SlideShare una empresa de Scribd logo
       Algebra 1<br />        Gabriel Eduardo alcantara calleros.            <br />                                                                                       Grupo ¨I¨.    <br />                                                   NUMERO DE LISTA. 2.<br />OBJETIVO:<br />Identificar los elementos que pertenecen y los que no pertenecen a un conjunto<br />Interpretar correctamente la notación simbólica en la definición de conjuntos.<br />Representar conjuntos en Diagramas de Venn<br />Realizar operaciones entre conjuntos (unión, intersección, diferencia y diferencia simétrica)<br />INDICE:<br />PORTADA………………………………………………….1<br />OBJETIVOS..….………………………………………… 2<br />CONJUNTOS……………………………………………..3<br />REPRESENTACION…………………………………….4<br />EJEMPLOS DE CONJUNTOS…………………………..…………………6<br />UNIVERSO………………………………………………..8<br />EJEMPLO DE UNIVERSO…………………………………………………9<br />¿Qué es un conjunto?<br />La palabra conjunto generalmente la asociamos con la idea de agrupar objetos, por ejemplo un conjunto de discos, de libros, de plantas de cultivo y en otras ocasiones en palabras como hato, rebaño, piara, parcelas, campesinado, familia, etc., es decir la palabra conjunto denota una colección de elementos claramente entre sí, que guardan alguna característica en común. Ya sean números, personas, figuras, ideas y conceptos.<br />En matemáticas el concepto de conjunto es considerado primitivo y ni se da una definición de este, sino que se trabaja con la notación de colección y agrupamiento de objetos, lo mismo puede decirse que se consideren primitivas las ideas de elemento y pertenencia.<br />La característica esencial de un conjunto es la de estar bien definido, es decir que dado un objeto particular, determinar si este pertenece o no al conjunto. Por ejemplo si se considera el conjunto de los números dígitos, sabemos que el 3 pertenece al conjunto, pero el 19 no. Por otro lado el conjunto de las bellas obras musicales no es un conjunto bien definido, puesto que diferentes personas puedan incluir distintas obras en el conjunto.<br />Los objetos que forman un conjunto son llamados miembros o elementos. Por ejemplo el conjunto de las letras de alfabeto; a, b, c, ..., x, y, z. que se puede escribir así:<br />{ a, b, c, ..., x, y, z}<br /> <br />Como se muestra el conjunto se escribe entre llaves ( { } ) , o separados por comas (,).<br />El detallar a todos los elementos de un conjunto entre las llaves, se denomina forma tabular, extensión o enumeración de los elementos.<br />Dos conjuntos son iguales si tienen los mismos elementos, por ejemplo:<br />El conjunto { a, b, c } también puede escribirse:<br />{ a, c, b }, { b, a, c }, { b, c, a }, { c, a, b }, { c, b, a }<br />En teoría de conjuntos se acostumbra no repetir a los elementos por ejemplo:<br />El conjunto { b, b, b, d, d } simplemente será { b, d }. Existen dos maneras de definir un conjunto dado:<br />a) Por extensión o enumeración: se define nombrando a cada elemento del conjunto.<br />b) Por comprensión: se define mediante un enunciado o atributo que representa al conjunto (se busca una frase que represente a la totalidad de elementos sin nombrar a ninguno en particular).<br />Por comprensiónPor extensiónA = {Números dígitos}A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}B = {Números pares]B = {2, 4, 6, 8, 10, 12, 14, ...}C = {Múltiplos de 5}C = {5, 10, 15, 20, 25, 30, 35...}<br />Representación:<br />Símbolos:<br />SímboloNombrese lee comoCategoría{ , }delimitadores de conjuntoel conjunto de ...teoría de conjuntos{a,b,c} significa: el conjunto consistente de a, b, y cN = {0,1,2,...}{ : }{ | }notación constructora de conjuntosel conjunto de los elementos ... tales que ...teoría de conjuntos{x : P(x)} significa: el conjunto de todos los x para los cuales P(x) es verdadera. {x | P(x)} es lo mismo que {x : P(x)}.{n ∈ N : n² < 20} = {0,1,2,3,4}∅{}conjunto vacíoconjunto vacíoteoría de conjuntos{} significa: el conjunto que no tiene elementos; ∅ es la misma cosa.{n ∈ N : 1 < n² < 4} = {}∈∉pertenencia de conjuntosen; está en; es elemento de; es miembro de; pertenece ateoría de conjuntosa ∈ S significa: a es elemento del conjunto S; a ∉ S significa: a no es elemento del conjunto S(1/2)−1 ∈ N; 2−1 ∉ N⊆⊂subconjuntoes subconjunto deteoría de conjuntosA ⊆ B significa: cada elemento de A es también elemento de BA ⊂ B significa: A ⊆ B pero A ≠ BA ∩ B ⊆ A; Q ⊂ R∪unión de conjuntosla unión de ... y ...; uniónteoría de conjuntosA ∪ B significa: el conjunto que contiene todos los elementos de A y también todos aquellos de B, pero ningún otro.A ⊆ B  ⇔  A ∪ B = B∩intersección de conjuntosla intersección de ... y ...; intersecciónteoría de conjuntosA ∩ B significa: el conjunto que contiene todos aquellos elementos que A y B tienen en común.{x ∈ R : x² = 1} ∩ N = {1}omplemento de un conjuntomenos; sinteoría de conjuntosA B significa: el conjunto que contiene todos aquellos elementos de A que no se encuentran en B{1,2,3,4} {3,4,5,6} = {1,2}<br />Grafica:<br />Los conjuntos se pueden representar gráficamente mediante curvas cerradas, conocidas con el nombre de diagramas de venn, y para poder interpretarlos correctamente hay que observar lo siguiente: elementos que pertenecen al conjunto se representan por puntos interiores a la curva.2. Los elementos que no pertenecen al conjunto se representan por puntos exteriores a la curva.3. Ningún punto se representa sobre la curva.4. El conjunto referencial R se representan por un rectángulo para diferenciarlos de los otros diagramas.si R = (1,2,3,4,5,6,7,8) y A= (4,5,6).<br />DIAGRAMA DE VENN:<br />Los diagramas de Venn son ilustraciones usadas en la rama de la Matemática y Lógica de clases conocida como teoría de conjuntos. Estos diagramas se usan para mostrar gráficamente la agrupación de cosas elementos en conjuntos, representando cada conjunto mediante un círculo o un óvalo. La posición relativa en el plano de tales círculos muestra la relación entre los conjuntos. Por ejemplo, si los círculos de los conjuntos A y B se solapan, se muestra un área común a ambos conjuntos que contiene todos los elementos contenidos a la vez en A y en B. Si el círculo del conjunto A aparece dentro del círculo de otro B, es que todos los elementos de A también están contenidos en B.<br />EJEMPLO:<br />EJEMPLOS DE CONJUNTOS:<br />Los conjuntos se pueden clasificar en dos:<br />Enumeración; indicamos a todos los elementos.<br />Compresión; indicamos implícitamente a los elementos.<br />Ejemplos:<br />A) XEA, A {ESTADOS DE LA REPUBLICA}<br />X= SALTILLO. VERDADERO.<br />B) XEB, B {EXPRESIDENTES DE MEXICO}<br />X= LAZARO CARDENAS. VERDADERO.<br />C)XEC, C {X/X ES DIVIDIBLE PO 5}<br />X= -35 VERDADERO.<br />D)X/ED,D {DIGITOS PRIMOS MENORES DE 7}<br />X= 4 VERDADERO.<br />E) XEE, E {5,*,◘,♦,3}<br />X= *VERDADERO.<br />
Algebra 1
Algebra 1
Algebra 1

Recomendado para ti

Conjuntos
ConjuntosConjuntos
Conjuntos

Este documento trata sobre la teoría de conjuntos. Explica conceptos básicos como elementos, pertenencia a conjuntos, notación de conjuntos, cardinalidad y tipos de conjuntos como vacío, unitario, finito e infinito. También define operaciones entre conjuntos como unión, intersección, diferencia y diferencia simétrica, así como propiedades de estas operaciones y de relaciones como inclusión. Finalmente, presenta ejemplos numéricos de conjuntos.

Proyecto de aula matemática (Operaciones de Conjuntos)
Proyecto de aula matemática (Operaciones de Conjuntos)Proyecto de aula matemática (Operaciones de Conjuntos)
Proyecto de aula matemática (Operaciones de Conjuntos)

Este documento presenta un resumen de las operaciones básicas entre conjuntos, incluyendo unión, intersección, diferencia, complementación y diferencia simétrica. Explica cada operación con definiciones, propiedades y ejemplos numéricos. También incluye problemas de aplicación y ejercicios resueltos para reforzar la comprensión de las operaciones entre conjuntos.

Conjuntos
ConjuntosConjuntos
Conjuntos

Este documento presenta la teoría básica de conjuntos. Introduce la notación y representación de conjuntos, incluyendo definiciones, formas de expresar conjuntos de manera extensiva y comprensiva, y el uso de diagramas de Venn. También explica conceptos como subconjuntos, complementos de subconjuntos, y operaciones básicas con conjuntos como la unión e intersección.

Algebra 1
Algebra 1
Algebra 1
Algebra 1

Recomendado para ti

Teoria de conjuntos
Teoria de conjuntosTeoria de conjuntos
Teoria de conjuntos

1) Un conjunto es una colección bien definida de elementos llamados objetos o miembros. 2) Se utilizan letras mayúsculas para representar conjuntos y letras minúsculas para representar elementos. 3) Las operaciones básicas con conjuntos incluyen la unión, intersección, diferencia y complemento.

Teoria de conjuntos
Teoria de conjuntosTeoria de conjuntos
Teoria de conjuntos

1) El documento presenta conceptos básicos de teoría de conjuntos como conjuntos, elementos, notación, conjuntos finitos e infinitos, igualdad, subconjuntos, conjunto universal, conjuntos disjuntos y diagramas de Venn. 2) También define operaciones con conjuntos como unión, intersección, diferencia y complemento y presenta ejemplos ilustrativos de cada una. 3) El objetivo es introducir estos conceptos fundamentales de teoría de conjuntos que son una base para el estudio de la estadística y la probabilidad.

teoria de conjuntosestadisticamatematicas discretas.
Teoria de conjuntos
Teoria de conjuntosTeoria de conjuntos
Teoria de conjuntos

Este documento introduce los conceptos básicos de los conjuntos, incluyendo la noción de conjunto, notación de conjuntos, determinación de conjuntos, relaciones entre conjuntos, conjuntos especiales y clases de conjuntos. Explica que un conjunto es una colección de objetos llamados elementos, determinados por una propiedad común. Define las formas de notar y determinar conjuntos, así como las relaciones de inclusión, igualdad, comparabilidad y disyunción entre ellos.

teoria de conjuntos
Algebra 1

Más contenido relacionado

La actualidad más candente

1 matematicas conjuntos
1 matematicas conjuntos1 matematicas conjuntos
1 matematicas conjuntos
Gabriel Alejandro Alvear Yañez
 
Conjuntos comp
Conjuntos  comp Conjuntos  comp
Conjuntos comp
Maria Angélica Jiménez
 
Conjunto de frutas
Conjunto de frutasConjunto de frutas
Conjunto de frutas
esmeralda
 
Conjuntos
ConjuntosConjuntos
Conjuntos
mangelpr25
 
Proyecto de aula matemática (Operaciones de Conjuntos)
Proyecto de aula matemática (Operaciones de Conjuntos)Proyecto de aula matemática (Operaciones de Conjuntos)
Proyecto de aula matemática (Operaciones de Conjuntos)
Santiago Arguello
 
Conjuntos
ConjuntosConjuntos
Conjuntos
Eve Flores
 
Teoria de conjuntos
Teoria de conjuntosTeoria de conjuntos
Teoria de conjuntos
romeprofe
 
Teoria de conjuntos
Teoria de conjuntosTeoria de conjuntos
Teoria de conjuntos
Artemio Villegas
 
Teoria de conjuntos
Teoria de conjuntosTeoria de conjuntos
Teoria de conjuntos
alex huallpa inca
 
Teoría de conjuntos
Teoría de conjuntosTeoría de conjuntos
Teoría de conjuntos
Josue Ivan Turcios
 
Teoria de conjuntos y Algebra Booleana
Teoria de conjuntos y Algebra BooleanaTeoria de conjuntos y Algebra Booleana
Teoria de conjuntos y Algebra Booleana
brigith piña
 
Introducción a la Teoría de conjuntos
Introducción a la Teoría de conjuntosIntroducción a la Teoría de conjuntos
Introducción a la Teoría de conjuntos
eli14zabeth03
 
Alfonso yustiz numeros reales
Alfonso yustiz numeros realesAlfonso yustiz numeros reales
Alfonso yustiz numeros reales
alfonso yustiz pelaez
 
Conjuntos de matematicas
Conjuntos de matematicasConjuntos de matematicas
Conjuntos de matematicas
Cisnecitas
 
Teoría de conjuntos ii
Teoría de conjuntos iiTeoría de conjuntos ii
Teoría de conjuntos ii
Videoconferencias UTPL
 
Teoria de conjuntos.docx modulo
Teoria de conjuntos.docx   moduloTeoria de conjuntos.docx   modulo
Teoria de conjuntos.docx modulo
Giovana Ovalle
 

La actualidad más candente (16)

1 matematicas conjuntos
1 matematicas conjuntos1 matematicas conjuntos
1 matematicas conjuntos
 
Conjuntos comp
Conjuntos  comp Conjuntos  comp
Conjuntos comp
 
Conjunto de frutas
Conjunto de frutasConjunto de frutas
Conjunto de frutas
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Proyecto de aula matemática (Operaciones de Conjuntos)
Proyecto de aula matemática (Operaciones de Conjuntos)Proyecto de aula matemática (Operaciones de Conjuntos)
Proyecto de aula matemática (Operaciones de Conjuntos)
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Teoria de conjuntos
Teoria de conjuntosTeoria de conjuntos
Teoria de conjuntos
 
Teoria de conjuntos
Teoria de conjuntosTeoria de conjuntos
Teoria de conjuntos
 
Teoria de conjuntos
Teoria de conjuntosTeoria de conjuntos
Teoria de conjuntos
 
Teoría de conjuntos
Teoría de conjuntosTeoría de conjuntos
Teoría de conjuntos
 
Teoria de conjuntos y Algebra Booleana
Teoria de conjuntos y Algebra BooleanaTeoria de conjuntos y Algebra Booleana
Teoria de conjuntos y Algebra Booleana
 
Introducción a la Teoría de conjuntos
Introducción a la Teoría de conjuntosIntroducción a la Teoría de conjuntos
Introducción a la Teoría de conjuntos
 
Alfonso yustiz numeros reales
Alfonso yustiz numeros realesAlfonso yustiz numeros reales
Alfonso yustiz numeros reales
 
Conjuntos de matematicas
Conjuntos de matematicasConjuntos de matematicas
Conjuntos de matematicas
 
Teoría de conjuntos ii
Teoría de conjuntos iiTeoría de conjuntos ii
Teoría de conjuntos ii
 
Teoria de conjuntos.docx modulo
Teoria de conjuntos.docx   moduloTeoria de conjuntos.docx   modulo
Teoria de conjuntos.docx modulo
 

Destacado

Sillabus de quinto grado 2012
Sillabus de quinto grado 2012Sillabus de quinto grado 2012
Sillabus de quinto grado 2012
María Rosa Uribe Antonio
 
El tabaquismo en la salud
El tabaquismo en la saludEl tabaquismo en la salud
El tabaquismo en la salud
setelsectorseis
 
Practica nº20 de flash
Practica nº20 de flashPractica nº20 de flash
Practica nº20 de flash
Rafael Carlos
 
2013 introducción SNC
2013 introducción SNC2013 introducción SNC
2013 introducción SNC
MMENON
 
Practica nº15 de flash
Practica nº15 de flashPractica nº15 de flash
Practica nº15 de flash
Rafael Carlos
 
PPT TDEN II
PPT TDEN IIPPT TDEN II
Präsentation 01-einführung
Präsentation 01-einführungPräsentation 01-einführung
Präsentation 01-einführung
Peter Tinnemann
 
Tarea plantilla 01_v01
Tarea plantilla 01_v01Tarea plantilla 01_v01
Tarea plantilla 01_v01
ceciliapenichet
 
Reisefundgrube Team
Reisefundgrube TeamReisefundgrube Team
Reisefundgrube Team
Social Tourism Marketing
 
Plataformas
PlataformasPlataformas
Plataformas
Aarley Ruiizz
 
scm-Gesamtprogramm 2014
scm-Gesamtprogramm 2014scm-Gesamtprogramm 2014
scm-Gesamtprogramm 2014
scmonline
 
XING- und LinkedIn-Unternehmensprofile optimal nutzen
XING- und LinkedIn-Unternehmensprofile optimal nutzenXING- und LinkedIn-Unternehmensprofile optimal nutzen
XING- und LinkedIn-Unternehmensprofile optimal nutzen
Heinz W. Warnemann
 
Gratis 3 hd
Gratis 3 hdGratis 3 hd
Gratis 3 hd
Ariadna de la Calle
 
BVDW Studie: Deutschlad wird mobil – Geräte-Nutzung
BVDW Studie: Deutschlad wird mobil – Geräte-NutzungBVDW Studie: Deutschlad wird mobil – Geräte-Nutzung
BVDW Studie: Deutschlad wird mobil – Geräte-Nutzung
TWT
 
International Banking Institut
International Banking InstitutInternational Banking Institut
International Banking Institut
Jacob Adonts
 
Die digitale Republik: Wie deutsche Subscriber, Fans und Follower Ihre Marke ...
Die digitale Republik: Wie deutsche Subscriber, Fans und Follower Ihre Marke ...Die digitale Republik: Wie deutsche Subscriber, Fans und Follower Ihre Marke ...
Die digitale Republik: Wie deutsche Subscriber, Fans und Follower Ihre Marke ...
TWT
 
Wie man erfolgreich durch den Förderschungel kommt.
Wie man erfolgreich durch den Förderschungel kommt.Wie man erfolgreich durch den Förderschungel kommt.
Wie man erfolgreich durch den Förderschungel kommt.
Gerlach & Co
 
Social Media: Zahlen und Ausblick by TWT
Social Media: Zahlen und Ausblick by TWTSocial Media: Zahlen und Ausblick by TWT
Social Media: Zahlen und Ausblick by TWT
TWT
 
Recurso de alzada oct27
Recurso de alzada oct27Recurso de alzada oct27
Recurso de alzada oct27
Majorick
 
Empresa zona vip
Empresa zona vipEmpresa zona vip

Destacado (20)

Sillabus de quinto grado 2012
Sillabus de quinto grado 2012Sillabus de quinto grado 2012
Sillabus de quinto grado 2012
 
El tabaquismo en la salud
El tabaquismo en la saludEl tabaquismo en la salud
El tabaquismo en la salud
 
Practica nº20 de flash
Practica nº20 de flashPractica nº20 de flash
Practica nº20 de flash
 
2013 introducción SNC
2013 introducción SNC2013 introducción SNC
2013 introducción SNC
 
Practica nº15 de flash
Practica nº15 de flashPractica nº15 de flash
Practica nº15 de flash
 
PPT TDEN II
PPT TDEN IIPPT TDEN II
PPT TDEN II
 
Präsentation 01-einführung
Präsentation 01-einführungPräsentation 01-einführung
Präsentation 01-einführung
 
Tarea plantilla 01_v01
Tarea plantilla 01_v01Tarea plantilla 01_v01
Tarea plantilla 01_v01
 
Reisefundgrube Team
Reisefundgrube TeamReisefundgrube Team
Reisefundgrube Team
 
Plataformas
PlataformasPlataformas
Plataformas
 
scm-Gesamtprogramm 2014
scm-Gesamtprogramm 2014scm-Gesamtprogramm 2014
scm-Gesamtprogramm 2014
 
XING- und LinkedIn-Unternehmensprofile optimal nutzen
XING- und LinkedIn-Unternehmensprofile optimal nutzenXING- und LinkedIn-Unternehmensprofile optimal nutzen
XING- und LinkedIn-Unternehmensprofile optimal nutzen
 
Gratis 3 hd
Gratis 3 hdGratis 3 hd
Gratis 3 hd
 
BVDW Studie: Deutschlad wird mobil – Geräte-Nutzung
BVDW Studie: Deutschlad wird mobil – Geräte-NutzungBVDW Studie: Deutschlad wird mobil – Geräte-Nutzung
BVDW Studie: Deutschlad wird mobil – Geräte-Nutzung
 
International Banking Institut
International Banking InstitutInternational Banking Institut
International Banking Institut
 
Die digitale Republik: Wie deutsche Subscriber, Fans und Follower Ihre Marke ...
Die digitale Republik: Wie deutsche Subscriber, Fans und Follower Ihre Marke ...Die digitale Republik: Wie deutsche Subscriber, Fans und Follower Ihre Marke ...
Die digitale Republik: Wie deutsche Subscriber, Fans und Follower Ihre Marke ...
 
Wie man erfolgreich durch den Förderschungel kommt.
Wie man erfolgreich durch den Förderschungel kommt.Wie man erfolgreich durch den Förderschungel kommt.
Wie man erfolgreich durch den Förderschungel kommt.
 
Social Media: Zahlen und Ausblick by TWT
Social Media: Zahlen und Ausblick by TWTSocial Media: Zahlen und Ausblick by TWT
Social Media: Zahlen und Ausblick by TWT
 
Recurso de alzada oct27
Recurso de alzada oct27Recurso de alzada oct27
Recurso de alzada oct27
 
Empresa zona vip
Empresa zona vipEmpresa zona vip
Empresa zona vip
 

Similar a Algebra 1

Teoria de conjuntos Antony Carrera
Teoria de conjuntos Antony CarreraTeoria de conjuntos Antony Carrera
Teoria de conjuntos Antony Carrera
Tony Purple Diamond
 
Taller calculo conjuntos
Taller calculo conjuntosTaller calculo conjuntos
Taller calculo conjuntos
Liceo Matovelle
 
Unidad 2 teoria de conjunto
Unidad 2 teoria de conjuntoUnidad 2 teoria de conjunto
Unidad 2 teoria de conjunto
ManfredoKleber1
 
Teoría de conjuntos_clase final
Teoría de conjuntos_clase finalTeoría de conjuntos_clase final
Teoría de conjuntos_clase final
Astrid Ximena Hernandez Piedrahita
 
Trat agua cap1
Trat agua cap1Trat agua cap1
Trat agua cap1
Oscar Hilari
 
Álgebra - Teoría de Conjuntos
Álgebra - Teoría de ConjuntosÁlgebra - Teoría de Conjuntos
Álgebra - Teoría de Conjuntos
FATLA
 
Aritmetica integral
Aritmetica integralAritmetica integral
Aritmetica integral
Adrian Garambel Choque Adrian
 
Definición y elementos de CONJUNTOS.pptx
Definición y elementos de CONJUNTOS.pptxDefinición y elementos de CONJUNTOS.pptx
Definición y elementos de CONJUNTOS.pptx
MariaVillareyna
 
Conjunto sprov
Conjunto sprovConjunto sprov
presentacion unidad 2.pdf
presentacion unidad 2.pdfpresentacion unidad 2.pdf
presentacion unidad 2.pdf
angelyeerum
 
presentacion unidad 2.pdf
presentacion unidad 2.pdfpresentacion unidad 2.pdf
presentacion unidad 2.pdf
angelyeerum
 
Definición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docx
Definición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docxDefinición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docx
Definición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docx
YesseniaDaza1
 
Libro de aritmetica de preparatoria preuniversitaria
Libro de aritmetica de preparatoria preuniversitariaLibro de aritmetica de preparatoria preuniversitaria
Libro de aritmetica de preparatoria preuniversitaria
Ruben Espiritu Gonzales
 
CONCEPTOS FUNDAMENTALES sobre logica de comjuntos
CONCEPTOS FUNDAMENTALES sobre logica de comjuntosCONCEPTOS FUNDAMENTALES sobre logica de comjuntos
CONCEPTOS FUNDAMENTALES sobre logica de comjuntos
audreartola
 
Leyes de conjuntos
Leyes de conjuntosLeyes de conjuntos
Leyes de conjuntos
Mariana Hernández Jiménez
 
Teoría de conjuntos
Teoría de conjuntosTeoría de conjuntos
Teoría de conjuntos
angel cisneros
 
conjuntos y subconjuntos
conjuntos y subconjuntosconjuntos y subconjuntos
conjuntos y subconjuntos
milanomariangel
 
Definicion de conjuntos
Definicion de conjuntosDefinicion de conjuntos
Definicion de conjuntos
Oskr Patricio
 
Kevin
KevinKevin
Teoria de conjunto
Teoria de conjuntoTeoria de conjunto
Teoria de conjunto
kelvincoronado1
 

Similar a Algebra 1 (20)

Teoria de conjuntos Antony Carrera
Teoria de conjuntos Antony CarreraTeoria de conjuntos Antony Carrera
Teoria de conjuntos Antony Carrera
 
Taller calculo conjuntos
Taller calculo conjuntosTaller calculo conjuntos
Taller calculo conjuntos
 
Unidad 2 teoria de conjunto
Unidad 2 teoria de conjuntoUnidad 2 teoria de conjunto
Unidad 2 teoria de conjunto
 
Teoría de conjuntos_clase final
Teoría de conjuntos_clase finalTeoría de conjuntos_clase final
Teoría de conjuntos_clase final
 
Trat agua cap1
Trat agua cap1Trat agua cap1
Trat agua cap1
 
Álgebra - Teoría de Conjuntos
Álgebra - Teoría de ConjuntosÁlgebra - Teoría de Conjuntos
Álgebra - Teoría de Conjuntos
 
Aritmetica integral
Aritmetica integralAritmetica integral
Aritmetica integral
 
Definición y elementos de CONJUNTOS.pptx
Definición y elementos de CONJUNTOS.pptxDefinición y elementos de CONJUNTOS.pptx
Definición y elementos de CONJUNTOS.pptx
 
Conjunto sprov
Conjunto sprovConjunto sprov
Conjunto sprov
 
presentacion unidad 2.pdf
presentacion unidad 2.pdfpresentacion unidad 2.pdf
presentacion unidad 2.pdf
 
presentacion unidad 2.pdf
presentacion unidad 2.pdfpresentacion unidad 2.pdf
presentacion unidad 2.pdf
 
Definición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docx
Definición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docxDefinición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docx
Definición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docx
 
Libro de aritmetica de preparatoria preuniversitaria
Libro de aritmetica de preparatoria preuniversitariaLibro de aritmetica de preparatoria preuniversitaria
Libro de aritmetica de preparatoria preuniversitaria
 
CONCEPTOS FUNDAMENTALES sobre logica de comjuntos
CONCEPTOS FUNDAMENTALES sobre logica de comjuntosCONCEPTOS FUNDAMENTALES sobre logica de comjuntos
CONCEPTOS FUNDAMENTALES sobre logica de comjuntos
 
Leyes de conjuntos
Leyes de conjuntosLeyes de conjuntos
Leyes de conjuntos
 
Teoría de conjuntos
Teoría de conjuntosTeoría de conjuntos
Teoría de conjuntos
 
conjuntos y subconjuntos
conjuntos y subconjuntosconjuntos y subconjuntos
conjuntos y subconjuntos
 
Definicion de conjuntos
Definicion de conjuntosDefinicion de conjuntos
Definicion de conjuntos
 
Kevin
KevinKevin
Kevin
 
Teoria de conjunto
Teoria de conjuntoTeoria de conjunto
Teoria de conjunto
 

Algebra 1

  • 1. Algebra 1<br /> Gabriel Eduardo alcantara calleros. <br /> Grupo ¨I¨. <br /> NUMERO DE LISTA. 2.<br />OBJETIVO:<br />Identificar los elementos que pertenecen y los que no pertenecen a un conjunto<br />Interpretar correctamente la notación simbólica en la definición de conjuntos.<br />Representar conjuntos en Diagramas de Venn<br />Realizar operaciones entre conjuntos (unión, intersección, diferencia y diferencia simétrica)<br />INDICE:<br />PORTADA………………………………………………….1<br />OBJETIVOS..….………………………………………… 2<br />CONJUNTOS……………………………………………..3<br />REPRESENTACION…………………………………….4<br />EJEMPLOS DE CONJUNTOS…………………………..…………………6<br />UNIVERSO………………………………………………..8<br />EJEMPLO DE UNIVERSO…………………………………………………9<br />¿Qué es un conjunto?<br />La palabra conjunto generalmente la asociamos con la idea de agrupar objetos, por ejemplo un conjunto de discos, de libros, de plantas de cultivo y en otras ocasiones en palabras como hato, rebaño, piara, parcelas, campesinado, familia, etc., es decir la palabra conjunto denota una colección de elementos claramente entre sí, que guardan alguna característica en común. Ya sean números, personas, figuras, ideas y conceptos.<br />En matemáticas el concepto de conjunto es considerado primitivo y ni se da una definición de este, sino que se trabaja con la notación de colección y agrupamiento de objetos, lo mismo puede decirse que se consideren primitivas las ideas de elemento y pertenencia.<br />La característica esencial de un conjunto es la de estar bien definido, es decir que dado un objeto particular, determinar si este pertenece o no al conjunto. Por ejemplo si se considera el conjunto de los números dígitos, sabemos que el 3 pertenece al conjunto, pero el 19 no. Por otro lado el conjunto de las bellas obras musicales no es un conjunto bien definido, puesto que diferentes personas puedan incluir distintas obras en el conjunto.<br />Los objetos que forman un conjunto son llamados miembros o elementos. Por ejemplo el conjunto de las letras de alfabeto; a, b, c, ..., x, y, z. que se puede escribir así:<br />{ a, b, c, ..., x, y, z}<br /> <br />Como se muestra el conjunto se escribe entre llaves ( { } ) , o separados por comas (,).<br />El detallar a todos los elementos de un conjunto entre las llaves, se denomina forma tabular, extensión o enumeración de los elementos.<br />Dos conjuntos son iguales si tienen los mismos elementos, por ejemplo:<br />El conjunto { a, b, c } también puede escribirse:<br />{ a, c, b }, { b, a, c }, { b, c, a }, { c, a, b }, { c, b, a }<br />En teoría de conjuntos se acostumbra no repetir a los elementos por ejemplo:<br />El conjunto { b, b, b, d, d } simplemente será { b, d }. Existen dos maneras de definir un conjunto dado:<br />a) Por extensión o enumeración: se define nombrando a cada elemento del conjunto.<br />b) Por comprensión: se define mediante un enunciado o atributo que representa al conjunto (se busca una frase que represente a la totalidad de elementos sin nombrar a ninguno en particular).<br />Por comprensiónPor extensiónA = {Números dígitos}A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}B = {Números pares]B = {2, 4, 6, 8, 10, 12, 14, ...}C = {Múltiplos de 5}C = {5, 10, 15, 20, 25, 30, 35...}<br />Representación:<br />Símbolos:<br />SímboloNombrese lee comoCategoría{ , }delimitadores de conjuntoel conjunto de ...teoría de conjuntos{a,b,c} significa: el conjunto consistente de a, b, y cN = {0,1,2,...}{ : }{ | }notación constructora de conjuntosel conjunto de los elementos ... tales que ...teoría de conjuntos{x : P(x)} significa: el conjunto de todos los x para los cuales P(x) es verdadera. {x | P(x)} es lo mismo que {x : P(x)}.{n ∈ N : n² < 20} = {0,1,2,3,4}∅{}conjunto vacíoconjunto vacíoteoría de conjuntos{} significa: el conjunto que no tiene elementos; ∅ es la misma cosa.{n ∈ N : 1 < n² < 4} = {}∈∉pertenencia de conjuntosen; está en; es elemento de; es miembro de; pertenece ateoría de conjuntosa ∈ S significa: a es elemento del conjunto S; a ∉ S significa: a no es elemento del conjunto S(1/2)−1 ∈ N; 2−1 ∉ N⊆⊂subconjuntoes subconjunto deteoría de conjuntosA ⊆ B significa: cada elemento de A es también elemento de BA ⊂ B significa: A ⊆ B pero A ≠ BA ∩ B ⊆ A; Q ⊂ R∪unión de conjuntosla unión de ... y ...; uniónteoría de conjuntosA ∪ B significa: el conjunto que contiene todos los elementos de A y también todos aquellos de B, pero ningún otro.A ⊆ B  ⇔  A ∪ B = B∩intersección de conjuntosla intersección de ... y ...; intersecciónteoría de conjuntosA ∩ B significa: el conjunto que contiene todos aquellos elementos que A y B tienen en común.{x ∈ R : x² = 1} ∩ N = {1}omplemento de un conjuntomenos; sinteoría de conjuntosA B significa: el conjunto que contiene todos aquellos elementos de A que no se encuentran en B{1,2,3,4} {3,4,5,6} = {1,2}<br />Grafica:<br />Los conjuntos se pueden representar gráficamente mediante curvas cerradas, conocidas con el nombre de diagramas de venn, y para poder interpretarlos correctamente hay que observar lo siguiente: elementos que pertenecen al conjunto se representan por puntos interiores a la curva.2. Los elementos que no pertenecen al conjunto se representan por puntos exteriores a la curva.3. Ningún punto se representa sobre la curva.4. El conjunto referencial R se representan por un rectángulo para diferenciarlos de los otros diagramas.si R = (1,2,3,4,5,6,7,8) y A= (4,5,6).<br />DIAGRAMA DE VENN:<br />Los diagramas de Venn son ilustraciones usadas en la rama de la Matemática y Lógica de clases conocida como teoría de conjuntos. Estos diagramas se usan para mostrar gráficamente la agrupación de cosas elementos en conjuntos, representando cada conjunto mediante un círculo o un óvalo. La posición relativa en el plano de tales círculos muestra la relación entre los conjuntos. Por ejemplo, si los círculos de los conjuntos A y B se solapan, se muestra un área común a ambos conjuntos que contiene todos los elementos contenidos a la vez en A y en B. Si el círculo del conjunto A aparece dentro del círculo de otro B, es que todos los elementos de A también están contenidos en B.<br />EJEMPLO:<br />EJEMPLOS DE CONJUNTOS:<br />Los conjuntos se pueden clasificar en dos:<br />Enumeración; indicamos a todos los elementos.<br />Compresión; indicamos implícitamente a los elementos.<br />Ejemplos:<br />A) XEA, A {ESTADOS DE LA REPUBLICA}<br />X= SALTILLO. VERDADERO.<br />B) XEB, B {EXPRESIDENTES DE MEXICO}<br />X= LAZARO CARDENAS. VERDADERO.<br />C)XEC, C {X/X ES DIVIDIBLE PO 5}<br />X= -35 VERDADERO.<br />D)X/ED,D {DIGITOS PRIMOS MENORES DE 7}<br />X= 4 VERDADERO.<br />E) XEE, E {5,*,◘,♦,3}<br />X= *VERDADERO.<br />