Publicidad

Tips. examen

10 de Jul de 2010
Tips. examen
Tips. examen
Tips. examen
Tips. examen
Publicidad
Tips. examen
Tips. examen
Tips. examen
Tips. examen
Tips. examen
Publicidad
Tips. examen
Tips. examen
Tips. examen
Tips. examen
Tips. examen
Publicidad
Tips. examen
Tips. examen
Tips. examen
Tips. examen
Tips. examen
Próximo SlideShare
Ejercicios adicionales para practicar funciones exponencialesEjercicios adicionales para practicar funciones exponenciales
Cargando en ... 3
1 de 19
Publicidad

Más contenido relacionado

Publicidad
Publicidad

Tips. examen

  1. 1 La gráfica de la función y = x2 -x +1 intersecta al eje x en: A) X=1 B) X=0 C) X=-1 D) X=-2 E) No la intersecta 3x + 1 El dominio de la función y = f(x) = 3 es: 2x − 5 5 A) IR -  −  2 4 B) IR -  −  3 3 C) IR -  −  2 5 D) IR -   2 El vértice de la parábola f(x) = x2- 4, esta dada por: Si una función cuadrática tiene dos soluciones reales y distintas, entonces una posible gráfica es: (Sin desarrollo) Si f(x)= x2+1 y g(x) = 2x+2 son funciones reales, entonces el valor de f (1) + f (−1) =? 3g (2) + g (−2) A) 0 B) 2/9 C) 1/4 -1-
  2. 2 D) 1/3 E) 4 x 2 + 3 si x ≥ 0 Dada la función f: IR IR definida por f(x) =  x − 1 si x < 0 Entonces f(1) + f(-3) =? A) 0 B) 6 C) 15 D) 12 E) N.A. Para que las soluciones de la ecuación 12x2 + kx + 3 = 0 sean iguales se debe cumplir: A) K>12 B) K<12 C) K>-12 D) k<-12 E) k= ± 12 Determine la función correspondiente de acuerdo a los datos dados: (5 ptos) De la función y = -3x2 -5x-6, determine: a) Concavidad (1 pto) b) Nº de intersecciones con el eje x (1 pto) c) Intersecciones con el eje x (2 ptos) d) Intersección con el eje y (1 pto) e) Coordenadas del vértice (3 ptos) f) Dominio y recorrido de la función (2 ptos) g) Bosquejo del gráfico (3 ptos) Encuentre las soluciones de la expresión: bdx2+adx+ac=-bcx (8 ptos) La trayectoria de un clavadista está dada por: (6 ptos) 4 24 y= − x 2 + x + 10 9 9 Donde y es la altura, en pies, y x es la distancia horizontal desde el extremo del trampolín, en pies. ¿Cuál es la altura máxima que alcanza el clavadista? Sean A = {1, 3, 5,7}y B = {2, 4, 6}. Sea R: A → B una relación definida por R ={(x, y)/ y = x +1}. Escribir R por extensión. (4 ptos) -2-
  3. 3 Un maestro constructor prepara una mezcla con 40 paladas de arena y 24 de cemento. ¿Cuál es la razón entre cemento y arena? a) 3/7 b) 3/5 c) 5/3 d) 7/3 e) 4/3 Tres números impares consecutivos suman 81. ¿Cuáles son los números? R: ______, ______, ______ Ocho obreros demoran 3 semanas en construir una casa. ¿Cuántas semanas demorarán 6 obreros en construir la misma casa, si trabajan el mismo número de horas diarias, con el mismo rendimiento? a) 4 semanas b) 3,5 semanas c) 5 semanas d) 5,5 semanas e) 6 semanas La edad de Pedro es el doble de la edad de María. Si en cinco años más la suma de sus edades será 43 años. ¿Qué edad tienen actualmente? a) María: 10 y Pedro: 20 b) María: 11 y Pedro: 22 c) María: 9 y Pedro: 18 d) María: 12 y Pedro: 24 e) María: 13 y Pedro: 26 En un curso de 45 alumnos, 25 practican básquetbol. ¿Qué fracción representa a los que no practican ese deporte? a) 4/9 b) 3/7 c) 9/4 d) 5/7 e) 5/9 La suma de dos números es 100 y el doble del mayor equivale al triple del menor. Hallar los números. a) 80 y 20 b) 60 y 40 c) 25 y 75 d) 70 y 100 e) 10 y 90 ( ) 0 El valor de 3 x 5 y 2 z 4 , si x = 2 y = -1 z=1 a) 96 b) -96 c) -1 d) 1 e) -32 6m 3 n 5 ÷ (−2m 2 n 3 ) a) -3mn2 b) -3m2n c) 3mn2 d) 3m2n e) -3mn3 -3-
  4. 4 −3  1 −2   a  = 2  a) 8a6 b) 8a5 1 6 c) a 2 1 5 d) a 2 1 −6 e) a 8 44 +44 +44 +44 = a) 410 b) 210 c) 25 d) 216 e) 416 (3 )−1 −2 = a) 9 1 b) 9 c) 3 1 d) 3 e) -9 4x : 82x = 1 a) 2x 1 b) 24x 1 c) 4x 1 d) 22x 1 e) 44x (0.5)x ⋅ (0.1)x ⋅ (40 )x = x a) 2 b) 44 c) 20x d) 23x e) Otro (3 ) ⋅ (3 ) ⋅ (3 ) −1 2 2 −1 −1 −2 = 1 a) 3 b) 9 -4-
  5. 5 1 c) 9 d) -3 e) -9 (a + b )x + y : (a + b )x − y = 2x a) (a + b ) −2 x b) (a + b ) −2 y c) (a + b ) 2y d) (a + b ) e) (a + b ) Si 12 es el 40% de un número. ¿Cuál es el número? a) 3 b) 30 c) 40 d) 48 e) 300 El número 0,0005 expresado en % es: a) 0,0005% b) 0,5% c) 0,05% d) 5% e) 50% En una construcción de un edificio se necesitan 300 carpinteros. Si se contratan 240, ¿qué % de vacantes queda por proveer? a) 5 % b) 20 % c) 25 % d) 60 % e) 80 % El 10% de P es Q y Q es el 10% de 100. Entonces el valor de P es: a) 1000 b) 1 c) 0,1 d) 10 e) 100 El 25% del 50% de un préstamo es $200.000. Entonces, el préstamo es por a) $1.600.000 b) $800.000 c) $160.000 d) $2.400.000 e) N.A. Cuatro pares de zapatos valen $ t. Entonces dos docenas de zapatos valen: a) $ 6t b) $ 3t c) $ t/3 d) $ 3t/8 e) $ (t + 3) Reducir 4p – q – {– r + [ − p + q – (r – p + 5q) – (r – q)] – p} = a) 5p + 2q + 3r b) 4p + 3q – 3r c) -3p + 2q + 3r d) -5p + 3q – 3r -5-
  6. 6 e) 3p - 2q + 3r Reducir 3x − 2y − 7xy − 12x − 9y + 6xy = a) − 8x − 13y − 4xy b) 9x − 11y − xy c) 4x − 12y − xy d) − 9x − 11y − xy e) − 7x + 12y − xy 4a 2 − 1 2a − 1 2 2 : = a b + 3ab 5ab + 15 5( 2a + 1) a) ab 3(5a + 2) b) ab 5( 2a − 1) c) 2ab 7( 2a − 1) d) 3b 5( a + 1) e) b El valor de X en 15(x -1) + 4(x + 3) = 2 (x + 7) a) 2 b) 1 c) 0 d) -1 e) 3 2 2 Resolver la ecuación ( x + 1) = 12 + ( x − 5 ) , encontrar X: a) 1 b) 2 c) 3 d) 4 e) 0 ax bx 1 1 − = + , despejar X: b a a b 1 a) a−b 1 b) a+b 1 c) a a d) a−b 2b e) a+b (a + b + c )x − (a + b + x )c = (a + x + c )b − (x + b + c )a , encontrar valor de X: a) bc/a b) b/a c) c/b d) ab/c e) ca/b -6-
  7. 7 2 • 10-4 • 4 • 106 = f) 800 g) 8 h) 80 i) 8 • 1010 j) 0,08 (0,25)-3= a) 16 b) 1/64 c) 64 d) ¼ e) 4 x2 2x : = 3y2 y3 xy f) 6 g) x3 y 2 xy 5 h) 6 x3 y i) 6 j) e) N.A. Resolver aplicando todas las propiedades de potencias: Ejercicio: Nº 1 Resolución: •Se despeja x en la segunda ecuación: x = 15 + y • Se sustituye este valor de x en la primera ecuación: -7-
  8. 8 15+y 2y 2 2 - 4 = 0 (Pero 4 = 2 ) 15+y 2 2y 2 - (2 ) = 0 15+y 4y 15+y 4y 2 -2 =0⇒2 =2 ⇒ ⇒ 15 + y = 4y ⇒ 3y = 15 ⇒ y = 5 • Se sustituye el valor de y = 5 en x = 15 + y: x = 15 + 5 = 20 • Por tanto, y = 5 x = 20 Nº 2 Resolución: Se ponen todos los factores como potencia de base 2: Resolviendo este sistema de ecuaciones por cualquier método resulta, x = -2; y = 1 Nº 3 Resolución: • Para obtener los valores de x e y hay que deshacer el cambio: x x 3 a=8⇒2 =8⇒2 =2 ⇒x=3 y y 4 b = 16 ⇒ 2 = 16 ⇒ 2 = 2 ⇒ y = 4 ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Nº 4 -8-
  9. 9 Nº 5 Nº 6 x 4 32 = 2 2 x−4 producto de los medios igual producto de los extremos : 32 x ⋅ 2 2 x − 4 = 4 igualando bases : 2 5 x ⋅ 2 2 x −4 = 2 2 conservando la base y sumando los exp onentes : 2 7 x −4 = 2 2 igualando bases : 7x − 4 = 2 7x = 6 6 x= 7 Nº 7 4 x −1 : 0,25 2 x + 3 = 32 4 −5 x ⋅ 0,255 x +1 2 x+3 5 x +1 1 1 4 x −1 :   = 32 4 − 5 x ⋅   4 4 igualando con base 2 2 2 x − 2 : 2 − 4 x − 6 = 2 20 − 25 x ⋅ 2 − 10 x − 2 2 6 x + 4 = 2 − 35 x + 18 6 x + 4 = − 35 x + 18 41 x = 14 14 x = 41 -9-
  10. 10 Nº 8 Nº 9 Nº 10 - 10 -
  11. 11 Nº 11 Nº 12 Ejercicios de ecuaciones exponenciales resueltos - 11 -
  12. 12 PROBLEMAS DE FUNCIONES EXPONENCIALES Obs. Cada desarrollo cuenta con la formula que representa a los enunciados. EJEMPLO. LA VIDA MEDIA DEL ESTRONCIO 90, ES DE 25 AÑOS. ESTO SIGNIFICA QUE LA MITAD DE CUALQUIER CANTIDAD DADA DE ESTRONCIO 90 SE DESINTEGRARÁ EN 25 AÑOS. A) SI UNA MUESTRA DE ESTRONCIO 90 TIENE UNA MASA DE 24 mg, ENCUENTRE UNA EXORESIÓN PARA LA MASA m(t) QUE QUEDA DESPUÉS DE t AÑOS. B) ENCUENTRE LA MASA RESTANTE DESPUÉS DE 40 AÑOS. SOLUCIÓN: −t A) m( t ) = 24 • 2 25 −40 B) m( 40) = 24 • 2 25 = 7.92 mg EJEMPLO. EN CONDICIONES IDEALES, SE SABE QUE CIERTA POBLACIÓN DE BACTERIAS SE DUPLICA CADA 3 HORAS. SUPONGA QUE PRIMERO HAY 100 BACTERIAS. A) ¿CUÁL ES EL TAMAÑO DE LA POBLACIÓN DEPUÉS DE 15 HORAS? B) ¿CUÁL ES EL TAMAÑO DESPUÉS DE t HORAS? C) ESTIME EL TAMAÑO DE LA POBLACIÓN DESPUÉS DE 20 HORAS SOLUCIÓN: 15 N ( 15) = 100 • 2 3 A) N (15) = 100 • 2 5 N (15) = 3200 BACTERIAS t B) N ( t ) = 100 • 2 3 20 C) N ( 20) = 100 • 2 3 N ( 20) = 10159 BACTERIAS EJEMPLO SI UNA POBLACIÓN DE BACTERIAS COMENZÓ CON 100 Y SE DUPLICA CADA TRES HORAS, LA CANTIDAD DE EJEMPLARES DESPUÉS DE t t HORAS ES N = f ( t ) = 100 • 2 3 A) ¿CUÁNDO HABRÁ 50000 EJEMPLARES? SOLUCIÓN: - 12 -
  13. 13 t 3 50000 = 100 • 2 t 3 ln 50000 = ln 100 • 2 t ln 50000 = ln 100 + ln 2 3  ln 50000 − ln 100  t = 3   ln 2  t = 26.897 hrs. EJEMPLO: EN ENERO DEL 2000 ADQUIRISTE UN AUTO EN $100000. SI CADA AÑO DISMINUYE 13% SU VALOR INICIAL, ¿CUÁNTO VALDRÁ EN EL AÑO 2009? SOLUCIÓN: t v( t ) = 100000 • ( 0.87) 9 v( 9) = 100000 • ( 0.87) v( 9) = $28554.4 EJEMPLO: SI INVIERTES $1500 EN UNA CUENTA BANCARIA QUE PROPORCIONA 23% DE INTERÉS ANUAL A PLAZO FIJO DE 5 AÑOS. ¿CUÁL ES EL MONTO QUE RECIBIRÁS AL CONCLUIR EL PLAZO DEL DEPÓSITO? SOLUCIÓN: v( t ) = 1500(1 + i ) t 5 v( 5) = 1500( 1.23) v( 5) = $4222.96 EJEMPLO: UN ALMACÉN DE APARATOS ELECTRODOMÉSTICOS LIQUIDA MERCANCÍA DE EXHIBICIÓN CON LIGEROS DETERIOROS, MEDIANTE EL SISTEMA DE REDUCIR CADA AÑO 35% EL PRECIO DE ESTA MERCANCÍA QUE VA QUEDANDO ALMACENADA. SI COMPRAS UN REFRIGERADOR ALMACENADO TRES AÑOS, CON UN PRECIO INICIAL DE $12455, ¿CUÁNTO PAGARÁS POR ÉL? SOLUCIÓN: t v( t ) = 12445 • ( 1 − 0.35) t v( t ) = 12445 • ( 0.65) 3 v( 3) = 12445 • ( 0.65) v( 3) = $3417.70 EJEMPLO: SI UN CUARTO DE JUGO DE NARANJA CONTIENE 200 mg DE VITAMINA C Y ÉSTA SE OXIDA A RAZÓN DE 12.5 mg CADA MINUTO, ¿CUÁNTOS mg DE VITAMINA HABRÁ EN EL JUGO SI LO CONSUMES DESPUÉS DE TRANSCURRIDOS 35 MINUTOS DESDE SU ELABORACIÓN? SOLUCIÓN: t  12 .5  O ( t ) = 200 • 1 −   200  t O ( t ) = 200 • ( 0.9375) 35 O ( 35) = 200 • ( 0.9375) O ( 35) = 20.89 m g - 13 -
  14. 14 EJEMPLO: EN UNA CIUDAD, DE 9000 HABITANTES SE ESPARCE UN RUMOR DE MODO QUE CADA HORA SE DUPLICA LA CANTIDAD DE PERSONAS QUE SE ENTERAN DEL MISMO. ¿CUÁNTAS PERSONAS CONOCERÁN EL RUMOR AL CABO DE 12 HORAS? SOLUCIÓN: N ( t ) = 2t N ( t ) = 212 N ( t ) = 4096 PERSONAS EJEMPLO: SI DEPOSITAS $100000 EN UNA CUENTA BANCARIA QUE TE PRODUCE INTERESES COMPUESTOS A 15% ANUAL. CALCULA EL SALDO EN TU CUENTA AL CABO DE TRES AÑOS, SI LOS INTERESES SE CAPITALIZAN CONTINUAMENTE. SOLUCIÓN: v( t ) = 100000 • e 0.15( t ) v( 3) = 100000 • e 0.15( 3) v( 3) = $156831.22 EJEMPLO: ¿CUÁNTO TIEMPO DEBES DEJAR $25000 EN UNA CUENTA QUE CAPITALIZA CONTINUAMENTE INTERESES A 18% ANUAL, PARA OBTENER $50000? SOLUCIÓN: 50000 = 25000 • e 0.18t ln 50000 = ln 25000 • e 0.18t ln 50000 = ln 25000 + ln e 0.18t ln 50000 = ln 25000 + 018t ln e . ln 50000 − ln 25000 t= 018 . t = 385 . LÍMITES Nº 1 - 14 -
  15. 15 Nº 2 Nº 3 - 15 -
  16. 16 Nº 4 Nº 5 Nº 6 Nº 7 - 16 -
  17. 17 Nº 8 DERIVADAS HALLAR LAS FUNCIONES DERIVADAS DE: Nº 1 ; 2. Evaluar los siguientes límites: a. b. c. d. e. f. g. h. i. j. k. l m. n. o. p. q. r. Otros ejercicios: - 17 -
  18. 18 ( lim 3x 2 − 6 x + 1 ) ( lim x 2 − 2 x + 1 ) ( lim − 3x 3 + x ) 1) x →1 2) x →∞ 3) x → −∞ x 2 − (a + 1)x + a x2 + x − 2  1 1  lim lim lim  +  4) x→a x2 − a2 5) x →1 x 2 − 2 x + 1 6)  x→∞ x + 2 x−2 x2 + x − 2 1 x4 lim lim lim x → −1 x 2 − 2 x + 1 x →∞ 2 x − 4x + 4 x →∞ − 2 x 4 + 3 x 3 − 6 7) 8) 9) 2 2 x − 6x + 9 x − 25 x3 − 2x 2 + x lim lim 2 lim 10) x →0 x2 11) x →5 x − 5 x 12) x→∞ 2x 2 − 6x 4 2 5 2 x −x − 3x + x x− a lim lim lim x→∞ x 5 + 1 x → −∞ 2x 2 − 1 x →a x−a 13) 14) 15) lim x →0 3+ x − 3 x 17) lim x →5 ( 3 x2 + 2 − x ) lim x →∞ x +1 − x + 2 x 16) 18) x2 +1 −1 x2 +1 lim lim 19) x→∞ x2 + 2 − 4 20) x → −∞ x +1 GUÍA DE DERIVADAS C a l c u l a m e d i a n t e f ór m u l a s d e d er i va d a s s i g u i e nt e s f u n c i o n es : 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. - 18 -
  19. 19 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. Ejercicios complementarios: 3 2 2 x 4 3x 2 3 6 1 3 1) f ( x) = 3x + x − x + 33 x 2) f ( x) = + − 2 − + 3 3) f (x) = x x + 2 − 3 4 2 x x x x x3 x2 3x 2 4 x − 2 x x 5x − 2 4) f ( x) = 5) f ( x) = 2 ( 3 ) 6) y = 4 x + 6 x − 2 17 4 2 7) y = x − 3 x + 6 54 x 3 4x − 1 1 8) y= (2 x + 1)3 - 19 -
Publicidad