SlideShare una empresa de Scribd logo
1 de 24
19-12-2016 Seguridad en
Dispositivos de
Almacenamiento
Seguridad de Servidores
INSTITUTO TECNOLÓGICO DE VILLAHERMOSA
 Rivera Diaz Hugo Alberto
 Velázquez Velázquez Miguel Ángel
 Hernández Mezquita Uwe Andrés
 Israel
1
Contenido
1. Introducción................................................................................................................2
2. Almacenamiento en Red..............................................................................................3
3. Network Attached Storage (NAS)................................................................................4
4. Seguridad en dispositivos de almacenamiento.............................................................6
5. Diagrama clasificatorio del almacenamiento de la información (Redes)......................7
6. Protección de Dispositivos de almacenamiento en red.................................................8
6.1 Ejemplo: D-Link..................................................................................................8
6.1.1 Configuración de un Volumen RAID 1.........................................................9
6.1.2 Programación de Copias de Seguridad Automáticas ....................................9
7. Almacenamiento Redundante (RAID).......................................................................10
7.1 RAID 0 (Data Striping, Striped Volume)...........................................................11
7.2 RAID 1 (Mirroring)...........................................................................................13
7.3 RAID 2 ..............................................................................................................14
7.4 RAID 3 ..............................................................................................................15
7.5 RAID 4 ..............................................................................................................16
7.6 RAID 5 ..............................................................................................................17
8. Clúster de Servidores ................................................................................................20
8.1 Alto rendimiento................................................................................................21
8.2 Alta disponibilidad..............................................................................................21
8.3 Alta eficiencia:....................................................................................................21
9. Red SAN....................................................................................................................22
2
1. Introducción
Los datos son un activo esencial para la empresa de hoy en día. Sin acceso a sus datos,
es posible que las empresas puedan ofrecerles a sus clientes el nivel de servicio deseado.
El servicio al cliente deficiente, la pérdida de ventas o los problemas de colaboración en
los equipos son todos ejemplos de lo que puede suceder cuando los equipos de una
empresa no tienen acceso a la información.
Cada uno de estos problemas contribuye a una pérdida de eficiencia y posiblemente
pérdida de ingresos si los clientes no pueden esperar a que se corrija una avería en el
sistema. Asimismo, cuando se trata de almacenamiento de datos, las pequeñas empresas
se enfrentan a otros problemas, como la necesidad de que su solución de
almacenamiento sea:
 Costos más bajos
 fácil de operar (muchas pequeñas empresas no cuentan con personal de informática)
 capaz de crecer junto con sus necesidades de almacenamiento
Se estima que para el 2016, la capacidad de archivado de correos electrónicos por sí sola
incremente de 13.321,4 a 111.624,1 petabytes.1La capacidad de archivado de bases de
datos se espera que aumente aún más para ese entonces, de 13.527 a 106.472,54
petabytes.1 Estas incrementos drásticos exigen una solución que sea capaz de
expandirse a medida que crece la demanda de almacenamiento de su negocio.
Es entonces que los dispositivos de almacenamiento conectado en red (NAS) resultan
pertinentes. Los dispositivos NAS están adquiriendo cada vez más popularidad entre los
pequeños negocios y las empresas en diversos sectores como una solución de
almacenamiento económica y expansible.
3
2. Almacenamiento en Red
El concepto de almacenamiento en red es bastante sencillo de comprender. Se trata de
habilitar uno o varios discos duros en una red local, de forma que los datos que allí se
almacenen permanezcan accesibles a todos los dispositivos que quieran utilizarlos. De
esa forma, el usuario no solo tiene acceso al propio almacenamiento del dispositivo que
está usando, sino que también dispone de un almacenamiento común que comparte con
otros dispositivos conectados a esa misma red.
El almacenamiento conectado en red, Network Attached Storage (NAS), es el nombre
dado a una tecnología de almacenamiento dedicada a compartir la capacidad de
almacenamiento de un computador (servidor) con computadoras personales o servidores
clientes a través de una red (normalmente TCP/IP), haciendo uso de un sistema
operativo optimizado para dar acceso con los protocolos CIFS, NFS, FTP o TFTP.
Los sistemas NAS son dispositivos de almacenamiento a los que se accede desde los
equipos a través de protocolos de red (normalmente TCP/IP). También se podría
considerar un sistema NAS a un servidor (Microsoft Windows, Linux, etcétera) que
comparte sus unidades por red, pero la definición suele aplicarse a sistemas específicos.
Los protocolos de comunicaciones NAS están basados en archivos por lo que el cliente
solicita el archivo completo al servidor y lo maneja localmente, por lo que están
orientados a manipular una gran cantidad de pequeños archivos. Los protocolos usados
son protocolos de compartición de archivos como Network File System (NFS)
o Microsoft Common Internet File System (CIFS).
4
3. Network Attached Storage (NAS)
Un dispositivo de hardware simple, llamado NAS box o NAS head, actúa como interfaz
entre el NAS y los clientes.
Los clientes siempre se conectan al NAS head (más que a los dispositivos individuales
de almacenamiento) a través de una conexión Ethernet. NAS aparece en la LAN como
un simple nodo que es la dirección IP del dispositivo NAS head.
Estos dispositivos NAS no requieren pantalla, ratón o teclado, sino que poseen interfaz
web.
El opuesto a NAS es la conexión Direct Attached Storage (DAS) mediante
conexiones Small Computer System Interface (SCSI) o la conexión Storage Area
Network (SAN) por fibra óptica, en ambos casos con tarjetas de conexión específicas de
conexión al almacenamiento. Estas conexiones directas (DAS) son por lo habitual
dedicadas.
En la tecnología NAS, las aplicaciones y programas de usuario hacen las peticiones de
datos a los sistemas de archivos de manera remota mediante protocolos CIFS y NFS, y
el almacenamiento es local al sistema de archivos. Sin embargo, DAS y SAN realizan
las peticiones de datos directamente al sistema de archivos.
Las ventajas del NAS sobre la conexión directa (DAS) son la capacidad de compartir las
unidades, un menor coste, la utilización de la misma infraestructura de red y una gestión
más sencilla. Por el contrario, NAS tiene un menor rendimiento y confiabilidad por el
uso compartido de las comunicaciones.
5
NAS es muy útil para proporcionar el almacenamiento centralizado a computadoras
clientes en entornos con grandes cantidades de datos. NAS puede habilitar sistemas
fácilmente y con bajo costo con balance de carga, tolerancia a fallos y servidor web para
proveer servicios de almacenamiento. El crecimiento del mercado potencial para NAS
es el mercado de consumo donde existen grandes cantidades de datos multimedia.
Algunas de estas soluciones para el mercado doméstico son desarrolladas para
procesadores ARM, PowerPC o MIPS, corriendo sistemas operativos Linux embebido.
Ejemplos de estos son Melco Buffalo's TeraStation1 y Linksys NSLU22 .
1. Copia de seguridad y restauración.
2. Nube privada.
3. Compartición de archivos.
4. Volúmenes iSCSI.
5. Servidor web.
6. Servidor de impresión.
7. Servidor de VPN.
8. Virtualización.
6
4. Seguridad en dispositivos de almacenamiento
Una parte esencial de la seguridad de las redes de área de almacenamiento es la
ubicación física de todos y cada uno de los componentes de la red. La construcción de
un data center es sólo la mitad del desafío, es el hecho de decidir dónde pondremos los
componentes de la red (tanto software como hardware) la otra mitad y la más difícil.
Los componentes críticos de la red, como pueden ser los switches, matrices de
almacenamiento o hosts los cuales deben estar en el mismo data center. Al implementar
seguridad física, sólo los usuarios autorizados pueden tener la capacidad de realizar
cambios tanto físicos como lógicos en la topología, cambios como pueden ser: cambio
de puerto de los cables, acceso a reconfigurar algún equipo, agregar o quitar
dispositivos, entre otros.
La planificación también debe tomar en cuenta las cuestiones del medio ambiente como
puede ser la refrigeración, la distribución de energía y los requisitos para la
recuperación de desastres. Al mismo tiempo se debe asegurar que las redes IP que se
utilizan para gestionar los diversos componentes de la SAN son seguras y no son
accesibles para toda la compañía. También tiene sentido cambiar las contraseñas por
defecto que tienen los dispositivos de la red para así prevenir el uso no autorizado.
7
5. Diagrama clasificatorio del almacenamiento de la información (Redes)
8
6. Protección de Dispositivos de almacenamiento en red
Un disco duro puede contener numerosas carpetas de documentos, bibliotecas de
libros e innumerables CD y DVD, todo en un formato bien organizado y que permite
hacer búsquedas. No obstante, los discos duros no son infalibles. Como cualquier
técnico que se precie podrá decirle, la cuestión no es tanto si un disco fallará como
cuándo lo hará.
Descubra el almacenamiento en red NAS, su protección contra el desastre de un disco
duro estropeado. Con funciones avanzadas como copias de seguridad automáticas,
acceso remoto a los archivos y la posibilidad de grabar los datos en dos unidades en
espejo para obtener la máxima protección, NAS ofrece flexibilidad y protección
avanzadas que no encontrará en los discos duros externos convencionales.
6.1 Ejemplo: D-Link
Citando un ejemplo de un producto NAS encontrado en la web: “D-Link ofrece dos
nuevos dispositivos NAS diseñados pensando en una fácil protección de sus archivos:
el sistema de almacenamiento en red NAS ShareCenter® 2-Bay (DNS-320), ideal
para hacer copias de seguridad de los archivos, y el sistema de almacenamiento en red
ShareCenter 2-Bay, ideal para transmitir contenidos multimedia (DNS-325),que
ofrece un procesamiento más rápido y aplicaciones de transmisión para que pueda
disfrutar de su música y vídeos con facilidad en dispositivos conectados en red.
Además, ofrece servicios Cloud con aplicaciones gratuitas para acceder desde
iPhone/iPad/Android/Windows Phone. Estas unidades pueden adquirirse con discos
duros preinstalados o bien instalar sus propios discos duros de prácticamente
9
cualquier marca. Por eso, lo primero será instalar un par de discos duros de igual
capacidad, una operación sencilla y para la que no necesita herramientas. Después,
estará listo para empezar a proteger sus archivos”
6.1.1 Configuración de un Volumen RAID 1
Formatear los discos duros para crear un RAID (un conjunto redundante de discos
independientes) es una forma estupenda de proteger los archivos digitales. RAID 1
duplica los datos almacenados en una pareja de discos duros para proteger sus archivos
en caso de que falle uno de ellos.
Con los dispositivos NAS ShareCenter, configurar un RAID 1 es muy sencillo. El
asistente de configuración ShareCenter de D-Link le orienta a través de los pasos
necesarios. Seleccione sus unidades, especifique el nivel de RAID y espere a que el
dispositivo NAS se configure automáticamente. Después de configurar RAID 1, en caso
de que falle una de las unidades, podrá simplemente sustituirla por otra. El conjunto se
restablecerá automáticamente usando el nuevo disco duro.
6.1.2 Programación de Copias de Seguridad Automáticas
Otra extraordinaria prestación de los dispositivos NAS es la capacidad de programar
copias de seguridad automáticas para no tener que recordar hacerlas manualmente. Las
herramientas incluidas con los DNS-320 y DNS-325 le permiten realizar una copia de
seguridad de una carpeta compartida en un ordenador conectado a la red. Con NAS
ShareCenter, se tarda un minuto en programar copias de seguridad automáticas. Solo tiene
que abrir la pestaña Aplicaciones (enlace Copias de seguridad locales) y después activar
una programación recurrente. No volverá a olvidar una copia de seguridad.
Nota para usuarios de Mac: Los dispositivos NAS ShareCenter de D-Link® son
compatibles con las copias de seguridad basadas en instantáneas de Time Machine de
Apple.
10
7. Almacenamiento Redundante (RAID)
En informática, el acrónimo RAID (del inglés Redundant Array of Inexpensive Disks o,
más común a día de hoy, Redundant Array of Independent Disks), traducido como
«conjunto redundante de discos Independientes», hace referencia a un sistema de
almacenamiento de datos en tiempo real que utiliza múltiples unidades de
almacenamiento de datos (discos duros o SSD) entre los que se distribuyen o replican
los datos. Dependiendo de su configuración (a la que suele llamarse «nivel»), los
beneficios de un RAID respecto a un único disco son uno o varios de los siguientes:
mayor integridad, mayor tolerancia a fallos, mayor throughput (rendimiento) y
mayor capacidad. En sus implementaciones originales, su ventaja clave era la habilidad
de combinar varios dispositivos de bajo coste y tecnología más antigua en un conjunto
que ofrecía mayor capacidad, fiabilidad, velocidad o una combinación de éstas que un
solo dispositivo de última generación y coste más alto.
En el nivel más simple, un RAID combina varios discos duros en una sola unidad lógica.
Así, en lugar de ver varios discos duros diferentes, el sistema operativo ve uno solo. Los
RAIDs suelen usarse en servidores y normalmente (aunque no es necesario) se
implementan con unidades de disco de la misma capacidad. Debido al descenso en el
precio de los discos duros y la mayor disponibilidad de las opciones RAID incluidas en
los chipsets de las placas base, los RAIDs se encuentran también como opción en
las computadoras personales más avanzadas. Esto es especialmente frecuente en las
computadoras dedicadas a tareas intensivas y que requiera asegurar la integridad de los
datos en caso de fallo del sistema. Esta característica está disponible en los sistemas RAID
por hardware (dependiendo de que estructura elijamos). Por el contrario, los sistemas
basados en software son mucho más flexibles (permitiendo, por ejemplo, construir RAID
de particiones en lugar de discos completos y agrupar en un mismo RAID discos
11
conectados en varias controladoras) y los basados en hardware añaden un punto de fallo
más al sistema (la controladora RAID).
Todas las implementaciones pueden soportar el uso de uno o más discos de reserva (hot
spare), unidades preinstaladas que pueden usarse inmediatamente (y casi siempre
automáticamente) tras el fallo de un disco del RAID. Esto reduce el tiempo del período
de reparación al acortar el tiempo de reconstrucción del RAID.
Los niveles RAID más comúnmente usados son:
 RAID 0: Conjunto dividido
 RAID 1: Conjunto en espejo
 RAID 5: Conjunto dividido con paridad distribuida
7.1 RAID 0 (Data Striping, Striped Volume)
Un RAID 0 (también llamado conjunto dividido, volumen dividido, volumen
seccionado) distribuye los datos equitativamente entre dos o más discos (usualmente se
ocupa el mismo espacio en dos o más discos) sin información de paridad que
proporcione redundancia. Es importante señalar que el RAID 0 no era uno de los niveles
12
RAID originales y que no es redundante. El RAID 0 se usa normalmente para
proporcionar un alto rendimiento de escritura ya que los datos se escriben en dos o más
discos de forma paralela, aunque un mismo fichero solo está presente una vez en el
conjunto. RAID 0 también puede utilizarse como forma de crear un pequeño número de
grandes discos virtuales a partir de un gran número de pequeños discos físicos. Un
RAID 0 puede ser creado con discos de diferentes tamaños, pero el espacio de
almacenamiento añadido al conjunto estará limitado por el tamaño del disco más
pequeño (por ejemplo, si un disco de 450 GB se divide con uno de 100 GB, el tamaño
del conjunto resultante será sólo de 200 GB, ya que cada disco aporta 100 GB). Una
buena implementación de un RAID 0 dividirá las operaciones de lectura y escritura en
bloques de igual tamaño, por lo que distribuirá la información equitativamente entre los
dos discos. También es posible crear un RAID 0 con más de dos discos, si bien, la
fiabilidad del conjunto será igual a la fiabilidad media de cada disco entre el número de
discos del conjunto; es decir, la fiabilidad total —medida como MTTF o MTBF— es
(aproximadamente) inversamente proporcional al número de discos del conjunto (pues
para que el conjunto falle es suficiente con que lo haga cualquiera de sus discos). No
debe confundirse RAID 0 con un Volumen Distribuido (Spanned Volume) en el cual se
agregan múltiples espacios no usados de varios discos para formar un único disco
virtual. Puede que en un Volumen Distribuido el fichero a recuperar esté presente en un
solo disco del conjunto debido a que aquí no hay una distribución equitativa de los datos
(como dijimos para RAID 0), por lo tanto, en ese caso no sería posible la recuperación
paralela de datos y no tendríamos mejora del rendimiento de lectura.
13
7.2RAID 1 (Mirroring)
Un RAID 1 crea una copia exacta (o espejo) de un conjunto de datos en dos o más discos.
Esto resulta útil cuando queremos tener más seguridad desaprovechando capacidad, ya
que, si perdemos un disco, tenemos el otro con la misma información. Un conjunto RAID
1 sólo puede ser tan grande como el más pequeño de sus discos. Un RAID 1 clásico
consiste en dos discos en espejo, lo que incrementa exponencialmente la fiabilidad
respecto a un solo disco; es decir, la probabilidad de fallo del conjunto es igual al producto
de las probabilidades de fallo de cada uno de los discos (pues para que el conjunto falle
es necesario que lo hagan todos sus discos).
Adicionalmente, dado que todos los datos están en dos o más discos, con hardware
habitualmente independiente, el rendimiento de lectura se incrementa aproximadamente
como múltiplo lineal del número de copias; es decir, un RAID 1 puede estar leyendo
simultáneamente dos datos diferentes en dos discos diferentes, por lo que su rendimiento
se duplica. Para maximizar los beneficios sobre el rendimiento del RAID 1 se recomienda
el uso de controladoras de disco independientes, una para cada disco (práctica que algunos
denominan splitting o duplexing).
14
Como en el RAID 0, el tiempo medio de lectura se reduce, ya que los sectores a buscar
pueden dividirse entre los discos, bajando el tiempo de búsqueda y subiendo la tasa de
transferencia, con el único límite de la velocidad soportada por la controladora RAID. Sin
embargo, muchas tarjetas RAID 1 IDE antiguas leen sólo de un disco de la pareja, por lo
que su rendimiento es igual al de un único disco. Algunas implementaciones RAID 1
antiguas también leen de ambos discos simultáneamente y comparan los datos para
detectar errores.
Al escribir, el conjunto se comporta como un único disco, dado que los datos deben ser
escritos en todos los discos del RAID 1. Por tanto, el rendimiento de escritura no mejora.
El RAID 1 tiene muchas ventajas de administración. Por ejemplo, en algunos
entornos 24/7, es posible «dividir el espejo»: marcar un disco como inactivo, hacer
una copia de seguridad de dicho disco y luego «reconstruir» el espejo. Esto requiere que
la aplicación de gestión del conjunto soporte la recuperación de los datos del disco en el
momento de la división. Este procedimiento es menos crítico que la presencia de una
característica de snapshot en algunos sistemas de archivos, en la que se reserva algún
espacio para los cambios, presentando una vista.
7.3RAID 2
Un RAID 2 usa división a nivel de bits con un disco de paridad dedicado y usa un código
de Haming para la corrección de errores. El RAID 2 se usa rara vez en la práctica. Uno
15
de sus efectos secundarios es que normalmente no puede atender varias peticiones
simultáneas, debido a que por definición cualquier simple bloque de datos se dividirá por
todos los miembros del conjunto, residiendo la misma dirección dentro de cada uno de
ellos. Así, cualquier operación de lectura o escritura exige activar todos los discos del
conjunto, suele ser un poco lento porque se producen cuellos de botella. Son discos
paralelos, pero no son independientes (no se puede leer y escribir al mismo tiempo).
Teóricamente, un RAID 2 necesitaría 39 discos en un sistema informático moderno de 32
bits: 32 se usarían para almacenar los bits individuales que forman cada palabra y 7 se
usarían para la corrección de errores.
7.4 RAID 3
Un RAID 3 divide los datos a nivel de bytes en lugar de a nivel de bloques. Los discos
son sincronizados por la controladora para funcionar al unísono. Éste es el único nivel
RAID original que actualmente no se usa. Permite tasas de transferencias
extremadamente altas.
En el ejemplo del gráfico, una petición del bloque «A» formado por los bytes A1 a A6
requeriría que los tres discos de datos buscaran el comienzo (A1) y devolvieran su
contenido. Una petición simultánea del bloque «B» tendría que esperar a que la anterior
concluyese
16
7.5 RAID 4
Un RAID 4, también conocido como IDA (acceso independiente con discos
dedicados a la paridad) usa división a nivel de bloques con un disco
de paridad dedicado. Necesita un mínimo de 3 discos físicos. El RAID 4 es parecido al
RAID 3 excepto porque divide a nivel de bloques en lugar de a nivel de bytes. Esto
permite que cada miembro del conjunto funcione independientemente cuando se solicita
un único bloque. Si la controladora de disco lo permite, un conjunto RAID 4 puede
servir varias peticiones de lectura simultáneamente. En principio también sería posible
servir varias peticiones de escritura simultáneamente, pero al estar toda la información
de paridad en un solo disco, éste se convertiría en el cuello de botella del conjunto.
En el gráfico de ejemplo anterior, una petición del bloque «A1» sería servida por el
disco 0. Una petición simultánea del bloque «B1» tendría que esperar, pero una petición
de «B2» podría atenderse concurrentemente
17
7.6 RAID 5
Un RAID 5 (también llamado distribuido con paridad) es una división de datos a nivel
de bloques que distribuye la información de paridad entre todos los discos miembros del
conjunto. El RAID 5 ha logrado popularidad gracias a su bajo coste de redundancia.
Generalmente, el RAID 5 se implementa con soporte hardware para el cálculo de la
paridad. RAID 5 necesitará un mínimo de 3 discos para ser implementado.
En el gráfico de ejemplo anterior, una petición de lectura del bloque «A1» sería servida
por el disco 0. Una petición de lectura simultánea del bloque «B1» tendría que esperar,
pero una petición de lectura de «B2» podría atenderse concurrentemente ya que sería
servida por el disco 1.
Cada vez que un bloque de datos se escribe en un RAID 5, se genera un bloque de paridad
dentro de la misma división (stripe). Un bloque se compone a menudo de muchos sectores
consecutivos de disco. Una serie de bloques (un bloque de cada uno de los discos del
conjunto) recibe el nombre colectivo de división (stripe). Si otro bloque, o alguna porción
de un bloque es escrita en esa misma división, el bloque de paridad (o una parte del
mismo) es recalculada y vuelta a escribir. El disco utilizado por el bloque de paridad está
escalonado de una división a la siguiente, de ahí el término «bloques de paridad
18
distribuidos». Las escrituras en un RAID 5 son costosas en términos de operaciones de
disco y tráfico entre los discos y la controladora.
Los bloques de paridad no se leen en las operaciones de lectura de datos, ya que esto sería
una sobrecarga innecesaria y disminuiría el rendimiento. Sin embargo, los bloques de
paridad se leen cuando la lectura de un sector de datos provoca un error de CRC. En este
caso, el sector en la misma posición relativa dentro de cada uno de los bloques de datos
restantes en la división y dentro del bloque de paridad en la división se utiliza para
reconstruir el sector erróneo. El error CRC se oculta así al resto del sistema. De la misma
forma, si falla un disco del conjunto, los bloques de paridad de los restantes discos son
combinados matemáticamente con los bloques de datos de los restantes discos para
reconstruir los datos del disco que ha fallado «al vuelo».
Lo anterior se denomina a veces Modo Interino de Recuperación de Datos (Interim Data
Recovery Mode). El sistema sabe que un disco ha fallado, pero sólo con el fin de que
el sistema operativo pueda notificar al administrador que una unidad necesita ser
reemplazada: las aplicaciones en ejecución siguen funcionando ajenas al fallo. Las
lecturas y escrituras continúan normalmente en el conjunto de discos, aunque con alguna
degradación de rendimiento. La diferencia entre el RAID 4 y el RAID 5 es que, en el
Modo Interno de Recuperación de Datos, el RAID 5 puede ser ligeramente más rápido,
debido a que, cuando el CRC y la paridad están en el disco que falló, los cálculos no
tienen que realizarse, mientras que en el RAID 4, si uno de los discos de datos falla, los
cálculos tienen que ser realizados en cada acceso.
El fallo de un segundo disco provoca la pérdida completa de los datos.
El número máximo de discos en un grupo de redundancia RAID 5 es teóricamente
ilimitado, pero en la práctica es común limitar el número de unidades. Los inconvenientes
19
de usar grupos de redundancia mayores son una mayor probabilidad de fallo simultáneo
de dos discos, un mayor tiempo de reconstrucción y una mayor probabilidad de hallar un
sector irrecuperable durante una reconstrucción. A medida que el número de discos en un
conjunto RAID 5 crece, el MTBF (tiempo medio entre fallos) puede ser más bajo que el
de un único disco. Esto sucede cuando la probabilidad de que falle un segundo disco en
los N-1 discos restantes de un conjunto en el que ha fallado un disco en el tiempo
necesario para detectar, reemplazar y recrear dicho disco es mayor que la probabilidad de
fallo de un único disco. Una alternativa que proporciona una protección de paridad dual,
permitiendo así mayor número de discos por grupo, es el RAID 6.
Algunos vendedores RAID evitan montar discos de los mismos lotes en un grupo de
redundancia para minimizar la probabilidad de fallos simultáneos al principio y el final
de su vida útil.
Las implementaciones RAID 5 presentan un rendimiento malo cuando se someten a
cargas de trabajo que incluyen muchas escrituras más pequeñas que el tamaño de una
división (stripe). Esto se debe a que la paridad debe ser actualizada para cada escritura,
lo que exige realizar secuencias de lectura, modificación y escritura tanto para el bloque
de datos como para el de paridad. Implementaciones más complejas incluyen a
menudo cachés de escritura no volátiles para reducir este problema de rendimiento.
En el caso de un fallo del sistema cuando hay escrituras activas, la paridad de una división
(stripe) puede quedar en un estado inconsistente con los datos. Si esto no se detecta y
repara antes de que un disco o bloque falle, pueden perderse datos debido a que se usará
una paridad incorrecta para reconstruir el bloque perdido en dicha división. Esta potencial
vulnerabilidad se conoce a veces como «agujero de escritura». Son comunes el uso de
caché no volátiles y otras técnicas para reducir la probabilidad de ocurrencia de esta
vulnerabilidad.
20
8. Clúster de Servidores
Este tipo de sistemas se basa en la unión de varios servidores que trabajan como si de uno
sólo se tratase. Los sistemas clúster han evolucionado mucho desde su primera aparición,
ahora se pueden crear distintos tipos de clúster, en función de lo que se necesite:
1. Unión de Hardware
2. Clúster de Software
3. Alto rendimiento de bases de datos
Estas son solo algunas de las opciones que tenemos disponibles. En resumen, clúster es
un grupo de múltiples ordenadores unidos mediante una red de alta velocidad, de tal forma
que el conjunto es visto como un único ordenador, más potente que los comunes de
escritorio. De un sistema de este tipo se espera que presente combinaciones de los
siguientes servicios:
1. Alto rendimiento
2. Alta disponibilidad
3. Equilibrio de carga
4. Escalabilidad
Para que un sistema clúster funcione no es necesario que todas las máquinas dispongan
del mismo Hardware y sistema operativo (clúster heterogéneo). Este tipo de sistemas debe
de disponer de un interfaz de manejo de clúster, la cual se encargue de interactuar con el
usuario y los procesos, repartiendo la carga entre las diferentes máquinas del grupo.
El término clúster tiene diferentes connotaciones para diferentes grupos de personas. Los
tipos de clústeres, establecidos de acuerdo con el uso que se dé y los servicios que ofrecen,
21
determinan el significado del término para el grupo que lo utiliza. Los clústeres pueden
clasificarse según sus características:
 HPCC (High Performance Computing Clusters: clústeres de alto rendimiento).
 HA o HACC (High Availability Computing Clusters: clústeres de alta
disponibilidad).
 HT o HTCC (High Throughput Computing Clusters: clústeres de alta eficiencia).
8.1 Alto rendimiento
Son clústeres en los cuales se ejecutan tareas que requieren de gran capacidad
computacional, grandes cantidades de memoria, o ambos a la vez. El llevar a cabo estas
tareas puede comprometer los recursos del clúster por largos periodos de tiempo.
8.2 Alta disponibilidad
Son clústeres cuyo objetivo de diseño es el de proveer disponibilidad y confiabilidad.
Estos clústeres tratan de brindar la máxima disponibilidad de los servicios que ofrecen.
La confiabilidad se provee mediante software que detecta fallos y permite recuperarse
frente a los mismos, mientras que en hardware se evita tener un único punto de fallos.
8.3 Alta eficiencia:
Son clústeres cuyo objetivo de diseño es el ejecutar la mayor cantidad de tareas en el
menor tiempo posible. Existe independencia de datos entre las tareas individuales. El
retardo entre los nodos del clúster no es considerado un gran problema.
A pesar de las discrepancias a nivel de requisitos de las aplicaciones, muchas de las
características de las arquitecturas de hardware y software, que están por debajo de las
aplicaciones en todos estos clústeres, son las mismas. Más aún, un clúster de determinado
tipo, puede también presentar características de los otros.
22
9. Red SAN
Una red SAN se distingue de otros modos de almacenamiento en red por el modo de
acceso a bajo nivel. El tipo de tráfico en una SAN es muy similar al de los discos
duros como ATA, SATA y SCSI. En otros métodos de almacenamiento (como SMB o
NFS) el servidor solicita un determinado fichero, por ejemplo "/home/usuario/wikipedia".
En una SAN el servidor solicita "el bloque 6000 del disco 4". La mayoría de las SAN
actuales usan el protocolo SCSI para acceder a los datos de la SAN, aunque no usen
interfaces físicas SCSI. Este tipo de redes de datos se han utilizado y se utiliza n
tradicionalmente en grandes mainframes como en IBM, SUN o HP. Aunque
recientemente con la incorporación de Microsoft se ha empezado a utilizar en máquinas
con sistemas operativos Microsoft Windows.
Una SAN es una red de almacenamiento dedicada que proporciona acceso de nivel de
bloque a varios Logical Unit Number (LUN). Un LUN, o número de unidad lógica, es un
disco virtual proporcionado por la SAN. El administrador del sistema tiene el mismo
acceso y los derechos al LUN como si fuera un disco directamente conectado a la misma.
El administrador puede particionar y formatear el disco en cualquier medio que él elija.
Dos protocolos de red utilizados en una SAN son Fibre Channel e iSCSI. Una red de
canal de fibra es una red muy rápida aislada normalmente del tráfico de la red LAN de la
empresa. Sin embargo, es muy cara. Las tarjetas de canal de fibra óptica cuestan alrededor
de mil dólares cada una. También requieren conmutadores especiales de canal de fibra.
iSCSI es una nueva tecnología que envía comandos SCSI sobre una red TCP/IP. Este
método no es tan rápido como una red Fibre Channel, pero ahorra costes, ya que utiliza
un hardware de red menos costoso.
23
A partir de desastres, como lo fue el "martes negro" en los atentados del 11 de
septiembre de 2001, la gente de TI han tomado acciones al respecto, con servicios de
cómo recuperarse ante un desastre, cómo recuperar miles de datos y lograr la continuidad
del negocio, una de las opciones es contar con la red de área de almacenamiento; sin
embargo, las compañías se pueden enfrentar a cientos de ataques, por lo que es necesario
contar con un plan en caso de contingencia; es de vital importancia que el sitio donde se
encuentre la SAN, se encuentre en un área geográfica distinta a donde se ubican los
servidores que contienen la información crítica. Además, se trata de un modelo
centralizado fácil de administrar, puede tener un bajo costo de expansión y
administración, lo que la hace una red fácilmente escalable; fiabilidad, debido a que se
hace más sencillo aplicar ciertas políticas para proteger a la red.

Más contenido relacionado

La actualidad más candente

Software de aplicación Programas utilitarios
Software de aplicación   Programas utilitariosSoftware de aplicación   Programas utilitarios
Software de aplicación Programas utilitariosJuan Drt
 
Comparacion de Gestores de Base de Datos
Comparacion de Gestores de Base de DatosComparacion de Gestores de Base de Datos
Comparacion de Gestores de Base de DatosVictor Zevallos
 
Seguridad sistemas operativos
Seguridad sistemas operativosSeguridad sistemas operativos
Seguridad sistemas operativosYohany Acosta
 
Sistema de archivos
Sistema de archivosSistema de archivos
Sistema de archivosDon Augusto
 
Integridad, robustez y estabilidad.
Integridad, robustez y estabilidad.Integridad, robustez y estabilidad.
Integridad, robustez y estabilidad.William Devia
 
Manual de team viewer
Manual de team viewerManual de team viewer
Manual de team viewerElmer Diaz
 
Introducción a la ingeniería del software - cuestionario
Introducción a la ingeniería del software -  cuestionarioIntroducción a la ingeniería del software -  cuestionario
Introducción a la ingeniería del software - cuestionarioSamuelSanchez136
 
Ventajas y desventajas del software libre
Ventajas y desventajas del software libreVentajas y desventajas del software libre
Ventajas y desventajas del software libreAriana
 
Arquitectura y caracteristicas de los sistemas operativos windows
Arquitectura y caracteristicas de los sistemas operativos windowsArquitectura y caracteristicas de los sistemas operativos windows
Arquitectura y caracteristicas de los sistemas operativos windowsslipkdany21
 
Diferencias entre una PC y un Servidor
Diferencias entre una PC y un Servidor Diferencias entre una PC y un Servidor
Diferencias entre una PC y un Servidor Elizabeth Gonzalez
 
Tic almacenamiento.en.la.nube
Tic almacenamiento.en.la.nubeTic almacenamiento.en.la.nube
Tic almacenamiento.en.la.nubeAndreaa Rodriguez
 
SISTEMAS OPERATIVOS.pptx
SISTEMAS OPERATIVOS.pptxSISTEMAS OPERATIVOS.pptx
SISTEMAS OPERATIVOS.pptxMaydelAgameZ
 
El software libre.ppt
El software libre.pptEl software libre.ppt
El software libre.pptcultcaadmin
 
DIRECCIONES Y CLASES IP
DIRECCIONES Y CLASES IPDIRECCIONES Y CLASES IP
DIRECCIONES Y CLASES IPDiego Villacis
 

La actualidad más candente (20)

Software de aplicación Programas utilitarios
Software de aplicación   Programas utilitariosSoftware de aplicación   Programas utilitarios
Software de aplicación Programas utilitarios
 
Comparacion de Gestores de Base de Datos
Comparacion de Gestores de Base de DatosComparacion de Gestores de Base de Datos
Comparacion de Gestores de Base de Datos
 
Seguridad sistemas operativos
Seguridad sistemas operativosSeguridad sistemas operativos
Seguridad sistemas operativos
 
Sistema de archivos
Sistema de archivosSistema de archivos
Sistema de archivos
 
Intranet
IntranetIntranet
Intranet
 
Integridad, robustez y estabilidad.
Integridad, robustez y estabilidad.Integridad, robustez y estabilidad.
Integridad, robustez y estabilidad.
 
Manual de team viewer
Manual de team viewerManual de team viewer
Manual de team viewer
 
Ciber café
Ciber caféCiber café
Ciber café
 
Introducción a la ingeniería del software - cuestionario
Introducción a la ingeniería del software -  cuestionarioIntroducción a la ingeniería del software -  cuestionario
Introducción a la ingeniería del software - cuestionario
 
Ventajas y desventajas del software libre
Ventajas y desventajas del software libreVentajas y desventajas del software libre
Ventajas y desventajas del software libre
 
Arquitectura y caracteristicas de los sistemas operativos windows
Arquitectura y caracteristicas de los sistemas operativos windowsArquitectura y caracteristicas de los sistemas operativos windows
Arquitectura y caracteristicas de los sistemas operativos windows
 
Comparticion de recursos- Sistemas Distribuidos
Comparticion de recursos- Sistemas Distribuidos Comparticion de recursos- Sistemas Distribuidos
Comparticion de recursos- Sistemas Distribuidos
 
Diferencias entre una PC y un Servidor
Diferencias entre una PC y un Servidor Diferencias entre una PC y un Servidor
Diferencias entre una PC y un Servidor
 
Tic almacenamiento.en.la.nube
Tic almacenamiento.en.la.nubeTic almacenamiento.en.la.nube
Tic almacenamiento.en.la.nube
 
SISTEMAS OPERATIVOS.pptx
SISTEMAS OPERATIVOS.pptxSISTEMAS OPERATIVOS.pptx
SISTEMAS OPERATIVOS.pptx
 
El software libre.ppt
El software libre.pptEl software libre.ppt
El software libre.ppt
 
COMPUTACION EN LA NUBE
COMPUTACION EN LA NUBECOMPUTACION EN LA NUBE
COMPUTACION EN LA NUBE
 
DIRECCIONES Y CLASES IP
DIRECCIONES Y CLASES IPDIRECCIONES Y CLASES IP
DIRECCIONES Y CLASES IP
 
Sistema operativo libre y propietario
Sistema operativo libre y propietarioSistema operativo libre y propietario
Sistema operativo libre y propietario
 
Ejemplos de modelo osi
Ejemplos de modelo osiEjemplos de modelo osi
Ejemplos de modelo osi
 

Destacado

Puntos importantes de la reforma en telecomunicaciones
Puntos importantes de la reforma en telecomunicacionesPuntos importantes de la reforma en telecomunicaciones
Puntos importantes de la reforma en telecomunicacionesHugo Alberto Rivera Diaz
 
Reconocimiento unidad 3 Metodos Numericos
Reconocimiento unidad 3 Metodos NumericosReconocimiento unidad 3 Metodos Numericos
Reconocimiento unidad 3 Metodos NumericosDiego Perdomo
 
Conversión de un AFN a un AFD.
Conversión de un AFN a un AFD.Conversión de un AFN a un AFD.
Conversión de un AFN a un AFD.Vikky Moscoso
 
Quiz 3 Metodos Numericos
Quiz 3 Metodos NumericosQuiz 3 Metodos Numericos
Quiz 3 Metodos NumericosDiego Perdomo
 
Leccion evaluativa 2
Leccion evaluativa 2Leccion evaluativa 2
Leccion evaluativa 2Diego Perdomo
 
Lenguajes autómatas.
Lenguajes autómatas.Lenguajes autómatas.
Lenguajes autómatas.LuiS YmAY
 
CODETEC- Proyecto Final Taller de Investigacion 2
CODETEC- Proyecto Final Taller de Investigacion 2CODETEC- Proyecto Final Taller de Investigacion 2
CODETEC- Proyecto Final Taller de Investigacion 2Hugo Alberto Rivera Diaz
 
Examen Final Ingles III 2011-II
Examen Final Ingles III 2011-IIExamen Final Ingles III 2011-II
Examen Final Ingles III 2011-IIDiego Perdomo
 
Aplicación de Sensor CNY70. REPORTE DE PRACTICA
Aplicación  de Sensor CNY70. REPORTE DE PRACTICAAplicación  de Sensor CNY70. REPORTE DE PRACTICA
Aplicación de Sensor CNY70. REPORTE DE PRACTICAHugo Alberto Rivera Diaz
 
Ejemplos de Pantallas con Resoluciones 2k,4k y 8k
Ejemplos de Pantallas con Resoluciones 2k,4k y 8kEjemplos de Pantallas con Resoluciones 2k,4k y 8k
Ejemplos de Pantallas con Resoluciones 2k,4k y 8kHugo Alberto Rivera Diaz
 
Alfabeto, Cadenas, Lenguajes, y Problemas
Alfabeto, Cadenas, Lenguajes, y ProblemasAlfabeto, Cadenas, Lenguajes, y Problemas
Alfabeto, Cadenas, Lenguajes, y ProblemasRaul
 
Reconocimiento unidad 2
Reconocimiento unidad 2Reconocimiento unidad 2
Reconocimiento unidad 2Diego Perdomo
 
Quiz 1 Métodos Numéricos
Quiz 1 Métodos NuméricosQuiz 1 Métodos Numéricos
Quiz 1 Métodos NuméricosDiego Perdomo
 

Destacado (20)

Puntos importantes de la reforma en telecomunicaciones
Puntos importantes de la reforma en telecomunicacionesPuntos importantes de la reforma en telecomunicaciones
Puntos importantes de la reforma en telecomunicaciones
 
Metodo congruencial mixto en java
Metodo congruencial mixto en javaMetodo congruencial mixto en java
Metodo congruencial mixto en java
 
Reconocimiento unidad 3 Metodos Numericos
Reconocimiento unidad 3 Metodos NumericosReconocimiento unidad 3 Metodos Numericos
Reconocimiento unidad 3 Metodos Numericos
 
Conversión de un AFN a un AFD.
Conversión de un AFN a un AFD.Conversión de un AFN a un AFD.
Conversión de un AFN a un AFD.
 
Quiz 3 Metodos Numericos
Quiz 3 Metodos NumericosQuiz 3 Metodos Numericos
Quiz 3 Metodos Numericos
 
Leccion evaluativa 2
Leccion evaluativa 2Leccion evaluativa 2
Leccion evaluativa 2
 
Lenguajes autómatas.
Lenguajes autómatas.Lenguajes autómatas.
Lenguajes autómatas.
 
CODETEC- Proyecto Final Taller de Investigacion 2
CODETEC- Proyecto Final Taller de Investigacion 2CODETEC- Proyecto Final Taller de Investigacion 2
CODETEC- Proyecto Final Taller de Investigacion 2
 
Examen Final Ingles III 2011-II
Examen Final Ingles III 2011-IIExamen Final Ingles III 2011-II
Examen Final Ingles III 2011-II
 
Aplicación de Sensor CNY70. REPORTE DE PRACTICA
Aplicación  de Sensor CNY70. REPORTE DE PRACTICAAplicación  de Sensor CNY70. REPORTE DE PRACTICA
Aplicación de Sensor CNY70. REPORTE DE PRACTICA
 
Ejemplos de Pantallas con Resoluciones 2k,4k y 8k
Ejemplos de Pantallas con Resoluciones 2k,4k y 8kEjemplos de Pantallas con Resoluciones 2k,4k y 8k
Ejemplos de Pantallas con Resoluciones 2k,4k y 8k
 
Alfabeto, Cadenas, Lenguajes, y Problemas
Alfabeto, Cadenas, Lenguajes, y ProblemasAlfabeto, Cadenas, Lenguajes, y Problemas
Alfabeto, Cadenas, Lenguajes, y Problemas
 
Diagrama de transición de estados
Diagrama de transición de estadosDiagrama de transición de estados
Diagrama de transición de estados
 
Reconocimiento unidad 2
Reconocimiento unidad 2Reconocimiento unidad 2
Reconocimiento unidad 2
 
ADMINISTRACION DE BASE DE DATOS UNIDAD 1
ADMINISTRACION DE BASE DE DATOS UNIDAD 1ADMINISTRACION DE BASE DE DATOS UNIDAD 1
ADMINISTRACION DE BASE DE DATOS UNIDAD 1
 
Quiz 1 Métodos Numéricos
Quiz 1 Métodos NuméricosQuiz 1 Métodos Numéricos
Quiz 1 Métodos Numéricos
 
Ejercicios
EjerciciosEjercicios
Ejercicios
 
Wronskyano de ecuacion diferencial 3x3
Wronskyano de ecuacion diferencial 3x3Wronskyano de ecuacion diferencial 3x3
Wronskyano de ecuacion diferencial 3x3
 
Características Generales de EIGRP
Características Generales de EIGRPCaracterísticas Generales de EIGRP
Características Generales de EIGRP
 
Practica7 transferencia registro
Practica7 transferencia registroPractica7 transferencia registro
Practica7 transferencia registro
 

Similar a Seguridad en Dispositivos de Almacenamiento

Tecnologia de redes
Tecnologia de redesTecnologia de redes
Tecnologia de redesYolanda Mora
 
Tecnologías de almacenamiento y compartición
Tecnologías de almacenamiento y comparticiónTecnologías de almacenamiento y compartición
Tecnologías de almacenamiento y comparticiónValentin Silva
 
Almacenammiento de informacion en la web
Almacenammiento de informacion en la webAlmacenammiento de informacion en la web
Almacenammiento de informacion en la webNelly Guzman
 
Clase04 Arquitectura PACS
Clase04 Arquitectura PACSClase04 Arquitectura PACS
Clase04 Arquitectura PACSEduardo Silva
 
Almacenamiento en la red
Almacenamiento en la redAlmacenamiento en la red
Almacenamiento en la redevelynmariana
 
Almacenamiento de Información para Empresas
Almacenamiento de Información para EmpresasAlmacenamiento de Información para Empresas
Almacenamiento de Información para EmpresasDaniel Remondegui
 
Servidores web de altas prestaciones. Tema 7
Servidores web de altas prestaciones. Tema 7Servidores web de altas prestaciones. Tema 7
Servidores web de altas prestaciones. Tema 7pacvslideshare
 
SERVIDOR NAS.pptx
SERVIDOR NAS.pptxSERVIDOR NAS.pptx
SERVIDOR NAS.pptxEnmerLR
 
Sistemas de Operacion - Presentación Servidor NAS
Sistemas de Operacion - Presentación Servidor NASSistemas de Operacion - Presentación Servidor NAS
Sistemas de Operacion - Presentación Servidor NASViviana Trujillo
 
Ajustes de privacidad Análisis de datos GRATIS Almacenamiento en la nube
Ajustes de privacidad Análisis de datos GRATIS Almacenamiento en la nubeAjustes de privacidad Análisis de datos GRATIS Almacenamiento en la nube
Ajustes de privacidad Análisis de datos GRATIS Almacenamiento en la nubeCarlos A. Gonzalez Hernandez
 
Almacenamiento en la nube
Almacenamiento en la nubeAlmacenamiento en la nube
Almacenamiento en la nubeDiana Vargas
 
Clase 04 Arquitectura PACS
Clase 04 Arquitectura PACSClase 04 Arquitectura PACS
Clase 04 Arquitectura PACSEduardo Silva
 
Tipos de almacenamiento
Tipos de almacenamientoTipos de almacenamiento
Tipos de almacenamientoSaul Torres
 
Trabajo en clase nathaly y melissa
Trabajo en clase nathaly y melissaTrabajo en clase nathaly y melissa
Trabajo en clase nathaly y melissaNVMG
 

Similar a Seguridad en Dispositivos de Almacenamiento (20)

Articulo redes san y nas
Articulo redes san y nasArticulo redes san y nas
Articulo redes san y nas
 
Tecnologia de redes
Tecnologia de redesTecnologia de redes
Tecnologia de redes
 
Tecnologías de almacenamiento y compartición
Tecnologías de almacenamiento y comparticiónTecnologías de almacenamiento y compartición
Tecnologías de almacenamiento y compartición
 
Almacenammiento de informacion en la web
Almacenammiento de informacion en la webAlmacenammiento de informacion en la web
Almacenammiento de informacion en la web
 
Clase04 Arquitectura PACS
Clase04 Arquitectura PACSClase04 Arquitectura PACS
Clase04 Arquitectura PACS
 
Almacenamiento en la red
Almacenamiento en la redAlmacenamiento en la red
Almacenamiento en la red
 
Almacenamiento de Información para Empresas
Almacenamiento de Información para EmpresasAlmacenamiento de Información para Empresas
Almacenamiento de Información para Empresas
 
Redes de area local (lan)
Redes de area local (lan)Redes de area local (lan)
Redes de area local (lan)
 
Gateway
GatewayGateway
Gateway
 
Asc6501
Asc6501 Asc6501
Asc6501
 
Servidores web de altas prestaciones. Tema 7
Servidores web de altas prestaciones. Tema 7Servidores web de altas prestaciones. Tema 7
Servidores web de altas prestaciones. Tema 7
 
SERVIDOR NAS.pptx
SERVIDOR NAS.pptxSERVIDOR NAS.pptx
SERVIDOR NAS.pptx
 
Sistemas de Operacion - Presentación Servidor NAS
Sistemas de Operacion - Presentación Servidor NASSistemas de Operacion - Presentación Servidor NAS
Sistemas de Operacion - Presentación Servidor NAS
 
Ajustes de privacidad Análisis de datos GRATIS Almacenamiento en la nube
Ajustes de privacidad Análisis de datos GRATIS Almacenamiento en la nubeAjustes de privacidad Análisis de datos GRATIS Almacenamiento en la nube
Ajustes de privacidad Análisis de datos GRATIS Almacenamiento en la nube
 
Almacenamiento en la nube
Almacenamiento en la nubeAlmacenamiento en la nube
Almacenamiento en la nube
 
Almacenamiento en la nube
Almacenamiento en la nubeAlmacenamiento en la nube
Almacenamiento en la nube
 
Almacenamiento en la nube
Almacenamiento en la nubeAlmacenamiento en la nube
Almacenamiento en la nube
 
Clase 04 Arquitectura PACS
Clase 04 Arquitectura PACSClase 04 Arquitectura PACS
Clase 04 Arquitectura PACS
 
Tipos de almacenamiento
Tipos de almacenamientoTipos de almacenamiento
Tipos de almacenamiento
 
Trabajo en clase nathaly y melissa
Trabajo en clase nathaly y melissaTrabajo en clase nathaly y melissa
Trabajo en clase nathaly y melissa
 

Más de Hugo Alberto Rivera Diaz

DIAGRAMA DE PROCESO-INSTALACION DE WINDOWS 10
DIAGRAMA DE PROCESO-INSTALACION DE WINDOWS 10DIAGRAMA DE PROCESO-INSTALACION DE WINDOWS 10
DIAGRAMA DE PROCESO-INSTALACION DE WINDOWS 10Hugo Alberto Rivera Diaz
 
Fractales + Trangulo de Sierpinski en Java
Fractales + Trangulo de Sierpinski  en JavaFractales + Trangulo de Sierpinski  en Java
Fractales + Trangulo de Sierpinski en JavaHugo Alberto Rivera Diaz
 
Conceptos Unidad 1 Lenguajes Automatas Introducción a la Teoría de Lenguaje...
Conceptos Unidad 1 Lenguajes Automatas Introducción  a  la Teoría de Lenguaje...Conceptos Unidad 1 Lenguajes Automatas Introducción  a  la Teoría de Lenguaje...
Conceptos Unidad 1 Lenguajes Automatas Introducción a la Teoría de Lenguaje...Hugo Alberto Rivera Diaz
 
Herramientas para manejo de bases de datos
Herramientas para manejo de bases de datosHerramientas para manejo de bases de datos
Herramientas para manejo de bases de datosHugo Alberto Rivera Diaz
 
Nuevas tecnologías y aplicaciones de los sistemas de bases de datos
Nuevas tecnologías y aplicaciones de los sistemas de bases de datosNuevas tecnologías y aplicaciones de los sistemas de bases de datos
Nuevas tecnologías y aplicaciones de los sistemas de bases de datosHugo Alberto Rivera Diaz
 
Cuadro comparativo Tipos de Investigación
Cuadro comparativo Tipos de InvestigaciónCuadro comparativo Tipos de Investigación
Cuadro comparativo Tipos de InvestigaciónHugo Alberto Rivera Diaz
 
¿How to make an Acoustic Guitar? Trabajo de Ingles.
¿How to make an Acoustic Guitar? Trabajo de Ingles.¿How to make an Acoustic Guitar? Trabajo de Ingles.
¿How to make an Acoustic Guitar? Trabajo de Ingles.Hugo Alberto Rivera Diaz
 
Cronograma Actividades. Implementacion de ALU con Bus controlado por Bluetoot...
Cronograma Actividades. Implementacion de ALU con Bus controlado por Bluetoot...Cronograma Actividades. Implementacion de ALU con Bus controlado por Bluetoot...
Cronograma Actividades. Implementacion de ALU con Bus controlado por Bluetoot...Hugo Alberto Rivera Diaz
 
Practica Resistencias Valor Practico y Relativo
Practica Resistencias Valor Practico y RelativoPractica Resistencias Valor Practico y Relativo
Practica Resistencias Valor Practico y RelativoHugo Alberto Rivera Diaz
 

Más de Hugo Alberto Rivera Diaz (20)

Tipos de Sensores Opticos
Tipos de Sensores OpticosTipos de Sensores Opticos
Tipos de Sensores Opticos
 
MANUAL DE MICROCONTROLADORES PIC
MANUAL DE MICROCONTROLADORES PICMANUAL DE MICROCONTROLADORES PIC
MANUAL DE MICROCONTROLADORES PIC
 
Actuadores
ActuadoresActuadores
Actuadores
 
Firewall Logico
Firewall LogicoFirewall Logico
Firewall Logico
 
DIAGRAMA DE PROCESO-INSTALACION DE WINDOWS 10
DIAGRAMA DE PROCESO-INSTALACION DE WINDOWS 10DIAGRAMA DE PROCESO-INSTALACION DE WINDOWS 10
DIAGRAMA DE PROCESO-INSTALACION DE WINDOWS 10
 
Fractales + Trangulo de Sierpinski en Java
Fractales + Trangulo de Sierpinski  en JavaFractales + Trangulo de Sierpinski  en Java
Fractales + Trangulo de Sierpinski en Java
 
Conceptos Unidad 1 Lenguajes Automatas Introducción a la Teoría de Lenguaje...
Conceptos Unidad 1 Lenguajes Automatas Introducción  a  la Teoría de Lenguaje...Conceptos Unidad 1 Lenguajes Automatas Introducción  a  la Teoría de Lenguaje...
Conceptos Unidad 1 Lenguajes Automatas Introducción a la Teoría de Lenguaje...
 
Herramientas para manejo de bases de datos
Herramientas para manejo de bases de datosHerramientas para manejo de bases de datos
Herramientas para manejo de bases de datos
 
Nuevas tecnologías y aplicaciones de los sistemas de bases de datos
Nuevas tecnologías y aplicaciones de los sistemas de bases de datosNuevas tecnologías y aplicaciones de los sistemas de bases de datos
Nuevas tecnologías y aplicaciones de los sistemas de bases de datos
 
Relación del DBA con otras áreas.
Relación del DBA con otras áreas.Relación del DBA con otras áreas.
Relación del DBA con otras áreas.
 
Cuadro comparativo de los diferentes DBMS
Cuadro comparativo de los diferentes DBMSCuadro comparativo de los diferentes DBMS
Cuadro comparativo de los diferentes DBMS
 
Cuadro comparativo Tipos de Investigación
Cuadro comparativo Tipos de InvestigaciónCuadro comparativo Tipos de Investigación
Cuadro comparativo Tipos de Investigación
 
¿How to make an Acoustic Guitar? Trabajo de Ingles.
¿How to make an Acoustic Guitar? Trabajo de Ingles.¿How to make an Acoustic Guitar? Trabajo de Ingles.
¿How to make an Acoustic Guitar? Trabajo de Ingles.
 
Tipos de multiplexacion
Tipos de multiplexacionTipos de multiplexacion
Tipos de multiplexacion
 
Técnicas de Modulacion
Técnicas de ModulacionTécnicas de Modulacion
Técnicas de Modulacion
 
Lenguaje de Transferencia de Registro
Lenguaje de Transferencia de RegistroLenguaje de Transferencia de Registro
Lenguaje de Transferencia de Registro
 
Cronograma Actividades. Implementacion de ALU con Bus controlado por Bluetoot...
Cronograma Actividades. Implementacion de ALU con Bus controlado por Bluetoot...Cronograma Actividades. Implementacion de ALU con Bus controlado por Bluetoot...
Cronograma Actividades. Implementacion de ALU con Bus controlado por Bluetoot...
 
Circuitos electricos
Circuitos electricosCircuitos electricos
Circuitos electricos
 
Practica Resistencias Valor Practico y Relativo
Practica Resistencias Valor Practico y RelativoPractica Resistencias Valor Practico y Relativo
Practica Resistencias Valor Practico y Relativo
 
Reporte-Instalando Windows Server 2012
Reporte-Instalando Windows Server 2012Reporte-Instalando Windows Server 2012
Reporte-Instalando Windows Server 2012
 

Último

Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Francisco Javier Mora Serrano
 
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdfECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdffredyflores58
 
sistema de construcción Drywall semana 7
sistema de construcción Drywall semana 7sistema de construcción Drywall semana 7
sistema de construcción Drywall semana 7luisanthonycarrascos
 
estadisticasII Metodo-de-la-gran-M.pdf
estadisticasII   Metodo-de-la-gran-M.pdfestadisticasII   Metodo-de-la-gran-M.pdf
estadisticasII Metodo-de-la-gran-M.pdfFlorenciopeaortiz
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023ANDECE
 
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIASTEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIASfranzEmersonMAMANIOC
 
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfReporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfMikkaelNicolae
 
Caldera Recuperadora de químicos en celulosa tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa  tipos y funcionamientoCaldera Recuperadora de químicos en celulosa  tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa tipos y funcionamientoRobertoAlejandroCast6
 
Manual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfManual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfedsonzav8
 
Seleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSeleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSaulSantiago25
 
Reporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacaReporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacajeremiasnifla
 
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaProyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaXjoseantonio01jossed
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPJosLuisFrancoCaldern
 
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESAIPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESAJAMESDIAZ55
 
Topografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasTopografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasSegundo Silva Maguiña
 
Fe_C_Tratamientos termicos_uap _3_.ppt
Fe_C_Tratamientos termicos_uap   _3_.pptFe_C_Tratamientos termicos_uap   _3_.ppt
Fe_C_Tratamientos termicos_uap _3_.pptVitobailon
 
CICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresaCICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresaSHERELYNSAMANTHAPALO1
 
SOLICITUD-PARA-LOS-EGRESADOS-UNEFA-2022.
SOLICITUD-PARA-LOS-EGRESADOS-UNEFA-2022.SOLICITUD-PARA-LOS-EGRESADOS-UNEFA-2022.
SOLICITUD-PARA-LOS-EGRESADOS-UNEFA-2022.ariannytrading
 
Normas para los aceros basados en ASTM y AISI
Normas para los aceros basados en ASTM y AISINormas para los aceros basados en ASTM y AISI
Normas para los aceros basados en ASTM y AISIfimumsnhoficial
 
183045401-Terminal-Terrestre-de-Trujillo.pdf
183045401-Terminal-Terrestre-de-Trujillo.pdf183045401-Terminal-Terrestre-de-Trujillo.pdf
183045401-Terminal-Terrestre-de-Trujillo.pdfEdwinAlexanderSnchez2
 

Último (20)

Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
 
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdfECONOMIA APLICADA SEMANA 555555555555555555.pdf
ECONOMIA APLICADA SEMANA 555555555555555555.pdf
 
sistema de construcción Drywall semana 7
sistema de construcción Drywall semana 7sistema de construcción Drywall semana 7
sistema de construcción Drywall semana 7
 
estadisticasII Metodo-de-la-gran-M.pdf
estadisticasII   Metodo-de-la-gran-M.pdfestadisticasII   Metodo-de-la-gran-M.pdf
estadisticasII Metodo-de-la-gran-M.pdf
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
 
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIASTEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
TEXTURA Y DETERMINACION DE ROCAS SEDIMENTARIAS
 
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfReporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
 
Caldera Recuperadora de químicos en celulosa tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa  tipos y funcionamientoCaldera Recuperadora de químicos en celulosa  tipos y funcionamiento
Caldera Recuperadora de químicos en celulosa tipos y funcionamiento
 
Manual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfManual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdf
 
Seleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSeleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusibles
 
Reporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacaReporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpaca
 
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaProyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
 
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESAIPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
IPERC Y ATS - SEGURIDAD INDUSTRIAL PARA TODA EMPRESA
 
Topografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasTopografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la Ingenierías
 
Fe_C_Tratamientos termicos_uap _3_.ppt
Fe_C_Tratamientos termicos_uap   _3_.pptFe_C_Tratamientos termicos_uap   _3_.ppt
Fe_C_Tratamientos termicos_uap _3_.ppt
 
CICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresaCICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresa
 
SOLICITUD-PARA-LOS-EGRESADOS-UNEFA-2022.
SOLICITUD-PARA-LOS-EGRESADOS-UNEFA-2022.SOLICITUD-PARA-LOS-EGRESADOS-UNEFA-2022.
SOLICITUD-PARA-LOS-EGRESADOS-UNEFA-2022.
 
Normas para los aceros basados en ASTM y AISI
Normas para los aceros basados en ASTM y AISINormas para los aceros basados en ASTM y AISI
Normas para los aceros basados en ASTM y AISI
 
183045401-Terminal-Terrestre-de-Trujillo.pdf
183045401-Terminal-Terrestre-de-Trujillo.pdf183045401-Terminal-Terrestre-de-Trujillo.pdf
183045401-Terminal-Terrestre-de-Trujillo.pdf
 

Seguridad en Dispositivos de Almacenamiento

  • 1. 19-12-2016 Seguridad en Dispositivos de Almacenamiento Seguridad de Servidores INSTITUTO TECNOLÓGICO DE VILLAHERMOSA  Rivera Diaz Hugo Alberto  Velázquez Velázquez Miguel Ángel  Hernández Mezquita Uwe Andrés  Israel
  • 2. 1 Contenido 1. Introducción................................................................................................................2 2. Almacenamiento en Red..............................................................................................3 3. Network Attached Storage (NAS)................................................................................4 4. Seguridad en dispositivos de almacenamiento.............................................................6 5. Diagrama clasificatorio del almacenamiento de la información (Redes)......................7 6. Protección de Dispositivos de almacenamiento en red.................................................8 6.1 Ejemplo: D-Link..................................................................................................8 6.1.1 Configuración de un Volumen RAID 1.........................................................9 6.1.2 Programación de Copias de Seguridad Automáticas ....................................9 7. Almacenamiento Redundante (RAID).......................................................................10 7.1 RAID 0 (Data Striping, Striped Volume)...........................................................11 7.2 RAID 1 (Mirroring)...........................................................................................13 7.3 RAID 2 ..............................................................................................................14 7.4 RAID 3 ..............................................................................................................15 7.5 RAID 4 ..............................................................................................................16 7.6 RAID 5 ..............................................................................................................17 8. Clúster de Servidores ................................................................................................20 8.1 Alto rendimiento................................................................................................21 8.2 Alta disponibilidad..............................................................................................21 8.3 Alta eficiencia:....................................................................................................21 9. Red SAN....................................................................................................................22
  • 3. 2 1. Introducción Los datos son un activo esencial para la empresa de hoy en día. Sin acceso a sus datos, es posible que las empresas puedan ofrecerles a sus clientes el nivel de servicio deseado. El servicio al cliente deficiente, la pérdida de ventas o los problemas de colaboración en los equipos son todos ejemplos de lo que puede suceder cuando los equipos de una empresa no tienen acceso a la información. Cada uno de estos problemas contribuye a una pérdida de eficiencia y posiblemente pérdida de ingresos si los clientes no pueden esperar a que se corrija una avería en el sistema. Asimismo, cuando se trata de almacenamiento de datos, las pequeñas empresas se enfrentan a otros problemas, como la necesidad de que su solución de almacenamiento sea:  Costos más bajos  fácil de operar (muchas pequeñas empresas no cuentan con personal de informática)  capaz de crecer junto con sus necesidades de almacenamiento Se estima que para el 2016, la capacidad de archivado de correos electrónicos por sí sola incremente de 13.321,4 a 111.624,1 petabytes.1La capacidad de archivado de bases de datos se espera que aumente aún más para ese entonces, de 13.527 a 106.472,54 petabytes.1 Estas incrementos drásticos exigen una solución que sea capaz de expandirse a medida que crece la demanda de almacenamiento de su negocio. Es entonces que los dispositivos de almacenamiento conectado en red (NAS) resultan pertinentes. Los dispositivos NAS están adquiriendo cada vez más popularidad entre los pequeños negocios y las empresas en diversos sectores como una solución de almacenamiento económica y expansible.
  • 4. 3 2. Almacenamiento en Red El concepto de almacenamiento en red es bastante sencillo de comprender. Se trata de habilitar uno o varios discos duros en una red local, de forma que los datos que allí se almacenen permanezcan accesibles a todos los dispositivos que quieran utilizarlos. De esa forma, el usuario no solo tiene acceso al propio almacenamiento del dispositivo que está usando, sino que también dispone de un almacenamiento común que comparte con otros dispositivos conectados a esa misma red. El almacenamiento conectado en red, Network Attached Storage (NAS), es el nombre dado a una tecnología de almacenamiento dedicada a compartir la capacidad de almacenamiento de un computador (servidor) con computadoras personales o servidores clientes a través de una red (normalmente TCP/IP), haciendo uso de un sistema operativo optimizado para dar acceso con los protocolos CIFS, NFS, FTP o TFTP. Los sistemas NAS son dispositivos de almacenamiento a los que se accede desde los equipos a través de protocolos de red (normalmente TCP/IP). También se podría considerar un sistema NAS a un servidor (Microsoft Windows, Linux, etcétera) que comparte sus unidades por red, pero la definición suele aplicarse a sistemas específicos. Los protocolos de comunicaciones NAS están basados en archivos por lo que el cliente solicita el archivo completo al servidor y lo maneja localmente, por lo que están orientados a manipular una gran cantidad de pequeños archivos. Los protocolos usados son protocolos de compartición de archivos como Network File System (NFS) o Microsoft Common Internet File System (CIFS).
  • 5. 4 3. Network Attached Storage (NAS) Un dispositivo de hardware simple, llamado NAS box o NAS head, actúa como interfaz entre el NAS y los clientes. Los clientes siempre se conectan al NAS head (más que a los dispositivos individuales de almacenamiento) a través de una conexión Ethernet. NAS aparece en la LAN como un simple nodo que es la dirección IP del dispositivo NAS head. Estos dispositivos NAS no requieren pantalla, ratón o teclado, sino que poseen interfaz web. El opuesto a NAS es la conexión Direct Attached Storage (DAS) mediante conexiones Small Computer System Interface (SCSI) o la conexión Storage Area Network (SAN) por fibra óptica, en ambos casos con tarjetas de conexión específicas de conexión al almacenamiento. Estas conexiones directas (DAS) son por lo habitual dedicadas. En la tecnología NAS, las aplicaciones y programas de usuario hacen las peticiones de datos a los sistemas de archivos de manera remota mediante protocolos CIFS y NFS, y el almacenamiento es local al sistema de archivos. Sin embargo, DAS y SAN realizan las peticiones de datos directamente al sistema de archivos. Las ventajas del NAS sobre la conexión directa (DAS) son la capacidad de compartir las unidades, un menor coste, la utilización de la misma infraestructura de red y una gestión más sencilla. Por el contrario, NAS tiene un menor rendimiento y confiabilidad por el uso compartido de las comunicaciones.
  • 6. 5 NAS es muy útil para proporcionar el almacenamiento centralizado a computadoras clientes en entornos con grandes cantidades de datos. NAS puede habilitar sistemas fácilmente y con bajo costo con balance de carga, tolerancia a fallos y servidor web para proveer servicios de almacenamiento. El crecimiento del mercado potencial para NAS es el mercado de consumo donde existen grandes cantidades de datos multimedia. Algunas de estas soluciones para el mercado doméstico son desarrolladas para procesadores ARM, PowerPC o MIPS, corriendo sistemas operativos Linux embebido. Ejemplos de estos son Melco Buffalo's TeraStation1 y Linksys NSLU22 . 1. Copia de seguridad y restauración. 2. Nube privada. 3. Compartición de archivos. 4. Volúmenes iSCSI. 5. Servidor web. 6. Servidor de impresión. 7. Servidor de VPN. 8. Virtualización.
  • 7. 6 4. Seguridad en dispositivos de almacenamiento Una parte esencial de la seguridad de las redes de área de almacenamiento es la ubicación física de todos y cada uno de los componentes de la red. La construcción de un data center es sólo la mitad del desafío, es el hecho de decidir dónde pondremos los componentes de la red (tanto software como hardware) la otra mitad y la más difícil. Los componentes críticos de la red, como pueden ser los switches, matrices de almacenamiento o hosts los cuales deben estar en el mismo data center. Al implementar seguridad física, sólo los usuarios autorizados pueden tener la capacidad de realizar cambios tanto físicos como lógicos en la topología, cambios como pueden ser: cambio de puerto de los cables, acceso a reconfigurar algún equipo, agregar o quitar dispositivos, entre otros. La planificación también debe tomar en cuenta las cuestiones del medio ambiente como puede ser la refrigeración, la distribución de energía y los requisitos para la recuperación de desastres. Al mismo tiempo se debe asegurar que las redes IP que se utilizan para gestionar los diversos componentes de la SAN son seguras y no son accesibles para toda la compañía. También tiene sentido cambiar las contraseñas por defecto que tienen los dispositivos de la red para así prevenir el uso no autorizado.
  • 8. 7 5. Diagrama clasificatorio del almacenamiento de la información (Redes)
  • 9. 8 6. Protección de Dispositivos de almacenamiento en red Un disco duro puede contener numerosas carpetas de documentos, bibliotecas de libros e innumerables CD y DVD, todo en un formato bien organizado y que permite hacer búsquedas. No obstante, los discos duros no son infalibles. Como cualquier técnico que se precie podrá decirle, la cuestión no es tanto si un disco fallará como cuándo lo hará. Descubra el almacenamiento en red NAS, su protección contra el desastre de un disco duro estropeado. Con funciones avanzadas como copias de seguridad automáticas, acceso remoto a los archivos y la posibilidad de grabar los datos en dos unidades en espejo para obtener la máxima protección, NAS ofrece flexibilidad y protección avanzadas que no encontrará en los discos duros externos convencionales. 6.1 Ejemplo: D-Link Citando un ejemplo de un producto NAS encontrado en la web: “D-Link ofrece dos nuevos dispositivos NAS diseñados pensando en una fácil protección de sus archivos: el sistema de almacenamiento en red NAS ShareCenter® 2-Bay (DNS-320), ideal para hacer copias de seguridad de los archivos, y el sistema de almacenamiento en red ShareCenter 2-Bay, ideal para transmitir contenidos multimedia (DNS-325),que ofrece un procesamiento más rápido y aplicaciones de transmisión para que pueda disfrutar de su música y vídeos con facilidad en dispositivos conectados en red. Además, ofrece servicios Cloud con aplicaciones gratuitas para acceder desde iPhone/iPad/Android/Windows Phone. Estas unidades pueden adquirirse con discos duros preinstalados o bien instalar sus propios discos duros de prácticamente
  • 10. 9 cualquier marca. Por eso, lo primero será instalar un par de discos duros de igual capacidad, una operación sencilla y para la que no necesita herramientas. Después, estará listo para empezar a proteger sus archivos” 6.1.1 Configuración de un Volumen RAID 1 Formatear los discos duros para crear un RAID (un conjunto redundante de discos independientes) es una forma estupenda de proteger los archivos digitales. RAID 1 duplica los datos almacenados en una pareja de discos duros para proteger sus archivos en caso de que falle uno de ellos. Con los dispositivos NAS ShareCenter, configurar un RAID 1 es muy sencillo. El asistente de configuración ShareCenter de D-Link le orienta a través de los pasos necesarios. Seleccione sus unidades, especifique el nivel de RAID y espere a que el dispositivo NAS se configure automáticamente. Después de configurar RAID 1, en caso de que falle una de las unidades, podrá simplemente sustituirla por otra. El conjunto se restablecerá automáticamente usando el nuevo disco duro. 6.1.2 Programación de Copias de Seguridad Automáticas Otra extraordinaria prestación de los dispositivos NAS es la capacidad de programar copias de seguridad automáticas para no tener que recordar hacerlas manualmente. Las herramientas incluidas con los DNS-320 y DNS-325 le permiten realizar una copia de seguridad de una carpeta compartida en un ordenador conectado a la red. Con NAS ShareCenter, se tarda un minuto en programar copias de seguridad automáticas. Solo tiene que abrir la pestaña Aplicaciones (enlace Copias de seguridad locales) y después activar una programación recurrente. No volverá a olvidar una copia de seguridad. Nota para usuarios de Mac: Los dispositivos NAS ShareCenter de D-Link® son compatibles con las copias de seguridad basadas en instantáneas de Time Machine de Apple.
  • 11. 10 7. Almacenamiento Redundante (RAID) En informática, el acrónimo RAID (del inglés Redundant Array of Inexpensive Disks o, más común a día de hoy, Redundant Array of Independent Disks), traducido como «conjunto redundante de discos Independientes», hace referencia a un sistema de almacenamiento de datos en tiempo real que utiliza múltiples unidades de almacenamiento de datos (discos duros o SSD) entre los que se distribuyen o replican los datos. Dependiendo de su configuración (a la que suele llamarse «nivel»), los beneficios de un RAID respecto a un único disco son uno o varios de los siguientes: mayor integridad, mayor tolerancia a fallos, mayor throughput (rendimiento) y mayor capacidad. En sus implementaciones originales, su ventaja clave era la habilidad de combinar varios dispositivos de bajo coste y tecnología más antigua en un conjunto que ofrecía mayor capacidad, fiabilidad, velocidad o una combinación de éstas que un solo dispositivo de última generación y coste más alto. En el nivel más simple, un RAID combina varios discos duros en una sola unidad lógica. Así, en lugar de ver varios discos duros diferentes, el sistema operativo ve uno solo. Los RAIDs suelen usarse en servidores y normalmente (aunque no es necesario) se implementan con unidades de disco de la misma capacidad. Debido al descenso en el precio de los discos duros y la mayor disponibilidad de las opciones RAID incluidas en los chipsets de las placas base, los RAIDs se encuentran también como opción en las computadoras personales más avanzadas. Esto es especialmente frecuente en las computadoras dedicadas a tareas intensivas y que requiera asegurar la integridad de los datos en caso de fallo del sistema. Esta característica está disponible en los sistemas RAID por hardware (dependiendo de que estructura elijamos). Por el contrario, los sistemas basados en software son mucho más flexibles (permitiendo, por ejemplo, construir RAID de particiones en lugar de discos completos y agrupar en un mismo RAID discos
  • 12. 11 conectados en varias controladoras) y los basados en hardware añaden un punto de fallo más al sistema (la controladora RAID). Todas las implementaciones pueden soportar el uso de uno o más discos de reserva (hot spare), unidades preinstaladas que pueden usarse inmediatamente (y casi siempre automáticamente) tras el fallo de un disco del RAID. Esto reduce el tiempo del período de reparación al acortar el tiempo de reconstrucción del RAID. Los niveles RAID más comúnmente usados son:  RAID 0: Conjunto dividido  RAID 1: Conjunto en espejo  RAID 5: Conjunto dividido con paridad distribuida 7.1 RAID 0 (Data Striping, Striped Volume) Un RAID 0 (también llamado conjunto dividido, volumen dividido, volumen seccionado) distribuye los datos equitativamente entre dos o más discos (usualmente se ocupa el mismo espacio en dos o más discos) sin información de paridad que proporcione redundancia. Es importante señalar que el RAID 0 no era uno de los niveles
  • 13. 12 RAID originales y que no es redundante. El RAID 0 se usa normalmente para proporcionar un alto rendimiento de escritura ya que los datos se escriben en dos o más discos de forma paralela, aunque un mismo fichero solo está presente una vez en el conjunto. RAID 0 también puede utilizarse como forma de crear un pequeño número de grandes discos virtuales a partir de un gran número de pequeños discos físicos. Un RAID 0 puede ser creado con discos de diferentes tamaños, pero el espacio de almacenamiento añadido al conjunto estará limitado por el tamaño del disco más pequeño (por ejemplo, si un disco de 450 GB se divide con uno de 100 GB, el tamaño del conjunto resultante será sólo de 200 GB, ya que cada disco aporta 100 GB). Una buena implementación de un RAID 0 dividirá las operaciones de lectura y escritura en bloques de igual tamaño, por lo que distribuirá la información equitativamente entre los dos discos. También es posible crear un RAID 0 con más de dos discos, si bien, la fiabilidad del conjunto será igual a la fiabilidad media de cada disco entre el número de discos del conjunto; es decir, la fiabilidad total —medida como MTTF o MTBF— es (aproximadamente) inversamente proporcional al número de discos del conjunto (pues para que el conjunto falle es suficiente con que lo haga cualquiera de sus discos). No debe confundirse RAID 0 con un Volumen Distribuido (Spanned Volume) en el cual se agregan múltiples espacios no usados de varios discos para formar un único disco virtual. Puede que en un Volumen Distribuido el fichero a recuperar esté presente en un solo disco del conjunto debido a que aquí no hay una distribución equitativa de los datos (como dijimos para RAID 0), por lo tanto, en ese caso no sería posible la recuperación paralela de datos y no tendríamos mejora del rendimiento de lectura.
  • 14. 13 7.2RAID 1 (Mirroring) Un RAID 1 crea una copia exacta (o espejo) de un conjunto de datos en dos o más discos. Esto resulta útil cuando queremos tener más seguridad desaprovechando capacidad, ya que, si perdemos un disco, tenemos el otro con la misma información. Un conjunto RAID 1 sólo puede ser tan grande como el más pequeño de sus discos. Un RAID 1 clásico consiste en dos discos en espejo, lo que incrementa exponencialmente la fiabilidad respecto a un solo disco; es decir, la probabilidad de fallo del conjunto es igual al producto de las probabilidades de fallo de cada uno de los discos (pues para que el conjunto falle es necesario que lo hagan todos sus discos). Adicionalmente, dado que todos los datos están en dos o más discos, con hardware habitualmente independiente, el rendimiento de lectura se incrementa aproximadamente como múltiplo lineal del número de copias; es decir, un RAID 1 puede estar leyendo simultáneamente dos datos diferentes en dos discos diferentes, por lo que su rendimiento se duplica. Para maximizar los beneficios sobre el rendimiento del RAID 1 se recomienda el uso de controladoras de disco independientes, una para cada disco (práctica que algunos denominan splitting o duplexing).
  • 15. 14 Como en el RAID 0, el tiempo medio de lectura se reduce, ya que los sectores a buscar pueden dividirse entre los discos, bajando el tiempo de búsqueda y subiendo la tasa de transferencia, con el único límite de la velocidad soportada por la controladora RAID. Sin embargo, muchas tarjetas RAID 1 IDE antiguas leen sólo de un disco de la pareja, por lo que su rendimiento es igual al de un único disco. Algunas implementaciones RAID 1 antiguas también leen de ambos discos simultáneamente y comparan los datos para detectar errores. Al escribir, el conjunto se comporta como un único disco, dado que los datos deben ser escritos en todos los discos del RAID 1. Por tanto, el rendimiento de escritura no mejora. El RAID 1 tiene muchas ventajas de administración. Por ejemplo, en algunos entornos 24/7, es posible «dividir el espejo»: marcar un disco como inactivo, hacer una copia de seguridad de dicho disco y luego «reconstruir» el espejo. Esto requiere que la aplicación de gestión del conjunto soporte la recuperación de los datos del disco en el momento de la división. Este procedimiento es menos crítico que la presencia de una característica de snapshot en algunos sistemas de archivos, en la que se reserva algún espacio para los cambios, presentando una vista. 7.3RAID 2 Un RAID 2 usa división a nivel de bits con un disco de paridad dedicado y usa un código de Haming para la corrección de errores. El RAID 2 se usa rara vez en la práctica. Uno
  • 16. 15 de sus efectos secundarios es que normalmente no puede atender varias peticiones simultáneas, debido a que por definición cualquier simple bloque de datos se dividirá por todos los miembros del conjunto, residiendo la misma dirección dentro de cada uno de ellos. Así, cualquier operación de lectura o escritura exige activar todos los discos del conjunto, suele ser un poco lento porque se producen cuellos de botella. Son discos paralelos, pero no son independientes (no se puede leer y escribir al mismo tiempo). Teóricamente, un RAID 2 necesitaría 39 discos en un sistema informático moderno de 32 bits: 32 se usarían para almacenar los bits individuales que forman cada palabra y 7 se usarían para la corrección de errores. 7.4 RAID 3 Un RAID 3 divide los datos a nivel de bytes en lugar de a nivel de bloques. Los discos son sincronizados por la controladora para funcionar al unísono. Éste es el único nivel RAID original que actualmente no se usa. Permite tasas de transferencias extremadamente altas. En el ejemplo del gráfico, una petición del bloque «A» formado por los bytes A1 a A6 requeriría que los tres discos de datos buscaran el comienzo (A1) y devolvieran su contenido. Una petición simultánea del bloque «B» tendría que esperar a que la anterior concluyese
  • 17. 16 7.5 RAID 4 Un RAID 4, también conocido como IDA (acceso independiente con discos dedicados a la paridad) usa división a nivel de bloques con un disco de paridad dedicado. Necesita un mínimo de 3 discos físicos. El RAID 4 es parecido al RAID 3 excepto porque divide a nivel de bloques en lugar de a nivel de bytes. Esto permite que cada miembro del conjunto funcione independientemente cuando se solicita un único bloque. Si la controladora de disco lo permite, un conjunto RAID 4 puede servir varias peticiones de lectura simultáneamente. En principio también sería posible servir varias peticiones de escritura simultáneamente, pero al estar toda la información de paridad en un solo disco, éste se convertiría en el cuello de botella del conjunto. En el gráfico de ejemplo anterior, una petición del bloque «A1» sería servida por el disco 0. Una petición simultánea del bloque «B1» tendría que esperar, pero una petición de «B2» podría atenderse concurrentemente
  • 18. 17 7.6 RAID 5 Un RAID 5 (también llamado distribuido con paridad) es una división de datos a nivel de bloques que distribuye la información de paridad entre todos los discos miembros del conjunto. El RAID 5 ha logrado popularidad gracias a su bajo coste de redundancia. Generalmente, el RAID 5 se implementa con soporte hardware para el cálculo de la paridad. RAID 5 necesitará un mínimo de 3 discos para ser implementado. En el gráfico de ejemplo anterior, una petición de lectura del bloque «A1» sería servida por el disco 0. Una petición de lectura simultánea del bloque «B1» tendría que esperar, pero una petición de lectura de «B2» podría atenderse concurrentemente ya que sería servida por el disco 1. Cada vez que un bloque de datos se escribe en un RAID 5, se genera un bloque de paridad dentro de la misma división (stripe). Un bloque se compone a menudo de muchos sectores consecutivos de disco. Una serie de bloques (un bloque de cada uno de los discos del conjunto) recibe el nombre colectivo de división (stripe). Si otro bloque, o alguna porción de un bloque es escrita en esa misma división, el bloque de paridad (o una parte del mismo) es recalculada y vuelta a escribir. El disco utilizado por el bloque de paridad está escalonado de una división a la siguiente, de ahí el término «bloques de paridad
  • 19. 18 distribuidos». Las escrituras en un RAID 5 son costosas en términos de operaciones de disco y tráfico entre los discos y la controladora. Los bloques de paridad no se leen en las operaciones de lectura de datos, ya que esto sería una sobrecarga innecesaria y disminuiría el rendimiento. Sin embargo, los bloques de paridad se leen cuando la lectura de un sector de datos provoca un error de CRC. En este caso, el sector en la misma posición relativa dentro de cada uno de los bloques de datos restantes en la división y dentro del bloque de paridad en la división se utiliza para reconstruir el sector erróneo. El error CRC se oculta así al resto del sistema. De la misma forma, si falla un disco del conjunto, los bloques de paridad de los restantes discos son combinados matemáticamente con los bloques de datos de los restantes discos para reconstruir los datos del disco que ha fallado «al vuelo». Lo anterior se denomina a veces Modo Interino de Recuperación de Datos (Interim Data Recovery Mode). El sistema sabe que un disco ha fallado, pero sólo con el fin de que el sistema operativo pueda notificar al administrador que una unidad necesita ser reemplazada: las aplicaciones en ejecución siguen funcionando ajenas al fallo. Las lecturas y escrituras continúan normalmente en el conjunto de discos, aunque con alguna degradación de rendimiento. La diferencia entre el RAID 4 y el RAID 5 es que, en el Modo Interno de Recuperación de Datos, el RAID 5 puede ser ligeramente más rápido, debido a que, cuando el CRC y la paridad están en el disco que falló, los cálculos no tienen que realizarse, mientras que en el RAID 4, si uno de los discos de datos falla, los cálculos tienen que ser realizados en cada acceso. El fallo de un segundo disco provoca la pérdida completa de los datos. El número máximo de discos en un grupo de redundancia RAID 5 es teóricamente ilimitado, pero en la práctica es común limitar el número de unidades. Los inconvenientes
  • 20. 19 de usar grupos de redundancia mayores son una mayor probabilidad de fallo simultáneo de dos discos, un mayor tiempo de reconstrucción y una mayor probabilidad de hallar un sector irrecuperable durante una reconstrucción. A medida que el número de discos en un conjunto RAID 5 crece, el MTBF (tiempo medio entre fallos) puede ser más bajo que el de un único disco. Esto sucede cuando la probabilidad de que falle un segundo disco en los N-1 discos restantes de un conjunto en el que ha fallado un disco en el tiempo necesario para detectar, reemplazar y recrear dicho disco es mayor que la probabilidad de fallo de un único disco. Una alternativa que proporciona una protección de paridad dual, permitiendo así mayor número de discos por grupo, es el RAID 6. Algunos vendedores RAID evitan montar discos de los mismos lotes en un grupo de redundancia para minimizar la probabilidad de fallos simultáneos al principio y el final de su vida útil. Las implementaciones RAID 5 presentan un rendimiento malo cuando se someten a cargas de trabajo que incluyen muchas escrituras más pequeñas que el tamaño de una división (stripe). Esto se debe a que la paridad debe ser actualizada para cada escritura, lo que exige realizar secuencias de lectura, modificación y escritura tanto para el bloque de datos como para el de paridad. Implementaciones más complejas incluyen a menudo cachés de escritura no volátiles para reducir este problema de rendimiento. En el caso de un fallo del sistema cuando hay escrituras activas, la paridad de una división (stripe) puede quedar en un estado inconsistente con los datos. Si esto no se detecta y repara antes de que un disco o bloque falle, pueden perderse datos debido a que se usará una paridad incorrecta para reconstruir el bloque perdido en dicha división. Esta potencial vulnerabilidad se conoce a veces como «agujero de escritura». Son comunes el uso de caché no volátiles y otras técnicas para reducir la probabilidad de ocurrencia de esta vulnerabilidad.
  • 21. 20 8. Clúster de Servidores Este tipo de sistemas se basa en la unión de varios servidores que trabajan como si de uno sólo se tratase. Los sistemas clúster han evolucionado mucho desde su primera aparición, ahora se pueden crear distintos tipos de clúster, en función de lo que se necesite: 1. Unión de Hardware 2. Clúster de Software 3. Alto rendimiento de bases de datos Estas son solo algunas de las opciones que tenemos disponibles. En resumen, clúster es un grupo de múltiples ordenadores unidos mediante una red de alta velocidad, de tal forma que el conjunto es visto como un único ordenador, más potente que los comunes de escritorio. De un sistema de este tipo se espera que presente combinaciones de los siguientes servicios: 1. Alto rendimiento 2. Alta disponibilidad 3. Equilibrio de carga 4. Escalabilidad Para que un sistema clúster funcione no es necesario que todas las máquinas dispongan del mismo Hardware y sistema operativo (clúster heterogéneo). Este tipo de sistemas debe de disponer de un interfaz de manejo de clúster, la cual se encargue de interactuar con el usuario y los procesos, repartiendo la carga entre las diferentes máquinas del grupo. El término clúster tiene diferentes connotaciones para diferentes grupos de personas. Los tipos de clústeres, establecidos de acuerdo con el uso que se dé y los servicios que ofrecen,
  • 22. 21 determinan el significado del término para el grupo que lo utiliza. Los clústeres pueden clasificarse según sus características:  HPCC (High Performance Computing Clusters: clústeres de alto rendimiento).  HA o HACC (High Availability Computing Clusters: clústeres de alta disponibilidad).  HT o HTCC (High Throughput Computing Clusters: clústeres de alta eficiencia). 8.1 Alto rendimiento Son clústeres en los cuales se ejecutan tareas que requieren de gran capacidad computacional, grandes cantidades de memoria, o ambos a la vez. El llevar a cabo estas tareas puede comprometer los recursos del clúster por largos periodos de tiempo. 8.2 Alta disponibilidad Son clústeres cuyo objetivo de diseño es el de proveer disponibilidad y confiabilidad. Estos clústeres tratan de brindar la máxima disponibilidad de los servicios que ofrecen. La confiabilidad se provee mediante software que detecta fallos y permite recuperarse frente a los mismos, mientras que en hardware se evita tener un único punto de fallos. 8.3 Alta eficiencia: Son clústeres cuyo objetivo de diseño es el ejecutar la mayor cantidad de tareas en el menor tiempo posible. Existe independencia de datos entre las tareas individuales. El retardo entre los nodos del clúster no es considerado un gran problema. A pesar de las discrepancias a nivel de requisitos de las aplicaciones, muchas de las características de las arquitecturas de hardware y software, que están por debajo de las aplicaciones en todos estos clústeres, son las mismas. Más aún, un clúster de determinado tipo, puede también presentar características de los otros.
  • 23. 22 9. Red SAN Una red SAN se distingue de otros modos de almacenamiento en red por el modo de acceso a bajo nivel. El tipo de tráfico en una SAN es muy similar al de los discos duros como ATA, SATA y SCSI. En otros métodos de almacenamiento (como SMB o NFS) el servidor solicita un determinado fichero, por ejemplo "/home/usuario/wikipedia". En una SAN el servidor solicita "el bloque 6000 del disco 4". La mayoría de las SAN actuales usan el protocolo SCSI para acceder a los datos de la SAN, aunque no usen interfaces físicas SCSI. Este tipo de redes de datos se han utilizado y se utiliza n tradicionalmente en grandes mainframes como en IBM, SUN o HP. Aunque recientemente con la incorporación de Microsoft se ha empezado a utilizar en máquinas con sistemas operativos Microsoft Windows. Una SAN es una red de almacenamiento dedicada que proporciona acceso de nivel de bloque a varios Logical Unit Number (LUN). Un LUN, o número de unidad lógica, es un disco virtual proporcionado por la SAN. El administrador del sistema tiene el mismo acceso y los derechos al LUN como si fuera un disco directamente conectado a la misma. El administrador puede particionar y formatear el disco en cualquier medio que él elija. Dos protocolos de red utilizados en una SAN son Fibre Channel e iSCSI. Una red de canal de fibra es una red muy rápida aislada normalmente del tráfico de la red LAN de la empresa. Sin embargo, es muy cara. Las tarjetas de canal de fibra óptica cuestan alrededor de mil dólares cada una. También requieren conmutadores especiales de canal de fibra. iSCSI es una nueva tecnología que envía comandos SCSI sobre una red TCP/IP. Este método no es tan rápido como una red Fibre Channel, pero ahorra costes, ya que utiliza un hardware de red menos costoso.
  • 24. 23 A partir de desastres, como lo fue el "martes negro" en los atentados del 11 de septiembre de 2001, la gente de TI han tomado acciones al respecto, con servicios de cómo recuperarse ante un desastre, cómo recuperar miles de datos y lograr la continuidad del negocio, una de las opciones es contar con la red de área de almacenamiento; sin embargo, las compañías se pueden enfrentar a cientos de ataques, por lo que es necesario contar con un plan en caso de contingencia; es de vital importancia que el sitio donde se encuentre la SAN, se encuentre en un área geográfica distinta a donde se ubican los servidores que contienen la información crítica. Además, se trata de un modelo centralizado fácil de administrar, puede tener un bajo costo de expansión y administración, lo que la hace una red fácilmente escalable; fiabilidad, debido a que se hace más sencillo aplicar ciertas políticas para proteger a la red.