SlideShare una empresa de Scribd logo
1 de 22
Descargar para leer sin conexión
ENSAYO DE TENSIÓN
PROTOCOLO
Curso de Materiales
EDICION 2008-1
FACULTAD INGENIERIA INDUSTRIAL
LABORATORIO DE PRODUCCIÓN
Escuela Colombiana de Ingeniería. Laboratorio de Producción.
“Julio Garavito”
2
TABLA DE CONTENIDO
INTRODUCCIÓN 3
OBJETIVOS 3
SEGURIDAD PARA LA PRÁCTICA 3
1 ASIGNACIÓN DE TIEMPOS 4
1.1 Conocimiento de la prensa hidráulica 4
1.2 Práctica 4
2 MARCO TEÓRICO 5
2.1 Generalidades del ensayo de tensión 5
2.1.1 Comportamiento de los distintos materiales frente al ensayo. 6
2.1.2 La ductilidad 6
2.1.3 Esfuerzo y deformación ingenieriles 7
2.1.4 Esfuerzo y deformación real 7
2.2 Diagramas esfuerzo – deformación 8
2.2.1 Punto de Cedencia 8
2.2.2 Módulo de Elasticidad 9
2.2.3 Encuellamiento 9
2.2.4 Esfuerzo-deformación para materiales especiales 11
3 CARACTERÍSTICAS Y ESPECIFICACIONES DE LA PROBETA 11
3.1 Probetas proporcionales 12
3.2 Probetas maquinadas 12
3.3 Probetas no maquinadas 12
3.4 Marcación de la longitud inicial (Lo) 12
4 MÁQUINA UTILIZADA EN LA REALIZACIÓN DE LA PRÁCTICA 12
4.1 Base Fija Superior e Inferior 13
4.2 Mesa Móvil Superior 13
4.3 Gato Hidráulico 13
4.4 Calibrador Vernier 14
4.5 Indicador de Presión 14
4.6 Mordazas de Tensión 14
5 CÁLCULOS Y FORMULAS UTILIZADAS EN LA PRÁCTICA 14
5.1 Cálculo de la fuerza de tensión (F) 14
5.2 Cálculo de la ductilidad 15
5.2.1 Porcentaje de Elongación 15
5.2.2 Porcentaje de reducción de área 15
6 PASOS PARA LA REALIZACIÓN DE LA PRÁCTICA DE TENSIÓN. 16
7 EJEMPLO 17
8 BIBLIOGRAFÍA 20
9 CONTENIDO DEL INFORME 21
10 FORMATOS 22
Escuela Colombiana de Ingeniería. Laboratorio de Producción.
“Julio Garavito”
3
INTRODUCCIÓN
En el proceso de formación de un Ingeniero Industrial, es muy importante el
conocimiento de la Ciencia de los Materiales, ya que esta proporciona las
herramientas necesarias para comprender el comportamiento general de
cualquier material, lo cual es necesario a la hora de desarrollar adecuadamente
diseños de componentes, sistemas y procesos que sean confiables y
económicos.
Este laboratorio es realizado con el fin de conocer ciertas propiedades mecánicas,
como la ductilidad, rigidez y resistencia, de varios materiales al ser sometidos a
una fuerza de tensión ejercida gradualmente por una prensa. De igual forma,
también tiene por objetivo desarrollar habilidades para manejar los instrumentos
requeridos en la práctica.
Para la correcta realización de esta prueba, se recomienda que los estudiantes
hayan comprendido previamente el contenido de esta, consignado en el Protocolo.
OBJETIVOS
• Conocer la importancia de la prueba de tensión.
• Conocer y manejar cada parte de la prensa hidráulica correctamente.
• Leer e interpretar las unidades manejadas por la carátula del manómetro y en
el calibrador que indica el desplazamiento de la prensa.
• Conocer las características y especificaciones que se deben tener en los
materiales a utilizar como las probetas de acero.
• Saber manejar adecuadamente las mordazas que sujetan la probeta, y así
mismo garantizar que la fuerza sea efectuada en el eje central de la máquina.
• Conocer las especificaciones de la Norma Técnica Colombiana 2 sobre Prueba
de Tensión.
• Estar en capacidad de interpretar los datos arrojados por la práctica para la
prueba de tensión.
SEGURIDAD PARA LA PRÁCTICA
Para evitar lesiones y/o fallas en la máquina (prensa hidráulica) e implementos de
apoyo, causadas durante la realización de la práctica, es necesario que los
estudiantes al momento de realizarla tengan en cuenta:
• Es sumamente importante portar los implementos de seguridad necesarios:
guantes de cuero (Baqueta) y gafas de seguridad.
• Tener un buen conocimiento sobre la práctica, y todo lo relacionado con esta,
como el manejo que se debe tener con la prensa hidráulica, probetas,
utilización de las mordazas de la prensa, manejo de materiales y utilización de
estos.
• Seguir precisamente las instrucciones de los monitores, antes de la realización
de la práctica.
• Al terminar de accionar el gato retirar inmediatamente la palanca que lo
acciona.
Escuela Colombiana de Ingeniería. Laboratorio de Producción.
“Julio Garavito”
4
1 ASIGNACIÓN DE TIEMPOS
1.1 Conocimiento de la prensa hidráulica
TEORIA TIEMPO (min.)
Generalidades de la prensa hidráulica. 2
Partes de la prensa hidráulica: Bases fija inferior y superior, gato
hidráulico, mesa móvil, manómetro, columnas paralelas,
mordazas de sujeción.
4
Conocimiento y cuidados que deben tener sobre la prensa
hidráulica y sus partes.
2
Conocimiento de las especificaciones de la NTC 2 para ensayos
de tensión.
5
Lectura e interpretación de los resultados del manómetro y
calibrador.
2
Conocimiento y especificaciones de la probeta a utilizar en la
práctica.
3
Conocimiento de la importancia de la deformación de los
materiales metálicos, según el esfuerzo aplicado.
Cálculo de la fuerza de Tensión (F), cálculo del Esfuerzo
Inducido (σ), y cálculo del % de Elongación (ε).
10
Cuidados que se deben tener en el momento de realizar la
práctica, e importancia del uso de los implementos de seguridad.
2
Total 30
1.2 Práctica
PRÁCTICA TIEMPO (min.)
Verificar el funcionamiento de las partes de la prensa
hidráulica y asegurarse que el gato hidráulico se encuentre
liberado.
3
Colocar la probeta a utilizar en la práctica en las mordazas
de sujeción de la prensa hidráulica.
Asegurar el gato hidráulico y empezar a bombear
lentamente, tomando las mediciones de presión indicadas en
la carátula del manómetro y de la posición dada por el
calibrador.
27
Realizar una segunda prueba con una probeta de otro
material
30
Total 60
Escuela Colombiana de Ingeniería. Laboratorio de Producción.
“Julio Garavito”
5
2 MARCO TEÓRICO
A continuación se presentan, de manera general, los aspectos más importantes
que se deben tener presentes para realizar la práctica.
2.1 Generalidades del ensayo de tensión
Este ensayo es utilizado para medir la resistencia de un material a una fuerza
estática o aplicada lentamente. Esta prueba consiste en alargar una probeta de
ensayo por fuerza de tensión, ejercida gradualmente, con el fin de conocer ciertas
propiedades mecánicas de materiales en general: su resistencia, rigidez y
ductilidad. Sabiendo que los resultados del ensayo para un material dado son
aplicables a todo tamaño y formas de muestra, se ha establecido una prueba en la
cual se aplica una fuerza de tensión sobre una probeta de forma cilíndrica y
tamaño normalizado, que se maneja universalmente entre los ingenieros. Este
ensayo se lleva a cabo a temperatura ambiente entre 10ºC y 35ºC. A continuación
se presenta un dispositivo utilizado para realizar este tipo de ensayos (Ver Figura
No. 1).
Figura 1. Máquina donde se lleva a cabo la Prueba de Tensión
Escuela Colombiana de Ingeniería. Laboratorio de Producción.
“Julio Garavito”
6
2.1.1 Comportamiento de los distintos materiales frente al ensayo.
El comportamiento de los distintos materiales frente al ensayo se encuentra
ilustrado en la siguiente grafica. La figura No. 2 muestra en forma cualitativa las
curvas de esfuerzo-deformación unitaria normales para un metal, un material
termoplástico, un elastómero y un cerámico. En esta figura, las escalas son
cualitativas y distintas para cada material. En la práctica, las magnitudes reales de
los esfuerzos y las deformaciones pueden ser muy distintas entre sí.
Se supone que el material plástico esta arriba de su temperatura de
transformación vítrea (Tg), mientras que los materiales metálicos y termoplásticos
muestran una región inicial elástica, seguida por una región plástica no lineal.
También se incluye una curva aparte para los elastómeros (es decir, hules o
siliconas), ya que el comportamiento de esos materiales es distinto del de otros
materiales poliméricos. Para los elastómeros, una gran parte de la deformación es
elástica y no lineal. Por otra parte los cerámicos y los vidrios solo muestran una
región elástica lineal y casi nunca muestran deformación plástica a temperatura
ambiente. (Ver figura No. 2)
2.1.2 La ductilidad
La ductilidad es el grado de deformación que puede soportar un material sin
romperse. Se mide por la relación de la longitud original de la probeta entre
marcas calibradas antes (lo) y después del ensayo (lf).
Figura 2. Curvas de esfuerzo deformación a la tensión, para distintos materiales.
Escuela Colombiana de Ingeniería. Laboratorio de Producción.
“Julio Garavito”
7
2.1.3 Esfuerzo y deformación ingenieriles
Los resultados de un solo ensayo se aplican a todos los tamaños y secciones
transversales de especimenes de determinado material, siempre que se convierta
la fuerza en esfuerzo, y la distancia entre marcas de calibración se convierta a
deformación. El esfuerzo ingenieril (lb/pul^2) y la deformación ingenieril (pul/pul) se
definen con las siguientes ecuaciones:
Donde:
• F: Fuerza aplicada en la probeta (lb)
• Ao: Área de la sección transversal original de la probeta. (pul^2)
• Lo: Longitud calibrada antes de la aplicación de la carga.
• L: Longitud adquirida por la sección calibrada, al iniciar la aplicación de la carga.
2.1.4 Esfuerzo y deformación real
El esfuerzo real a diferencia del esfuerzo ingenieril, tiene en cuenta el área
instantánea que se reduce a medida que avanza el ensayo. El esfuerzo real (lb/
pul^2) se puede definir con la siguiente ecuación:
Donde:
• F: Fuerza aplicada en la probeta (lb)
• A: Área real (instantánea) que resiste la carga (pul^2).
La deformación real se determina con la elongación “instantánea” por unidad de
longitud del material. Esta se determina con la siguiente ecuación:
En donde L y Lo ya están definidos en el punto anterior.
Escuela Colombiana de Ingeniería. Laboratorio de Producción.
“Julio Garavito”
8
2.2 Diagramas esfuerzo – deformación
El Diagrama Esfuerzo – Deformación es utilizado cuando se lleva a cabo el
ensayo de Tensión. Este tipo de graficas se pueden hacer con los datos
calculados esfuerzo-deformación ingenieriles, o con los datos correspondientes a
esfuerzo – deformación reales.
A continuación se presenta el diagrama de esfuerzo deformación para el caso de
datos reales. (Ver Figura No. 3).
Donde:
• Sced: Resistencia en el punto de cedencia.
• Srot: Resistencia a la rotura.
• Súlt: Resistencia en el punto de esfuerzo último.
2.2.1 Punto de Cedencia
Es el momento en que la deformación de la pieza, debido a la carga que se le esta
aplicando, deja de ser elástica y se vuelve permanente o plástica, es decir que es
el punto en el que se quita la fuerza ejercida y la probeta se devuelve a su
longitud inicial. El esfuerzo inducido aplicado en el momento cuando el material
llega a su punto de cedencia es en realidad la Resistencia Cedente del Material,
Sced.
Figura 3. Gráfico de Esfuerzo – Deformación (real)
Escuela Colombiana de Ingeniería. Laboratorio de Producción.
“Julio Garavito”
9
En algunos materiales, la transición de
deformación elástica a flujo plástico es
abrupta. Esa transición se llama fenómeno
de punto de fluencia. En esos materiales, al
comenzar la deformación plástica, el valor
del esfuerzo baja primero desde el punto
de fluencia superior (σ2). El valor del
esfuerzo sigue decreciendo y oscila en
torno a un valor promedio que se define
como punto de fluencia inferior (σ1). (Ver
Figura No. 4). Inmediatamente después, el
esfuerzo empieza a crecer nuevamente,
entrando a la región de deformación
plástica
2.2.2 Módulo de Elasticidad
La porción inicial lineal de la gráfica esfuerzo deformación mostrada en la Figura
No. 4, representa lo que se llama el Modulo de Elasticidad E, de los materiales.
Este se calcula según la ley de Hooke, mediante la fórmula:
lo que es lo mismo a la pendiente de dicha porción lineal. Las unidades del modulo
de elasticidad son las mismas a las utilizadas para los esfuerzos, esto es
(lb/pulg2), (N/m2) ó cualquier otra unidad correspondiente.
En esta región el material se comporta elásticamente por lo que cuando se quita la
fuerza, la deformación que haya alcanzado el material se devuelve a cero, su
forma original antes de iniciar la prueba.
2.2.3 Encuellamiento
Debido a las imperfecciones internas que poseen los materiales al no ser 100%
homogéneos ni isotropicos (las propiedades físicas no dependen de la dirección
de observación), el sitio del Encuellamiento puede ocurrir en cualquier parte de la
probeta; por este motivo se reduce su sección central con el fin de que el
Encuellamiento ocurra dentro del área demarcada de 20 mm de longitud. (Ver
Figura 5).
Figura 4. Esfuerzo de Cedencia Superior e
Inferior, de un acero de Bajo Carbono.
Escuela Colombiana de Ingeniería. Laboratorio de Producción.
“Julio Garavito”
10
Figura 5. Forma de la probeta.
Figura 6. Posición de la probeta en la máquina.
Escuela Colombiana de Ingeniería. Laboratorio de Producción.
“Julio Garavito”
11
2.2.4 Esfuerzo-deformación para materiales especiales
En algunos materiales la resistencia de cedencia no se puede detectar fácilmente,
en este caso se le llama Resistencia de Cedencia Convencional (Proof Strength);
(Ver Figura No. 7). Es una resistencia teórica que se define mediante una recta
paralela a la zona de deformación elástica, desplazada 0.2% hacia la derecha (en
el origen), cuya intersección con la curva σ/ε define el punto de resistencia
convencional. (También se utiliza el 0.1%, por norma)
3 CARACTERÍSTICAS Y ESPECIFICACIONES DE LA PROBETA
A continuación se presentan las características y especificaciones de las probetas
utilizadas en la prueba de Tensión.
La probeta de ensayo se obtiene generalmente por maquinado de una muestra del
producto trabajado en frio o fundido. La sección transversal de las probetas puede
ser circular, cuadrada, rectangular o en casos especiales de cualquier otra forma.
Figura 7. Determinación del Límite Elástico Convencional al
0.2% de deformación.
Escuela Colombiana de Ingeniería. Laboratorio de Producción.
“Julio Garavito”
12
3.1 Probetas proporcionales
Las probetas de ensayo cuya longitud inicial se relaciona con el área inicial de la
sección transversal 0AKLo = , son llamadas Probetas Proporcionales. El valor
adoptado internacionalmente para K es 5.65. La longitud calibrada inicial no puede
ser menor de 20 mm. Cuando el área transversal de la probeta es demasiado
pequeña es necesario un valor de K más alto, de 11.3.
NOTA: En nuestro caso el diámetro de la probeta utilizada para la práctica de
tensión es de 6 mm. La norma internacional exige ½ pulgada. Esto invalida la
prueba desde el punto de vista de una certificación oficial, mas no desde el punto
de vista de los resultados analíticos.
3.2 Probetas maquinadas
Las probetas de ensayo maquinadas deben tener una curva de transición entre los
agarres de las mordazas y la longitud paralela si estas son de diferentes
dimensiones. Los extremos de agarre pueden ser de cualquier forma siempre y
cuando se adapten a las mordazas de la máquina. La longitud libre de las
mordazas siempre debe ser mayor que la longitud inicial calibrada.
3.3 Probetas no maquinadas
Si la probeta es de una longitud no calibrada, la longitud libre entre las mordazas
debe ser suficiente para que las marcas calibradas queden a una distancia
razonable de las mordazas.
3.4 Marcación de la longitud inicial (Lo)
Para probetas proporcionales, el valor de la longitud calibrada inicial puede
aproximarse al múltiplo de 5 mm más cercano, cuidando que la diferencia entre la
longitud calibrada calculada y la marcada sea menor de 10% de Lo. La longitud
calibrada inicial se debe marcar con una precisión de +/- 1%. La marcación es un
aspecto fundamental, ya que al finalizar la prueba podremos medir la longitud final
(Lf), y de esta forma calcular el % de elongación el cual es dependiente de las
longitudes inicial y final.
4 MÁQUINA UTILIZADA EN LA REALIZACIÓN DE LA PRÁCTICA
La máquina utilizada en el laboratorio para la realización de esta práctica es una
Prensa Hidráulica. Esta máquina se utiliza para dar forma, extruir, marcar metales
y para evaluar la ductilidad de ciertos materiales metálicos sometidos a grandes
presiones.
A continuación se presentan las partes de esta máquina, para facilitar su
comprensión. (Ver Figura No. 8).
Escuela Colombiana de Ingeniería. Laboratorio de Producción.
“Julio Garavito”
13
4.1 BASE FIJA SUPERIOR E INFERIOR
Son las dos bases que le dan la estabilidad general a la máquina, unidas mediante
las dos columnas paralelas. (Ver Figura No. 8)
4.2 MESA MÓVIL SUPERIOR
Esta mesa, al ser empujada hacia arriba por el gato hidráulico, arrastra la mesa
móvil inferir (por intermedio de las dos columnas móviles) y así, estira la probeta
montada entre XXX mesa móvil y la base fija inferior.
4.3 GATO HIDRÁULICO
El gato hidráulico al ser expandido mediante el bombeo cae la palanca, actúa en
un transductor de presión instalado entre su vástago y la base del manómetro.
Este transductor de presión, cuyo embolo interno tiene un diámetro 56.8 mm, nos
permite calcular la fuerza ejercida sobre la probeta, al leer la presión del
manómetro (Ver párrafo 5.1).
Figura 8. Prensa hidráulica
Escuela Colombiana de Ingeniería. Laboratorio de Producción.
“Julio Garavito”
14
4.4 CALIBRADOR VERNIER
Este calibrador se coloca entre la mesa móvil superior de la prensa y la base fija
superior; su función es efectuar la medición de la elongación de las probetas
utilizadas durante la prueba.
4.5 INDICADOR DE PRESIÓN
Este indicador es un manómetro que marca la presión ejercida sobre el aceite. La
presión es causada por el gato hidráulico dentro de un pistón intermedio
(transductor) entre su vástago y la mesa móvil superior. Tiene dos tipos de
escalas, en Psi y en Bar.
4.6 MORDAZAS DE TENSIÓN
Esta parte de la máquina se utiliza para realizar la prueba de tensión; entre estas
mordazas, es colocada la probeta que tiene dos hombros que facilitan el agarre a
cada una de las mordazas; las mordazas giran en su eje central y permiten ser
ajustadas al tamaño de la probeta en sus dos extremos; este ajuste debe hacerse
cuidadosamente a mano hasta llegar a dejar fija la probeta; ambas mordazas
deben ser ajustadas girándolas hacia la derecha.
5 CÁLCULOS Y FORMULAS UTILIZADAS EN LA PRÁCTICA
A continuación se presentarán las formulas utilizadas en la práctica y se explicarán
sus variables:
5.1 Cálculo de la fuerza de tensión (F)
Para calcular la fuerza de tensión sobre la probeta se debe considerar el área del
embolo interno sobre la cual se ejerciendo la presión medida por el manómetro de
la prensa.
Esto se puede representar por la siguiente fórmula:
Donde:
• F: Fuerza que se esta ejerciendo sobre la probeta, (lb).
• P: Presión marcada por el manómetro de la prensa, (lbs/pulg²).
• Ae: Área del émbolo de empuje de la prensa (pulg²).
• de: Diámetro del émbolo (pulg). (Para este caso, este diámetro es de
56.8 mm)
[ ]lbAPF e*=
[ ]²lg
4
²*
pu
d
A e
e
π
=
Escuela Colombiana de Ingeniería. Laboratorio de Producción.
“Julio Garavito”
15
5.2 Cálculo de la ductilidad
La ductilidad se representa por los porcentajes de elongación ó de reducción de
área, los cuales se calculan de la siguiente manera:
5.2.1 Porcentaje de Elongación
El Porcentaje de Elongación representa la distancia que la probeta se alarga
plásticamente antes de la fractura:
Donde:
• Lo: Longitud Inicial Calibrada de la Probeta (mm).
• L : Longitud Elongada de la Probeta (mm).
5.2.2 Porcentaje de reducción de área
Este porcentaje también representa la deformación plástica antes de la fractura:
100% x
Ao
AAo
RA inst−
=
Donde:
• RA: Porcentaje de reducción de área
• Ao: Área inicial de la probeta
• Ainst: Área instantánea de la probeta
Para calcular el área instantánea de la probeta se puede hacer uso del principio de
conservación del volumen total de la probeta, el cual no debe cambiar a pesar de
que esta se estire y como resultado se reduce su área transversal:
100% x
Lo
LoL
elongación
−
=
Escuela Colombiana de Ingeniería. Laboratorio de Producción.
“Julio Garavito”
16
6 PASOS PARA LA REALIZACIÓN DE LA PRÁCTICA DE TENSIÓN.
A continuación se explicará de manera detallada los pasos que se tienen que
realizar para llevar a cabo con éxito esta práctica:
1. Realizar la medida de la longitud y el diámetro inicial de ambas probetas a
utilizar en la prueba, con la ayuda de un calibrador Vernier. Es importante que
se realice una marca con la ayuda de un marcador en las probetas, que
indique el lugar donde se van a realizar las mediciones del diámetro y la
correspondiente a la longitud inicial Lo.
2. Es importante recordar que es necesario que las mordazas se deben ajustar
convenientemente con las manos, para cuando se lleve la probeta entre
perfectamente y luego, se ajustan bien, manualmente.
Hay que asegurarse que la probeta esta alineada, es decir, que coincida con
las marcas presentes en los soportes.
3. Se le coloca el seguro al gato y se comienza a bombear de modo gradual;
cuando se llegue a la posición ligeramente por encima de 0 psi, se establecerá
el punto inicial de la prueba, de esta manera se puede registrar en las tablas la
lectura inicial del calibrador instalado en la máquina.
4. Accionar de nuevo el gato hasta lograr una lectura en el manómetro de 200
Psi. Posteriormente se procede a consignar en la tabla de toma de datos la
lectura del calibrador y el diámetro de la probeta, de 200 en 200 psi.
5. Este procedimiento se repite hasta encontrar de manera experimental el punto
de encuellamiento. Una vez encontrado este punto dentro de la práctica se
procederá a aplicar presiones pequeñas de manera lenta, para lograr con esto
captar las variaciones de presiones y poder consignar de esta manera los
datos en las respectivas tablas.
6. Se afloja el gato, la mesa móvil superior retorna a su posición inicial y se
aflojan las mordazas de la máquina.
7. Una vez se cuenten con todos los datos experimentales, el estudiante
procederá a realizar los cálculos pertinentes y de esta manera realizar el
análisis de los resultados obtenidos en la práctica.
Escuela Colombiana de Ingeniería. Laboratorio de Producción.
“Julio Garavito”
17
7 EJEMPLO
Utilizando la prueba de tensión, a continuación se explicará mediante un ejemplo, el cálculo de los porcentajes de
elongación, esfuerzos inducidos y deformaciones para un acero típico.
Al iniciar la carga sobre la probeta se obtienen diferentes valores a medida que la presión va aumentando. Para
cada posición se tendrá una longitud nueva en el calibrador y una presión nueva en el manómetro.
1 2 3
POSICIÓN
PRESIÓN DEL
MANOMETRO
(Psi)
(lb-f/pulg^2)
LONGITUD
PROBETA
(mm)
0 0 50
1 2862 50,0613
2 5724 50,1227
3 8586 50,1848
4 10017 50,5
5 11448 51,35
6 12879 52,9
7 13222 53,4
Nuestro objetivo ahora es encontrar los diagramas de esfuerzo deformación ingenieril- real y los porcentajes de
reducción de área. Para esto se construye la Tabla No. 2, en donde encontramos las siguientes columnas:
Tabla 1. Toma de Datos
Escuela Colombiana de Ingeniería. Laboratorio de Producción.
“Julio Garavito”
18
1 2 3 4 5 6 7 8 9 10
POSICIÓN
Presión
(Lb-F/pulg2
)
Carga
(Lb-F)
LONGITUD
PROBETA (pul)
∆∆∆∆ LONG (pul)
ÁREAinst,
(pul^2)
Deformación Esfuerzo
Ingenieril, e Real, ε s, Lb-F/pul2
σ, Lb-f/pul2
0 0 0 1,9685 0 0,7608 0 0 0 0,00
1 2862 11241 1,9709 0,0024 0,7598 0,001224 0,001225 14775 14793,17
2 5724 22481 1,9733 0,0048 0,7589 0,002448 0,002451 29550 29622,63
3 8586 33722 1,9758 0,0073 0,7580 0,003682 0,003689 44325 44488,99
4 10017 39342 1,9882 0,0197 0,7532 0,009901 0,009950 51713 52229,82
5 11448 44962 2,0217 0,0531 0,7408 0,026290 0,026642 59100 60695,92
6 12879 50582 2,0827 0,1142 0,7191 0,054820 0,056380 66488 70344,04
7 13222 51931 2,1024 0,1339 0,7123 0,063670 0,065788 68261 72902,48
La carga sobre la probeta (columna 3) se calcula en función de la presión del manómetro y el área del émbolo.
En la columna 5, se expresa el cambio de la longitud que sufre la probeta de posición en posición:
En la columna 6, se muestra el cálculo del área instantánea para cada posición.
A continuación en las columnas 7 y 8 se muestran las deformaciones ingenieril y real y por ultimo en las columnas 9
y 10 se muestran el cálculo de los esfuerzos inducidos ingenieril y real.
El cálculo del porcentaje de elasticidad arroja un valor de: 6.2%
El cálculo del porcentaje de reducción de área arroja un valor de: 13.15%
El cálculo del módulo de elasticidad arroja un valor de: 12066.206 Gpsi
Tabla 2. Datos Calculados
Escuela Colombiana de Ingeniería. Laboratorio de Producción.
“Julio Garavito”
19
Calculados los esfuerzos y las deformaciones procedemos a la elaboración de las graficas esfuerzo-deformación
correspondientes:
Figura 9. Gráfica esfuerzo - deformación
Escuela Colombiana de Ingeniería. Laboratorio de Producción.
“Julio Garavito”
20
8 BIBLIOGRAFÍA
• ASKELAND, Donal R., “Ciencia e Ingeniería de los Materiales”, Thomson
Editores. México, 1998.
• GROOVER, Mikell P., “Fundamentos de Manufactura Moderna” Prentice
Hall. México 1997. Capítulo 3 “Propiedades Mecánicas de los materiales”
Escuela Colombiana de Ingeniería. Laboratorio de Producción.
“Julio Garavito”
21
9 CONTENIDO DEL INFORME
PRÁCTICA DE TENSIÓN
1. Introducción.
2. Objetivos. (Generales y Específicos).
3. Marco Teórico.
- Prueba de Tensión.
- Prensa Hidráulica
- Tipos de esfuerzo – Deformación.
- Aplicaciones a la prueba de tensión.
- Materiales.
4. Descripción del aparato.
5. Descripción del Procedimiento.
6. Estudio de Campo.
- Tabla con los datos pedidos.
- Gráfica Esfuerzo-Elongación.
- Análisis de la Gráfica.
- Cálculo del Esfuerzo último, porcentaje de elongación, porcentaje de
reducción de área y análisis de estos valores.
7. Análisis de la norma NTC 2.
8. Conclusiones de la práctica.
9. Recomendaciones.
10.Bibliografía.
22
Escuela Colombiana de Ingeniería. Laboratorio de Producción.
“Julio Garavito”
10 FORMATOS
POSICIÓN
PRESIÓN DEL
MANOMETRO
(Psi)
(lb-f/pulg^2)
LONGITUD
PROBETA
(mm)
0
1
2
3
4
5
6
7
POSICIÓN
Presión
(Lb-F/pulg2
)
Carga
(Lb-F)
LONGITUD
PROBETA (pul)
∆∆∆∆ LONG (pul)
ÁREAinst,
(pul^2)
Deformación Esfuerzo
Ingenieril, e Real, ε s, Lb-F/pul2
σ, Lb-f/pul2
0
1
2
3
4
5
6
7
Tabla 3. Toma de Datos
Tabla 4. Datos Calculados

Más contenido relacionado

La actualidad más candente

Informe pendulo charpy
Informe pendulo charpyInforme pendulo charpy
Informe pendulo charpyDaniels Aldas
 
Proceso De Soldadura 01 Freddy Osinaga Esab
Proceso De Soldadura  01  Freddy Osinaga EsabProceso De Soldadura  01  Freddy Osinaga Esab
Proceso De Soldadura 01 Freddy Osinaga EsabIng. Electromecanica
 
Informe de ensayo destructivo por fatiga
Informe de ensayo destructivo por fatigaInforme de ensayo destructivo por fatiga
Informe de ensayo destructivo por fatigaJeyson Minaya Pantoja
 
Informe estaño
Informe estañoInforme estaño
Informe estañoALEXARUBEN
 
Norma técnica colombiana ntc 5019
Norma técnica colombiana ntc 5019Norma técnica colombiana ntc 5019
Norma técnica colombiana ntc 5019Edwin Ortega
 
Informe tecnico de vidrio
Informe tecnico de vidrioInforme tecnico de vidrio
Informe tecnico de vidriosebas1128
 
Conformado de materiales
Conformado de materialesConformado de materiales
Conformado de materialesKennya Franco
 
Ensayo metalográfico
Ensayo metalográficoEnsayo metalográfico
Ensayo metalográficoiadiegue
 
Materiales estructurales
Materiales estructuralesMateriales estructurales
Materiales estructuralesMenfis Obellid
 
1. Inspeccion Y Pruebas No Destructivas
1. Inspeccion Y  Pruebas No Destructivas1. Inspeccion Y  Pruebas No Destructivas
1. Inspeccion Y Pruebas No DestructivasIng. Electromecanica
 
Estructura de los metales
Estructura de los metalesEstructura de los metales
Estructura de los metalesYoisysalas25
 

La actualidad más candente (20)

Informe pendulo charpy
Informe pendulo charpyInforme pendulo charpy
Informe pendulo charpy
 
Proceso De Soldadura 01 Freddy Osinaga Esab
Proceso De Soldadura  01  Freddy Osinaga EsabProceso De Soldadura  01  Freddy Osinaga Esab
Proceso De Soldadura 01 Freddy Osinaga Esab
 
Tipos de ensayo de soldadura
Tipos de ensayo de soldaduraTipos de ensayo de soldadura
Tipos de ensayo de soldadura
 
Informe de ensayo destructivo por fatiga
Informe de ensayo destructivo por fatigaInforme de ensayo destructivo por fatiga
Informe de ensayo destructivo por fatiga
 
Informe estaño
Informe estañoInforme estaño
Informe estaño
 
Ensayos mecanicos
Ensayos mecanicosEnsayos mecanicos
Ensayos mecanicos
 
Metales ferrosos y no ferrosos
Metales ferrosos y no ferrosos Metales ferrosos y no ferrosos
Metales ferrosos y no ferrosos
 
Norma técnica colombiana ntc 5019
Norma técnica colombiana ntc 5019Norma técnica colombiana ntc 5019
Norma técnica colombiana ntc 5019
 
Informe tecnico de vidrio
Informe tecnico de vidrioInforme tecnico de vidrio
Informe tecnico de vidrio
 
Proceso constructivo de una piscina
Proceso constructivo de una piscinaProceso constructivo de una piscina
Proceso constructivo de una piscina
 
Caracterizacion de materiales (Ensayos mecanicos y termicos)
Caracterizacion de materiales (Ensayos mecanicos y termicos)Caracterizacion de materiales (Ensayos mecanicos y termicos)
Caracterizacion de materiales (Ensayos mecanicos y termicos)
 
Conformado de materiales
Conformado de materialesConformado de materiales
Conformado de materiales
 
2015 07-08 ceramicas avanzadas
2015 07-08 ceramicas avanzadas2015 07-08 ceramicas avanzadas
2015 07-08 ceramicas avanzadas
 
Ensayo metalográfico
Ensayo metalográficoEnsayo metalográfico
Ensayo metalográfico
 
Procesos de union original
Procesos de union originalProcesos de union original
Procesos de union original
 
Aislantes y union entre conductores
Aislantes y union entre conductoresAislantes y union entre conductores
Aislantes y union entre conductores
 
Materiales estructurales
Materiales estructuralesMateriales estructurales
Materiales estructurales
 
1. Inspeccion Y Pruebas No Destructivas
1. Inspeccion Y  Pruebas No Destructivas1. Inspeccion Y  Pruebas No Destructivas
1. Inspeccion Y Pruebas No Destructivas
 
Estructura de los metales
Estructura de los metalesEstructura de los metales
Estructura de los metales
 
Calculocargas
CalculocargasCalculocargas
Calculocargas
 

Similar a Tension

Ensayos de traccion i y ii miguel arraiz
Ensayos de traccion i y ii miguel arraizEnsayos de traccion i y ii miguel arraiz
Ensayos de traccion i y ii miguel arraizMiguel Arraiz
 
Extremiana javier practica_2
Extremiana javier practica_2Extremiana javier practica_2
Extremiana javier practica_2JavierExtremiana
 
Ensayos para Garantizar la Vida en Servicio de nuestros Productos
Ensayos para Garantizar la Vida en Servicio de nuestros ProductosEnsayos para Garantizar la Vida en Servicio de nuestros Productos
Ensayos para Garantizar la Vida en Servicio de nuestros ProductosTECNALIA Research & Innovation
 
Presentación rocas Minsup Clase 1.pptx
Presentación rocas Minsup Clase 1.pptxPresentación rocas Minsup Clase 1.pptx
Presentación rocas Minsup Clase 1.pptxMayteTorresGonzales
 
Presentación rocas Minsup Clase 1.pptx
Presentación rocas Minsup Clase 1.pptxPresentación rocas Minsup Clase 1.pptx
Presentación rocas Minsup Clase 1.pptxBrayamPerezRojas
 
Guia ensayo de traccion
Guia ensayo de traccionGuia ensayo de traccion
Guia ensayo de traccionPedro Jimenez
 
1537 tratamientostermicosr2
1537 tratamientostermicosr21537 tratamientostermicosr2
1537 tratamientostermicosr2Jose Luis
 
1537 tratamientostermicosr2
1537 tratamientostermicosr21537 tratamientostermicosr2
1537 tratamientostermicosr2LISETH DELGADO
 
laboratorio02-ensayo-de-traccion.pdf
laboratorio02-ensayo-de-traccion.pdflaboratorio02-ensayo-de-traccion.pdf
laboratorio02-ensayo-de-traccion.pdftovarpalomino
 
Ensayo de compresion
Ensayo de compresionEnsayo de compresion
Ensayo de compresiontony
 

Similar a Tension (20)

Trabajo de fisica 2
Trabajo de fisica 2Trabajo de fisica 2
Trabajo de fisica 2
 
6918 dilatometro
6918 dilatometro6918 dilatometro
6918 dilatometro
 
Traccion convertido
Traccion convertidoTraccion convertido
Traccion convertido
 
Una triste realidad
Una triste realidadUna triste realidad
Una triste realidad
 
Informe 3
Informe 3Informe 3
Informe 3
 
Ensayos de traccion i y ii miguel arraiz
Ensayos de traccion i y ii miguel arraizEnsayos de traccion i y ii miguel arraiz
Ensayos de traccion i y ii miguel arraiz
 
Extremiana javier practica_2
Extremiana javier practica_2Extremiana javier practica_2
Extremiana javier practica_2
 
Laboratorio de charpy
Laboratorio de charpyLaboratorio de charpy
Laboratorio de charpy
 
Ensayos para Garantizar la Vida en Servicio de nuestros Productos
Ensayos para Garantizar la Vida en Servicio de nuestros ProductosEnsayos para Garantizar la Vida en Servicio de nuestros Productos
Ensayos para Garantizar la Vida en Servicio de nuestros Productos
 
Presentación rocas Minsup Clase 1.pptx
Presentación rocas Minsup Clase 1.pptxPresentación rocas Minsup Clase 1.pptx
Presentación rocas Minsup Clase 1.pptx
 
Presentación rocas Minsup Clase 1.pptx
Presentación rocas Minsup Clase 1.pptxPresentación rocas Minsup Clase 1.pptx
Presentación rocas Minsup Clase 1.pptx
 
Ensayo de tensión o tracción
Ensayo de tensión o tracciónEnsayo de tensión o tracción
Ensayo de tensión o tracción
 
Guia ensayo de traccion
Guia ensayo de traccionGuia ensayo de traccion
Guia ensayo de traccion
 
1537 tratamientostermicosr2
1537 tratamientostermicosr21537 tratamientostermicosr2
1537 tratamientostermicosr2
 
1537 tratamientostermicosr2
1537 tratamientostermicosr21537 tratamientostermicosr2
1537 tratamientostermicosr2
 
Pan deo perfil t
Pan deo perfil tPan deo perfil t
Pan deo perfil t
 
laboratorio02-ensayo-de-traccion.pdf
laboratorio02-ensayo-de-traccion.pdflaboratorio02-ensayo-de-traccion.pdf
laboratorio02-ensayo-de-traccion.pdf
 
Ensayo de compresion
Ensayo de compresionEnsayo de compresion
Ensayo de compresion
 
Ensayo tension
Ensayo tensionEnsayo tension
Ensayo tension
 
Guía 3 dureza def (1)
Guía 3 dureza def (1)Guía 3 dureza def (1)
Guía 3 dureza def (1)
 

Más de kalu999

especificaciones tecnicas
especificaciones tecnicasespecificaciones tecnicas
especificaciones tecnicaskalu999
 
2014 07-24 07-52-42107854
2014 07-24 07-52-421078542014 07-24 07-52-42107854
2014 07-24 07-52-42107854kalu999
 
Murio la persona_que_te_bloqueaba
Murio la persona_que_te_bloqueabaMurio la persona_que_te_bloqueaba
Murio la persona_que_te_bloqueabakalu999
 
R 002-estacionamiento-vehicular
R 002-estacionamiento-vehicularR 002-estacionamiento-vehicular
R 002-estacionamiento-vehicularkalu999
 
105641829 diseno-del-peralte
105641829 diseno-del-peralte105641829 diseno-del-peralte
105641829 diseno-del-peraltekalu999
 
V6 anexo1 formatos
V6 anexo1 formatosV6 anexo1 formatos
V6 anexo1 formatoskalu999
 

Más de kalu999 (7)

especificaciones tecnicas
especificaciones tecnicasespecificaciones tecnicas
especificaciones tecnicas
 
Rab 140
Rab 140Rab 140
Rab 140
 
2014 07-24 07-52-42107854
2014 07-24 07-52-421078542014 07-24 07-52-42107854
2014 07-24 07-52-42107854
 
Murio la persona_que_te_bloqueaba
Murio la persona_que_te_bloqueabaMurio la persona_que_te_bloqueaba
Murio la persona_que_te_bloqueaba
 
R 002-estacionamiento-vehicular
R 002-estacionamiento-vehicularR 002-estacionamiento-vehicular
R 002-estacionamiento-vehicular
 
105641829 diseno-del-peralte
105641829 diseno-del-peralte105641829 diseno-del-peralte
105641829 diseno-del-peralte
 
V6 anexo1 formatos
V6 anexo1 formatosV6 anexo1 formatos
V6 anexo1 formatos
 

Último

Ingeniería clínica 1 Ingeniería biomedica
Ingeniería clínica 1 Ingeniería biomedicaIngeniería clínica 1 Ingeniería biomedica
Ingeniería clínica 1 Ingeniería biomedicaANACENIMENDEZ1
 
Reporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacaReporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacajeremiasnifla
 
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.pptARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.pptMarianoSanchez70
 
Mapas y cartas topográficas y de suelos.pptx
Mapas y cartas topográficas y de suelos.pptxMapas y cartas topográficas y de suelos.pptx
Mapas y cartas topográficas y de suelos.pptxMONICADELROCIOMUNZON1
 
clases de porcinos generales de porcinos
clases de porcinos generales de porcinosclases de porcinos generales de porcinos
clases de porcinos generales de porcinosDayanaCarolinaAP
 
Controladores Lógicos Programables Usos y Ventajas
Controladores Lógicos Programables Usos y VentajasControladores Lógicos Programables Usos y Ventajas
Controladores Lógicos Programables Usos y Ventajasjuanprv
 
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023RonaldoPaucarMontes
 
Quimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdfQuimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdfs7yl3dr4g0n01
 
Magnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principiosMagnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principiosMarceloQuisbert6
 
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaSesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaXimenaFallaLecca1
 
Comite Operativo Ciberseguridad 012020.pptx
Comite Operativo Ciberseguridad 012020.pptxComite Operativo Ciberseguridad 012020.pptx
Comite Operativo Ciberseguridad 012020.pptxClaudiaPerez86192
 
Falla de san andres y el gran cañon : enfoque integral
Falla de san andres y el gran cañon : enfoque integralFalla de san andres y el gran cañon : enfoque integral
Falla de san andres y el gran cañon : enfoque integralsantirangelcor
 
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICAINTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICAJOSLUISCALLATAENRIQU
 
Base de Datos en Microsoft SQL Server 2024
Base de Datos en Microsoft SQL Server 2024Base de Datos en Microsoft SQL Server 2024
Base de Datos en Microsoft SQL Server 2024CESARHERNANPATRICIOP2
 
PPT ELABORARACION DE ADOBES 2023 (1).pdf
PPT ELABORARACION DE ADOBES 2023 (1).pdfPPT ELABORARACION DE ADOBES 2023 (1).pdf
PPT ELABORARACION DE ADOBES 2023 (1).pdfalexquispenieto2
 
PERFORACIÓN Y VOLADURA EN MINERÍA APLICADO
PERFORACIÓN Y VOLADURA EN MINERÍA APLICADOPERFORACIÓN Y VOLADURA EN MINERÍA APLICADO
PERFORACIÓN Y VOLADURA EN MINERÍA APLICADOFritz Rebaza Latoche
 
Obras paralizadas en el sector construcción
Obras paralizadas en el sector construcciónObras paralizadas en el sector construcción
Obras paralizadas en el sector construcciónXimenaFallaLecca1
 
ECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdfECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdfmatepura
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALKATHIAMILAGRITOSSANC
 
CLASe número 4 fotogrametria Y PARALAJE.pptx
CLASe número 4 fotogrametria Y PARALAJE.pptxCLASe número 4 fotogrametria Y PARALAJE.pptx
CLASe número 4 fotogrametria Y PARALAJE.pptxbingoscarlet
 

Último (20)

Ingeniería clínica 1 Ingeniería biomedica
Ingeniería clínica 1 Ingeniería biomedicaIngeniería clínica 1 Ingeniería biomedica
Ingeniería clínica 1 Ingeniería biomedica
 
Reporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacaReporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpaca
 
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.pptARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
ARBOL DE CAUSAS ANA INVESTIGACION DE ACC.ppt
 
Mapas y cartas topográficas y de suelos.pptx
Mapas y cartas topográficas y de suelos.pptxMapas y cartas topográficas y de suelos.pptx
Mapas y cartas topográficas y de suelos.pptx
 
clases de porcinos generales de porcinos
clases de porcinos generales de porcinosclases de porcinos generales de porcinos
clases de porcinos generales de porcinos
 
Controladores Lógicos Programables Usos y Ventajas
Controladores Lógicos Programables Usos y VentajasControladores Lógicos Programables Usos y Ventajas
Controladores Lógicos Programables Usos y Ventajas
 
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
 
Quimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdfQuimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdf
 
Magnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principiosMagnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principios
 
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaSesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
 
Comite Operativo Ciberseguridad 012020.pptx
Comite Operativo Ciberseguridad 012020.pptxComite Operativo Ciberseguridad 012020.pptx
Comite Operativo Ciberseguridad 012020.pptx
 
Falla de san andres y el gran cañon : enfoque integral
Falla de san andres y el gran cañon : enfoque integralFalla de san andres y el gran cañon : enfoque integral
Falla de san andres y el gran cañon : enfoque integral
 
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICAINTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
 
Base de Datos en Microsoft SQL Server 2024
Base de Datos en Microsoft SQL Server 2024Base de Datos en Microsoft SQL Server 2024
Base de Datos en Microsoft SQL Server 2024
 
PPT ELABORARACION DE ADOBES 2023 (1).pdf
PPT ELABORARACION DE ADOBES 2023 (1).pdfPPT ELABORARACION DE ADOBES 2023 (1).pdf
PPT ELABORARACION DE ADOBES 2023 (1).pdf
 
PERFORACIÓN Y VOLADURA EN MINERÍA APLICADO
PERFORACIÓN Y VOLADURA EN MINERÍA APLICADOPERFORACIÓN Y VOLADURA EN MINERÍA APLICADO
PERFORACIÓN Y VOLADURA EN MINERÍA APLICADO
 
Obras paralizadas en el sector construcción
Obras paralizadas en el sector construcciónObras paralizadas en el sector construcción
Obras paralizadas en el sector construcción
 
ECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdfECONOMIA APLICADA SEMANA 555555555544.pdf
ECONOMIA APLICADA SEMANA 555555555544.pdf
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
 
CLASe número 4 fotogrametria Y PARALAJE.pptx
CLASe número 4 fotogrametria Y PARALAJE.pptxCLASe número 4 fotogrametria Y PARALAJE.pptx
CLASe número 4 fotogrametria Y PARALAJE.pptx
 

Tension

  • 1. ENSAYO DE TENSIÓN PROTOCOLO Curso de Materiales EDICION 2008-1 FACULTAD INGENIERIA INDUSTRIAL LABORATORIO DE PRODUCCIÓN
  • 2. Escuela Colombiana de Ingeniería. Laboratorio de Producción. “Julio Garavito” 2 TABLA DE CONTENIDO INTRODUCCIÓN 3 OBJETIVOS 3 SEGURIDAD PARA LA PRÁCTICA 3 1 ASIGNACIÓN DE TIEMPOS 4 1.1 Conocimiento de la prensa hidráulica 4 1.2 Práctica 4 2 MARCO TEÓRICO 5 2.1 Generalidades del ensayo de tensión 5 2.1.1 Comportamiento de los distintos materiales frente al ensayo. 6 2.1.2 La ductilidad 6 2.1.3 Esfuerzo y deformación ingenieriles 7 2.1.4 Esfuerzo y deformación real 7 2.2 Diagramas esfuerzo – deformación 8 2.2.1 Punto de Cedencia 8 2.2.2 Módulo de Elasticidad 9 2.2.3 Encuellamiento 9 2.2.4 Esfuerzo-deformación para materiales especiales 11 3 CARACTERÍSTICAS Y ESPECIFICACIONES DE LA PROBETA 11 3.1 Probetas proporcionales 12 3.2 Probetas maquinadas 12 3.3 Probetas no maquinadas 12 3.4 Marcación de la longitud inicial (Lo) 12 4 MÁQUINA UTILIZADA EN LA REALIZACIÓN DE LA PRÁCTICA 12 4.1 Base Fija Superior e Inferior 13 4.2 Mesa Móvil Superior 13 4.3 Gato Hidráulico 13 4.4 Calibrador Vernier 14 4.5 Indicador de Presión 14 4.6 Mordazas de Tensión 14 5 CÁLCULOS Y FORMULAS UTILIZADAS EN LA PRÁCTICA 14 5.1 Cálculo de la fuerza de tensión (F) 14 5.2 Cálculo de la ductilidad 15 5.2.1 Porcentaje de Elongación 15 5.2.2 Porcentaje de reducción de área 15 6 PASOS PARA LA REALIZACIÓN DE LA PRÁCTICA DE TENSIÓN. 16 7 EJEMPLO 17 8 BIBLIOGRAFÍA 20 9 CONTENIDO DEL INFORME 21 10 FORMATOS 22
  • 3. Escuela Colombiana de Ingeniería. Laboratorio de Producción. “Julio Garavito” 3 INTRODUCCIÓN En el proceso de formación de un Ingeniero Industrial, es muy importante el conocimiento de la Ciencia de los Materiales, ya que esta proporciona las herramientas necesarias para comprender el comportamiento general de cualquier material, lo cual es necesario a la hora de desarrollar adecuadamente diseños de componentes, sistemas y procesos que sean confiables y económicos. Este laboratorio es realizado con el fin de conocer ciertas propiedades mecánicas, como la ductilidad, rigidez y resistencia, de varios materiales al ser sometidos a una fuerza de tensión ejercida gradualmente por una prensa. De igual forma, también tiene por objetivo desarrollar habilidades para manejar los instrumentos requeridos en la práctica. Para la correcta realización de esta prueba, se recomienda que los estudiantes hayan comprendido previamente el contenido de esta, consignado en el Protocolo. OBJETIVOS • Conocer la importancia de la prueba de tensión. • Conocer y manejar cada parte de la prensa hidráulica correctamente. • Leer e interpretar las unidades manejadas por la carátula del manómetro y en el calibrador que indica el desplazamiento de la prensa. • Conocer las características y especificaciones que se deben tener en los materiales a utilizar como las probetas de acero. • Saber manejar adecuadamente las mordazas que sujetan la probeta, y así mismo garantizar que la fuerza sea efectuada en el eje central de la máquina. • Conocer las especificaciones de la Norma Técnica Colombiana 2 sobre Prueba de Tensión. • Estar en capacidad de interpretar los datos arrojados por la práctica para la prueba de tensión. SEGURIDAD PARA LA PRÁCTICA Para evitar lesiones y/o fallas en la máquina (prensa hidráulica) e implementos de apoyo, causadas durante la realización de la práctica, es necesario que los estudiantes al momento de realizarla tengan en cuenta: • Es sumamente importante portar los implementos de seguridad necesarios: guantes de cuero (Baqueta) y gafas de seguridad. • Tener un buen conocimiento sobre la práctica, y todo lo relacionado con esta, como el manejo que se debe tener con la prensa hidráulica, probetas, utilización de las mordazas de la prensa, manejo de materiales y utilización de estos. • Seguir precisamente las instrucciones de los monitores, antes de la realización de la práctica. • Al terminar de accionar el gato retirar inmediatamente la palanca que lo acciona.
  • 4. Escuela Colombiana de Ingeniería. Laboratorio de Producción. “Julio Garavito” 4 1 ASIGNACIÓN DE TIEMPOS 1.1 Conocimiento de la prensa hidráulica TEORIA TIEMPO (min.) Generalidades de la prensa hidráulica. 2 Partes de la prensa hidráulica: Bases fija inferior y superior, gato hidráulico, mesa móvil, manómetro, columnas paralelas, mordazas de sujeción. 4 Conocimiento y cuidados que deben tener sobre la prensa hidráulica y sus partes. 2 Conocimiento de las especificaciones de la NTC 2 para ensayos de tensión. 5 Lectura e interpretación de los resultados del manómetro y calibrador. 2 Conocimiento y especificaciones de la probeta a utilizar en la práctica. 3 Conocimiento de la importancia de la deformación de los materiales metálicos, según el esfuerzo aplicado. Cálculo de la fuerza de Tensión (F), cálculo del Esfuerzo Inducido (σ), y cálculo del % de Elongación (ε). 10 Cuidados que se deben tener en el momento de realizar la práctica, e importancia del uso de los implementos de seguridad. 2 Total 30 1.2 Práctica PRÁCTICA TIEMPO (min.) Verificar el funcionamiento de las partes de la prensa hidráulica y asegurarse que el gato hidráulico se encuentre liberado. 3 Colocar la probeta a utilizar en la práctica en las mordazas de sujeción de la prensa hidráulica. Asegurar el gato hidráulico y empezar a bombear lentamente, tomando las mediciones de presión indicadas en la carátula del manómetro y de la posición dada por el calibrador. 27 Realizar una segunda prueba con una probeta de otro material 30 Total 60
  • 5. Escuela Colombiana de Ingeniería. Laboratorio de Producción. “Julio Garavito” 5 2 MARCO TEÓRICO A continuación se presentan, de manera general, los aspectos más importantes que se deben tener presentes para realizar la práctica. 2.1 Generalidades del ensayo de tensión Este ensayo es utilizado para medir la resistencia de un material a una fuerza estática o aplicada lentamente. Esta prueba consiste en alargar una probeta de ensayo por fuerza de tensión, ejercida gradualmente, con el fin de conocer ciertas propiedades mecánicas de materiales en general: su resistencia, rigidez y ductilidad. Sabiendo que los resultados del ensayo para un material dado son aplicables a todo tamaño y formas de muestra, se ha establecido una prueba en la cual se aplica una fuerza de tensión sobre una probeta de forma cilíndrica y tamaño normalizado, que se maneja universalmente entre los ingenieros. Este ensayo se lleva a cabo a temperatura ambiente entre 10ºC y 35ºC. A continuación se presenta un dispositivo utilizado para realizar este tipo de ensayos (Ver Figura No. 1). Figura 1. Máquina donde se lleva a cabo la Prueba de Tensión
  • 6. Escuela Colombiana de Ingeniería. Laboratorio de Producción. “Julio Garavito” 6 2.1.1 Comportamiento de los distintos materiales frente al ensayo. El comportamiento de los distintos materiales frente al ensayo se encuentra ilustrado en la siguiente grafica. La figura No. 2 muestra en forma cualitativa las curvas de esfuerzo-deformación unitaria normales para un metal, un material termoplástico, un elastómero y un cerámico. En esta figura, las escalas son cualitativas y distintas para cada material. En la práctica, las magnitudes reales de los esfuerzos y las deformaciones pueden ser muy distintas entre sí. Se supone que el material plástico esta arriba de su temperatura de transformación vítrea (Tg), mientras que los materiales metálicos y termoplásticos muestran una región inicial elástica, seguida por una región plástica no lineal. También se incluye una curva aparte para los elastómeros (es decir, hules o siliconas), ya que el comportamiento de esos materiales es distinto del de otros materiales poliméricos. Para los elastómeros, una gran parte de la deformación es elástica y no lineal. Por otra parte los cerámicos y los vidrios solo muestran una región elástica lineal y casi nunca muestran deformación plástica a temperatura ambiente. (Ver figura No. 2) 2.1.2 La ductilidad La ductilidad es el grado de deformación que puede soportar un material sin romperse. Se mide por la relación de la longitud original de la probeta entre marcas calibradas antes (lo) y después del ensayo (lf). Figura 2. Curvas de esfuerzo deformación a la tensión, para distintos materiales.
  • 7. Escuela Colombiana de Ingeniería. Laboratorio de Producción. “Julio Garavito” 7 2.1.3 Esfuerzo y deformación ingenieriles Los resultados de un solo ensayo se aplican a todos los tamaños y secciones transversales de especimenes de determinado material, siempre que se convierta la fuerza en esfuerzo, y la distancia entre marcas de calibración se convierta a deformación. El esfuerzo ingenieril (lb/pul^2) y la deformación ingenieril (pul/pul) se definen con las siguientes ecuaciones: Donde: • F: Fuerza aplicada en la probeta (lb) • Ao: Área de la sección transversal original de la probeta. (pul^2) • Lo: Longitud calibrada antes de la aplicación de la carga. • L: Longitud adquirida por la sección calibrada, al iniciar la aplicación de la carga. 2.1.4 Esfuerzo y deformación real El esfuerzo real a diferencia del esfuerzo ingenieril, tiene en cuenta el área instantánea que se reduce a medida que avanza el ensayo. El esfuerzo real (lb/ pul^2) se puede definir con la siguiente ecuación: Donde: • F: Fuerza aplicada en la probeta (lb) • A: Área real (instantánea) que resiste la carga (pul^2). La deformación real se determina con la elongación “instantánea” por unidad de longitud del material. Esta se determina con la siguiente ecuación: En donde L y Lo ya están definidos en el punto anterior.
  • 8. Escuela Colombiana de Ingeniería. Laboratorio de Producción. “Julio Garavito” 8 2.2 Diagramas esfuerzo – deformación El Diagrama Esfuerzo – Deformación es utilizado cuando se lleva a cabo el ensayo de Tensión. Este tipo de graficas se pueden hacer con los datos calculados esfuerzo-deformación ingenieriles, o con los datos correspondientes a esfuerzo – deformación reales. A continuación se presenta el diagrama de esfuerzo deformación para el caso de datos reales. (Ver Figura No. 3). Donde: • Sced: Resistencia en el punto de cedencia. • Srot: Resistencia a la rotura. • Súlt: Resistencia en el punto de esfuerzo último. 2.2.1 Punto de Cedencia Es el momento en que la deformación de la pieza, debido a la carga que se le esta aplicando, deja de ser elástica y se vuelve permanente o plástica, es decir que es el punto en el que se quita la fuerza ejercida y la probeta se devuelve a su longitud inicial. El esfuerzo inducido aplicado en el momento cuando el material llega a su punto de cedencia es en realidad la Resistencia Cedente del Material, Sced. Figura 3. Gráfico de Esfuerzo – Deformación (real)
  • 9. Escuela Colombiana de Ingeniería. Laboratorio de Producción. “Julio Garavito” 9 En algunos materiales, la transición de deformación elástica a flujo plástico es abrupta. Esa transición se llama fenómeno de punto de fluencia. En esos materiales, al comenzar la deformación plástica, el valor del esfuerzo baja primero desde el punto de fluencia superior (σ2). El valor del esfuerzo sigue decreciendo y oscila en torno a un valor promedio que se define como punto de fluencia inferior (σ1). (Ver Figura No. 4). Inmediatamente después, el esfuerzo empieza a crecer nuevamente, entrando a la región de deformación plástica 2.2.2 Módulo de Elasticidad La porción inicial lineal de la gráfica esfuerzo deformación mostrada en la Figura No. 4, representa lo que se llama el Modulo de Elasticidad E, de los materiales. Este se calcula según la ley de Hooke, mediante la fórmula: lo que es lo mismo a la pendiente de dicha porción lineal. Las unidades del modulo de elasticidad son las mismas a las utilizadas para los esfuerzos, esto es (lb/pulg2), (N/m2) ó cualquier otra unidad correspondiente. En esta región el material se comporta elásticamente por lo que cuando se quita la fuerza, la deformación que haya alcanzado el material se devuelve a cero, su forma original antes de iniciar la prueba. 2.2.3 Encuellamiento Debido a las imperfecciones internas que poseen los materiales al no ser 100% homogéneos ni isotropicos (las propiedades físicas no dependen de la dirección de observación), el sitio del Encuellamiento puede ocurrir en cualquier parte de la probeta; por este motivo se reduce su sección central con el fin de que el Encuellamiento ocurra dentro del área demarcada de 20 mm de longitud. (Ver Figura 5). Figura 4. Esfuerzo de Cedencia Superior e Inferior, de un acero de Bajo Carbono.
  • 10. Escuela Colombiana de Ingeniería. Laboratorio de Producción. “Julio Garavito” 10 Figura 5. Forma de la probeta. Figura 6. Posición de la probeta en la máquina.
  • 11. Escuela Colombiana de Ingeniería. Laboratorio de Producción. “Julio Garavito” 11 2.2.4 Esfuerzo-deformación para materiales especiales En algunos materiales la resistencia de cedencia no se puede detectar fácilmente, en este caso se le llama Resistencia de Cedencia Convencional (Proof Strength); (Ver Figura No. 7). Es una resistencia teórica que se define mediante una recta paralela a la zona de deformación elástica, desplazada 0.2% hacia la derecha (en el origen), cuya intersección con la curva σ/ε define el punto de resistencia convencional. (También se utiliza el 0.1%, por norma) 3 CARACTERÍSTICAS Y ESPECIFICACIONES DE LA PROBETA A continuación se presentan las características y especificaciones de las probetas utilizadas en la prueba de Tensión. La probeta de ensayo se obtiene generalmente por maquinado de una muestra del producto trabajado en frio o fundido. La sección transversal de las probetas puede ser circular, cuadrada, rectangular o en casos especiales de cualquier otra forma. Figura 7. Determinación del Límite Elástico Convencional al 0.2% de deformación.
  • 12. Escuela Colombiana de Ingeniería. Laboratorio de Producción. “Julio Garavito” 12 3.1 Probetas proporcionales Las probetas de ensayo cuya longitud inicial se relaciona con el área inicial de la sección transversal 0AKLo = , son llamadas Probetas Proporcionales. El valor adoptado internacionalmente para K es 5.65. La longitud calibrada inicial no puede ser menor de 20 mm. Cuando el área transversal de la probeta es demasiado pequeña es necesario un valor de K más alto, de 11.3. NOTA: En nuestro caso el diámetro de la probeta utilizada para la práctica de tensión es de 6 mm. La norma internacional exige ½ pulgada. Esto invalida la prueba desde el punto de vista de una certificación oficial, mas no desde el punto de vista de los resultados analíticos. 3.2 Probetas maquinadas Las probetas de ensayo maquinadas deben tener una curva de transición entre los agarres de las mordazas y la longitud paralela si estas son de diferentes dimensiones. Los extremos de agarre pueden ser de cualquier forma siempre y cuando se adapten a las mordazas de la máquina. La longitud libre de las mordazas siempre debe ser mayor que la longitud inicial calibrada. 3.3 Probetas no maquinadas Si la probeta es de una longitud no calibrada, la longitud libre entre las mordazas debe ser suficiente para que las marcas calibradas queden a una distancia razonable de las mordazas. 3.4 Marcación de la longitud inicial (Lo) Para probetas proporcionales, el valor de la longitud calibrada inicial puede aproximarse al múltiplo de 5 mm más cercano, cuidando que la diferencia entre la longitud calibrada calculada y la marcada sea menor de 10% de Lo. La longitud calibrada inicial se debe marcar con una precisión de +/- 1%. La marcación es un aspecto fundamental, ya que al finalizar la prueba podremos medir la longitud final (Lf), y de esta forma calcular el % de elongación el cual es dependiente de las longitudes inicial y final. 4 MÁQUINA UTILIZADA EN LA REALIZACIÓN DE LA PRÁCTICA La máquina utilizada en el laboratorio para la realización de esta práctica es una Prensa Hidráulica. Esta máquina se utiliza para dar forma, extruir, marcar metales y para evaluar la ductilidad de ciertos materiales metálicos sometidos a grandes presiones. A continuación se presentan las partes de esta máquina, para facilitar su comprensión. (Ver Figura No. 8).
  • 13. Escuela Colombiana de Ingeniería. Laboratorio de Producción. “Julio Garavito” 13 4.1 BASE FIJA SUPERIOR E INFERIOR Son las dos bases que le dan la estabilidad general a la máquina, unidas mediante las dos columnas paralelas. (Ver Figura No. 8) 4.2 MESA MÓVIL SUPERIOR Esta mesa, al ser empujada hacia arriba por el gato hidráulico, arrastra la mesa móvil inferir (por intermedio de las dos columnas móviles) y así, estira la probeta montada entre XXX mesa móvil y la base fija inferior. 4.3 GATO HIDRÁULICO El gato hidráulico al ser expandido mediante el bombeo cae la palanca, actúa en un transductor de presión instalado entre su vástago y la base del manómetro. Este transductor de presión, cuyo embolo interno tiene un diámetro 56.8 mm, nos permite calcular la fuerza ejercida sobre la probeta, al leer la presión del manómetro (Ver párrafo 5.1). Figura 8. Prensa hidráulica
  • 14. Escuela Colombiana de Ingeniería. Laboratorio de Producción. “Julio Garavito” 14 4.4 CALIBRADOR VERNIER Este calibrador se coloca entre la mesa móvil superior de la prensa y la base fija superior; su función es efectuar la medición de la elongación de las probetas utilizadas durante la prueba. 4.5 INDICADOR DE PRESIÓN Este indicador es un manómetro que marca la presión ejercida sobre el aceite. La presión es causada por el gato hidráulico dentro de un pistón intermedio (transductor) entre su vástago y la mesa móvil superior. Tiene dos tipos de escalas, en Psi y en Bar. 4.6 MORDAZAS DE TENSIÓN Esta parte de la máquina se utiliza para realizar la prueba de tensión; entre estas mordazas, es colocada la probeta que tiene dos hombros que facilitan el agarre a cada una de las mordazas; las mordazas giran en su eje central y permiten ser ajustadas al tamaño de la probeta en sus dos extremos; este ajuste debe hacerse cuidadosamente a mano hasta llegar a dejar fija la probeta; ambas mordazas deben ser ajustadas girándolas hacia la derecha. 5 CÁLCULOS Y FORMULAS UTILIZADAS EN LA PRÁCTICA A continuación se presentarán las formulas utilizadas en la práctica y se explicarán sus variables: 5.1 Cálculo de la fuerza de tensión (F) Para calcular la fuerza de tensión sobre la probeta se debe considerar el área del embolo interno sobre la cual se ejerciendo la presión medida por el manómetro de la prensa. Esto se puede representar por la siguiente fórmula: Donde: • F: Fuerza que se esta ejerciendo sobre la probeta, (lb). • P: Presión marcada por el manómetro de la prensa, (lbs/pulg²). • Ae: Área del émbolo de empuje de la prensa (pulg²). • de: Diámetro del émbolo (pulg). (Para este caso, este diámetro es de 56.8 mm) [ ]lbAPF e*= [ ]²lg 4 ²* pu d A e e π =
  • 15. Escuela Colombiana de Ingeniería. Laboratorio de Producción. “Julio Garavito” 15 5.2 Cálculo de la ductilidad La ductilidad se representa por los porcentajes de elongación ó de reducción de área, los cuales se calculan de la siguiente manera: 5.2.1 Porcentaje de Elongación El Porcentaje de Elongación representa la distancia que la probeta se alarga plásticamente antes de la fractura: Donde: • Lo: Longitud Inicial Calibrada de la Probeta (mm). • L : Longitud Elongada de la Probeta (mm). 5.2.2 Porcentaje de reducción de área Este porcentaje también representa la deformación plástica antes de la fractura: 100% x Ao AAo RA inst− = Donde: • RA: Porcentaje de reducción de área • Ao: Área inicial de la probeta • Ainst: Área instantánea de la probeta Para calcular el área instantánea de la probeta se puede hacer uso del principio de conservación del volumen total de la probeta, el cual no debe cambiar a pesar de que esta se estire y como resultado se reduce su área transversal: 100% x Lo LoL elongación − =
  • 16. Escuela Colombiana de Ingeniería. Laboratorio de Producción. “Julio Garavito” 16 6 PASOS PARA LA REALIZACIÓN DE LA PRÁCTICA DE TENSIÓN. A continuación se explicará de manera detallada los pasos que se tienen que realizar para llevar a cabo con éxito esta práctica: 1. Realizar la medida de la longitud y el diámetro inicial de ambas probetas a utilizar en la prueba, con la ayuda de un calibrador Vernier. Es importante que se realice una marca con la ayuda de un marcador en las probetas, que indique el lugar donde se van a realizar las mediciones del diámetro y la correspondiente a la longitud inicial Lo. 2. Es importante recordar que es necesario que las mordazas se deben ajustar convenientemente con las manos, para cuando se lleve la probeta entre perfectamente y luego, se ajustan bien, manualmente. Hay que asegurarse que la probeta esta alineada, es decir, que coincida con las marcas presentes en los soportes. 3. Se le coloca el seguro al gato y se comienza a bombear de modo gradual; cuando se llegue a la posición ligeramente por encima de 0 psi, se establecerá el punto inicial de la prueba, de esta manera se puede registrar en las tablas la lectura inicial del calibrador instalado en la máquina. 4. Accionar de nuevo el gato hasta lograr una lectura en el manómetro de 200 Psi. Posteriormente se procede a consignar en la tabla de toma de datos la lectura del calibrador y el diámetro de la probeta, de 200 en 200 psi. 5. Este procedimiento se repite hasta encontrar de manera experimental el punto de encuellamiento. Una vez encontrado este punto dentro de la práctica se procederá a aplicar presiones pequeñas de manera lenta, para lograr con esto captar las variaciones de presiones y poder consignar de esta manera los datos en las respectivas tablas. 6. Se afloja el gato, la mesa móvil superior retorna a su posición inicial y se aflojan las mordazas de la máquina. 7. Una vez se cuenten con todos los datos experimentales, el estudiante procederá a realizar los cálculos pertinentes y de esta manera realizar el análisis de los resultados obtenidos en la práctica.
  • 17. Escuela Colombiana de Ingeniería. Laboratorio de Producción. “Julio Garavito” 17 7 EJEMPLO Utilizando la prueba de tensión, a continuación se explicará mediante un ejemplo, el cálculo de los porcentajes de elongación, esfuerzos inducidos y deformaciones para un acero típico. Al iniciar la carga sobre la probeta se obtienen diferentes valores a medida que la presión va aumentando. Para cada posición se tendrá una longitud nueva en el calibrador y una presión nueva en el manómetro. 1 2 3 POSICIÓN PRESIÓN DEL MANOMETRO (Psi) (lb-f/pulg^2) LONGITUD PROBETA (mm) 0 0 50 1 2862 50,0613 2 5724 50,1227 3 8586 50,1848 4 10017 50,5 5 11448 51,35 6 12879 52,9 7 13222 53,4 Nuestro objetivo ahora es encontrar los diagramas de esfuerzo deformación ingenieril- real y los porcentajes de reducción de área. Para esto se construye la Tabla No. 2, en donde encontramos las siguientes columnas: Tabla 1. Toma de Datos
  • 18. Escuela Colombiana de Ingeniería. Laboratorio de Producción. “Julio Garavito” 18 1 2 3 4 5 6 7 8 9 10 POSICIÓN Presión (Lb-F/pulg2 ) Carga (Lb-F) LONGITUD PROBETA (pul) ∆∆∆∆ LONG (pul) ÁREAinst, (pul^2) Deformación Esfuerzo Ingenieril, e Real, ε s, Lb-F/pul2 σ, Lb-f/pul2 0 0 0 1,9685 0 0,7608 0 0 0 0,00 1 2862 11241 1,9709 0,0024 0,7598 0,001224 0,001225 14775 14793,17 2 5724 22481 1,9733 0,0048 0,7589 0,002448 0,002451 29550 29622,63 3 8586 33722 1,9758 0,0073 0,7580 0,003682 0,003689 44325 44488,99 4 10017 39342 1,9882 0,0197 0,7532 0,009901 0,009950 51713 52229,82 5 11448 44962 2,0217 0,0531 0,7408 0,026290 0,026642 59100 60695,92 6 12879 50582 2,0827 0,1142 0,7191 0,054820 0,056380 66488 70344,04 7 13222 51931 2,1024 0,1339 0,7123 0,063670 0,065788 68261 72902,48 La carga sobre la probeta (columna 3) se calcula en función de la presión del manómetro y el área del émbolo. En la columna 5, se expresa el cambio de la longitud que sufre la probeta de posición en posición: En la columna 6, se muestra el cálculo del área instantánea para cada posición. A continuación en las columnas 7 y 8 se muestran las deformaciones ingenieril y real y por ultimo en las columnas 9 y 10 se muestran el cálculo de los esfuerzos inducidos ingenieril y real. El cálculo del porcentaje de elasticidad arroja un valor de: 6.2% El cálculo del porcentaje de reducción de área arroja un valor de: 13.15% El cálculo del módulo de elasticidad arroja un valor de: 12066.206 Gpsi Tabla 2. Datos Calculados
  • 19. Escuela Colombiana de Ingeniería. Laboratorio de Producción. “Julio Garavito” 19 Calculados los esfuerzos y las deformaciones procedemos a la elaboración de las graficas esfuerzo-deformación correspondientes: Figura 9. Gráfica esfuerzo - deformación
  • 20. Escuela Colombiana de Ingeniería. Laboratorio de Producción. “Julio Garavito” 20 8 BIBLIOGRAFÍA • ASKELAND, Donal R., “Ciencia e Ingeniería de los Materiales”, Thomson Editores. México, 1998. • GROOVER, Mikell P., “Fundamentos de Manufactura Moderna” Prentice Hall. México 1997. Capítulo 3 “Propiedades Mecánicas de los materiales”
  • 21. Escuela Colombiana de Ingeniería. Laboratorio de Producción. “Julio Garavito” 21 9 CONTENIDO DEL INFORME PRÁCTICA DE TENSIÓN 1. Introducción. 2. Objetivos. (Generales y Específicos). 3. Marco Teórico. - Prueba de Tensión. - Prensa Hidráulica - Tipos de esfuerzo – Deformación. - Aplicaciones a la prueba de tensión. - Materiales. 4. Descripción del aparato. 5. Descripción del Procedimiento. 6. Estudio de Campo. - Tabla con los datos pedidos. - Gráfica Esfuerzo-Elongación. - Análisis de la Gráfica. - Cálculo del Esfuerzo último, porcentaje de elongación, porcentaje de reducción de área y análisis de estos valores. 7. Análisis de la norma NTC 2. 8. Conclusiones de la práctica. 9. Recomendaciones. 10.Bibliografía.
  • 22. 22 Escuela Colombiana de Ingeniería. Laboratorio de Producción. “Julio Garavito” 10 FORMATOS POSICIÓN PRESIÓN DEL MANOMETRO (Psi) (lb-f/pulg^2) LONGITUD PROBETA (mm) 0 1 2 3 4 5 6 7 POSICIÓN Presión (Lb-F/pulg2 ) Carga (Lb-F) LONGITUD PROBETA (pul) ∆∆∆∆ LONG (pul) ÁREAinst, (pul^2) Deformación Esfuerzo Ingenieril, e Real, ε s, Lb-F/pul2 σ, Lb-f/pul2 0 1 2 3 4 5 6 7 Tabla 3. Toma de Datos Tabla 4. Datos Calculados