SlideShare una empresa de Scribd logo
1 de 16
1
ÍNDICE
Introducción…………………………………………………………………………………….…2
Esfuerzo y deformación debido a cargas externas, esfuerzos mecánicos,
térmicos y ley de hooke…………………………………………………………………………3
Vigas con dos apoyos cargadas e puntos con cargar uniformes,
Vigas hiperestáticas y vigas cantiliver……………………………………………………….11
Clasificación de columnas…………………………………………………………………….12
Conclusión……………………………………………………………………………………….15
Bibliografía…………...........................................................................................................15
2
INTRODUCCIÓN
En el siguiente reporte de investigación se detalla los temas correspondientes a
la unidad 4 de física en los que se describen temas ya vistos con anterioridad
como lo es la ley de hooke, los esfuerzos mecánicos, las vigas, y la clasificación
de columnas cada tema con su respectivo ejemplo para ser mas explicito y fácil
de entender.
 Los temas que se describirán a continuación son los siguientes: esfuerzo y
deformación debido a cargas externas: esfuerzos mecánicos y térmicos
ley de hooke
 Vigas con dos apoyos cargadas e puntos con cargar uniformes, vigas
hiperestatias y vigas cantiliver
 Clasificación de columnas
3
TEMA 4.1. ESFUERZO Y DEFORMACIÓN DEBIDO A CARGAS EXTERNAS, ESFUERZOS
MECÁNICOS, TÉRMICOS Y LEY DE HOOKE.
En general un esfuerzo es el resultado de la división entre una fuerza y el área en la que se
aplica. Se distinguen dos direcciones para las fuerzas, las que son normales al área en la que
se aplican y las que son paralelas al área en que se aplican. Si la fuerza aplicada no es
normal ni paralela a la superficie, siempre puede descomponerse en la suma vectorial de otras
dos que siempre resultan ser una normal y la otra paralela.
Los esfuerzos con dirección normal a la sección, se denotan como σ (sigma) y representa un
esfuerzo de tracción cuando apunta hacia afuera de la sección, tratando de estirar al elemento
analizado. En cambio, representa un esfuerzo de compresión cuando apunta hacia la sección,
tratando de aplastar al elemento analizado.
El esfuerzo con dirección paralela al área en la que se aplica se denota como τ (tau) y
representa un esfuerzo de corte. Este esfuerzo, trata de cortar el elemento analizado, tal como
una tijera cuando corta papel, uno de sus filos mueven el papel hacia un lado mientras el otro
filo lo mueve en dirección contraria resultando en el desgarro del papel a lo largo de una línea.
Las unidades de los esfuerzos son las mismas que para la presión, fuerza dividida por área,
se utilizan con frecuencia : MPa, psia, kpsia, kg/mm2, kg/cm2.
Así, los principales ESFUERZOS MECÁNICOS se pueden enlistar como sigue:
Tracción: Esfuerzo a que está sometido un cuerpo por la aplicación de dos fuerzas que
actúan en sentido opuesto, y tienden a estirarlo, aumentando su longitud y disminuyendo su
sección.
Compresión: Esfuerzo a que está sometido un cuerpo por la aplicación de dos fuerzas que
actúan en sentido opuesto, y tienden a comprimirlo, disminuyendo su longitud y aumentando
su sección.
Flexión: Esfuerzo que tiende a doblar el objeto. Las fuerzas que actúan son paralelas a las
superficies que sostienen el objeto. Siempre que existe flexión también hay esfuerzo de
tracción y de compresión.
Cortadura: esfuerzo que tiende a cortar el objeto por la aplicación de dos fuerzas en
sentidos contrarios y no alineados. Se encuentra en uniones como: tornillos, remaches y
soldaduras.
Torsión: esfuerzo que tiende a retorcer un objeto por aplicación de un momento sobre el eje
longitudinal.
Las propiedades mecánicas de la materia son la elasticidad, la compresión y la tensión.
Definimos a un cuerpo elástico, como aquel que recobra su tamaño y forma original
4
cuando deja de actuar sobre él una fuerza deformante. Las bandas de hule, las pelotas de
golf, los trampolines, las camas elásticas, las pelotas de fútbol y los resortes son ejemplos
comunes de cuerpos elásticos. Para todos los cuerpos elásticos, conviene establecer
relaciones de causa y efecto entre la deformación y las fuerzas deformantes.
Considere el resorte de longitud 1 de la figura siguiente. Podemos estudiar su elasticidad
añadiendo pesas sucesivamente y observando el incremento de su longitud. Una pesa de 2 N
alarga el resorte 1 cm, una pesa de 4 N alarga el resorte 2 cm y una pesa de 6 N alarga el
resorte 3 cm. Es evidente que existe una relación directa entre el estiramiento del resorte y la
fuerza aplicada.
Las propiedades mecánicas de la materia son la elasticidad, la compresión y la tensión.
Definimos a un cuerpo elástico, como aquel que recobra su tamaño y forma original cuando
deja de actuar sobre él una fuerza deformante. Las bandas de hule, las pelotas de golf, los
trampolines, las camas elásticas, las pelotas de fútbol y los resortes son ejemplos comunes de
cuerpos elásticos. Para todos los cuerpos elásticos, conviene establecer relaciones de causa
y efecto entre la deformación y las fuerzas deformantes.
Considere el resorte de longitud 1 de la figura siguiente. Podemos estudiar su
elasticidad añadiendo pesas sucesivamente y observando el incremento de su longitud. Una
pesa de 2 N alarga el resorte 1 cm, una pesa de 4 N alarga el resorte 2 cm y una pesa de 6 N
alarga el resorte 3 cm. Es evidente que existe una relación directa entre el estiramiento del
resorte y la fuerza aplicada.
Robert Hooke fue el primero en establecer esta relación por medio de la
invención de un volante para resorte para reloj. En términos generales, Hooke descubrió que
(a) posición de
equilibrio
1 cm
2 N
4 N
2 cm 3 cm
l
6 N
5
cuando una fuerza F, actúa sobre un resorte, produce en él un alargamiento s que es
directamente proporcional a la magnitud de la fuerza aplicada. La Ley de Hooke se representa
como:
F = ks.
La constante de proporcionalidad k varía mucho de acuerdo con el tipo de material y
recibe el nombre de constante del resorte. Para el ejemplo anterior, la constante del resorte es
de:
k = F/s = 20 N/cm
La Ley de Hooke no se limita al caso de los resortes en espiral; de hecho, se aplica a la
deformación de todos los cuerpos elásticos. Para que la Ley pueda aplicar de un modo más
general, es conveniente definir los términos esfuerzo y deformación. El Esfuerzo se refiere a la
causa de una deformación elástica, mientras que la deformación se refiere a su efecto, es
decir a la deformación en sí misma. Existen 3 tipos de esfuerzos, los de tensión, de
compresión y cortantes, en este subtema, nos centraremos a analizar el esfuerzo de tensión
que se presenta cuando fuerzas iguales y opuestas se apartan entre sí como se ve en la
figura siguiente:
La eficacia de cualquier fuerza que produce un esfuerzo depende en gran medida del
área sobre la que se distribuye la fuerza, por ello una definición más completa del esfuerzo se
puede enunciar de la siguiente forma:
Esfuerzo: es la razón de una fuerza aplicada entre el área sobre el cual actúa, por
ejemplo Newtons/m2, o libras/ft2.
W
F
F
Tensión
6
Deformación: es el cambio relativo en las dimensiones o en la forma de un cuerpo
como resultado de la aplicación de un esfuerzo.
En el caso de un esfuerzo de tensión o de compresión, la deformación puede
considerarse como un cambio en la longitud por unidad de longitud.
El límite elástico es el esfuerzo máximo que puede sufrir un cuerpo sin que la
deformación sea permanente. Por ejemplo, un cable de aluminio cuya sección transversal es
de 1 pulg2, se deforma permanentemente si se le aplica un esfuerzo de tensión mayor de
19000 libras. Esto no significa que el cable se romperá en ese punto, sino que únicamente
que el cable no recuperará su tamaño original. En realidad, se puede incrementar la tensión
hasta casi 21000 libras antes de que el cable se rompa. Esta propiedad de los metales les
permite ser convertidos en alambres de secciones transversales más pequeñas. El mayor
esfuerzo al que se puede someter un alambre sin que se rompa recibe el nombre de límite de
rotura.
Si no se excede el límite elástico, de un material, podemos aplicar la Ley de Hooke a
cualquier deformación elástica. Dentro de los límites para un material dado, se ha comprobado
experimentalmente que la relación de un esfuerzo determinado entre la deformación que
produce es una constante. En otras palabras, el esfuerzo es directamente proporcional a la
deformación.
La Ley de Hooke, establece:
Siempre que no se exceda el límite elástico, una deformación elástica es directamente
proporcional a la magnitud de la fuerza aplicada por unidad de área (esfuerzo).
Si llamamos a la constante de proporcionalidad el módulo de elasticidad, podemos
escribir la Ley de Hooke en su forma más general:
Módulo de elasticidad = esfuerzo
Deformación
Los esfuerzos y deformaciones son longitudinales cuando se aplican a alambres, varillas, o
barras. El esfuerzo longitudinal está dado por:
Esfuerzo longitudinal = F/A.
La unidad del esfuerzo longitudinal en el Sistema Internacional es el Newton/metro
cuadrado, el cual se redefine como Pascal:
1 Pa = 1 N/m2.
En el Sistema Inglés es la libra por pulgada cuadrada:
7
1 lb/in2= 6895 Pa = 6.895 kPa.
El efecto del esfuerzo de tensión es el alargamiento del alambre, o sea un incremento
en su longitud. Entonces, la deformación longitudinal puede representarse mediante el cambio
de longitud por unidad de longitud, podemos escribir:
Deformación longitudinal = ∆l/l
Donde l es la longitud original, ∆l es la elongación (alargamiento total). Se ha
demostrado experimentalmente que hay una disminución similar en la longitud como resultado
de un esfuerzo de compresión. Las mismas ecuaciones se aplican ya sea que se trate de un
objeto sujeto a tensión o de un objeto a compresión.
Si definimos el módulo de elasticidad longitudinal o módulo de Young Y, podemos
escribir la ecuación de esfuerzo entre deformación como:
Módulo de Young = esfuerzo longitudinal
Deformación longitudinal
Y = F/A = Fl
∆l/l A∆l
Las unidades del módulo de Young son las mismas que las unidades de
esfuerzo, libras por pulgada cuadrada o Pascales. En el cuadro siguiente se observan algunos
valores del módulo de Young para algunos materiales, tanto en el Sistema Internacional como
en el Sistema Inglés.
Material Módulo de Young el
el Sistema
Internacional. Y
(MPa) 1 MPa = 1 x
106 Pa.
Módulo de Young en
el Sistema Inglés
(lb/in2)
Límite elástico en
MPa
Aluminio 68900 10 x 106. 131
Latón 89600 13 x 106. 379
Cobre 117000 17 x 106. 159
Hierro 89600 13 x 106. 165
Acero 207000 30 x 106. 248
Problemas de esfuerzos longitudinales.
1.- Un alambre de teléfono de 120 m de largo, y 2.2. mm de diámetro se estira debido a
una fuerza de 380 N. ¿Cuál es el esfuerzo longitudinal? Si la longitud después de ser estirado
8
es de 120.10 m . ¿Cuál es la deformación longitudinal?. Determine el módulo de Young para
el alambre?.
Solución: El área de la sección transversal del alambre es de
A = π D2 = (3.14) (2.2 x 10-3 m)2 = 3.8 x 10-6 m2.
4 4
Esfuerzo = F/A = 380 N = 100 x 106 N/m2. = 100 MPa.
3.8 x 10-6 m2.
Deformación = ∆l/l = 0.10 m/120 m = 8.3 x 10-4.
Y = esfuerzo/deformación = 100 MPa/8.3 x 10-4. = 120000 MPa.
2.- ¿Cuál es la máxima carga que se puede colgar de un alambre de acero de 6 mm de
diámetro sin exceder su límite elástico?. Determine el incremento en la longitud bajo el efecto
de esta carga, si la longitud original es de 2 metros.
Solución: a partir de la tabla anterior, el límite elástico para el acero es de 248 Mpa o 2.48 x
108 Pa. Puesto que este valor representa el esfuerzo limitante, escribimos:
F/A = 2.48 x 108 Pa
Donde A es el área obtenida a partir de:
A = π D2 = (3.14) (0.006 m)2 = 2.83 x 10-5 m2.
4 4
Por lo tanto, la carga limitadora F es el esfuerzo limitador multiplicado por el área:
F = (2.48 x 108 Pa) (2.83 x 10-5 m2.) = 7.01 x 103 N.
La mayor masa que puede soportarse se calcula a partir de este peso:
m = P/g m = 7.01 x 103 kg m/seg2. = 716 kg.
9.8 m/seg2.
El incremento de la longitud bajo dicha carga se encuentra a partir de la ecuación:
∆l = 1 (F/A) = 2 m (2.48 x 108 Pa) = 2.40 x 10-3 m.
Y 2.07 x 1011 Pa
La longitud aumenta en 2.40 mm y la nueva longitud es de 2.0024 m.
para algunos de los sólidos y líquidos más comunes.
9
Material Módulo de volumen B en Mpa Módulo de volumen B en
lb/in2.
Aluminio 68900 10 x 106.
Latón 58600 8.5 x 106.
Cobre 117000 17 x 106.
Hierro 96500 14 x 106.
Acero 159000 23 x 106.
Benceno 1050 1.5 x 105.
Alcohol etílico 1100 1.6 x 105.
Mercurio 27000 40 x 105.
Aceite 1700 2.5 x 105.
Agua 2100 3.1 x 105.
Cuando se trabaja con líquidos, a veces es más conveniente representar el esfuerzo
como la presión P, que se define como la fuerza por unidad de área F/A. Con esta definición
podemos escribir la ecuación del módulo de volumen, de la siguiente forma:
VV
P
B
/


Al valor recíproco del módulo de volumen se le llama compresibilidad k. Con frecuencia
conviene estudiar la elasticidad de los materiales midiendo sus respectivas compresibilidades.
Por definición:
k = 1/B = - (1/P) (∆V/Vo)
La ecuación anterior indica que la compresibilidad es el cambio fraccional en volumen
por unidad de incremento de la presión.
CONCEPTO DE ESFUERZO Y TENSIÓN DE CORTE.
Los esfuerzos de compresión y de tensión producen un ligero cambio en las
dimensiones lineales. Como se mencionó antes un esfuerzo cortante altera únicamente la
forma del cuerpo, sin que cambie su volumen. Por ejemplo considere las fuerzas paralelas no
concurrentes (no se aplican en el mismo punto), que actúan sobre el cubo que se ve en la
figura siguiente:
10
La fuerza aplicada provoca que cada capa sucesiva de átomos se deslice sobre la
siguiente, en forma parecida a las que les ocurre a las páginas de un libro bajo un esfuerzo
similar. Las fuerzas interatómicas restituyen al cubo original cuando cesa dicho esfuerzo.
El esfuerzo cortante se define como la relación de la fuerza tangencial F entre el área A
sobre la que se aplica. La deformación cortante se define como el ángulo  (en radianes), que
se conoce como ángulo de corte. Si se aplica le Ley de Hooke, podemos ahora definir el
módulo de corte S, de la siguiente forma:
S = esfuerzo cortante = F/A
Deformación cortante 
El ángulo  , generalmente es tan pequeño que es aproximadamente igual a tan  .
Aprovechando este hecho, podemos volver a escribir la ecuación anterior en la siguiente
forma:
S = F/A = F/A
Tan  d/l
Debido a que el valor de S, nos da información sobre la rigidez de un cuerpo, a veces se le
conoce como módulo de rigidez.
En el cuadro siguiente se muestran los módulos de rigidez o módulos de corte de
algunos más comunes.
Material Módulo de corte (S) en Mpa Módulo de corte (S) en lb/in2.
Aluminio 23700 3.44 x 106.
Latón 35300 5.12 x 106.
Cobre 42300 6.14 x 106.
Hierro 68900 10 x 106.
Acero 82700 12 x 106.
(1 m)2 = (100 cm)2 = 10000 cm2.
26 cm2 (1 m2) = 2.6 x 10-3 m2.
(10000 cm2.)
l
F
d
F
Esfuerzo cortante y deformación tangencial
11
Esfuerzo cortante = F/A
Esfuerzo cortante = 14700 N/ 2.6 x 10-3 m2. = 5.65 x 106 N/m2. ó
5.65 x 106 Pa ó 5.65 Mpa.
4.2 VIGAS CON DOS APOYOS CARGADAS En PUNTOS CON CARGAR
UNIFORMES, VIGAS HIPERESTATIAS Y VIGAS CANTILIVER
Viga proviene del latín biga, un término que hacía referencia al carro de dos caballos.
En la actualidad, el término se utiliza para nombrar a un hierro o madero largo y grueso,
que permite sostener los techos de las construcciones o asegurar la estructura.
La viga es un elemento constructivo que trabaja a flexión, cuyo esfuerzo genera
tensiones de tracción y compresión. Cuando las vigas se encuentran en el perímetro
exterior de un forjado, es posible que también se produzcan tensiones por torsión.
Es un elemento fundamental en la construcción, sea ésta de cualquier material. Será el
tipo, calidad y fin de la construcción lo que determinará medidas, materiales de la viga,
y sobre todo, su capacidad de sostener y contener pesos y tensiones.
La viga es una estructura horizontalque puede sostener carga entre dos apoyos sin
crear empuje lateral en éstos. El uso más imponente de una viga, tal vez sea el que
aplica a la estructura de puentes. Su diseño de ingeniería descansa justamente sobre
vigas de calidades y tamaños acordes al tipo y uso de puente que se desea construir.
Esta estructura desarrolla compresión en la parte de arriba y tensión en la de abajo.
Pensemos que los primeros puentes de la humanidad fueron construidos con vigas de
madera: primitivos troncos o vigas que unían dos orillas.
Dentro de lo que son las vigas podemos encontrar dos tipos diferentes: VIGAS
HIPERESTATICAS y VIGAS CANTILIVER.
Una columna es un elemento axial sometido a compresión, lo bastante delgado
respecto su longitud, para que abajo la acción de una carga gradualmente creciente se
rompa por flexión lateral o pandeo ante una carga mucho menos que la necesaria para
romperlo por aplastamiento.
Según el uso actual de la columna como elemento de un pórtico, no necesariamente es
un elemento recto vertical, sino es el elemento donde la compresión es el principal
factor que determina el comportamiento del elemento. Es por ello que el pre
dimensionado de columnas consiste en determinar las dimensiones que sean capaces
de resistir lacompresión que se aplica sobre el elemento así como una flexión que
aparece en el diseño debido a diversos factores.
El siguiente método fue desarrollado por Hardy Cross en 1932.
Viga hiperestática es aquella que tiene todos sus movimientos restringidos, estas
condiciones restringen mas movimientos de los que generalmente la viga puede hacer.
Por ejemplo una viga en un plano solo tiene 3 movimientos posibles los cuales se
anular y hacer una viga hiperestática colocando dos apoyos fijos, cuatro móviles uno
fijo y dos móviles, un empotrado y un móvil etc. existen varias formas de hacer esto.
También se define como aquella que tiene varias condiciones de contorno, es decir de
movimientos impedidos de los que son estrictamente necesarios para su estabilidad,
por ellos su cálculo no se realiza con las ecuaciones de equilibrio, si no recurriendo a
los esfuerzos y deformaciones que se den a partir de las ecuaciones del material. Y
normalmente son usadas en las estructuras de construcción y su uso es el más
extendido. Estos compartimientos están compuestos por un momento, una fuerza
vertical y otra horizontal y para resolver el cálculo se puede utilizar el famoso método de
Cross aunque actualmente ya decayó mucho el método por lascalculadoras o
programas matemáticos como el SAP 2000 versión 7 y el ip3 estructuras.
Este tipo de vigas se usan normalmente en las edificaciones porque tienen la ventaja
de que no vibran por la acción de la carga para la que están diseñadas, aunque se
corre el riesgo de que al ocurrir un sismo la fuerza de este sobrepase la resistencia de
12
su diseño y rompa la estructura pero para que pase esto tiene que ser un sismo muy
fuerte.
Las vigas en cantiléver están sujetas a condiciones de frontera tomando en
consideración un extremo fijo y su lado opuesto libre.
Modelo discreto: las características de vibración de una viga en cantiléver, se pueden
simplificar de un sistema continuo a un sistema discreto en donde una sola dirección de
desplazamiento y un grado de liberta son considerados
TEMA 4.3. CLASIFICACIÓN DE COLUMNAS.
Una columna es un elemento axial sometido a compresión, lo bastante delgado
respecto de su longitud, pero que bajo la acción de una carga gradualmente creciente se
rompa por flexión lateral o pandeo ante una carga mucho menor que la necesaria para
romperlo por aplastamiento. Esto se diferencia de un poste corto sometido a compresión, el
cual, aunque esté cargado excéntricamente, experimenta una flexión lateral despreciable.
Aunque no existe un límite perfectamente definido entre elemento corto y columna, se suele
considerar que un elemento a compresión es una columna si su longitud es más de diez veces
su dimensión transversal menor o área o grosor de la misma. Las columnas se suelen dividir
en dos grupos: Largas e intermedias. A veces, los elementos cortos a compresión se
consideran como un tercer grupo de las columnas. Las diferencias entre los tres grupos
vienen determinadas por su comportamiento. Las columnas largas se rompen por pandeo o
flexión lateral; las intermedias, por una combinación de aplastamiento y pandeo, y los postes
cortos, por aplastamiento. Examinemos ahora estas diferencias.
Una columna ideal es un elemento homogéneo, de sección recta constante,
inicialmente perpendicular al eje, y sometido a compresión. Sin embargo, las columnas suelen
tener siempre pequeñas imperfecciones de material y fabricación, así como una inevitable
excentricidad accidental en la aplicación de la carga. Todo esto se representa muy
exageradamente en la figura siguiente:
13
La curvatura inicial de la columna, junto con la posición de la carga, dan lugar a una
excentricidad indeterminada e, con respecto al centro de gravedad, en una sección cualquiera
m-n. El estado de carga en esta sección es similar al de un poste corto similar cargado
excéntricamente, y el esfuerzo resultante está producido por la superposición del esfuerzo
directo de compresión y el esfuerzo de flexión (o mejor dicho, por flexión). Si la excentricidad
es pequeña y el elemento es corto, la flexión lateral es despreciable, y el esfuerzo de flexión
es insignificante comparado con el esfuerzo de compresión directo. Sin embargo, en un
elemento largo, que es mucho más flexible ya que las deflexiones son proporcionales al cubo
de la longitud (l3), con un valor relativamente pequeño de la carga P puede producirse un
esfuerzo de flexión grande acompañado de un esfuerzo directo de compresión despreciable.
Así, pues, en las dos situaciones extremas, una columna corta soporta fundamentalmente el
esfuerzo directo de compresión, y una columna larga está sometida principalmente al esfuerzo
de flexión. Cuando aumenta la longitud de una columna disminuye la importancia y los efectos
del esfuerzo directo de compresión y aumenta correlativamente los del esfuerzo de flexión.
Por desgracia, en la zona intermedia no es posible determinar exactamente la forma en que
varían estos dos tipos de esfuerzos, o la proporción con la que cada una contribuye al
esfuerzo total..
Las columnas representan el elemento vertical de soporte para la mayoría de las estructuras a
base de marcos. Para analizar la capacidad de carga de las columnas se deben referirse al
m n
P
Excentricidad
accidental o evitable
Eje real con curvatura
inicial (muy exagerada)
e= excentricidad de P
en una sección m-n
Línea eje
perfectamente recta
P
Factores que intervienen en la excentricidad de las
cargas en las columnas
14
conjunto al que pertenecen y al sistema en el que trabajan; es decir, a las características
generales del edificio en términos de la forma en que se encuentran definidas las partes
integrantes o marcos, que son estructuras reticulares que contienen un cierto número de
claros para una serie de niveles o entrepisos.
La columna clásica se compone de tres partes:
-La base: protege a la columna de los golpes que podrían deteriorarla, al mismo tiempo que
da una superficie de sustentación mayor.
-El fuste.
-El capitel: es necesario para proporcionar un asiento capaz de recibir mejor el entabla miento.
Las columnas tradicionales se distinguen por su construcción.
-La columna construida en una sola pieza de material se llama monolítica; cuando está
formada por una superposición de discos, cuya altura es superior diámetro se llama en trozos,
y de tabores si la altura es inferior. Si el interior de la columna es hueco y contiene una
escalera de caracol se llama cóclida.
-En su forma más simple, las columnas son barras prismáticas, rectas y largas, sujetas a
cargas axiales de compresión.
Atendiendo a su disposición en relación con otros componentes de un edificio, pueden
distinguirse estos tipos de columnas:
-Columna aislada o exenta: La que se encuentra separada de un muro o cualquier elemento
vertical de la edificación.
-Columna adosada: La que está yuxtapuesta a un muro u otro elemento de la edificación.
-Columna embebida: La que aparenta estar parcialmente incrustada en el
muro u otro cuerpo de la construcción.
En el año 1757, el gran matemático suizo Leonhard Euler realizó un análisis teórico de
la carga crítica para columnas esbeltas basado en la ecuación diferencial de la elástica:
22
/ dxydEl  = M. Ahora se sabe que éste análisis solamente es válido hasta que los
esfuerzos alcanzan el límite de proporcionalidad. En tiempos de Euler no se habían
establecido los conceptos de esfuerzo, ni de límite de proporcionalidad, por lo que el no tuvo
en cuenta la existencia de un límite superior a la carga crítica.
La ecuación de la fórmula de Euler para el análisis de columnas es:
2
2
L
El
P


Donde P = Carga crítica en Newtons (N)
E = Esfuerzo en Newtons/m2 ó Pascales (Pa)
L = Altura o longitud de la columna en metros (m)
15
CONCLUSIÓN
Con esta información damos por terminado la unidad 4 de física en la que se
abordaron los temas mencionados anteriormente en los cuales se hizo una
investigación detallada y recopilando la información más concreta y con mayor
retención para su fácil entendimiento de dichos temas.
BIBLIOGRAFÍA
http://www.buenastareas.com/ensayos/Fisica/4371967.html
file:///C:/Users/vickmaster83/Downloads/resistencia%20de%20materiales_parte2.pdf
http://www.itescam.edu.mx/principal/sylabus/fpdb/recursos/r81669.PDF
16

Más contenido relacionado

La actualidad más candente

Diseño y selección de herramientas
Diseño y selección de herramientasDiseño y selección de herramientas
Diseño y selección de herramientasRafael Vera
 
Unidad 2-estudio-del-trabajo
Unidad 2-estudio-del-trabajoUnidad 2-estudio-del-trabajo
Unidad 2-estudio-del-trabajoLuis Vera Hdz
 
Substancias químicas peligrosas y vías de incorporación
Substancias químicas peligrosas y vías de incorporación Substancias químicas peligrosas y vías de incorporación
Substancias químicas peligrosas y vías de incorporación ztharziitha1
 
2.1. CONCEPTO Y CLASIFICACIÓN DE TABLEROS
2.1. CONCEPTO Y CLASIFICACIÓN DE TABLEROS2.1. CONCEPTO Y CLASIFICACIÓN DE TABLEROS
2.1. CONCEPTO Y CLASIFICACIÓN DE TABLEROSRafael Vera
 
Unidad 3 Estudio de movimientos
Unidad 3 Estudio de movimientosUnidad 3 Estudio de movimientos
Unidad 3 Estudio de movimientosOsvaldo Mendoza
 
Unidad 1 relaciones industriales
Unidad 1 relaciones industrialesUnidad 1 relaciones industriales
Unidad 1 relaciones industrialesBrisa Villegas
 
4. ensayo de torsion
4.  ensayo de torsion4.  ensayo de torsion
4. ensayo de torsionalcaldia
 
3. Estudio de tiempos con cronómetro. Valoración del ritmo de trabajo
3. Estudio de tiempos con cronómetro. Valoración del ritmo de trabajo3. Estudio de tiempos con cronómetro. Valoración del ritmo de trabajo
3. Estudio de tiempos con cronómetro. Valoración del ritmo de trabajoOscar Danilo Fuentes Espinoza
 

La actualidad más candente (20)

Diseño y selección de herramientas
Diseño y selección de herramientasDiseño y selección de herramientas
Diseño y selección de herramientas
 
Work Factor
Work FactorWork Factor
Work Factor
 
Tiempos estandar
Tiempos estandarTiempos estandar
Tiempos estandar
 
Controles Ergonomía
Controles Ergonomía Controles Ergonomía
Controles Ergonomía
 
Unidad 2-estudio-del-trabajo
Unidad 2-estudio-del-trabajoUnidad 2-estudio-del-trabajo
Unidad 2-estudio-del-trabajo
 
Muestreo del trabajo
Muestreo del trabajoMuestreo del trabajo
Muestreo del trabajo
 
Ergonomia - Tableros
Ergonomia - TablerosErgonomia - Tableros
Ergonomia - Tableros
 
Mantenibilidad y fiabilidad
Mantenibilidad y fiabilidadMantenibilidad y fiabilidad
Mantenibilidad y fiabilidad
 
Substancias químicas peligrosas y vías de incorporación
Substancias químicas peligrosas y vías de incorporación Substancias químicas peligrosas y vías de incorporación
Substancias químicas peligrosas y vías de incorporación
 
2.1. CONCEPTO Y CLASIFICACIÓN DE TABLEROS
2.1. CONCEPTO Y CLASIFICACIÓN DE TABLEROS2.1. CONCEPTO Y CLASIFICACIÓN DE TABLEROS
2.1. CONCEPTO Y CLASIFICACIÓN DE TABLEROS
 
Diferencia entre grafico xr,xs
Diferencia entre grafico xr,xsDiferencia entre grafico xr,xs
Diferencia entre grafico xr,xs
 
Presentación sistemas de manufactura
Presentación sistemas de manufacturaPresentación sistemas de manufactura
Presentación sistemas de manufactura
 
Unidad 3 Estudio de movimientos
Unidad 3 Estudio de movimientosUnidad 3 Estudio de movimientos
Unidad 3 Estudio de movimientos
 
Técnicas de estándares de tiempo
Técnicas de estándares de tiempoTécnicas de estándares de tiempo
Técnicas de estándares de tiempo
 
Unidad 1 relaciones industriales
Unidad 1 relaciones industrialesUnidad 1 relaciones industriales
Unidad 1 relaciones industriales
 
4. Estudio de tiempos con cronómetro: Suplementos
4. Estudio de tiempos con cronómetro: Suplementos4. Estudio de tiempos con cronómetro: Suplementos
4. Estudio de tiempos con cronómetro: Suplementos
 
Efuerzo,deformacion y torsión
Efuerzo,deformacion y torsiónEfuerzo,deformacion y torsión
Efuerzo,deformacion y torsión
 
4. ensayo de torsion
4.  ensayo de torsion4.  ensayo de torsion
4. ensayo de torsion
 
3. Estudio de tiempos con cronómetro. Valoración del ritmo de trabajo
3. Estudio de tiempos con cronómetro. Valoración del ritmo de trabajo3. Estudio de tiempos con cronómetro. Valoración del ritmo de trabajo
3. Estudio de tiempos con cronómetro. Valoración del ritmo de trabajo
 
Técnicas de estándares de tiempo 2
Técnicas de estándares de tiempo 2Técnicas de estándares de tiempo 2
Técnicas de estándares de tiempo 2
 

Similar a Ley de Hooke, esfuerzos mecánicos y estructuras de vigas y columnas

Similar a Ley de Hooke, esfuerzos mecánicos y estructuras de vigas y columnas (20)

Apuntes resistencia de materiales
Apuntes resistencia de materialesApuntes resistencia de materiales
Apuntes resistencia de materiales
 
ESFUERZO Y FLEXIÓN
ESFUERZO Y FLEXIÓNESFUERZO Y FLEXIÓN
ESFUERZO Y FLEXIÓN
 
Capítulos i, ii, y iii br. lorena vasquez
Capítulos i, ii, y iii  br. lorena vasquezCapítulos i, ii, y iii  br. lorena vasquez
Capítulos i, ii, y iii br. lorena vasquez
 
Flexion final
Flexion finalFlexion final
Flexion final
 
Capitulo 1 elasticidad.
Capitulo 1 elasticidad.Capitulo 1 elasticidad.
Capitulo 1 elasticidad.
 
CUARTA UNIDAD- linea metro.ppnjjjjjjjjjjjjjjjjjjt
CUARTA UNIDAD- linea metro.ppnjjjjjjjjjjjjjjjjjjtCUARTA UNIDAD- linea metro.ppnjjjjjjjjjjjjjjjjjjt
CUARTA UNIDAD- linea metro.ppnjjjjjjjjjjjjjjjjjjt
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacion
 
Elasticidad
ElasticidadElasticidad
Elasticidad
 
Ana slide
Ana slideAna slide
Ana slide
 
Cap.1 elasticidad
Cap.1 elasticidadCap.1 elasticidad
Cap.1 elasticidad
 
Medina fisica2 cap1
Medina fisica2 cap1Medina fisica2 cap1
Medina fisica2 cap1
 
Medina fisica2 cap1
Medina fisica2 cap1Medina fisica2 cap1
Medina fisica2 cap1
 
Elasticidad fisica 2_ejercicios_resuelto
Elasticidad fisica 2_ejercicios_resueltoElasticidad fisica 2_ejercicios_resuelto
Elasticidad fisica 2_ejercicios_resuelto
 
Elasticidad fisica
Elasticidad fisicaElasticidad fisica
Elasticidad fisica
 
Elasticidad (1)
Elasticidad (1)Elasticidad (1)
Elasticidad (1)
 
Medina fisica2 cap1
Medina fisica2 cap1Medina fisica2 cap1
Medina fisica2 cap1
 
Ley de los Resortes
Ley de los ResortesLey de los Resortes
Ley de los Resortes
 
Ley de los resortes
Ley de los resortesLey de los resortes
Ley de los resortes
 
tension y torsion
tension y torsiontension y torsion
tension y torsion
 
Esfuerzo, Flexión y Torsion
Esfuerzo, Flexión y TorsionEsfuerzo, Flexión y Torsion
Esfuerzo, Flexión y Torsion
 

Último

DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADOJosé Luis Palma
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.José Luis Palma
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxzulyvero07
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadAlejandrino Halire Ccahuana
 
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docxGLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docxAleParedes11
 
Herramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfHerramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfMARIAPAULAMAHECHAMOR
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.amayarogel
 
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxPRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxinformacionasapespu
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleJonathanCovena1
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónLourdes Feria
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosCesarFernandez937857
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arteRaquel Martín Contreras
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdfBaker Publishing Company
 
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptxEXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptxPryhaSalam
 
codigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinacodigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinavergarakarina022
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdfgimenanahuel
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptxJunkotantik
 

Último (20)

DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdad
 
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docxGLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
 
Herramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfHerramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdf
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.
 
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxPRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo Sostenible
 
Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos Básicos
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arte
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf
 
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptxEXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
 
codigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinacodigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karina
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptx
 

Ley de Hooke, esfuerzos mecánicos y estructuras de vigas y columnas

  • 1. 1 ÍNDICE Introducción…………………………………………………………………………………….…2 Esfuerzo y deformación debido a cargas externas, esfuerzos mecánicos, térmicos y ley de hooke…………………………………………………………………………3 Vigas con dos apoyos cargadas e puntos con cargar uniformes, Vigas hiperestáticas y vigas cantiliver……………………………………………………….11 Clasificación de columnas…………………………………………………………………….12 Conclusión……………………………………………………………………………………….15 Bibliografía…………...........................................................................................................15
  • 2. 2 INTRODUCCIÓN En el siguiente reporte de investigación se detalla los temas correspondientes a la unidad 4 de física en los que se describen temas ya vistos con anterioridad como lo es la ley de hooke, los esfuerzos mecánicos, las vigas, y la clasificación de columnas cada tema con su respectivo ejemplo para ser mas explicito y fácil de entender.  Los temas que se describirán a continuación son los siguientes: esfuerzo y deformación debido a cargas externas: esfuerzos mecánicos y térmicos ley de hooke  Vigas con dos apoyos cargadas e puntos con cargar uniformes, vigas hiperestatias y vigas cantiliver  Clasificación de columnas
  • 3. 3 TEMA 4.1. ESFUERZO Y DEFORMACIÓN DEBIDO A CARGAS EXTERNAS, ESFUERZOS MECÁNICOS, TÉRMICOS Y LEY DE HOOKE. En general un esfuerzo es el resultado de la división entre una fuerza y el área en la que se aplica. Se distinguen dos direcciones para las fuerzas, las que son normales al área en la que se aplican y las que son paralelas al área en que se aplican. Si la fuerza aplicada no es normal ni paralela a la superficie, siempre puede descomponerse en la suma vectorial de otras dos que siempre resultan ser una normal y la otra paralela. Los esfuerzos con dirección normal a la sección, se denotan como σ (sigma) y representa un esfuerzo de tracción cuando apunta hacia afuera de la sección, tratando de estirar al elemento analizado. En cambio, representa un esfuerzo de compresión cuando apunta hacia la sección, tratando de aplastar al elemento analizado. El esfuerzo con dirección paralela al área en la que se aplica se denota como τ (tau) y representa un esfuerzo de corte. Este esfuerzo, trata de cortar el elemento analizado, tal como una tijera cuando corta papel, uno de sus filos mueven el papel hacia un lado mientras el otro filo lo mueve en dirección contraria resultando en el desgarro del papel a lo largo de una línea. Las unidades de los esfuerzos son las mismas que para la presión, fuerza dividida por área, se utilizan con frecuencia : MPa, psia, kpsia, kg/mm2, kg/cm2. Así, los principales ESFUERZOS MECÁNICOS se pueden enlistar como sigue: Tracción: Esfuerzo a que está sometido un cuerpo por la aplicación de dos fuerzas que actúan en sentido opuesto, y tienden a estirarlo, aumentando su longitud y disminuyendo su sección. Compresión: Esfuerzo a que está sometido un cuerpo por la aplicación de dos fuerzas que actúan en sentido opuesto, y tienden a comprimirlo, disminuyendo su longitud y aumentando su sección. Flexión: Esfuerzo que tiende a doblar el objeto. Las fuerzas que actúan son paralelas a las superficies que sostienen el objeto. Siempre que existe flexión también hay esfuerzo de tracción y de compresión. Cortadura: esfuerzo que tiende a cortar el objeto por la aplicación de dos fuerzas en sentidos contrarios y no alineados. Se encuentra en uniones como: tornillos, remaches y soldaduras. Torsión: esfuerzo que tiende a retorcer un objeto por aplicación de un momento sobre el eje longitudinal. Las propiedades mecánicas de la materia son la elasticidad, la compresión y la tensión. Definimos a un cuerpo elástico, como aquel que recobra su tamaño y forma original
  • 4. 4 cuando deja de actuar sobre él una fuerza deformante. Las bandas de hule, las pelotas de golf, los trampolines, las camas elásticas, las pelotas de fútbol y los resortes son ejemplos comunes de cuerpos elásticos. Para todos los cuerpos elásticos, conviene establecer relaciones de causa y efecto entre la deformación y las fuerzas deformantes. Considere el resorte de longitud 1 de la figura siguiente. Podemos estudiar su elasticidad añadiendo pesas sucesivamente y observando el incremento de su longitud. Una pesa de 2 N alarga el resorte 1 cm, una pesa de 4 N alarga el resorte 2 cm y una pesa de 6 N alarga el resorte 3 cm. Es evidente que existe una relación directa entre el estiramiento del resorte y la fuerza aplicada. Las propiedades mecánicas de la materia son la elasticidad, la compresión y la tensión. Definimos a un cuerpo elástico, como aquel que recobra su tamaño y forma original cuando deja de actuar sobre él una fuerza deformante. Las bandas de hule, las pelotas de golf, los trampolines, las camas elásticas, las pelotas de fútbol y los resortes son ejemplos comunes de cuerpos elásticos. Para todos los cuerpos elásticos, conviene establecer relaciones de causa y efecto entre la deformación y las fuerzas deformantes. Considere el resorte de longitud 1 de la figura siguiente. Podemos estudiar su elasticidad añadiendo pesas sucesivamente y observando el incremento de su longitud. Una pesa de 2 N alarga el resorte 1 cm, una pesa de 4 N alarga el resorte 2 cm y una pesa de 6 N alarga el resorte 3 cm. Es evidente que existe una relación directa entre el estiramiento del resorte y la fuerza aplicada. Robert Hooke fue el primero en establecer esta relación por medio de la invención de un volante para resorte para reloj. En términos generales, Hooke descubrió que (a) posición de equilibrio 1 cm 2 N 4 N 2 cm 3 cm l 6 N
  • 5. 5 cuando una fuerza F, actúa sobre un resorte, produce en él un alargamiento s que es directamente proporcional a la magnitud de la fuerza aplicada. La Ley de Hooke se representa como: F = ks. La constante de proporcionalidad k varía mucho de acuerdo con el tipo de material y recibe el nombre de constante del resorte. Para el ejemplo anterior, la constante del resorte es de: k = F/s = 20 N/cm La Ley de Hooke no se limita al caso de los resortes en espiral; de hecho, se aplica a la deformación de todos los cuerpos elásticos. Para que la Ley pueda aplicar de un modo más general, es conveniente definir los términos esfuerzo y deformación. El Esfuerzo se refiere a la causa de una deformación elástica, mientras que la deformación se refiere a su efecto, es decir a la deformación en sí misma. Existen 3 tipos de esfuerzos, los de tensión, de compresión y cortantes, en este subtema, nos centraremos a analizar el esfuerzo de tensión que se presenta cuando fuerzas iguales y opuestas se apartan entre sí como se ve en la figura siguiente: La eficacia de cualquier fuerza que produce un esfuerzo depende en gran medida del área sobre la que se distribuye la fuerza, por ello una definición más completa del esfuerzo se puede enunciar de la siguiente forma: Esfuerzo: es la razón de una fuerza aplicada entre el área sobre el cual actúa, por ejemplo Newtons/m2, o libras/ft2. W F F Tensión
  • 6. 6 Deformación: es el cambio relativo en las dimensiones o en la forma de un cuerpo como resultado de la aplicación de un esfuerzo. En el caso de un esfuerzo de tensión o de compresión, la deformación puede considerarse como un cambio en la longitud por unidad de longitud. El límite elástico es el esfuerzo máximo que puede sufrir un cuerpo sin que la deformación sea permanente. Por ejemplo, un cable de aluminio cuya sección transversal es de 1 pulg2, se deforma permanentemente si se le aplica un esfuerzo de tensión mayor de 19000 libras. Esto no significa que el cable se romperá en ese punto, sino que únicamente que el cable no recuperará su tamaño original. En realidad, se puede incrementar la tensión hasta casi 21000 libras antes de que el cable se rompa. Esta propiedad de los metales les permite ser convertidos en alambres de secciones transversales más pequeñas. El mayor esfuerzo al que se puede someter un alambre sin que se rompa recibe el nombre de límite de rotura. Si no se excede el límite elástico, de un material, podemos aplicar la Ley de Hooke a cualquier deformación elástica. Dentro de los límites para un material dado, se ha comprobado experimentalmente que la relación de un esfuerzo determinado entre la deformación que produce es una constante. En otras palabras, el esfuerzo es directamente proporcional a la deformación. La Ley de Hooke, establece: Siempre que no se exceda el límite elástico, una deformación elástica es directamente proporcional a la magnitud de la fuerza aplicada por unidad de área (esfuerzo). Si llamamos a la constante de proporcionalidad el módulo de elasticidad, podemos escribir la Ley de Hooke en su forma más general: Módulo de elasticidad = esfuerzo Deformación Los esfuerzos y deformaciones son longitudinales cuando se aplican a alambres, varillas, o barras. El esfuerzo longitudinal está dado por: Esfuerzo longitudinal = F/A. La unidad del esfuerzo longitudinal en el Sistema Internacional es el Newton/metro cuadrado, el cual se redefine como Pascal: 1 Pa = 1 N/m2. En el Sistema Inglés es la libra por pulgada cuadrada:
  • 7. 7 1 lb/in2= 6895 Pa = 6.895 kPa. El efecto del esfuerzo de tensión es el alargamiento del alambre, o sea un incremento en su longitud. Entonces, la deformación longitudinal puede representarse mediante el cambio de longitud por unidad de longitud, podemos escribir: Deformación longitudinal = ∆l/l Donde l es la longitud original, ∆l es la elongación (alargamiento total). Se ha demostrado experimentalmente que hay una disminución similar en la longitud como resultado de un esfuerzo de compresión. Las mismas ecuaciones se aplican ya sea que se trate de un objeto sujeto a tensión o de un objeto a compresión. Si definimos el módulo de elasticidad longitudinal o módulo de Young Y, podemos escribir la ecuación de esfuerzo entre deformación como: Módulo de Young = esfuerzo longitudinal Deformación longitudinal Y = F/A = Fl ∆l/l A∆l Las unidades del módulo de Young son las mismas que las unidades de esfuerzo, libras por pulgada cuadrada o Pascales. En el cuadro siguiente se observan algunos valores del módulo de Young para algunos materiales, tanto en el Sistema Internacional como en el Sistema Inglés. Material Módulo de Young el el Sistema Internacional. Y (MPa) 1 MPa = 1 x 106 Pa. Módulo de Young en el Sistema Inglés (lb/in2) Límite elástico en MPa Aluminio 68900 10 x 106. 131 Latón 89600 13 x 106. 379 Cobre 117000 17 x 106. 159 Hierro 89600 13 x 106. 165 Acero 207000 30 x 106. 248 Problemas de esfuerzos longitudinales. 1.- Un alambre de teléfono de 120 m de largo, y 2.2. mm de diámetro se estira debido a una fuerza de 380 N. ¿Cuál es el esfuerzo longitudinal? Si la longitud después de ser estirado
  • 8. 8 es de 120.10 m . ¿Cuál es la deformación longitudinal?. Determine el módulo de Young para el alambre?. Solución: El área de la sección transversal del alambre es de A = π D2 = (3.14) (2.2 x 10-3 m)2 = 3.8 x 10-6 m2. 4 4 Esfuerzo = F/A = 380 N = 100 x 106 N/m2. = 100 MPa. 3.8 x 10-6 m2. Deformación = ∆l/l = 0.10 m/120 m = 8.3 x 10-4. Y = esfuerzo/deformación = 100 MPa/8.3 x 10-4. = 120000 MPa. 2.- ¿Cuál es la máxima carga que se puede colgar de un alambre de acero de 6 mm de diámetro sin exceder su límite elástico?. Determine el incremento en la longitud bajo el efecto de esta carga, si la longitud original es de 2 metros. Solución: a partir de la tabla anterior, el límite elástico para el acero es de 248 Mpa o 2.48 x 108 Pa. Puesto que este valor representa el esfuerzo limitante, escribimos: F/A = 2.48 x 108 Pa Donde A es el área obtenida a partir de: A = π D2 = (3.14) (0.006 m)2 = 2.83 x 10-5 m2. 4 4 Por lo tanto, la carga limitadora F es el esfuerzo limitador multiplicado por el área: F = (2.48 x 108 Pa) (2.83 x 10-5 m2.) = 7.01 x 103 N. La mayor masa que puede soportarse se calcula a partir de este peso: m = P/g m = 7.01 x 103 kg m/seg2. = 716 kg. 9.8 m/seg2. El incremento de la longitud bajo dicha carga se encuentra a partir de la ecuación: ∆l = 1 (F/A) = 2 m (2.48 x 108 Pa) = 2.40 x 10-3 m. Y 2.07 x 1011 Pa La longitud aumenta en 2.40 mm y la nueva longitud es de 2.0024 m. para algunos de los sólidos y líquidos más comunes.
  • 9. 9 Material Módulo de volumen B en Mpa Módulo de volumen B en lb/in2. Aluminio 68900 10 x 106. Latón 58600 8.5 x 106. Cobre 117000 17 x 106. Hierro 96500 14 x 106. Acero 159000 23 x 106. Benceno 1050 1.5 x 105. Alcohol etílico 1100 1.6 x 105. Mercurio 27000 40 x 105. Aceite 1700 2.5 x 105. Agua 2100 3.1 x 105. Cuando se trabaja con líquidos, a veces es más conveniente representar el esfuerzo como la presión P, que se define como la fuerza por unidad de área F/A. Con esta definición podemos escribir la ecuación del módulo de volumen, de la siguiente forma: VV P B /   Al valor recíproco del módulo de volumen se le llama compresibilidad k. Con frecuencia conviene estudiar la elasticidad de los materiales midiendo sus respectivas compresibilidades. Por definición: k = 1/B = - (1/P) (∆V/Vo) La ecuación anterior indica que la compresibilidad es el cambio fraccional en volumen por unidad de incremento de la presión. CONCEPTO DE ESFUERZO Y TENSIÓN DE CORTE. Los esfuerzos de compresión y de tensión producen un ligero cambio en las dimensiones lineales. Como se mencionó antes un esfuerzo cortante altera únicamente la forma del cuerpo, sin que cambie su volumen. Por ejemplo considere las fuerzas paralelas no concurrentes (no se aplican en el mismo punto), que actúan sobre el cubo que se ve en la figura siguiente:
  • 10. 10 La fuerza aplicada provoca que cada capa sucesiva de átomos se deslice sobre la siguiente, en forma parecida a las que les ocurre a las páginas de un libro bajo un esfuerzo similar. Las fuerzas interatómicas restituyen al cubo original cuando cesa dicho esfuerzo. El esfuerzo cortante se define como la relación de la fuerza tangencial F entre el área A sobre la que se aplica. La deformación cortante se define como el ángulo  (en radianes), que se conoce como ángulo de corte. Si se aplica le Ley de Hooke, podemos ahora definir el módulo de corte S, de la siguiente forma: S = esfuerzo cortante = F/A Deformación cortante  El ángulo  , generalmente es tan pequeño que es aproximadamente igual a tan  . Aprovechando este hecho, podemos volver a escribir la ecuación anterior en la siguiente forma: S = F/A = F/A Tan  d/l Debido a que el valor de S, nos da información sobre la rigidez de un cuerpo, a veces se le conoce como módulo de rigidez. En el cuadro siguiente se muestran los módulos de rigidez o módulos de corte de algunos más comunes. Material Módulo de corte (S) en Mpa Módulo de corte (S) en lb/in2. Aluminio 23700 3.44 x 106. Latón 35300 5.12 x 106. Cobre 42300 6.14 x 106. Hierro 68900 10 x 106. Acero 82700 12 x 106. (1 m)2 = (100 cm)2 = 10000 cm2. 26 cm2 (1 m2) = 2.6 x 10-3 m2. (10000 cm2.) l F d F Esfuerzo cortante y deformación tangencial
  • 11. 11 Esfuerzo cortante = F/A Esfuerzo cortante = 14700 N/ 2.6 x 10-3 m2. = 5.65 x 106 N/m2. ó 5.65 x 106 Pa ó 5.65 Mpa. 4.2 VIGAS CON DOS APOYOS CARGADAS En PUNTOS CON CARGAR UNIFORMES, VIGAS HIPERESTATIAS Y VIGAS CANTILIVER Viga proviene del latín biga, un término que hacía referencia al carro de dos caballos. En la actualidad, el término se utiliza para nombrar a un hierro o madero largo y grueso, que permite sostener los techos de las construcciones o asegurar la estructura. La viga es un elemento constructivo que trabaja a flexión, cuyo esfuerzo genera tensiones de tracción y compresión. Cuando las vigas se encuentran en el perímetro exterior de un forjado, es posible que también se produzcan tensiones por torsión. Es un elemento fundamental en la construcción, sea ésta de cualquier material. Será el tipo, calidad y fin de la construcción lo que determinará medidas, materiales de la viga, y sobre todo, su capacidad de sostener y contener pesos y tensiones. La viga es una estructura horizontalque puede sostener carga entre dos apoyos sin crear empuje lateral en éstos. El uso más imponente de una viga, tal vez sea el que aplica a la estructura de puentes. Su diseño de ingeniería descansa justamente sobre vigas de calidades y tamaños acordes al tipo y uso de puente que se desea construir. Esta estructura desarrolla compresión en la parte de arriba y tensión en la de abajo. Pensemos que los primeros puentes de la humanidad fueron construidos con vigas de madera: primitivos troncos o vigas que unían dos orillas. Dentro de lo que son las vigas podemos encontrar dos tipos diferentes: VIGAS HIPERESTATICAS y VIGAS CANTILIVER. Una columna es un elemento axial sometido a compresión, lo bastante delgado respecto su longitud, para que abajo la acción de una carga gradualmente creciente se rompa por flexión lateral o pandeo ante una carga mucho menos que la necesaria para romperlo por aplastamiento. Según el uso actual de la columna como elemento de un pórtico, no necesariamente es un elemento recto vertical, sino es el elemento donde la compresión es el principal factor que determina el comportamiento del elemento. Es por ello que el pre dimensionado de columnas consiste en determinar las dimensiones que sean capaces de resistir lacompresión que se aplica sobre el elemento así como una flexión que aparece en el diseño debido a diversos factores. El siguiente método fue desarrollado por Hardy Cross en 1932. Viga hiperestática es aquella que tiene todos sus movimientos restringidos, estas condiciones restringen mas movimientos de los que generalmente la viga puede hacer. Por ejemplo una viga en un plano solo tiene 3 movimientos posibles los cuales se anular y hacer una viga hiperestática colocando dos apoyos fijos, cuatro móviles uno fijo y dos móviles, un empotrado y un móvil etc. existen varias formas de hacer esto. También se define como aquella que tiene varias condiciones de contorno, es decir de movimientos impedidos de los que son estrictamente necesarios para su estabilidad, por ellos su cálculo no se realiza con las ecuaciones de equilibrio, si no recurriendo a los esfuerzos y deformaciones que se den a partir de las ecuaciones del material. Y normalmente son usadas en las estructuras de construcción y su uso es el más extendido. Estos compartimientos están compuestos por un momento, una fuerza vertical y otra horizontal y para resolver el cálculo se puede utilizar el famoso método de Cross aunque actualmente ya decayó mucho el método por lascalculadoras o programas matemáticos como el SAP 2000 versión 7 y el ip3 estructuras. Este tipo de vigas se usan normalmente en las edificaciones porque tienen la ventaja de que no vibran por la acción de la carga para la que están diseñadas, aunque se corre el riesgo de que al ocurrir un sismo la fuerza de este sobrepase la resistencia de
  • 12. 12 su diseño y rompa la estructura pero para que pase esto tiene que ser un sismo muy fuerte. Las vigas en cantiléver están sujetas a condiciones de frontera tomando en consideración un extremo fijo y su lado opuesto libre. Modelo discreto: las características de vibración de una viga en cantiléver, se pueden simplificar de un sistema continuo a un sistema discreto en donde una sola dirección de desplazamiento y un grado de liberta son considerados TEMA 4.3. CLASIFICACIÓN DE COLUMNAS. Una columna es un elemento axial sometido a compresión, lo bastante delgado respecto de su longitud, pero que bajo la acción de una carga gradualmente creciente se rompa por flexión lateral o pandeo ante una carga mucho menor que la necesaria para romperlo por aplastamiento. Esto se diferencia de un poste corto sometido a compresión, el cual, aunque esté cargado excéntricamente, experimenta una flexión lateral despreciable. Aunque no existe un límite perfectamente definido entre elemento corto y columna, se suele considerar que un elemento a compresión es una columna si su longitud es más de diez veces su dimensión transversal menor o área o grosor de la misma. Las columnas se suelen dividir en dos grupos: Largas e intermedias. A veces, los elementos cortos a compresión se consideran como un tercer grupo de las columnas. Las diferencias entre los tres grupos vienen determinadas por su comportamiento. Las columnas largas se rompen por pandeo o flexión lateral; las intermedias, por una combinación de aplastamiento y pandeo, y los postes cortos, por aplastamiento. Examinemos ahora estas diferencias. Una columna ideal es un elemento homogéneo, de sección recta constante, inicialmente perpendicular al eje, y sometido a compresión. Sin embargo, las columnas suelen tener siempre pequeñas imperfecciones de material y fabricación, así como una inevitable excentricidad accidental en la aplicación de la carga. Todo esto se representa muy exageradamente en la figura siguiente:
  • 13. 13 La curvatura inicial de la columna, junto con la posición de la carga, dan lugar a una excentricidad indeterminada e, con respecto al centro de gravedad, en una sección cualquiera m-n. El estado de carga en esta sección es similar al de un poste corto similar cargado excéntricamente, y el esfuerzo resultante está producido por la superposición del esfuerzo directo de compresión y el esfuerzo de flexión (o mejor dicho, por flexión). Si la excentricidad es pequeña y el elemento es corto, la flexión lateral es despreciable, y el esfuerzo de flexión es insignificante comparado con el esfuerzo de compresión directo. Sin embargo, en un elemento largo, que es mucho más flexible ya que las deflexiones son proporcionales al cubo de la longitud (l3), con un valor relativamente pequeño de la carga P puede producirse un esfuerzo de flexión grande acompañado de un esfuerzo directo de compresión despreciable. Así, pues, en las dos situaciones extremas, una columna corta soporta fundamentalmente el esfuerzo directo de compresión, y una columna larga está sometida principalmente al esfuerzo de flexión. Cuando aumenta la longitud de una columna disminuye la importancia y los efectos del esfuerzo directo de compresión y aumenta correlativamente los del esfuerzo de flexión. Por desgracia, en la zona intermedia no es posible determinar exactamente la forma en que varían estos dos tipos de esfuerzos, o la proporción con la que cada una contribuye al esfuerzo total.. Las columnas representan el elemento vertical de soporte para la mayoría de las estructuras a base de marcos. Para analizar la capacidad de carga de las columnas se deben referirse al m n P Excentricidad accidental o evitable Eje real con curvatura inicial (muy exagerada) e= excentricidad de P en una sección m-n Línea eje perfectamente recta P Factores que intervienen en la excentricidad de las cargas en las columnas
  • 14. 14 conjunto al que pertenecen y al sistema en el que trabajan; es decir, a las características generales del edificio en términos de la forma en que se encuentran definidas las partes integrantes o marcos, que son estructuras reticulares que contienen un cierto número de claros para una serie de niveles o entrepisos. La columna clásica se compone de tres partes: -La base: protege a la columna de los golpes que podrían deteriorarla, al mismo tiempo que da una superficie de sustentación mayor. -El fuste. -El capitel: es necesario para proporcionar un asiento capaz de recibir mejor el entabla miento. Las columnas tradicionales se distinguen por su construcción. -La columna construida en una sola pieza de material se llama monolítica; cuando está formada por una superposición de discos, cuya altura es superior diámetro se llama en trozos, y de tabores si la altura es inferior. Si el interior de la columna es hueco y contiene una escalera de caracol se llama cóclida. -En su forma más simple, las columnas son barras prismáticas, rectas y largas, sujetas a cargas axiales de compresión. Atendiendo a su disposición en relación con otros componentes de un edificio, pueden distinguirse estos tipos de columnas: -Columna aislada o exenta: La que se encuentra separada de un muro o cualquier elemento vertical de la edificación. -Columna adosada: La que está yuxtapuesta a un muro u otro elemento de la edificación. -Columna embebida: La que aparenta estar parcialmente incrustada en el muro u otro cuerpo de la construcción. En el año 1757, el gran matemático suizo Leonhard Euler realizó un análisis teórico de la carga crítica para columnas esbeltas basado en la ecuación diferencial de la elástica: 22 / dxydEl  = M. Ahora se sabe que éste análisis solamente es válido hasta que los esfuerzos alcanzan el límite de proporcionalidad. En tiempos de Euler no se habían establecido los conceptos de esfuerzo, ni de límite de proporcionalidad, por lo que el no tuvo en cuenta la existencia de un límite superior a la carga crítica. La ecuación de la fórmula de Euler para el análisis de columnas es: 2 2 L El P   Donde P = Carga crítica en Newtons (N) E = Esfuerzo en Newtons/m2 ó Pascales (Pa) L = Altura o longitud de la columna en metros (m)
  • 15. 15 CONCLUSIÓN Con esta información damos por terminado la unidad 4 de física en la que se abordaron los temas mencionados anteriormente en los cuales se hizo una investigación detallada y recopilando la información más concreta y con mayor retención para su fácil entendimiento de dichos temas. BIBLIOGRAFÍA http://www.buenastareas.com/ensayos/Fisica/4371967.html file:///C:/Users/vickmaster83/Downloads/resistencia%20de%20materiales_parte2.pdf http://www.itescam.edu.mx/principal/sylabus/fpdb/recursos/r81669.PDF
  • 16. 16