad de los mismos, lo que se pretende es obtener los valores necesarios para poder construir las curvas PV y asi poder realizar análisis de estabilidad y poder establecer el punto de colapso de tensión del sistema.
  • 48. 37 CAPÍTULO 4: Análisis de resultados y comparación entre los métodos numéricos %ewton-Raphson y Predictor -Corrector Con el objetivo de comprobar la efectividad y utilidad del método expuesto en el capítulo 3 para el estudio de estabilidad de tensión, se implementa un caso base o caso de estudio que corresponde a un sistema de potencia de 12 barras. 4.1 Descripción del caso base El caso base que se muestra en la figura 7, se presenta como un sistema de prueba de 12 barras, el cual corresponde a un equivalente de un sistema de 14 barras. Figura 7. Diagrama del sistema equivalente de prueba IEEE de 12 barras
  • 49. 38 El sistema consta de 2 niveles de voltaje. El primero corresponde a la generación y transmisión a 138 kV, el cual comprende las barras UNO-U1, DOS-U1, TRES-U1, CUATRO, y CINCO del diagrama de la figura 7. Mientras el segundo corresponde a la distribución a 34.5 kV que está formado por las barras SEIS-U1, NUEVE, DIEZ, ONCE, DOCE, TRECE y CATORCE. De igual forma, se presentan unidades generadoras, que dadas las condiciones del sistema, operan como condensadores síncronos. Dado que el centro de carga en 34.5 kV está muy alejado del centro de generación en 138 kV, dichos condensadores están operando a su capacidad máxima de potencia reactiva para que el voltaje en el anillo de carga no sea muy bajo. Se tienen operando como barras de generación la 1, 2, 3 y 6, donde la barra 1 representa la barra oscilante del sistema, mientras que los generadores instalados en las barras 3 y 6 operan como condensadores síncronos. En las líneas que se encuentran entre las barras 4 y 9, se muestran transformadores de dos devanados. Por otro lado, el banco de condensadores instalado en la barra 9 es de una etapa y está configurado para que siempre esté en operación.
  • 50. 39 4.2 Información del sistema La Tabla A.1 muestra un resumen de los valores requeridos para simular el caso base. Estos están dados en por unidad sobre una base de 100 MVA. Se observan los valores característicos en las barras; es decir, voltaje, ángulo y las potencias respectivas. Indicando a su vez la clasificación de la barra. Por otra parte, las características y restricciones de potencia activa como reactiva del grupo generación, se muestran en la Tabla A.2. Así mismo, la Tabla A.3 proporciona los parámetros que se utilizaron para modelar las líneas de transmisión de acuerdo con el modelo de la figura 7. Para poder establecer las condiciones del sistema, se empleó el modelo π de la línea, éste se puede observar en la figura 8. Este modelo es indispensable; ya que, a partir de él se reestructura el circuito y se obtiene los valores necesarios para el análisis. Figura 8. Modelo π de la línea de transimisión
  • 51. 40 Como se mencionó anteriormente, se tiene en el sistema tres transformadores de diferentes características, las cuales se incluyen en la Tabla A.4. Es importante mencionar que los transformadores se modelan únicamente como una reactancia. Así mismo, la Tabla A.5 muestra la demanda por barra en el sistema. Nótese que hay carga asociada a generación, como en las barras 2 y 3, y hay un anillo de carga en 34.5 kV conformado por las barras 6, 9, 10, 11, 12, 13 y 14. Finalmente, la Tabla A.6 muestra las características principales del banco de condensadores en la barra 9. El objetivo de dicho banco es inyectar potencia reactiva al anillo de carga de 34.5 kV para soporte de voltaje. 4.3 Algoritmo del programa realizado en Matlab para la solución del flujo de potencia utilizando el método Predictor - Corrector Se desarrolló un programa en Matlab, que emplea el método numérico no convencional Predictor-Corrector para la solución de flujos de carga. El programa desarrollado brinda la posibilidad de realizar análisis de flujos de potencia fundamentandose en el algoritmo Predictor-Corrector.
  • 52. 41 Primeramente, deben de establecerse las condiciones iniciales de todas las variables del sistema, luego mediante soluciones matemáticas procede a realizar una serie de operaciones que luego van a ser utilizadas en la primera parte del método Predictor-Corrector. Una vez obtenidos estos valores el programa calcula la segunda parte correspondiente a la parte correctora y con estos valores verifica si se está cumpliendo con el criterio de convergencia. De cumplirse la condición de convergencia el programa termina, desplegando soluciones y mostrando una gráfica del comportamiento del parámetro de barrera. A continuación se describe el algoritmo empleado para hacer posible la implementación del método ya mencionado. Primeramente, se creo la matriz de admitancia que corresponde al sistema de la figura 7, dado que, es fundamental en la solución de flujos de potencia. De esta matriz se necesitan los valores de la magnitud y ángulo de la impedancia de cada celda de la matriz como dos valores independientes. Por lo tanto, se establece que el programa tenga la facultad de hacerlo. Una vez obtenida esta matriz, se procede a realizar el programa propiamente del método como tal. El programa se realizó para que el usuario sea quién ingrese el valor el factor de aumento de carga del anillo del sistema y el valor de la potencia activa del generador de la barra 2 según como desee hacer el análisis. El aumento del factor de aumento de carga se
  • 53. 42 estableció en aproximadamente 5% hasta alcanzar el 70%, del 70% al 72% en aumentos del 2% y por último, del 72% al 72.6% en aumentos del 0.2%. Para comenzar se inicializan los valores de las potencias activa y reactiva, las magnitudes de las tensiones y los ángulos de las mismas, según los datos de las tablas del apéndice A. A su vez, se establecieron los límites de potencia activa y reactiva, tanto el máximo como el mínimo, dado que la solución del flujo de carga va a depender de sus límites máximos y mínimos. Luego, se establecieron los vectores que corresponden a las variables de holgura y a las variables duales. Es importante destacar que, el vector π anteriormente mencionado, es elegido por el usuario. Por el contrario, para obtener el vector s se emplea la siguiente relación π ρ T s = , con el objetivo de aproximar la solución de manera más exacta. En cuanto a este método de selección de vectores de holgura, se debe mencionar, que el criterio de selección es totalmente empírico. Por su parte, los valores de la variable gamma y sigma se establecen como constantes ya que, según la teoría estos valores no deben de cambiar. Una vez establecidos todos los valores, se define el vector de variable incognita que va a estar dado por los valores de la tensión en magnitud y ángulo.
  • 54. 43 Una vez conocidas las incógnitas, se formulan las ecuaciones de potencia activa y reactiva de cada una de las barras en estudio. Estas ecuaciones dan origen a la función objetivo dada por la ecuación (7). El objetivo principal es minimizar los errores de potencia activa y reactiva en cada una de las barras por lo que se establece el vector de errores que se formuló en el capítulo 2 como la ecuación (5). Seguidamente se formulan las ecuaciones de desigualdad para las diferentes barras como se decribe en la ecuación (6); estas van a estar expresadas con los límites de potencia, las potencias calculadas y las potencias correspondientes a la carga. Posteriormente se calculan el jacobiano del vector de error y del vector de desigualdad, el gradiente de la función objetivo y las respectivas derivadas de los jacobianos ya calculados. Cuando se tiene todos estos valores se procede a crear un ciclo que se va a encargar de realizar las iteraciones en el programa. Aquí se establecen nuevas matrices con los vectores de las variables de holgura y las variables duales. La primera corresponde a la matriz diagonal de las variables de holgura s, la segunda a la matriz diagonal de los vectores π y la última la matriz identidad.
  • 55. 44 Como ya se ha mencionado, el método Predictor – Corrector tiene dos etapas, las cuales se deben realizar en un respectivo orden, como se muestra a continuación. 4.3.1 Etapa Predictora. Con la utilización de métodos matemáticos en el análisis de flujos de potencia, lo que se pretende es establecer el punto de colapso del sistema. Dado que, como se observa en la figura 4 matemáticamente este punto puede corresponder a muchas soluciones o presentar una bifurcación. Es por eso que etapa pretende aproximar rectas tangentes al punto de colapso de tensión con el objetivo de aproximar de forma más presisa este punto. Esto lo logra al establecer las siguientes condiciones: a. Se establece el gradiente del Lagrangiano de la ecuación (8) donde T y Th corresponde a las matrices transpuestas de las derivadas anteriores. b. Se crea la nueva matriz H de la ecuación (11) y se le calcula la inversa a esta matriz. c. Luego se encuentra el vector af α , af ρ y af µ con las ecuaciones (12) y (13). d. Por consiguiente, se actualizan todas las variables y se forman las nuevas matrices de desigualdad y el nuevo vector de errores.
  • 56. 45 4.3.2 Etapa Correctora. En esta etapa se toman los datos solución de la primera etapa y se procede a realizar lo siguiente: a. Una vez obtenidos todos lo valores y matrices de la etapa anterior, se procede a calcular la matriz de la ecuación (14). b. Luego se verifica la convergencia, esta tiene como requisito que el máximo error del vector de errores debe ser menor que 0.1 MW y 0.1 MVAr. c. Se recalculan los valores para la barra oscilante y verifica la convergencia. d. De lo contrario, se reingresa en el programa y recalcula todo con los nuevos valores. e. En caso de obtener la convergencia en el punto deseado, se procede a realizar aumentos en el anillo de carga y en la potencia de la barra 2, con la finalidad de poder obtener los datos para realizar las curvas requeridas para el estudio de estabilidad. En conclusión, el procedimiento anterior se puede resumir en el siguiente diagrama:
  • 57. 46 Figura 9. Diagrama de flujos del método Predictor – Corrector
  • 58. 47 4.4 Resultados obtenidos con el programa realizado con el Método Predictor-Corrector Una vez que se realizaron los procedimientos descritos en las secciones anteriores, se quizo comprobar la efectividad del método y la aplicación del mismo realizado en Matlab. Para ello se ejecutaron variadas simulaciones incrementando el factor de aumento de carga y la potencia activa de la barra 2. En la figura 11, se muestra la curva P-V de la barra 14 correspondiente a los datos obtenidos de la simulación del sistema en PSS/E (Power System Simulator for Engineers). Este software se fundamenta en el Método de Newton –Raphson, el cual es muy utilizado en la solución de flujos de potencia. Figura 11. Datos Obtenidos de la Simulación en PSS
  • 59. 48 En la figura 11 se observa que el punto de colapso se obtiene para un aumento de carga del 70% aproximadamente. Cuando se simula se obtiene que para que este sistema alcance la convergencia se deben realizar más de 60 iteraciones, proceso que se vuelve tedioso en sistemas muy grandes. Es importante resaltar que cuando el aumento de la carga en el anillo corresponde al 65% el programa logra obtener la solución deseada en 4 iteraciones; por el contrario, cuando al sistema se le aumenta la carga en un 80% el programa es incapaz de brindar una solución. Cuando se realizan las simulaciones en el programa Predictor – Corrector se obtiene que se alcanza el criterio de convergencia cuando la carga del sistema se aumenta en un 72,6 % y la potencia alcanza 80MW, esto lo realiza en 4 iteraciones y con una magnitud de tensión en la barra 14 de 0,5685 pu. En la figura 12 se muestra las Curvas P-V realizadas por los dos métodos, donde se observa que el método Predictor-Corrector logra superar las expectativas del método Newton- Raphson y brinda una mayor información del sistema de potencia en estudio, en cuanto a que es capaz de predecir con mayor exactitud un punto de colapso de voltaje mediante la metodología de las curvas P – V.
  • 60. 49 Curva P-V 0 0,2 0,4 0,6 0,8 1 0 20 40 60 80 Aumento de carga (%) Tensión (p.u) New ton-Raphson Predictor-Corrector Figura 12. Curva P-V con los datos obtenidos con el método Predictor – Corrector Es importante resaltar de las curvas de la figura 12 los siguientes aspectos; ♦ El Método de Newton-Rahpson brinda solución hasta cuando se ha establecido un aumento del anillo de carga del 70% aproximadamente, el método Predictor – Corrector aproxima la solución a un 72.6% del aumento de carga, estableciendo este punto como el punto crítico de colapso del sistema ♦ En la gráfica de la figura 14, se muestra que el sistema no puede proporcionar solución para aumentos mayores al 72.6%; dado que, la región que comprende
  • 61. 50 valores mayores a este, no figuran como posible solución del sistema encontrándose esos puntos en la zona de inestabilidad. ♦ En la Tabla C.17 se observa que el porcentaje de error entre las soluciones de los dos algoritmos de solución se encuentra entre 2% y el 0% en algunas iteraciones. En cuanto a las iteraciones requeridad por cada método se puede observar que el método Newton-Raphson llega a un punto donde para poder brindar la respuesta solicitada necesita realizar más de 60 iteraciones; que por el contrario, el método Predictor-Corrector logra realizar en un máximo de 4 iteraciones. Esto se puede observar en la figura 13. En la figura 13 se puede apreciar el comportamiento que presenta el número de iteraciones a las cuales converge el programa cuando se le aplica un aumento en la carga. Se muestra que mientras se realiza aumentos al porcentaje de carga, el sistema alcanza la convergencia en un número de iteraciones bastante pequeñas que varían en 2, 3 y 4 iteraciones para el Predictor - Corrector.
  • 62. 51 Punto de convergencia en función del aumento de carga 0 2,5 5 7,5 10 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 7 2 , 2 7 2 , 6 Porcentaje de Aumento de Carga Número de Iteraciones Newton-Rahson Predictor-Corrector Figura 13. %úmero de Iteraciones en función del aumento de carga Por lo tanto, se tiene que aunque ambos métodos logran encontrar una solución para el sistema en estudio, el método Predictor-Corrector logra brindarla con un menor número de iteraciones. La solución en el caso base es obtenida como se muestra en la figura 14 en la segunda iteración, aquí se puede observar como el parámetro de barrera disminuye de forma exponencial conforme se aumentan las iteraciones, cumpliéndo con lo establecido en la teoría.
  • 63. 52 Figura 14. Comportamiento del Parámetro de Barrera para la simulación del 72.6 % del aumento de carga del sistema Figura 15. Comportamiento del Parámetro de Barrera ante un aumento mayor al 75% de la carga del anillo 0 5 10 15 20 25 30 35 40 45 50 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 x 10 32 Comportamiento del Parámetro de Barrera en función del número de iteraciones Número de Iteraciones Parámetro de Barrera 0 0.5 1 1.5 2 2.5 3 0 50 100 150 200 250 Comportamiento del Parámetro de Barrera en función del número de iteraciones Número de Iteraciones Parámetro de Barrera
  • 64. 53 CAPÍTULO 5: Conclusiones y Recomendaciones 5.1 Conclusiones Una vez realizadas las simulaciones del caso base con el programa realizado en Matlab y compararlo con los resultados obtenidos en la simulación del PSS/E, se puede mencionar lo siguiente: ♦ En cuanto al programa de solución de flujos creado con el método Predictor- Corrector se manifiesta que este se comporta de la manera esperada; debido a que, el valor del parámetro de barrera tiende a hacerce cero conforme el sistema avanza en iteraciones hasta el momento en que cumple con el criterio de convergencia. A su vez se obtiene que las variables duales, aunque tienden a ser valores muy pequeños siempre conservan la característica de no negatividad lo que permite el correcto funcionamiento del programa. ♦ Según los resultados mostrados en la Tabla C17 se muestra los valores en las tensiones de la barra 14 obtenidos simulando el programa Predictor - Corrector, presenta, ante un aumento de carga, un porcentaje de error pequeño con respecto a los datos obtenidos en la simulación del software PSS muy utilizado y vendido comercialmente. Por lo tanto, se logra comprobar que mediante la debida
  • 65. 54 implementación de un software que se fundamente en métodos como el Predictor – Corrector se puede precisar la solución de los diferentes sistemas de potencia en estudio. ♦ Por otra parte, se obtiene que para un mismo caso de estudio, el método Predictor- Corrector, logra obtener la solución e identificar el punto donde se cumple el criterio de convergencia en un menor número de iteraciones. ♦ En cuanto a la estabilidad del sistema de potencia se logró obtener que el algoritmo realizado mediante la utilización del método en estudio aproxima el punto de colapso con mayor exactitud, dado que, el programa permite realizar variaciones de la carga hasta lograr apoximar el punto donde el sistema pierde su estabilidad. ♦ En el momento en que el sistema se comporta de manera inadecuada; es decir, los resultados obtenidos son como se obseva en la figura 15, se puede concluir que el sistema se encuentra operando en un zona donde no es posible encontrar una solución.
  • 66. 55 5.2 Recomendaciones ♦ Es importante destacar como se dijo en el capítulo 3, que el criterio de selección de las variables duales es totalmente empírico; por lo tanto, es necesario realizar un estudio más minucioso de estas variables. ♦ Se recomienda la aplicación del programa realizado en un sistema real, con la finalidad de poder realizar un estudio de estabilidad de voltaje que brinde soluciones mucho más cercanas a las reales.
  • 67. 56 BIBLIOGRAFÍA [1] Aromataris L. Arnera P. Riubrugent J. “Nueva Metodología estática para el estudio de la estabilidad de tensión de sistemas eléctricos de potencia” CIGRÉ. Universidad Nacional de Río Cuarto- Córdaba. Mayo 2003 [2]Arosemena Carlos. “Estabilidad de tensión de un sistema eléctrico de potencia variando la penetración eólica”. CAEsoft Consulting S.L. Diciembre 2004 [3] Correa C. Bolaños R. Garcés A. “Métodod no-lineales de puntos interiores aplicado al problema de despacho hidrotérmico”. Universidad Tecnológica de Pereira. Scientia et Technica. Año XIII. No 34. Mayo 2007. [4] Castro R. Díaz H. “Estabilidad de tensión en el corto plazo: Fenómeno, Análisis y Acciones de control”. Universidad U.T.A. Chile. Vol 2. Agosto 2002. [5] Echavarren F. Lobato E. Rouco L. Rodrígue J. “Colapso de tensión causa y soluciones”. Universidad Pontificia Comillas. España. Marzo-Abril 2006 [6] F. Capitanescu, M. Glavic, D.Ernst, L. Wehenkel, Interior-point based algorithms for the solution of optimal power flow problems. Junio 2006. www.sciencedirect.com
  • 68. 57 [7] Gallego L. “Metodología para solucionar el modelo DC para redes de transmisión de energía eléctrica usando puntos interiores”. Scientia et Technica Año XI No 28 Octubre 2005. [8] Garcés A. Gómez O. “Solución al problema del despacho hidrotérmico mediante simulación de Monte Carlo y punto interior” Universidad de Antioquia. N.° 45 pp. 132- 147. Septiembre, 2008 [9] Garzillo A. “The problema of the active and reactive optimun power dispatching solved by utilizing a primal-dual interior point metod” Electrical Power Energy Systems, Vol. 20, No. 6, pp. 427-434, 199 [10]Gómez A. “Estudio de Estabilidad en Sistemas de Potencia: Metodología para la Evaluación de la Estabilidad de Tensión mediante la aplicación de inteligencia artificial”. Universidad Industrial de Santander. Bucaramanga. 2006 [11] IEEE The Continuation Power Flow: A Tool for Steady State Voltage Stability Analysis IEEE Transactions on Power Systems, Vol. 7, No. 1, February 1992. [12] IEEE A Predictor/Corrector Scheme for Obtaining Q-limit Point for Power Flow Studies IEEE Lain America Transactions, Vol. 4, No. 3, February 2005.
  • 69. 58 [13] IEEE Herramietas de Análisis del Colapso de Tensión y Aplicaciones IEEE Transactions on Power Systems, Vol. 20, No. 1, Mayo 2006. [14] Kundur .P. “Power System Stability and Control”. McGraw-Hill.1994 [15] Ramírez E. Saborío S. “Evaluación de métodos para el análisis de la estabilidad de tensión y su aplicación al Sistema Eléctrico Nacional”. Universidad de Costa Rica. 2005 [16] Ríos M. Torres A. Torres M. “ Estabilidad de Voltaje en Sistemas de Potencia –Caso de aplicación a la EEB ” Revista de Ingeniería Uniandes. [17] Rosehart W. “Stabylity Analysis of Detailed Power System Models ” University of Waterloo. Waterloo. Ontario. 1997 [17] Sanmiguel E. “El fenómeno de la Autorrotación”. Universidad de Málaga. España. Diciembre 2002. [18] Schaerer C. Atlasovich J. “Flujo de Potencia Eléctrica en Torno al Punto Crítico”. Universidad Nacional de Asunción. Paraguay. Mayo 1995.
  • 70. 59 [19] Sousa A. Torres G. “Globally Convergent Optimal Power Flow by Trust-Region Interior-Point Methods”.Universidad Federal de Pernambuco, Recife-PE, Brazil.
  • 72. 61 Apéndice A. Datos de descripción del caso base Tabla A.1. Características de caso base por barra Tabla A. 2. Características grupo generación %úmero barra %ombre barra kV base Código Voltaje [V] Ángulo [°] Pgen [MW] Qgen [MVAr] Pcarga [MW] Qcarga [MVAr] 1 UNO-U1 138 Oscilante 10.200 0.00 231.54 -22.80 ------ ------ 2 DOS-U1 138 PV 10.120 -2.92 40.00 50.00 21.70 12.70 3 TRES-U1 138 PV 0.9822 -11.63 0.00 40.00 94.20 19.00 4 CUATRO 138 PQ 0.9707 -8.93 ------ ------ 47.80 -3.90 5 CINCO 138 PQ 0.9765 -7.61 ------ ------ 7.60 1.60 6 SIES-U1 34.5 PV 0.9637 -14.96 0.00 24.00 11.20 7.50 9 NUEVE 34.5 PQ 0.9289 -16.15 ------ ------ 29.50 16.60 10 DIEZ 34.5 PQ 0.9265 -16.29 ------ ------ 9.00 5.80 11 ONCE 34.5 PQ 0.9408 -15.78 ------ ------ 3.50 1.80 12 DOCE 34.5 PQ 0.9458 -16.04 ------ ------ 6.10 1.60 13 TRECE 34.5 PQ 0.9390 -16.14 ------ ------ 13.50 5.80 14 CATORCE 34.5 PQ 0.9123 -17.48 ------ ------ 14.90 5.00 %úmero Barra Grupo generador Id Pgen [MW] Pmax [MW] Pmin [MW] Qgen [MVAr] Qmax [MVAr] Qmin [MVAr] MVA base [MVA] 1 UNO-U1 H1 231.54 340 0 -22.8 210.71 -210.71 400 2 DOS-U1 H2 40 85 0 50 50 -40 100 3 TRES-U1 H3 0 65 0 40 40 0 76 6 SIES-U1 H4 0 39 0 24 24 -6 46
  • 73. 62 Tabla A.3. Características líneas de transmisión De la barra A la barra Id R [p.u.] X [p.u.] C [p.u.] 1 UNO-U1 2 DOS-U1 1 0.01938 0.05917 0.0528 1 UNO-U1 2 DOS-U1 2 0.01938 0.05917 0.0528 1 UNO-U1 5 CINCO 1 0.05403 0.22304 0.0492 2 DOS-U1 3 TRES-U1 1 0.04699 0.19797 0.0438 2 DOS-U1 4 CUATRO 1 0.05811 0.17632 0.034 2 DOS-U1 5 CINCO 1 0.05695 0.17388 0.0346 3 TRES-U1 4 CUATRO 1 0.06701 0.17103 0.0128 4 CUATRO 5 CINCO 1 0.01335 0.04211 0.0000 6 SIES-U1 11 ONCE 1 0.09498 0.1989 0.0000 6 SIES-U1 12 DOCE 1 0.12291 0.25581 0.0000 6 SIES-U1 13 TRECE 1 0.06615 0.13027 0.0000 9 NUEVE 10 DIEZ 1 0.03181 0.0845 0.0000 9 NUEVE 14 CATORCE 1 0.12711 0.27038 0.0000 10 DIEZ 11 ONCE 1 0.08205 0.19207 0.0000 12 DOCE 13 TRECE 1 0.22092 0.19988 0.0000 13 TRECE 14 CATORCE 1 0.17093 0.37802 0.0000 Tabla A.4. Características transformadores de dos devanados De la barra A la barra Id %ombre X [p.u.] MVA base [MVA] 4 CUATRO 9 NUEVE 1 T2 0.55618 195 4 CUATRO 9 NUEVE 2 T1 0.55618 195 5 CINCO 6 SIES-U1 1 T3 0.25202 130
  • 74. 63 Tabla A.5 Características carga %úmero barra %ombre barra Pcarga [MW] Qcarga [MVAr] 2 DOS-U1 21.7 12.7 3 TRES-U1 94.2 19.0 4 CUATRO 47.8 -3.9 5 CINCO 7.6 1.6 6 SIES-U1 11.2 7.5 9 NUEVE 29.5 16.6 10 DIEZ 9.0 5.8 11 ONCE 3.5 1.8 12 DOCE 6.1 1.6 13 TRECE 13.5 5.8 14 CATORCE 14.9 5.0 Tabla A. 6. Características banco de condensadores %úmero barra %ombre barra Modo de control Capacidad [MVA] Etapas Capacidad/etapa [MVAr] 9 NUEVE Fijo 10 1 10
  • 75. 64 Apéndice B. Resultados de la Simulación en PSS Tabla B.1 Resultados obtenidos de la simulación en PSS SIES-U1 NUEVE DIEZ ONCE DOCE TRECE CATORCE DOS-U1 Escenarios P [MW] Q [MVAr] P [MW] Q [MVAr] P [MW] Q [MVAr] P [MW] Q [MVAr] P [MW] Q [MVAr] P [MW] Q [MVAr] P [MW] Q [MVAr] Pgen [MW] Caso Base 11.200 7.500 29.500 16.600 9.000 5.800 3.500 1.800 6.100 1.600 13.500 5.800 14.900 5.000 40.00 Aumento carga 5% 11.760 7.875 30.975 17.430 9.450 6.090 3.675 1.890 6.405 1.680 14.175 6.090 15.645 5.250 45.00 Aumento carga 10% 12.320 8.250 32.450 18.260 9.900 6.380 3.850 1.980 6.710 1.760 14.850 6.380 16.390 5.500 50.00 Aumento carga 15% 12.880 8.625 33.925 19.090 10.350 6.670 4.025 2.070 7.015 1.840 15.525 6.670 17.135 5.750 52.00 Aumento carga 20% 13.440 9.000 35.400 19.920 10.800 6.960 4.200 2.160 7.320 1.920 16.200 6.960 17.880 6.000 55.00 Aumento carga 25% 14.000 9.375 36.875 20.750 11.250 7.250 4.375 2.250 7.625 2.000 16.875 7.250 18.625 6.250 60.00 Aumento carga 30% 14.560 9.750 38.350 21.580 11.700 7.540 4.550 2.340 7.930 2.080 17.550 7.540 19.370 6.500 65.00 Aumento carga 35% 15.120 10.125 39.825 22.410 12.150 7.830 4.725 2.430 8.235 2.160 18.225 7.830 20.115 6.750 68.00 Aumento carga 40% 15.680 10.500 41.300 23.240 12.600 8.120 4.900 2.520 8.540 2.240 18.900 8.120 20.860 7.000 70.00 Aumento carga 45% 16.240 10.875 42.775 24.070 13.050 8.410 5.075 2.610 8.845 2.320 19.575 8.410 21.605 7.250 75.00 Aumento carga 50% 16.800 11.250 44.250 24.900 13.500 8.700 5.250 2.700 9.150 2.400 20.250 8.700 22.350 7.500 75.00 Aumento carga 55% 17.360 11.625 45.725 25.730 13.950 8.990 5.425 2.790 9.455 2.480 20.925 8.990 23.095 7.750 75.00 Aumento carga 60% 17.920 12.000 47.200 26.560 14.400 9.280 5.600 2.880 9.760 2.560 21.600 9.280 23.840 8.000 75.00 Aumento carga 65% 18.480 12.375 48.675 27.390 14.850 9.570 5.775 2.970 10.065 2.640 22.275 9.570 24.585 8.250 75.00 Aumento carga 70% 19.040 12.750 50.150 28.220 15.300 9.860 5.950 3.060 10.370 2.720 22.950 9.860 25.330 8.500 80.00 Aumento carga 75% 19.600 13.125 51.625 29.050 15.750 10.150 6.125 3.150 10.675 2.800 23.625 10.150 26.075 8.750 80.00 Aumento carga 80% 20.160 13.500 53.100 29.880 16.200 10.440 6.300 3.240 10.980 2.880 24.300 10.440 26.820 9.000 80.00
  • 76. 65 Apéndice C: Resultados de la simulación con el Programa Predictor –Corrector. Tabla C.1 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 0%. Potencia=40MW Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada 1 1,0200 0 231,5273 -22,8294 2 1,012 -2,9243 39,9978 50,0006 3 0,9823 -11,6252 0 39,9992 4 0,9707 -8,9303 0 0 5 0,9765 -7,6084 0 0 6 0,9637 -14,9565 0 24,0058 9 0,929 -16,1496 0 0 10 0,9266 -16,2915 0 0 11 0,9408 -15,7751 0 0 12 0,9459 -16,0424 0 0 13 0,939 -16,1339 0 0 14 0,9124 -17,4824 0 0
  • 77. 66 Tabla C.2 Datos obtenidos con:Parámetro de Barrera de 5, Aumento del anillo de carga 5%. Potencia=45MW Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada 1 1,0200 0 231,3252 -17,4470 2 1,0111 -2,8889 44,9975 50,0007 3 0,9794 -11,6957 0 39,9991 4 0,9664 -9,037 0 0 5 0,9724 -7,7072 0 0 6 0,9553 -15,5085 0 24,0064 9 0,9191 -16,767 0 0 10 0,9164 -16,9229 0 0 11 0,9313 -16,377 0 0 12 0,9364 -16,669 0 0 13 0,9292 -16,7668 0 0 14 0,9012 -18,2056 0 0 Tabla C.3 Datos obtenidos con:Parámetro de Barrera de 5, Aumento del anillo de carga 10%. Potencia=50MW Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada 1 1,0200 0 231,1599 -11,7816 2 1,01 -2,8529 49,9972 50,0007 3 0,9765 -11,7682 0 39,999 4 0,9618 -9,1449 0 0 5 0,9681 -7,8067 0 0 6 0,9465 -16,0796 0 24,0073 9 0,9087 -17,4071 0 0 10 0,9058 -17,5779 0 0 11 0.9213 -17,0007 0 0 12 0.9265 -17,3185 0 0 13 0.9189 -17,4229 0 0 14 0.8894 -18,9576 0 0
  • 78. 67 Tabla C.4 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 15%. Potencia=52MW Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada 1 1,0200 0 234,1340 -5,4563 2 1,0086 -2,8624 51,9966 50,0009 3 0,9731 -11,8891 0 39,9988 4 0,9567 -9,2939 0 0 5 0,9633 -7,9429 0 0 6 0,937 -16,7142 0 24,0088 9 0,8975 -18,1169 0 0 10 0,8943 -18,3032 0 0 11 0,9106 -17,6919 0 0 12 0,9158 -18,0368 0 0 13 0,9078 -18,1481 0 0 14 0,8769 -19,7871 0 0 Tabla C.5 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 20%. Potencia=55MW Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada 1 1,0200 0 236,1221 1,1124 2 1,0072 -2,8561 54,9959 50,0010 3 0,9696 -11,9973 0 39,9985 4 0,9515 -9,431 0 0 5 0,9584 -8,0681 0 0 6 0,927 -17,3599 0 24,0111 9 0,8859 -18,8419 0 0 10 0,8824 -19,0448 0 0 11 0,8993 -18,3973 0 0 12 0,9046 -18,7709 0 0 13 0,8962 -18,8897 0 0 14 0,8637 -20,6398 0 0
  • 79. 68 Tabla C.6 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 25%. Potencia=60MW Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada 1 1,0200 0 236,0956 7,8409 2 1,006 -2,8184 59,9949 50,0012 3 0,9661 -12,0775 0 39,9982 4 0,9462 -9,543 0 0 5 0,9533 -8,1704 0 0 6 0,9167 -18,0053 0 24,0143 9 0,8738 -19,5705 0 0 10 0,87 -19,7912 0 0 11 0,8877 -19,1054 0 0 12 0,893 -19,5098 0 0 13 0,8841 -19,6364 0 0 14 0,8500 -21,5050 0 0 Tabla C.7 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 30%. Potencia=65MW Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada 1 1,0200 0 236,1288 15,0209 2 1,0046 -2,78 64,9935 50,0016 3 0,9624 -12,161 0 39,9977 4 0,9405 -9,6565 0 0 5 0,948 -8,2737 0 0 6 0,9057 -18,6826 0 24,0191 9 0,8609 -20,3375 0 0 10 0,8568 -20,5772 0 0 11 0,8753 -19,8501 0 0 12 0,8808 -20,2872 0 0 13 0,8714 -20,4222 0 0 14 0,8355 -22,4194 0 0
  • 80. 69 Tabla C.8 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 35%. Potencia=68MW Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada 1 1,0200 0 238,2994 22,9711 2 1,0029 -2,7716 67,9915 50,0020 3 0,9582 -12,2795 0 39,997 4 0,9343 -9,7989 0 0 5 0,9421 -8,4023 0 0 6 0,8938 -19,4273 0 24,0265 9 0,8469 -21,1811 0 0 10 0,8425 -21,4414 0 0 11 0,8618 -20,6683 0 0 12 0,8674 -21,1407 0 0 13 0,8575 -21,2849 0 0 14 0,8198 -23,4243 0 0 Tabla C.9 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 40%. Potencia=70MW Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada 1 1,0200 0 241,5888 31,6757 2 1,001 -2,7777 67,9885 50,0027 3 0,9536 -12,4186 0 39,996 4 0,9275 -9,9571 0 0 5 0,9357 -8,5446 0 0 6 0,8808 -20,2328 0 24,0376 9 0,8317 -22,0958 0 0 10 0,827 -22,3785 0 0 11 0,8472 -21,5544 0 0 12 0,853 -22,0651 0 0 13 0,8425 -22,2196 0 0 14 0,8028 -24,5169 0 0
  • 81. 70 Tabla C.10 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 45%. Potencia=75MW Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada 1 1,0200 0 241,9028 41,0273 2 0,9992 -2,7359 75,0000 50,0000 3 0,9488 -12,5186 0 40,0000 4 0,9202 -10,0770 0 0 5 0,9289 -8,6517 0 0 6 0,8667 -12,0790 0 24,0001 9 0,8151 -23,0657 0 0 10 0,8100 -23,3739 0 0 11 0,8313 -23,4919 0 0 12 0,8372 -23,0466 0 0 13 0,8262 -23,2165 0 0 14 0,7842 -25,6975 0 0 Tabla C.11 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 50%. Potencia=75MW Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada 1 1,0200 0 247,5157 51,8957 2 0,9966 -2,7703 75,0000 50,0000 3 0,9430 -12,7042 0 40,0000 4 0,9119 -10,2686 0 0 5 0,9210 -8,8219 0 0 6 0,8506 -22,0611 0 24,0002 9 0,7963 -24,1901 0 0 10 0,7909 -24,5271 0 0 11 0,8133 -23,5776 0 0 12 0,8194 -24,1805 0 0 13 0,8077 -24,3637 0 0 14 0,7633 -27,0565 0 0
  • 82. 71 Tabla C.12 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 55%. Potencia=75MW Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada 1 1,0200 0 253,3207 64,1752 2 0,9938 -2,8032 74,9999 50,0000 3 0,9365 -12,9010 0 40,0000 4 0,9024 -10,4646 0 0 5 0,9121 -8,9947 0 0 6 0,8325 -23,1511 0 24,0007 9 0,7750 -25,4462 0 0 10 0,7693 -25,8166 0 0 11 0,7930 -25,7878 0 0 12 0,7994 -25,4461 0 0 13 0,7869 -25,6448 0 0 14 0,7396 -28,5892 0 0 Tabla C.13 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 60%. Potencia=75MW Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada 1 1,0200 0 259,4051 78,5015 2 0,9905 -2,8335 74,9998 50,0001 3 0,9290 -13,1139 0 39,9999 4 0,8915 -10,6664 0 0 5 0,9018 -9,1706 0 0 6 0,8114 -24,3988 0 24,0022 9 0,7501 -26,8916 0 0 10 0,7440 -27,3070 0 0 11 0,7692 -26,1805 0 0 12 0,7760 -26,9052 0 0 13 0,7626 -27,1227 0 0 14 0,7119 -30,3794 0 0
  • 83. 72 Tabla C.14 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 65%. Potencia=75MW Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada 1 1,0200 0 265,9547 96,2238 2 0,9865 -2,8597 74,9990 50,0002 3 0,9198 -13,3531 0 39,9995 4 0,8781 -10,8765 0 0 5 0,8892 -9,3506 0 0 6 0,7851 -25,9100 0 24,0085 9 0,7191 -28,6715 0 0 10 0,7125 -29,1350 0 0 11 0,7397 -27,8789 0 0 12 0,7469 -28,6884 0 0 13 0,7324 -28,9304 0 0 14 0,6774 -32,608 0 0 Tabla C.15 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 70%. Potencia=80MW Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada 1 1,0200 0 268,3684 121,0182 2 0,9814 -2,7968 79,9999 50,0000 3 0,9071 -13,5691 0 40,0000 4 0,8595 -11,0308 0 0 5 0,8717 -9,4737 0 0 6 0,7475 -27,9519 0 24,0004 9 0,6745 -31,1242 0 0 10 0,6673 -31,6699 0 0 11 0,6974 -30,2076 0 0 12 0,7054 -31,1457 0 0 13 0,6892 -31,4253 0 0 14 0,6278 -35,7839 0 0
  • 84. 73 Tabla C.15 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 72%. Potencia=80MW Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada 1 1,0200 0 272,5609 139,5814 2 0,9774 -2,7922 79,9988 50,0002 3 0,8976 -13.7507 0 39,9994 4 0,8456 -11,1341 0 0 5 0,8587 -9,5523 0 0 6 0,7194 -29,4569 0 24,0064 9 0,6409 -32,9643 0 0 10 0,6333 -33,5748 0 0 11 0,6657 -31,9407 0 0 12 0,6744 -32,9772 0 0 13 0,6569 -33,2871 0 0 14 0,5904 -38,2230 0 0 Tabla C.16 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 72.5%. Potencia=80MW Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada 1 1,0200 0 274,1336 148,0204 2 0,9756 -2,7860 79,9958 50,0008 3 0,8933 -13,8242 0 39,9981 4 0,8393 -11,1656 0 0 5 0,8528 -9,5735 0 0 6 0,7065 -30,1286 0 24,0198 9 0,6255 -33,7968 0 0 10 0,6177 -34,4381 0 0 11 0,6511 -32,7204 0 0 12 0,6601 -33,8028 0 0 13 0,6421 -34,1270 0 0 14 0,5732 -39,3468 0 0
  • 85. 74 Tabla C.16 Datos obtenidos con: Parámetro de Barrera de 5, Aumento del anillo de carga 72.6%. Potencia=80MW Barra Magnitud de la tensión Ángulo de la tensión P generada Q generada 1 1,0200 0 274,5321 150,3139 2 0,9751 -2,7840 79,9944 50,0011 3 0,8921 -13,8434 0 39,9975 4 0,8376 -11,1727 0 0 5 0,8512 -9,5779 0 0 6 0,7029 -30,3097 0 24,0261 9 0,6212 -34,0222 0 0 10 0,6134 -34,6720 0 0 11 0,6471 -32,9311 0 0 12 0,6563 -34,0261 0 0 13 0,6381 -34,3542 0 0 14 0,5685 -39,6529 0 0
  • 86. 75 Tabla C.17 Datos obtenidos para la barra 14 en todas las iteraciones Método Predictor-Corrector Método Newton-Raphson Aumento de carga Tensión Potencia Iteraciones Tensión Potencia Iteraciones Margen de Error 0 0,9124 40 2 0,912 40 4 0,044 5 0,9012 45 2 0,9011 45 4 0,011 10 0,8894 50 2 0,8894 50 4 0,000 15 0,8769 52 2 0,8767 52 4 0,023 20 0,8637 55 2 0,8636 55 4 0,012 25 0,85 60 2 0,8499 60 4 0,012 30 0,8355 65 2 0,8355 65 4 0,000 35 0,8198 68 2 0,8196 68 4 0,024 40 0,8028 70 2 0,8025 70 4 0,037 45 0,7849 75 3 0,7841 75 4 0,102 50 0,7633 75 3 0,7633 75 4 0,000 55 0,7396 75 3 0,7396 75 4 0,000 60 0,7119 75 3 0,7122 75 4 0,042 65 0,6774 75 3 0,6778 75 5 0,059 70 0,6278 80 4 0,6393 80 58 1,799
  • 87. 76 A%EXOS A. Código Fuente %Proyecto Eléctrico %Programa que utiliza el Método Predictor-Corrector para un sistema de doce barras clc,clear; disp('Programa que utiliza el Método Predictor-Corrector para un sistema de doce barras') fprintf(' n....................................................................... .............................nn') date; %Introducción de Variables n=0; gamma=0.99995; sigma=0.2; m=4; %Numero con generadores %Matriz de admitancias Y=Matriz_admitancias(n); %Valores de la matriz de admitancias necesarios para el programa for q=1:1:12 for w=1:1:12 Ym(q,w)=abs(Y(q,w)); C(q,w)=angle(Y(q,w)); end end %Factor de aumento de carga en el anillo de carga fc=input('Digite el factor de aumento de carga en el anillo de 34,5kV '); fprintf(' n') Pg2=input('Digite la potencia activa que entregara el generador de la barra 2 '); fprintf(' n') %Valores de las potencias activas y reactivas en barras P1c=0;
  • 89. 78 V1=1.02; V2=1.017; V3=1.005; V4=0.97; V5=0.99; V6=0.98; V9=0.933; V10=0.94; V11=1; V12=0.96; V13=0.97; V14=0.95; AV1=0; AV2=-0.0145; AV3=-0.06; AV4=-0.031; AV5=-0.1; AV6=-0.055; AV9=-0.04; AV10=0; AV11=0; AV12=0; AV13=-0.12; AV14=0; % Definicion de vectores landa, pi, s y e l=[1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1]; s=[0.95;2.44;0.62;0.22;0.63;0.015;0.079;0.31;2.02;2.19;0.71;0.18;3;0.0019 ;0.15;10]; pp=[5;2.4;0.05;37;1.2;15.6;30.6;0.1;2.3;0.6;20;2;10;0.3;50;2]; e=[1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1]; %Introducción del parámetro de barrera u=200; %Valores de la matriz de admitancia necesarios para el programa Y11=Ym(1,1); Y12=Ym(1,2); Y13=Ym(1,3); Y14=Ym(1,4); Y15=Ym(1,5); Y16=Ym(1,6);
  • 96. 85 %Vector de incognitas x=sym('[AV2 V3 AV3 V4 AV4 V5 AV5 V6 AV6 V9 AV9 V10 AV10 V11 AV11 V12 AV12 V13 AV13 V14 AV14 V2]'); %Valores calculados para la barra 2 P1calc=sym('(V1*Y12*V2*cos(C12+AV2- AV1)+(V1^2)*Y11*cos(C11)+V1*Y13*V3*cos(C13+AV3- AV1)+V1*Y14*V4*cos(C14+AV4-AV1)+V1*Y15*V5*cos(C15+AV5- AV1)+V1*Y16*V6*cos(C16+AV6-AV1)+V1*Y17*V9*cos(C17+AV9- AV1)+V1*Y18*V10*cos(C18+AV10-AV1)+V1*Y19*V11*cos(C19+AV11- AV1)+V1*Y110*V12*cos(C110+AV12-AV1)+V1*Y111*V13*cos(C111+AV13- AV1)+V1*Y112*V14*cos(C112+AV14-AV1))'); Q1calc=sym('-1*(V1*Y12*V2*sin(C12+AV2- AV1)+(V1^2)*Y11*sin(C11)+V1*Y13*V3*sin(C13+AV3- AV1)+V1*Y14*V4*sin(C14+AV4-AV1)+V1*Y15*V5*sin(C15+AV5- AV1)+V1*Y16*V6*sin(C16+AV6-AV1)+V1*Y17*V9*sin(C17+AV9- AV1)+V1*Y18*V10*sin(C18+AV10-AV1)+V1*Y19*V11*sin(C19+AV11- AV1)+V1*Y110*V12*sin(C110+AV12-AV1)+V1*Y111*V13*sin(C111+AV13- AV1)+V1*Y112*V14*sin(C112+AV14-AV1))'); P2calc=sym('V2*Y21*V1*cos(C21+AV1- AV2)+(V2^2)*Y22*cos(C22)+V2*Y23*V3*cos(C23+AV3- AV2)+V2*Y24*V4*cos(C24+AV4-AV2)+V2*Y25*V5*cos(C25+AV5-AV2)'); Q2calc=sym('-1*(V2*Y21*V1*sin(C21+AV1- AV2)+(V2^2)*Y22*sin(C22)+V2*Y23*V3*sin(C23+AV3- AV2)+V2*Y24*V4*sin(C24+AV4-AV2)+V2*Y25*V5*sin(C25+AV5- AV2)+V2*Y26*V6*sin(C26+AV6-AV2)+V2*Y27*V9*sin(C27+AV9- AV2)+V2*Y28*V10*sin(C28+AV10-AV2)+V2*Y29*V11*sin(C29+AV11- AV2)+V2*Y210*V12*sin(C210+AV12-AV2)+V2*Y211*V13*sin(C211+AV13- AV2)+V2*Y212*V14*sin(C212+AV14-AV2))'); P3calc=sym('(V3^2)*Y33*cos(C33)+V3*Y32*V2*cos(C32+AV2- AV3)+V3*Y34*V4*cos(C34+AV4-AV3)'); Q3calc=sym('-(V3^2)*Y33*sin(C33)-V3*Y32*V2*sin(C32+AV2-AV3)- V3*Y34*V4*sin(C34+AV4-AV3)'); P4calc=sym('(V4^2)*Y44*cos(C44)+V4*Y42*V2*cos(C42+AV2- AV4)+V4*Y43*V3*cos(C43+AV3-AV4)+V4*Y45*V5*cos(C45+AV5- AV4)+V4*Y47*V9*cos(C47+AV9-AV4)'); Q4calc=sym('-(V4^2)*Y44*sin(C44)-V4*Y42*V2*sin(C42+AV2-AV4)- V4*Y43*V3*sin(C43+AV3-AV4)-V4*Y45*V5*sin(C45+AV5-AV4)- V4*Y47*V9*sin(C47+AV9-AV4)'); P5calc=sym('V5*Y51*V1*cos(C51+AV1- AV5)+(V5^2)*Y55*cos(C55)+V5*Y52*V2*cos(C52+AV2- AV5)+V5*Y54*V4*cos(C54+AV4-AV5)+V5*Y56*V6*cos(C56+AV6-AV5)'); Q5calc=sym('-V5*Y51*V1*sin(C51+AV1-AV5)-(V5^2)*Y55*sin(C55)- V5*Y52*V2*sin(C52+AV2-AV5)-V5*Y54*V4*sin(C54+AV4-AV5)- V5*Y56*V6*sin(C56+AV6-AV5)'); P6calc=sym('(V6^2)*Y66*cos(C66)+V6*Y65*V5*cos(C65+AV5- AV6)+V6*Y69*V11*cos(C69+AV11-AV6)+V6*Y610*V12*cos(C610+AV12- AV6)+V6*Y611*V13*cos(C611+AV13-AV6)');