SlideShare una empresa de Scribd logo
1 de 7
Descargar para leer sin conexión
1
Ejercicios Resueltos Combinatoria
1. ¿De cuántas maneras pueden sentarse 10 personas en un banco si hay 4 sitios
disponibles?
Nótese que importa el orden en que se sienten las personas, ya que los cuatro sitios son
diferentes, y que una persona no puede ocupar más de un sitio a la vez. Por lo tanto, hay
( )10,4
10! 10!
V 10 50409 8 7
10 4 ! 6!
= = = ⋅ ⋅ ⋅ =
−
maneras.
2. En una clase de 10 alumnos van a distribuirse 3 premios. Averiguar de cuántos modos
puede hacerse si:
1. los premios son diferentes.
2. los premios son iguales.
Hay dos supuestos posibles: Si una misma persona no puede recibir más de un premio:
• Suponemos que NO puede recibir más de un premio, luego los alumnos NO se pueden
repetir:
Caso1: Los premios son diferentes (no es lo mismo ganar el primer premio que el segundo)
importa el orden, hay
( )10,3
10! 10!
V 10 9 8
10 3 ! 7!
720= = = ⋅ ⋅ =
−
maneras de distribuir los premios si estos son diferentes;
Caso2: Los premios son iguales, no importa el orden, son indistinguibles, pueden distribuirse de
( )10,3
10! 10! 10 9 8
C
10 3 ! 3! 7
1
! 3! 3 2 1
20
⋅ ⋅
= = = =
− ⋅ ⋅ ⋅ ⋅
maneras de distribuir los premios si estos son iguales.
• Si un mismo alumno puede recibir mas de un premio luego los alumnos se pueden repetir:
Caso1: Los premios son diferentes (no es lo mismo ganar el primer premio que el segundo)
importa el orden, hay
3
10,3VR 10 1000= = maneras de distribuir los premios si estos son diferentes;
2
Caso2: Los premios son iguales, no importa el orden, son indistinguibles, pueden distribuirse de
( )10,3 10 3 1,3 12,3
12! 12! 12 11 10
CR C C
12 3
2
! 3! 9! 3! 3 2
2
1
0+ −
⋅ ⋅
= = = = =
− ⋅ ⋅ ⋅ ⋅
maneras de distribuir los premios si
estos son iguales.
3. Las diagonales de un polígono se obtienen uniendo pares de vértices no adyacentes.
1. Obtener el número de diagonales del cuadrado y el hexágono.
Comenzamos calculando el número de diagonales del cuadrado. Unimos dos puntos no
adyacentes (tenemos cuatro vértices) pero solo habrá una recta que pase por los dos, no
importa el orden, hay
( )4,2
4! 4! 4 3 2
C
4 2 ! 2! 2! 2 2
6
! 2
⋅ ⋅
= = = =
− ⋅ ⋅ ⋅
uniones posibles
De las 6 uniones posibles de dos vértices diferentes cualesquiera, adyacentes o no. Si de
estas 6 parejas eliminamos las que corresponden a vértices adyacentes (tantas como el número
de lados del cuadrado), quedaran Diagonales 6 4 2= − = diagonales.
Procedemos del mismo modo con el hexágono, se obtienen
( )6,2
6! 6! 6 5
C
6 2 ! 2! 4! 2
15
2!
⋅
= = = =
− ⋅ ⋅
De las 15 uniones posibles de dos vértices diferentes cualesquiera, adyacentes o no. Si de
estas 15 parejas eliminamos las que corresponden a vértices adyacentes (tantas como el
número de lados del cuadrado), quedaran Diagonales 15 6 9= − = diagonales.
4. Hay que colocar a 5 hombres y 4 mujeres en una fila de modo que las mujeres ocupen
los lugares pares. ¿De cuántas maneras puede hacerse?
Ya que la fila es de 9 individuos en total, hay 4 posiciones pares (que deben ser ocupadas por
las 4 mujeres) y 5 posiciones impares (para los 5 hombres).
3
Por lo tanto, pueden colocarse de:
4
5
P 4! 24 (número de posibles colocaciones)
Total 24 120 maneras
P 5! 120 (número de posibles colocaciones)h
mujer
ombre
es
2880
= = 
⇒ = ⋅ =
= = 
5. ¿Cuántos números de 4 dígitos se pueden formar con las cifras 1,2,. . . ,9
1. Permitiendo repeticiones;
2. Sin repeticiones;
3. Si el último dígito ha de ser 1 y no se permiten repeticiones.
1. Permiten repeticiones, e importa el orden (son números no es lo mismo el número 1224 que
el 2214)
4
9,4VR 9 6561= = números posibles.
2. No se permiten repeticiones, e importa el orden igual que en el apartado. Por tanto, se
pueden formar:
( )9,4
9! 9!
V 9 8 7 6
9 4 ! 5
3024
!
= = = ⋅ ⋅ ⋅ =
−
números.
3. Fijamos el último dígito (El número 1 está en la última posición) y, como no puede haber
repeticiones (nos quedan ocho números para tres posiciones), se obtiene un total de
( )8,3
8! 8!
V 8 7 6
8 3 ! 5!
336= = = ⋅ ⋅ =
−
números.
4
6. En un grupo de 10 amigos, ¿cuántas distribuciones de sus fechas de cumpleaños
pueden darse al año?
Considerando que el año tiene 365 días y que puede darse el caso de que varias personas
cumplan en la misma fecha (se permiten repeticiones además importa el orden son fechas),
el número de maneras distintas es:
365,10
10
VR 365=
7. ¿Cuántas letras de 5 signos con 3 rayas y 2 puntos podría tener el alfabeto Morse?
Dado que de los cinco elementos tan sólo hay dos diferentes (rayas y puntos) que se repiten 3
y 2 veces, respectivamente, tenemos permutaciones con repetición (se repiten los elementos),
obteniendo así un total de
3,2
5
5! 5 4
PR
3! ! 2
10
2
⋅
= = =
⋅
letras.
8. Cuando se arrojan simultáneamente 4 monedas,
1. ¿cuales son los resultados posibles que se pueden obtener?
2. ¿cuántos casos hay en que salgan 2 caras y 2 cruces?
Suponiendo que las monedas son iguales:
1. Dado que un mismo resultado individual (cara o cruz) puede obtenerse en varias monedas a
la vez (repetición), y que las monedas no pueden distinguirse entre si (no importa el orden en la
mesa se lee el resultado), existen
( )2,4 2 4 1,4 5,4
5! 5!
CR C C
5 4 ! 4! !
5
1! 4
+ −= = = =
− ⋅ ⋅
resultados posibles.
Estos casos son: { }E CCCC,CCXX,CCCX,CXXX,XXXX=
2. Como las monedas se arrojan simultáneamente, sólo habrá un caso posible con 2 caras y 2
cruces.
Suponiendo que las monedas son distintas:
5
1. En este caso, puesto que se distinguen las monedas entre si (importa el orden) y en una
tirada pueden haber varias con el mismo resultado individual (se permiten repeticiones), hay un
total de
2,4
4
R 1V 2 6= = resultados posibles.
2. Se calcula el número de elementos con dos caras y dos cruces, tenemos elementos repetidos
y tomamos todos ellos luego permutaciones con repetición:
2,2
4
4! 4 3
PR
2! 2!
6
2
⋅
= = =
⋅
resultados de dos caras y dos cruces.
9. Cuatro libros de matemáticas, seis de física y dos de química han de ser colocados en
una estantería ¿Cuántas colocaciones distintas admiten si:
1. los libros de cada materia han de estar juntos;
2. Sólo los de matemáticas tienen que estar juntos?
Supongamos que los libros de cada materia también son diferentes (de distintos autores).
1. Consideramos cada conjunto de libros de una misma materia como una unidad. Entonces, hay
3P 3! 6= = ordenaciones posibles de las materias.
Además hay que considerar también las 4P 4! 24= = permutaciones de los libros de
matemáticas, así como las 6P 6! 720= = de los libros de física y las 2P 2! 2= = de los de
química. Se concluye así por el principio de la multiplicación que hay:
Total 6 24 72 207.360 2 0= ⋅ ⋅ ⋅ = colocaciones distintas.
6
2. Consideremos los cuatro libros de matemáticas como una unidad. Se tendría entonces una
unidad correspondiente a matemáticas, 6 unidades diferentes de física y dos unidades
diferentes de química. Por lo tanto, existen:
9P 9! 362880= = maneras de ordenar estas 9 unidades, y por cada una de ellas hay
4P 4! 24= = Ordenaciones posibles de los 4 libros de matemáticas, por lo que en total hay:
Total 362880 8.72 1204 09.= ⋅ = formas de colocar los libros.
Supongamos que los libros de cada materia son idénticos.
1. Consideremos cada conjunto de libros de una misma materia como una unidad. Nótese que
entonces se tendría un total de 3 unidades, (tres clases de libros pero dentro de cada uno de
ellos todos iguales) que pueden ordenarse de 3P 3! 6= = formas distintas.
2. En este caso tendremos una unidad de matemáticas (todos tiene que estar juntos), además
de 6 de física y 2 de química (idénticos en cada caso), Se tiene entonces un total de
1,6,2
9
9! 362880
PR
1! 6! 2! 1440
252= = =
⋅ ⋅
ordenaciones posibles
10. Un alumno tiene que elegir 7 de las 10 preguntas de un examen. ¿De cuantas
maneras puede elegirlas? ¿Y si las 4 primeras son obligatorias?
El orden en que elija las preguntas, que además no podrían repetirse, es irrelevante. Así,
puede elegir las preguntas de
( )10,7
10! 10 9 8
C 120
10 7 ! 7! 3 2 1
⋅ ⋅
= = =
− ⋅ ⋅ ⋅
maneras.
Por otra parte, si las 4 primeras son obligatorias, debe escoger 3 preguntas entre las 6
restantes para completar las 7 necesarias, resultando un total de
( )6,3
6! 6 5 4
C 20
6 3 ! 3! 3 2 1
⋅ ⋅
= = =
− ⋅ ⋅ ⋅
maneras.
11. Una línea de ferrocarril tiene 25 estaciones. ¿Cuántos billetes diferentes habrá que
imprimir si cada billete lleva impresas las estaciones de origen y destino?
7
Dado que las estaciones de origen y destino no pueden coincidir (no hay repetición), y
además, dadas dos estaciones, es importante saber si corresponden al principio o al final
del trayecto (importa el orden), hay un total de
( )25,2
25! 25!
V 25 24
25 2 ! 23
6
!
00= = = ⋅ =
−
billetes
diferentes.
12. Tres atletas toman parte en una competición. ¿De cuántas maneras podrán llegar a la
meta? (Pueden llegar juntos)
Hay varias posibilidades:
• Si llegan los tres juntos, entonces sólo hay 1 posibilidad.
• Si llegan dos juntos, existen
( )3,2
3! 3
C 3
3 2 ! 2! 1
= = =
− ⋅
grupos de dos que llegan juntos, y
2P 2! 2= = ordenaciones distintas del grupo de dos y el otro atleta, por lo que existen
Total 3 2 6= ⋅ = posibilidades.
• Si llegan los tres por separado, existen 3P 63!= = posibilidades.
Por lo tanto, pueden llegar a la meta de 13 maneras distintas.
13. En un hospital se utilizan cinco símbolos para clasificar las historias clínicas de sus
pacientes, de manera que los dos primeros son letras y los tres últimos son dígitos.
Suponiendo que hay 25 letras, ¿cuántas historias clínicas podrían hacerse si:
1. No hay restricciones sobre letras y números;
2. Las dos letras no pueden ser iguales.
1. Dado que es necesario tener en cuenta el orden de las dos letras escogidas y que además
éstas pueden repetirse, resulta que hay 2
25,2VR 25 625= = posibilidades para las letras. Se
procede análogamente con el caso de los dígitos y se obtiene un total de 3
10,3VR 10 1000= =
posibilidades para los dígitos. El total de historias clínicas que pueden hacerse es, por lo tanto,
Total 625 10 6250 0000 .= ⋅ = .
2. Se procede de forma similar al caso anterior, con la única diferencia de que ahora las letras
no pueden repetirse. Así, hay
( )25,2
25! 25!
V 25 24
25 2 ! 23
6
!
00= = = ⋅ =
−
posibilidades para las
letras, y 3
10,3VR 10 1000= = posibilidades para los dígitos, resultando que hay
Total 600 10 6000 0000 .= ⋅ = historias clínicas.

Más contenido relacionado

La actualidad más candente

Grupo 1 dinamica-ejercicios
Grupo 1 dinamica-ejerciciosGrupo 1 dinamica-ejercicios
Grupo 1 dinamica-ejerciciosetubay
 
Autoevaluación 29 iii12
Autoevaluación 29 iii12Autoevaluación 29 iii12
Autoevaluación 29 iii12000246006
 
Combinatoria1
Combinatoria1Combinatoria1
Combinatoria1bhylenia
 
Proceso de gram schmidt
Proceso de gram schmidtProceso de gram schmidt
Proceso de gram schmidtPaola Morocho
 
Analisis combinatorio probabilidades
Analisis combinatorio probabilidadesAnalisis combinatorio probabilidades
Analisis combinatorio probabilidadesπ -
 
SISTEMA DE COORDENADAS RECTANGULARES
SISTEMA DE COORDENADAS RECTANGULARESSISTEMA DE COORDENADAS RECTANGULARES
SISTEMA DE COORDENADAS RECTANGULARESSCHOOL_OF_MATHEMATICS
 
Solucion refuerzo 2
Solucion refuerzo 2Solucion refuerzo 2
Solucion refuerzo 2admin90
 
Pre tarea evaluación pre saberes -ecuac difer
Pre tarea   evaluación pre saberes -ecuac diferPre tarea   evaluación pre saberes -ecuac difer
Pre tarea evaluación pre saberes -ecuac diferJuan Carlos Restrepo
 
Solucionario guía 1 unidad i algebra lineal
Solucionario guía 1 unidad  i  algebra linealSolucionario guía 1 unidad  i  algebra lineal
Solucionario guía 1 unidad i algebra linealRafael Beas Rivera
 
Ecuaciones Diferenciales - Ecuaciones de Segundo orden
Ecuaciones Diferenciales - Ecuaciones de Segundo ordenEcuaciones Diferenciales - Ecuaciones de Segundo orden
Ecuaciones Diferenciales - Ecuaciones de Segundo ordenKike Prieto
 
Ejercicios resueltos probabilidad
Ejercicios resueltos probabilidad Ejercicios resueltos probabilidad
Ejercicios resueltos probabilidad mgarmon965
 
1. Diagramas de Venn (Conjuntos). Ejercicios Resueltos.pdf
1. Diagramas de Venn (Conjuntos). Ejercicios Resueltos.pdf1. Diagramas de Venn (Conjuntos). Ejercicios Resueltos.pdf
1. Diagramas de Venn (Conjuntos). Ejercicios Resueltos.pdfelvis1151
 
Cuestionario
CuestionarioCuestionario
Cuestionariofavalenc
 
ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.
ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.
ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.Luis Vargas
 

La actualidad más candente (20)

Taller polares
Taller polaresTaller polares
Taller polares
 
Ejercicios Resueltos (movimiento con aceleración constante)
Ejercicios Resueltos (movimiento con aceleración constante)Ejercicios Resueltos (movimiento con aceleración constante)
Ejercicios Resueltos (movimiento con aceleración constante)
 
Grupo 1 dinamica-ejercicios
Grupo 1 dinamica-ejerciciosGrupo 1 dinamica-ejercicios
Grupo 1 dinamica-ejercicios
 
Autoevaluación 29 iii12
Autoevaluación 29 iii12Autoevaluación 29 iii12
Autoevaluación 29 iii12
 
Combinatoria1
Combinatoria1Combinatoria1
Combinatoria1
 
Matrices y determinantes
Matrices y determinantesMatrices y determinantes
Matrices y determinantes
 
250 limites muestra_infinito_2012
250 limites muestra_infinito_2012250 limites muestra_infinito_2012
250 limites muestra_infinito_2012
 
Proceso de gram schmidt
Proceso de gram schmidtProceso de gram schmidt
Proceso de gram schmidt
 
Analisis combinatorio probabilidades
Analisis combinatorio probabilidadesAnalisis combinatorio probabilidades
Analisis combinatorio probabilidades
 
SISTEMA DE COORDENADAS RECTANGULARES
SISTEMA DE COORDENADAS RECTANGULARESSISTEMA DE COORDENADAS RECTANGULARES
SISTEMA DE COORDENADAS RECTANGULARES
 
Solucion refuerzo 2
Solucion refuerzo 2Solucion refuerzo 2
Solucion refuerzo 2
 
Unidad 4. Seleccion sobre Matrices
Unidad 4. Seleccion sobre MatricesUnidad 4. Seleccion sobre Matrices
Unidad 4. Seleccion sobre Matrices
 
Pre tarea evaluación pre saberes -ecuac difer
Pre tarea   evaluación pre saberes -ecuac diferPre tarea   evaluación pre saberes -ecuac difer
Pre tarea evaluación pre saberes -ecuac difer
 
Solucionario guía 1 unidad i algebra lineal
Solucionario guía 1 unidad  i  algebra linealSolucionario guía 1 unidad  i  algebra lineal
Solucionario guía 1 unidad i algebra lineal
 
Ecuaciones Diferenciales - Ecuaciones de Segundo orden
Ecuaciones Diferenciales - Ecuaciones de Segundo ordenEcuaciones Diferenciales - Ecuaciones de Segundo orden
Ecuaciones Diferenciales - Ecuaciones de Segundo orden
 
Ejercicios resueltos probabilidad
Ejercicios resueltos probabilidad Ejercicios resueltos probabilidad
Ejercicios resueltos probabilidad
 
Derivadas parciales
Derivadas parcialesDerivadas parciales
Derivadas parciales
 
1. Diagramas de Venn (Conjuntos). Ejercicios Resueltos.pdf
1. Diagramas de Venn (Conjuntos). Ejercicios Resueltos.pdf1. Diagramas de Venn (Conjuntos). Ejercicios Resueltos.pdf
1. Diagramas de Venn (Conjuntos). Ejercicios Resueltos.pdf
 
Cuestionario
CuestionarioCuestionario
Cuestionario
 
ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.
ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.
ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.
 

Destacado

Teoria aditiva de numeros
Teoria aditiva de numerosTeoria aditiva de numeros
Teoria aditiva de numeroslgbarrerav
 
1 combinatoria
1 combinatoria1 combinatoria
1 combinatoriaortari2014
 
Combinatoria
CombinatoriaCombinatoria
Combinatoriajmuceda
 
EJERCICIOS DE PERMUTACIONES, COMBINACIONES, VARIACIONES
EJERCICIOS DE PERMUTACIONES, COMBINACIONES, VARIACIONESEJERCICIOS DE PERMUTACIONES, COMBINACIONES, VARIACIONES
EJERCICIOS DE PERMUTACIONES, COMBINACIONES, VARIACIONESAlexander Flores Valencia
 
Teoria combinatoria 1 Ejercicios
Teoria combinatoria 1 EjerciciosTeoria combinatoria 1 Ejercicios
Teoria combinatoria 1 EjerciciosYerikson Huz
 

Destacado (6)

Teoria aditiva de numeros
Teoria aditiva de numerosTeoria aditiva de numeros
Teoria aditiva de numeros
 
67 ejercicios combinatoria
67 ejercicios combinatoria67 ejercicios combinatoria
67 ejercicios combinatoria
 
1 combinatoria
1 combinatoria1 combinatoria
1 combinatoria
 
Combinatoria
CombinatoriaCombinatoria
Combinatoria
 
EJERCICIOS DE PERMUTACIONES, COMBINACIONES, VARIACIONES
EJERCICIOS DE PERMUTACIONES, COMBINACIONES, VARIACIONESEJERCICIOS DE PERMUTACIONES, COMBINACIONES, VARIACIONES
EJERCICIOS DE PERMUTACIONES, COMBINACIONES, VARIACIONES
 
Teoria combinatoria 1 Ejercicios
Teoria combinatoria 1 EjerciciosTeoria combinatoria 1 Ejercicios
Teoria combinatoria 1 Ejercicios
 

Similar a Ejercicios resueltos combinatoria

AP-COMB-01-Apuntes de Combinatoria para la Olimpiada de Matemáticas.pdf
AP-COMB-01-Apuntes de Combinatoria para la Olimpiada de Matemáticas.pdfAP-COMB-01-Apuntes de Combinatoria para la Olimpiada de Matemáticas.pdf
AP-COMB-01-Apuntes de Combinatoria para la Olimpiada de Matemáticas.pdfEnriqueJulcaDelgado
 
Elementos del Análisis Combinatorio ccesa007
Elementos del Análisis Combinatorio  ccesa007Elementos del Análisis Combinatorio  ccesa007
Elementos del Análisis Combinatorio ccesa007Demetrio Ccesa Rayme
 
Coleccion deejercicios01
Coleccion deejercicios01Coleccion deejercicios01
Coleccion deejercicios01profraromero
 
7 permutaciones combinaciones
7 permutaciones combinaciones7 permutaciones combinaciones
7 permutaciones combinacionesArbey Gutierrez
 
Analisiscombinatorioprobabilidades 130603213333-phpapp01
Analisiscombinatorioprobabilidades 130603213333-phpapp01Analisiscombinatorioprobabilidades 130603213333-phpapp01
Analisiscombinatorioprobabilidades 130603213333-phpapp01Christian Infante
 
Análisis combinatorio
Análisis combinatorioAnálisis combinatorio
Análisis combinatorioJesús Meza
 
Técnicas de conteo - Análisis combinatorio
Técnicas de conteo - Análisis combinatorioTécnicas de conteo - Análisis combinatorio
Técnicas de conteo - Análisis combinatorioeduargom
 
Análisis combinatorio
Análisis combinatorioAnálisis combinatorio
Análisis combinatoriolauriz19
 
Fundamentos de analisis combinatorio ccesa007
Fundamentos de analisis combinatorio  ccesa007Fundamentos de analisis combinatorio  ccesa007
Fundamentos de analisis combinatorio ccesa007Demetrio Ccesa Rayme
 
Permutaciones y combinaciones
Permutaciones y combinacionesPermutaciones y combinaciones
Permutaciones y combinacionesArgelioArias1
 

Similar a Ejercicios resueltos combinatoria (20)

Ejer combinatoriaysoluciones[1]
Ejer combinatoriaysoluciones[1]Ejer combinatoriaysoluciones[1]
Ejer combinatoriaysoluciones[1]
 
AP-COMB-01-Apuntes de Combinatoria para la Olimpiada de Matemáticas.pdf
AP-COMB-01-Apuntes de Combinatoria para la Olimpiada de Matemáticas.pdfAP-COMB-01-Apuntes de Combinatoria para la Olimpiada de Matemáticas.pdf
AP-COMB-01-Apuntes de Combinatoria para la Olimpiada de Matemáticas.pdf
 
Elementos del Análisis Combinatorio ccesa007
Elementos del Análisis Combinatorio  ccesa007Elementos del Análisis Combinatorio  ccesa007
Elementos del Análisis Combinatorio ccesa007
 
Coleccion deejercicios01
Coleccion deejercicios01Coleccion deejercicios01
Coleccion deejercicios01
 
Coleccion deejercicios01
Coleccion deejercicios01Coleccion deejercicios01
Coleccion deejercicios01
 
Metodos de conteo
Metodos de conteo Metodos de conteo
Metodos de conteo
 
Métodos de Conteo
Métodos de ConteoMétodos de Conteo
Métodos de Conteo
 
Metodos de Conteo
Metodos de Conteo Metodos de Conteo
Metodos de Conteo
 
Métodos de conteo
Métodos de conteo Métodos de conteo
Métodos de conteo
 
Análisis Combinatorio
Análisis CombinatorioAnálisis Combinatorio
Análisis Combinatorio
 
Probabilidades1
Probabilidades1Probabilidades1
Probabilidades1
 
7 permutaciones combinaciones
7 permutaciones combinaciones7 permutaciones combinaciones
7 permutaciones combinaciones
 
Analisiscombinatorioprobabilidades 130603213333-phpapp01
Analisiscombinatorioprobabilidades 130603213333-phpapp01Analisiscombinatorioprobabilidades 130603213333-phpapp01
Analisiscombinatorioprobabilidades 130603213333-phpapp01
 
Combinatoria
CombinatoriaCombinatoria
Combinatoria
 
Análisis combinatorio
Análisis combinatorioAnálisis combinatorio
Análisis combinatorio
 
Técnicas de conteo - Análisis combinatorio
Técnicas de conteo - Análisis combinatorioTécnicas de conteo - Análisis combinatorio
Técnicas de conteo - Análisis combinatorio
 
Análisis combinatorio
Análisis combinatorioAnálisis combinatorio
Análisis combinatorio
 
1combinatoriall
1combinatoriall1combinatoriall
1combinatoriall
 
Fundamentos de analisis combinatorio ccesa007
Fundamentos de analisis combinatorio  ccesa007Fundamentos de analisis combinatorio  ccesa007
Fundamentos de analisis combinatorio ccesa007
 
Permutaciones y combinaciones
Permutaciones y combinacionesPermutaciones y combinaciones
Permutaciones y combinaciones
 

Ejercicios resueltos combinatoria

  • 1. 1 Ejercicios Resueltos Combinatoria 1. ¿De cuántas maneras pueden sentarse 10 personas en un banco si hay 4 sitios disponibles? Nótese que importa el orden en que se sienten las personas, ya que los cuatro sitios son diferentes, y que una persona no puede ocupar más de un sitio a la vez. Por lo tanto, hay ( )10,4 10! 10! V 10 50409 8 7 10 4 ! 6! = = = ⋅ ⋅ ⋅ = − maneras. 2. En una clase de 10 alumnos van a distribuirse 3 premios. Averiguar de cuántos modos puede hacerse si: 1. los premios son diferentes. 2. los premios son iguales. Hay dos supuestos posibles: Si una misma persona no puede recibir más de un premio: • Suponemos que NO puede recibir más de un premio, luego los alumnos NO se pueden repetir: Caso1: Los premios son diferentes (no es lo mismo ganar el primer premio que el segundo) importa el orden, hay ( )10,3 10! 10! V 10 9 8 10 3 ! 7! 720= = = ⋅ ⋅ = − maneras de distribuir los premios si estos son diferentes; Caso2: Los premios son iguales, no importa el orden, son indistinguibles, pueden distribuirse de ( )10,3 10! 10! 10 9 8 C 10 3 ! 3! 7 1 ! 3! 3 2 1 20 ⋅ ⋅ = = = = − ⋅ ⋅ ⋅ ⋅ maneras de distribuir los premios si estos son iguales. • Si un mismo alumno puede recibir mas de un premio luego los alumnos se pueden repetir: Caso1: Los premios son diferentes (no es lo mismo ganar el primer premio que el segundo) importa el orden, hay 3 10,3VR 10 1000= = maneras de distribuir los premios si estos son diferentes;
  • 2. 2 Caso2: Los premios son iguales, no importa el orden, son indistinguibles, pueden distribuirse de ( )10,3 10 3 1,3 12,3 12! 12! 12 11 10 CR C C 12 3 2 ! 3! 9! 3! 3 2 2 1 0+ − ⋅ ⋅ = = = = = − ⋅ ⋅ ⋅ ⋅ maneras de distribuir los premios si estos son iguales. 3. Las diagonales de un polígono se obtienen uniendo pares de vértices no adyacentes. 1. Obtener el número de diagonales del cuadrado y el hexágono. Comenzamos calculando el número de diagonales del cuadrado. Unimos dos puntos no adyacentes (tenemos cuatro vértices) pero solo habrá una recta que pase por los dos, no importa el orden, hay ( )4,2 4! 4! 4 3 2 C 4 2 ! 2! 2! 2 2 6 ! 2 ⋅ ⋅ = = = = − ⋅ ⋅ ⋅ uniones posibles De las 6 uniones posibles de dos vértices diferentes cualesquiera, adyacentes o no. Si de estas 6 parejas eliminamos las que corresponden a vértices adyacentes (tantas como el número de lados del cuadrado), quedaran Diagonales 6 4 2= − = diagonales. Procedemos del mismo modo con el hexágono, se obtienen ( )6,2 6! 6! 6 5 C 6 2 ! 2! 4! 2 15 2! ⋅ = = = = − ⋅ ⋅ De las 15 uniones posibles de dos vértices diferentes cualesquiera, adyacentes o no. Si de estas 15 parejas eliminamos las que corresponden a vértices adyacentes (tantas como el número de lados del cuadrado), quedaran Diagonales 15 6 9= − = diagonales. 4. Hay que colocar a 5 hombres y 4 mujeres en una fila de modo que las mujeres ocupen los lugares pares. ¿De cuántas maneras puede hacerse? Ya que la fila es de 9 individuos en total, hay 4 posiciones pares (que deben ser ocupadas por las 4 mujeres) y 5 posiciones impares (para los 5 hombres).
  • 3. 3 Por lo tanto, pueden colocarse de: 4 5 P 4! 24 (número de posibles colocaciones) Total 24 120 maneras P 5! 120 (número de posibles colocaciones)h mujer ombre es 2880 = =  ⇒ = ⋅ = = =  5. ¿Cuántos números de 4 dígitos se pueden formar con las cifras 1,2,. . . ,9 1. Permitiendo repeticiones; 2. Sin repeticiones; 3. Si el último dígito ha de ser 1 y no se permiten repeticiones. 1. Permiten repeticiones, e importa el orden (son números no es lo mismo el número 1224 que el 2214) 4 9,4VR 9 6561= = números posibles. 2. No se permiten repeticiones, e importa el orden igual que en el apartado. Por tanto, se pueden formar: ( )9,4 9! 9! V 9 8 7 6 9 4 ! 5 3024 ! = = = ⋅ ⋅ ⋅ = − números. 3. Fijamos el último dígito (El número 1 está en la última posición) y, como no puede haber repeticiones (nos quedan ocho números para tres posiciones), se obtiene un total de ( )8,3 8! 8! V 8 7 6 8 3 ! 5! 336= = = ⋅ ⋅ = − números.
  • 4. 4 6. En un grupo de 10 amigos, ¿cuántas distribuciones de sus fechas de cumpleaños pueden darse al año? Considerando que el año tiene 365 días y que puede darse el caso de que varias personas cumplan en la misma fecha (se permiten repeticiones además importa el orden son fechas), el número de maneras distintas es: 365,10 10 VR 365= 7. ¿Cuántas letras de 5 signos con 3 rayas y 2 puntos podría tener el alfabeto Morse? Dado que de los cinco elementos tan sólo hay dos diferentes (rayas y puntos) que se repiten 3 y 2 veces, respectivamente, tenemos permutaciones con repetición (se repiten los elementos), obteniendo así un total de 3,2 5 5! 5 4 PR 3! ! 2 10 2 ⋅ = = = ⋅ letras. 8. Cuando se arrojan simultáneamente 4 monedas, 1. ¿cuales son los resultados posibles que se pueden obtener? 2. ¿cuántos casos hay en que salgan 2 caras y 2 cruces? Suponiendo que las monedas son iguales: 1. Dado que un mismo resultado individual (cara o cruz) puede obtenerse en varias monedas a la vez (repetición), y que las monedas no pueden distinguirse entre si (no importa el orden en la mesa se lee el resultado), existen ( )2,4 2 4 1,4 5,4 5! 5! CR C C 5 4 ! 4! ! 5 1! 4 + −= = = = − ⋅ ⋅ resultados posibles. Estos casos son: { }E CCCC,CCXX,CCCX,CXXX,XXXX= 2. Como las monedas se arrojan simultáneamente, sólo habrá un caso posible con 2 caras y 2 cruces. Suponiendo que las monedas son distintas:
  • 5. 5 1. En este caso, puesto que se distinguen las monedas entre si (importa el orden) y en una tirada pueden haber varias con el mismo resultado individual (se permiten repeticiones), hay un total de 2,4 4 R 1V 2 6= = resultados posibles. 2. Se calcula el número de elementos con dos caras y dos cruces, tenemos elementos repetidos y tomamos todos ellos luego permutaciones con repetición: 2,2 4 4! 4 3 PR 2! 2! 6 2 ⋅ = = = ⋅ resultados de dos caras y dos cruces. 9. Cuatro libros de matemáticas, seis de física y dos de química han de ser colocados en una estantería ¿Cuántas colocaciones distintas admiten si: 1. los libros de cada materia han de estar juntos; 2. Sólo los de matemáticas tienen que estar juntos? Supongamos que los libros de cada materia también son diferentes (de distintos autores). 1. Consideramos cada conjunto de libros de una misma materia como una unidad. Entonces, hay 3P 3! 6= = ordenaciones posibles de las materias. Además hay que considerar también las 4P 4! 24= = permutaciones de los libros de matemáticas, así como las 6P 6! 720= = de los libros de física y las 2P 2! 2= = de los de química. Se concluye así por el principio de la multiplicación que hay: Total 6 24 72 207.360 2 0= ⋅ ⋅ ⋅ = colocaciones distintas.
  • 6. 6 2. Consideremos los cuatro libros de matemáticas como una unidad. Se tendría entonces una unidad correspondiente a matemáticas, 6 unidades diferentes de física y dos unidades diferentes de química. Por lo tanto, existen: 9P 9! 362880= = maneras de ordenar estas 9 unidades, y por cada una de ellas hay 4P 4! 24= = Ordenaciones posibles de los 4 libros de matemáticas, por lo que en total hay: Total 362880 8.72 1204 09.= ⋅ = formas de colocar los libros. Supongamos que los libros de cada materia son idénticos. 1. Consideremos cada conjunto de libros de una misma materia como una unidad. Nótese que entonces se tendría un total de 3 unidades, (tres clases de libros pero dentro de cada uno de ellos todos iguales) que pueden ordenarse de 3P 3! 6= = formas distintas. 2. En este caso tendremos una unidad de matemáticas (todos tiene que estar juntos), además de 6 de física y 2 de química (idénticos en cada caso), Se tiene entonces un total de 1,6,2 9 9! 362880 PR 1! 6! 2! 1440 252= = = ⋅ ⋅ ordenaciones posibles 10. Un alumno tiene que elegir 7 de las 10 preguntas de un examen. ¿De cuantas maneras puede elegirlas? ¿Y si las 4 primeras son obligatorias? El orden en que elija las preguntas, que además no podrían repetirse, es irrelevante. Así, puede elegir las preguntas de ( )10,7 10! 10 9 8 C 120 10 7 ! 7! 3 2 1 ⋅ ⋅ = = = − ⋅ ⋅ ⋅ maneras. Por otra parte, si las 4 primeras son obligatorias, debe escoger 3 preguntas entre las 6 restantes para completar las 7 necesarias, resultando un total de ( )6,3 6! 6 5 4 C 20 6 3 ! 3! 3 2 1 ⋅ ⋅ = = = − ⋅ ⋅ ⋅ maneras. 11. Una línea de ferrocarril tiene 25 estaciones. ¿Cuántos billetes diferentes habrá que imprimir si cada billete lleva impresas las estaciones de origen y destino?
  • 7. 7 Dado que las estaciones de origen y destino no pueden coincidir (no hay repetición), y además, dadas dos estaciones, es importante saber si corresponden al principio o al final del trayecto (importa el orden), hay un total de ( )25,2 25! 25! V 25 24 25 2 ! 23 6 ! 00= = = ⋅ = − billetes diferentes. 12. Tres atletas toman parte en una competición. ¿De cuántas maneras podrán llegar a la meta? (Pueden llegar juntos) Hay varias posibilidades: • Si llegan los tres juntos, entonces sólo hay 1 posibilidad. • Si llegan dos juntos, existen ( )3,2 3! 3 C 3 3 2 ! 2! 1 = = = − ⋅ grupos de dos que llegan juntos, y 2P 2! 2= = ordenaciones distintas del grupo de dos y el otro atleta, por lo que existen Total 3 2 6= ⋅ = posibilidades. • Si llegan los tres por separado, existen 3P 63!= = posibilidades. Por lo tanto, pueden llegar a la meta de 13 maneras distintas. 13. En un hospital se utilizan cinco símbolos para clasificar las historias clínicas de sus pacientes, de manera que los dos primeros son letras y los tres últimos son dígitos. Suponiendo que hay 25 letras, ¿cuántas historias clínicas podrían hacerse si: 1. No hay restricciones sobre letras y números; 2. Las dos letras no pueden ser iguales. 1. Dado que es necesario tener en cuenta el orden de las dos letras escogidas y que además éstas pueden repetirse, resulta que hay 2 25,2VR 25 625= = posibilidades para las letras. Se procede análogamente con el caso de los dígitos y se obtiene un total de 3 10,3VR 10 1000= = posibilidades para los dígitos. El total de historias clínicas que pueden hacerse es, por lo tanto, Total 625 10 6250 0000 .= ⋅ = . 2. Se procede de forma similar al caso anterior, con la única diferencia de que ahora las letras no pueden repetirse. Así, hay ( )25,2 25! 25! V 25 24 25 2 ! 23 6 ! 00= = = ⋅ = − posibilidades para las letras, y 3 10,3VR 10 1000= = posibilidades para los dígitos, resultando que hay Total 600 10 6000 0000 .= ⋅ = historias clínicas.