SlideShare una empresa de Scribd logo
ASTM D 2435-90
     AASHTO T 216

  ENSAYO DE CONSOLIDACIÓN
UNIDIMENSIONAL DE LOS SUELOS


          Competencias Técnicas de Laboratorista
                 en Mecánica de Suelos
ALCANCE


 Este ensayo describe el procedimiento para determinar
el grado de asentamiento que experimenta          una
muestra de suelo al someterla a una serie de
incrementos de presión o carga.




                  Competencias Técnicas de Laboratorista
                         en Mecánica de Suelos
EQUIPO
Aparato de carga.- con
una precisión de 0.5%
de la carga aplicada.      Piedras porosas.-




      Caja        de
      consolidación.-




 Competencias Técnicas de Laboratorista
        en Mecánica de Suelos
EQUIPO

Anillo cortante cilíndrico.- con altura
2.54 cm y el diámetro de 6.35 cm.




Deformímetro.- con una sensibilidad de
0.01 mm (0.00254 in).




Balanza.- Con aproximación a 0.01 g



                               Competencias Técnicas de Laboratorista
                                      en Mecánica de Suelos
EQUIPO
                          Otros equipos.- Recipientes para
horno                     determinar el contenido de humedad
                          de acuerdo con la norma ASTM D
                          2216, sierra de alambre, cuchillos,
                          calibrador, cronómetro y agua
                          destilada.




        Competencias Técnicas de Laboratorista
               en Mecánica de Suelos
MUESTRA DE ENSAYO
 Para       este      ensayo
  generalmente se utilizan
  muestras inalteradas (ASTM
  D 3550) obtenidas de
  bloques inalterados grandes
  fabricados y sellados con
  parafina en el campo.
 El almacenamiento de muestras2: selladas cubierta con parafina.
                               Foto Nº Muestra inalterada deberá ser

tal que no pierdan humedad y que no haya evidencia
de secamiento parcial ni de contracción de los extremos
de la muestra. El tiempo de almacenamiento deberá
reducirse al mínimo.

                        Competencias Técnicas de Laboratorista
                               en Mecánica de Suelos
PREPARACIÓN DE LA MUESTRA
 Retire la capa de parafina de las paredes del bloque
  inalterado.
 Inserte el anillo cortante
en el bloque inalterado y
recorte      la     muestra
utilizando un cuchillo o
                                  Foto Nº 3: Toma de muestras con el anillo cortante
sierra de alambre.                             en el bloque inalterado.



Enrase las caras superior
e inferior de la muestra
con un cuchillo y llene los
vacíos con el material
recortado.                      Foto Nº 4: Enrasado de las superficies planas de la muestra




                    Competencias Técnicas de Laboratorista
                           en Mecánica de Suelos
PREPARACIÓN DE LA MUESTRA
 Extraiga la muestra del anillo
  cortante y determine la altura
  inicial (Ho) y el diámetro (D)
  de la muestra tomando el
  promedio de por lo menos tres
  medidas.
                                            Foto Nº 5: Medición de la muestra


  Calcule el volumen inicial (Vo) de la muestra, en
 función del diámetro y de la altura inicial de la muestra.
 Pese el anillo de consolidación y registre su masa
 (Manillo), con una precisión de 0.01 g.


                     Competencias Técnicas de Laboratorista
                            en Mecánica de Suelos
PREPARACIÓN DE LA MUESTRA
 Inserte la muestra en el anillo de
  consolidación y determine la
  masa inicial de la muestra (MTo)
  pesando el conjunto anillo más
  muestra y restando la masa del
  anillo.
 Obtenga       dos      o       tres       Foto Nº 6: Peso del anillo más muestra.


  determinaciones del contenido
  de humedad inicial, utilizando el
  material recortado de la muestra,
  de acuerdo con la norma ASTM
  D 2216.                                    Foto Nº 7: Contenido de humedad inicial.




                     Competencias Técnicas de Laboratorista
                            en Mecánica de Suelos
PROCEDIMIENTO

 Humedezca las piedras porosas y el papel filtro si el
  suelo está parcialmente saturado o manténgalas
  secas si el suelo es expansivo.

 Ensamble la caja de
consolidación
colocando la muestra
entre papel filtro y las
piedras porosas.
                                Foto Nº 8: Ensamblado de la caja de consolidación.




                    Competencias Técnicas de Laboratorista
                           en Mecánica de Suelos
PROCEDIMIENTO
 Coloque la caja de consolidación en el dispositivo de
  carga poniendo sobre la muestra el disco móvil de
  acero para uniformizar la carga.

  Coloque             el
 deformímetro    en    el
 aparato de carga con su
 dispositivo        para
 sujetarse.

                                    Foto Nº 9: Colocación del deformímetro.




                   Competencias Técnicas de Laboratorista
                          en Mecánica de Suelos
PROCEDIMIENTO
 Aplique     una        carga      de
  asentamiento de 5 kPa (100 lb/ft2)
  para suelos firmes y de 2 ó 3 kPa
  (alrededor de 50 lb/ft2) para suelos
  blandos, (para producir estas
  presiones se deben aplicar cargas
  de 160 y 80 g respectivamente).             Foto Nº 10: Colocación de carga de
                                                        asentamiento.




 Aplicada la carga de asentamiento
  llene con agua la caja de
  consolidación y deje que la
  muestra se sature.
                                               Foto Nº 11: Saturación de la muestra.



                     Competencias Técnicas de Laboratorista
                            en Mecánica de Suelos
PROCEDIMIENTO


 Coloque cargas sobre el consolidómetro para
  obtener    presiones    sobre    el    suelo      de
  aproximadamente 30.40, 61.80, 123.60, 248.20,
  495.40, 991.80 etc. kPa, (para producir estas
  presiones se deben aplicar cargas de 1, 2, 4, 8, 16,
  32 Kg respectivamente). Antes de aplicar un
  incremento de presion, registre la altura de la
  muestra.



                   Competencias Técnicas de Laboratorista
                          en Mecánica de Suelos
PROCEDIMIENTO
 La duración de cada incremento
de carga debe ser de 24 horas.
Inmediatamente aplicado cada
incremento de carga, ponga en
marcha el cronómetro y registre las
lecturas de deformación de la
muestra a intervalos de 0.1, 0.25,            Foto Nº 12: Colocación de cargas
                                              sobre el aparato de consolidación.
0.5, 1, 2, 4, 8, 15 y 30 minutos y 1,
2, 4, 8, y 24 horas.
Una vez tomada la última lectura con el último
incremento de carga, descargue el suelo mediante
reducciones de carga.

                     Competencias Técnicas de Laboratorista
                            en Mecánica de Suelos
PROCEDIMIENTO
 Para disminuir la expansión durante la descarga,
  deberá descargarse la muestra hasta la carga
  establecida de 5 kPa (100 lb/ft2) para suelos firmes y
  de 2 ó 3 kPa (alrededor de 50 lb/ft2) para suelos
  blandos. Una vez que se ha concluido el ensayo,
  quite la carga final y desarme rápidamente la caja de
  consolidación.

 Pese la masa de la muestra extraída de la caja de
  consolidación (MTf) pesando el conjunto anillo más
  muestra y restando la masa del anillo, con una
  precisión de 0.01 g.

                     Competencias Técnicas de Laboratorista
                            en Mecánica de Suelos
PROCEDIMIENTO

 Seque la muestra en el
  horno hasta una masa
  constante         a      una
  temperatura de 110 5 C
  (230 9 F), pese su masa
  seca (MSf) y determine el
  contenido de humedad                    Foto Nº 13: Secado al horno de la
                                                      muestra.
  final, (Wf) de acuerdo con la
  norma ASTM D 2216.



                      Competencias Técnicas de Laboratorista
                             en Mecánica de Suelos
CÁLCULOS
 Calcule el contenido de humedad inicial y final,
  mediante la siguiente ecuación:
   Contenido de humedad inicial:


Donde:

MHO=Peso del recipiente + muestra húmeda antes del
  ensayo, g.
MS=Peso del recipiente + suelo seco antes del ensayo,
  g.
M recipiente=Peso del recipiente, g.
Wo=Contenido de humedad inicial, %

                    Competencias Técnicas de Laboratorista
                           en Mecánica de Suelos
CÁLCULOS
 Contenido de humedad final:




Donde:

MTf=Peso del anillo + muestra húmeda después del
  ensayo, g.
MSf=Peso del anillo + suelo seco después del ensayo, g.
M anillo=Peso del anillo, g.

                   Competencias Técnicas de Laboratorista
                          en Mecánica de Suelos
CÁLCULOS

 Calcule la densidad seca inicial de la muestra, como
  se indica:


                            M Sf
                    d
                             Vo


Donde:
Ρd=Densidad seca de la muestra, g/cm3 ó Kg/m3.
Vo=Volumen inicial de la muestra, cm3 ó m3.


                    Competencias Técnicas de Laboratorista
                           en Mecánica de Suelos
CÁLCULOS

 Calcule el volumen de los sólidos, como se indica:


                         M Sf
                 Vs
                        G* w

Donde:

Vs=Volumen de sólidos, cm 3.
G=Gravedad específica de los sólidos.
Ρw=Densidad del agua, 1.0 g/cm 3 ó Mg/m3.
                      Competencias Técnicas de Laboratorista
                             en Mecánica de Suelos
CÁLCULOS

 Calcular la altura de los sólidos, como sigue:


                            Vs
                  Hs
                            A


Donde:
Hs=Altura de sólidos, cm (in).
A=Área de la muestra, cm2 (in2).


                     Competencias Técnicas de Laboratorista
                            en Mecánica de Suelos
CÁLCULOS

 Si no se conoce el valor de G, la altura de sólidos (Hs)
  de la probeta, se puede calcular una vez concluido el
  ensayo, mediante la expresión:

                                       M Tf M Sf
                       Hs   Ho   H
                                           A




Donde:
Ho=Altura inicial de la muestra, cm (in).
ΔH=Asentamiento total de la muestra al finalizar el ensayo,
  cm (in).               Competencias Técnicas de Laboratorista
                                     en Mecánica de Suelos
CÁLCULOS
 Calcule la relación de vacíos inicial y final, mediante la
  siguiente ecuación:



 Relación de vacíos inicial
                         Ho Hs
                   eo
                           Hs

 Relación de vacíos final
                          Hf        Hs
                   ef
                               Hs

                     Competencias Técnicas de Laboratorista
                            en Mecánica de Suelos
CÁLCULOS

Por lo tanto, la altura final se determina así:



                       Hf = Ho – ΔH



Donde:

Ho=Altura inicial de la muestra, cm (in).
Hf=Altura final de la muestra para cada incremento de
  carga, cm (in).
                      Competencias Técnicas de Laboratorista
                             en Mecánica de Suelos
CÁLCULOS
 Calcule el grado de saturación inicial y final, mediante la
  siguiente ecuación:

 Grado de saturación inicial       So
                                              M To   M Sf
                                                                   * 100
                                         A*    w * (H o     Hs )


 Grado de saturación final        Sf
                                            M Tf M Sf
                                                            *100
                                         A * w * (H f H s )


Donde:
So=Grado de saturación inicial, %
Sf=Grado de saturación final, %
Ρw=Densidad del agua= 1 g/cm3

                      Competencias Técnicas de Laboratorista
                             en Mecánica de Suelos
CÁLCULOS
 Calcule la relación de vacíos para cada incremento
  de carga, mediante la siguiente ecuación:

                           Hc
                  e   eo
                           Hs


Donde:
eo=Relación de vacíos inicial.
ΔHc=Variación de asentamiento para cada incremento
  de carga, cm (in).
Hs=Altura de sólidos, cm (in).

                 Competencias Técnicas de Laboratorista
                        en Mecánica de Suelos
CÁLCULOS
 Calcular la altura final para cada incremento de carga,
  mediante la siguiente ecuación:




Donde:
ΔHc-1=Variación del asentamiento para un incremento de
   carga anterior, cm (in)
Hfc=Altura final para cada incremento de carga , cm (in)

                    Competencias Técnicas de Laboratorista
                           en Mecánica de Suelos
CÁLCULOS

 Calcular la altura promedio (H) para cada incremento
  de carga, mediante la siguiente expresión:


                        Ho       H fc
                    H
                             2




Donde:
Ho=Altura inicial de la muestra, cm ó mm.



                    Competencias Técnicas de Laboratorista
                           en Mecánica de Suelos
CÁLCULOS

 Calcular la longitud promedio de la trayectoria de
  drenaje (Hm), para cada incremento de carga,
  mediante la siguiente expresión:


                         H
                  Hm
                         2



Donde:
H=Altura promedio para cada incremento de carga, cm
  (in).

                  Competencias Técnicas de Laboratorista
                         en Mecánica de Suelos
Método del Logaritmo del Tiempo
 Se grafica en escala semilogarítmica la curva
  deformación (ordenadas) vs log tiempo (abscisas ).
            Fig. 5.1 Curva deformación versus Log tiempo




                   Fuente: Norma ASTM D 2435 – 90




                       Competencias Técnicas de Laboratorista
                              en Mecánica de Suelos
Método del Logaritmo del Tiempo
  Procedimiento para determinar el 100, 0 y 50%
  teórico de consolidación primaria:

• Trace una línea recta (C) a través de los puntos que
  representan las lecturas finales y que exhiben una
  tendencia recta y una inclinación suave.

• Trace una segunda recta tangente a la parte más
  pronunciada de la curva (D). La intersección entre las
  dos rectas representa la deformación d100, y tiempo
  t100, correspondiente al 100% de la consolidación
  primaria. La consolidación que sobrepase el 100% se
  define como consolidación secundaria.

                   Competencias Técnicas de Laboratorista
                          en Mecánica de Suelos
Método del Logaritmo del Tiempo
  Procedimiento para determinar el 100, 0 y 50%
  teórico de consolidación primaria:
• Determine la deformación que representa el 0% de la
  consolidación primaria, escogiendo un punto de la
  curva próximo al eje de deformaciones (t1), observe el
  tiempo que le corresponde, localice sobre la curva el
  punto cuya abscisa sea cuatro veces la del punto
  originalmente elegido (t2); la diferencia de ordenadas
  entre ambos puntos se duplica y éste valor se lleva a
  partir del segundo punto mencionado, sobre una
  paralela al eje de ordenadas obteniéndose de este
  modo un tercer punto sobre el cual se hará pasar una
  paralela al eje de los tiempos que es la que define el
  0% teórico de consolidación.

                    Competencias Técnicas de Laboratorista
                           en Mecánica de Suelos
Método del Logaritmo del Tiempo
   Procedimiento para determinar el 100, 0 y 50%
  teórico de consolidación primaria:

 Al punto medio del segmento entre el 0 y 100%
  teóricos de consolidación corresponderá el 50%. El
  tiempo correspondiente a este porcentaje t50, queda
  determinado por la abscisa del punto de intersección
  de la curva y una paralela al eje de los tiempos,
  trazada por el punto medio del segmento. La
  determinación de t50 debe hacerse para cada una de
  las curvas obtenidas en el proceso de consolidación.




                   Competencias Técnicas de Laboratorista
                          en Mecánica de Suelos
Método de la Raíz Cuadrada del Tiempo
• Se grafica en escala aritmética la curva deformación
  (ordenadas) vs raíz cuadrada del tiempo (abscisas ).
         Fig. 5.2 Curva deformación versus raíz cuadrada del tiempo




                       Fuente: Norma ASTM D 2435 – 90



                           Competencias Técnicas de Laboratorista
                                  en Mecánica de Suelos
Método de la Raíz Cuadrada del Tiempo
  Procedimiento para determinar el 0, 90 y 100% de
  consolidación primaria:

• Trace una segunda línea recta (C) tomando dos o
  más puntos de la línea correspondiente del 0% de
  consolidación    y    multiplique   las   abscisas
  correspondientes por la constante 1.15. La
  intersección de ésta con la curva define por su
  abscisa el tiempo que corresponde al t90.

• La deformación al 100% de la consolidación primaria
  es 1/9 mayor que la diferencia entre las
  deformaciones a 0 y 90% de consolidación.

                   Competencias Técnicas de Laboratorista
                          en Mecánica de Suelos
Método de la Raíz Cuadrada del Tiempo


  Procedimiento para determinar el 0, 90 y 100% de
  consolidación primaria:

• Trace una línea recta (A) a través de los puntos que
  representan las lecturas iniciales que muestra una
  tendencia de línea recta. Extrapole la línea hasta t = 0
  y obtenga la ordenada de deformación que
  representa el 0% de la consolidación primaria.



                    Competencias Técnicas de Laboratorista
                           en Mecánica de Suelos
Método de la Raíz Cuadrada del Tiempo

     Calcule el coeficiente de consolidación para cada
     incremento de carga, como sigue:

      Para curva deformación versus log tiempo



                         0.197 xHm 2
                  Cv
                             t 50




                       Competencias Técnicas de Laboratorista
                              en Mecánica de Suelos
Método de la Raíz Cuadrada del Tiempo
    Calcule el coeficiente de consolidación para cada
    incremento de carga, como sigue:

   Para curva deformación versus raíz cuadrada del
 tiempo
                Donde:
                Cv= Coeficiente de consolidación, cm2/s.
                Hm2=Longitud      promedio     de     la
    0.197 xHm 2 trayectoria de drenaje para cada
Cv
        t 50    incremento de carga.
                t50, 90=Tiempo correspondiente al
                grado de consolidación para 50% ó
                90%, s ó min.

                    Competencias Técnicas de Laboratorista
                           en Mecánica de Suelos
Método de la Raíz Cuadrada del Tiempo

Grafique la curva relación de vacíos (e) versus
 presión (P) en escala semilogarítmica.
          Fig. 5.3 Curva relación de vacios versus presión




                      Fuente: Norma ASTM D 2435 – 90




                     Competencias Técnicas de Laboratorista
                            en Mecánica de Suelos
Método de la Raíz Cuadrada del Tiempo



• Esta gráfica es conocida como: Curva de
  compresibilidad, que permite determinar la carga de
  preconsolidación Pc, en kg/cm2, los índices de
  compresión, expansión y compresnsibilidad, de la
  siguiente manera:




                   Competencias Técnicas de Laboratorista
                          en Mecánica de Suelos
Método de la Raíz Cuadrada del Tiempo
Carga de Preconsolidación
 Estime el punto máximo de curvatura, en la rama de
  carga (B).
 En el punto (B) dibuje una línea tangente (C), y una
  línea paralela al eje de las presiones (D), y trace la
  bisectriz de estas dos rectas (E).
 Extienda una tangente que pase por la parte lineal de
  la curva de carga (curva virgen) (F), hasta la
  intersección con la bisectriz (E) en el punto (G).
 La proyección del punto (G) sobre el eje de las
  abscisas define la carga de preconsolidación, Pc.

                    Competencias Técnicas de Laboratorista
                           en Mecánica de Suelos
Método de la Raíz Cuadrada del Tiempo
Índice de compresión
 La pendiente de la curva virgen del tramo de carga
  determina el índice de compresión Cc, mediante la
  siguiente expresión:
                    e       e1 e2
               Cc
                    P   log P 2 log P1




Donde:
Δe=Variación de la relación de vacíos.
ΔP=Variación de los logaritmos de la presión.

                    Competencias Técnicas de Laboratorista
                           en Mecánica de Suelos
Método de la Raíz Cuadrada del Tiempo
Índice de expansión
 La pendiente de la parte recta del tramo de
  descarga determina el índice de expansión Ce,
  mediante la siguientes expresión:


                         e3 e 2
                Ce
                     log P 2 log P3

Donde:
e3– e2=Variación de la relación de vacíos.
P2-P3=Variación de los logaritmos de la presión.
                     Competencias Técnicas de Laboratorista
                            en Mecánica de Suelos
Método de la Raíz Cuadrada del Tiempo
Coeficiente de compresibilidad

 La pendiente de la curva virgen del tramo de carga
  determina el índice de compresibilidad av, mediante la
  siguiente expresión:


                          e    e2 e1
                    av
                          P    P 2 P1




                    Competencias Técnicas de Laboratorista
                           en Mecánica de Suelos
Método de la Raíz Cuadrada del Tiempo

 Determine y registre el coeficiente de permeabilidad
  (k), mediante la siguiente ecuación:

                          Cvm * av *   w
                    k
                             1   em



 Por lo tanto Cvm y em, se determinan así:




                        Competencias Técnicas de Laboratorista
                               en Mecánica de Suelos
Método de la Raíz Cuadrada del Tiempo
Donde:
Cv1=Coeficiente de compresibilidad correspondiente a la
  presión del punto e1.

Cv2=Coeficiente de compresibilidad correspondiente a la
  presión del punto e2.

Cvm=Media aritmética entre el coeficiente Cv1 y Cv2.

Em=Media aritmética entre e1 y e2.

K=Coeficiente de permeabilidad en cm2/ s.

                    Competencias Técnicas de Laboratorista
                           en Mecánica de Suelos

Más contenido relacionado

La actualidad más candente

INFORME PROCTOR MODIFICADO-LAB. PAVIMENTOS
INFORME PROCTOR MODIFICADO-LAB. PAVIMENTOSINFORME PROCTOR MODIFICADO-LAB. PAVIMENTOS
INFORME PROCTOR MODIFICADO-LAB. PAVIMENTOS
Herbert Daniel Flores
 
Informe triaxial geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADO
Informe triaxial  geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADOInforme triaxial  geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADO
Informe triaxial geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADO
SANDYSANTOSARRIERTA
 
Esfuerzo en una masa de suelo
Esfuerzo en una masa de sueloEsfuerzo en una masa de suelo
Esfuerzo en una masa de suelo
Carlos Vidal Pareja Ramos
 
Proctor Estándar T 99-01 02
Proctor Estándar T 99-01   02Proctor Estándar T 99-01   02
Proctor Estándar T 99-01 02
Carmen Antonieta Esparza Villalba
 
ASTM D1586-11 (SPT)
ASTM D1586-11 (SPT)ASTM D1586-11 (SPT)
ASTM D1586-11 (SPT)
Fabian Caballero
 
04.00 esfuerzos y deformaciones en pavimentos flexibles
04.00 esfuerzos y deformaciones en pavimentos flexibles04.00 esfuerzos y deformaciones en pavimentos flexibles
04.00 esfuerzos y deformaciones en pavimentos flexibles
Juan Soto
 
Ensayo triaxial
Ensayo triaxialEnsayo triaxial
Ensayo triaxialToño MF
 
perfil estatigrafico-Mecanica de suelos I
 perfil estatigrafico-Mecanica de suelos I perfil estatigrafico-Mecanica de suelos I
perfil estatigrafico-Mecanica de suelos I
Joel Frichz Torres Caceres
 
Ensayo triaxial no consolidado no drenado
Ensayo triaxial no consolidado no drenadoEnsayo triaxial no consolidado no drenado
Ensayo triaxial no consolidado no drenado
Kenyu Inga Arango
 
ENSAYO DE CBR
ENSAYO DE CBRENSAYO DE CBR
ENSAYO DE CBR
Elva Cajo
 
Ensayo de corte directo
Ensayo  de corte directoEnsayo  de corte directo
Ensayo de corte directo
Galvani Carrasco Tineo
 
Braja das libro de ejercicios resueltos de mecánica de suelos i
Braja das libro de ejercicios resueltos de mecánica de suelos iBraja das libro de ejercicios resueltos de mecánica de suelos i
Braja das libro de ejercicios resueltos de mecánica de suelos i
xforce89
 
Libro de ejercicios resueltos de mecánica de suelos i
Libro de ejercicios resueltos de mecánica de suelos iLibro de ejercicios resueltos de mecánica de suelos i
Libro de ejercicios resueltos de mecánica de suelos i
Yesy Gonzales
 
Asentamiento elastico.docx resumen
Asentamiento elastico.docx resumenAsentamiento elastico.docx resumen
Asentamiento elastico.docx resumen
Eduardo Catalan Ortiz
 
Informe ensayo proctor estándar
Informe  ensayo proctor estándarInforme  ensayo proctor estándar
Informe ensayo proctor estándar
Leonardo Cango Apolo
 
Suelos labo 5 info gravedad especifica
Suelos labo 5 info gravedad especificaSuelos labo 5 info gravedad especifica
Suelos labo 5 info gravedad especifica
ismael cachi vargas
 
Densidad de-campo-método-densímetro-nuclear[1]
Densidad de-campo-método-densímetro-nuclear[1]Densidad de-campo-método-densímetro-nuclear[1]
Densidad de-campo-método-densímetro-nuclear[1]
Raul Cabanillas
 

La actualidad más candente (20)

INFORME PROCTOR MODIFICADO-LAB. PAVIMENTOS
INFORME PROCTOR MODIFICADO-LAB. PAVIMENTOSINFORME PROCTOR MODIFICADO-LAB. PAVIMENTOS
INFORME PROCTOR MODIFICADO-LAB. PAVIMENTOS
 
Informe triaxial geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADO
Informe triaxial  geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADOInforme triaxial  geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADO
Informe triaxial geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADO
 
Esfuerzo en una masa de suelo
Esfuerzo en una masa de sueloEsfuerzo en una masa de suelo
Esfuerzo en una masa de suelo
 
Proctor Estándar T 99-01 02
Proctor Estándar T 99-01   02Proctor Estándar T 99-01   02
Proctor Estándar T 99-01 02
 
ASTM D1586-11 (SPT)
ASTM D1586-11 (SPT)ASTM D1586-11 (SPT)
ASTM D1586-11 (SPT)
 
Ensayo de consolidacion
Ensayo de consolidacionEnsayo de consolidacion
Ensayo de consolidacion
 
ENSAYO SPT
ENSAYO SPTENSAYO SPT
ENSAYO SPT
 
04.00 esfuerzos y deformaciones en pavimentos flexibles
04.00 esfuerzos y deformaciones en pavimentos flexibles04.00 esfuerzos y deformaciones en pavimentos flexibles
04.00 esfuerzos y deformaciones en pavimentos flexibles
 
Ensayo triaxial
Ensayo triaxialEnsayo triaxial
Ensayo triaxial
 
Ensayo triaxial consolidado drenado (cd)
Ensayo triaxial consolidado drenado (cd)Ensayo triaxial consolidado drenado (cd)
Ensayo triaxial consolidado drenado (cd)
 
perfil estatigrafico-Mecanica de suelos I
 perfil estatigrafico-Mecanica de suelos I perfil estatigrafico-Mecanica de suelos I
perfil estatigrafico-Mecanica de suelos I
 
Ensayo triaxial no consolidado no drenado
Ensayo triaxial no consolidado no drenadoEnsayo triaxial no consolidado no drenado
Ensayo triaxial no consolidado no drenado
 
ENSAYO DE CBR
ENSAYO DE CBRENSAYO DE CBR
ENSAYO DE CBR
 
Ensayo de corte directo
Ensayo  de corte directoEnsayo  de corte directo
Ensayo de corte directo
 
Braja das libro de ejercicios resueltos de mecánica de suelos i
Braja das libro de ejercicios resueltos de mecánica de suelos iBraja das libro de ejercicios resueltos de mecánica de suelos i
Braja das libro de ejercicios resueltos de mecánica de suelos i
 
Libro de ejercicios resueltos de mecánica de suelos i
Libro de ejercicios resueltos de mecánica de suelos iLibro de ejercicios resueltos de mecánica de suelos i
Libro de ejercicios resueltos de mecánica de suelos i
 
Asentamiento elastico.docx resumen
Asentamiento elastico.docx resumenAsentamiento elastico.docx resumen
Asentamiento elastico.docx resumen
 
Informe ensayo proctor estándar
Informe  ensayo proctor estándarInforme  ensayo proctor estándar
Informe ensayo proctor estándar
 
Suelos labo 5 info gravedad especifica
Suelos labo 5 info gravedad especificaSuelos labo 5 info gravedad especifica
Suelos labo 5 info gravedad especifica
 
Densidad de-campo-método-densímetro-nuclear[1]
Densidad de-campo-método-densímetro-nuclear[1]Densidad de-campo-método-densímetro-nuclear[1]
Densidad de-campo-método-densímetro-nuclear[1]
 

Destacado

CAPAS DE RODADURA _Semana 1-4
CAPAS DE RODADURA _Semana 1-4CAPAS DE RODADURA _Semana 1-4
CAPAS DE RODADURA _Semana 1-4
Carmen Antonieta Esparza Villalba
 
Determinación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos GranularesDeterminación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos GranularesCarmen Antonieta Esparza Villalba
 
Determinación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos GranularesDeterminación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos GranularesCarmen Antonieta Esparza Villalba
 
Determinación de la Gravedad Específica de Partículas SóLidas
Determinación de la Gravedad Específica de  Partículas SóLidasDeterminación de la Gravedad Específica de  Partículas SóLidas
Determinación de la Gravedad Específica de Partículas SóLidasCarmen Antonieta Esparza Villalba
 
DETERMINACIÓN DE DELETÉREOS
DETERMINACIÓN DE DELETÉREOSDETERMINACIÓN DE DELETÉREOS
DETERMINACIÓN DE DELETÉREOS
Carmen Antonieta Esparza Villalba
 
ENSAYO DE LA PELICULA DELGADA EN EL HORNO
ENSAYO DE LA PELICULA DELGADA EN EL HORNOENSAYO DE LA PELICULA DELGADA EN EL HORNO
ENSAYO DE LA PELICULA DELGADA EN EL HORNO
Carmen Antonieta Esparza Villalba
 
Determinación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos GranularesDeterminación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos GranularesCarmen Antonieta Esparza Villalba
 
Determinación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos GranularesDeterminación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos GranularesCarmen Antonieta Esparza Villalba
 
Determinación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos GranularesDeterminación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos GranularesCarmen Antonieta Esparza Villalba
 
ESTRUCTURA DEL PAVIMENTO_(Semana 1-1)
ESTRUCTURA DEL PAVIMENTO_(Semana 1-1)ESTRUCTURA DEL PAVIMENTO_(Semana 1-1)
ESTRUCTURA DEL PAVIMENTO_(Semana 1-1)
Carmen Antonieta Esparza Villalba
 
Viscosidad de un Betún Asfáltico
Viscosidad de un Betún AsfálticoViscosidad de un Betún Asfáltico
Viscosidad de un Betún Asfáltico
Carmen Antonieta Esparza Villalba
 
Determinación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos GranularesDeterminación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos GranularesCarmen Antonieta Esparza Villalba
 
Determinación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos GranularesDeterminación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos GranularesCarmen Antonieta Esparza Villalba
 
MEDIDA DE LA RESISTENCIA A LA TRACCIÓN INDIRECTA
MEDIDA DE LA RESISTENCIA A LA TRACCIÓN INDIRECTAMEDIDA DE LA RESISTENCIA A LA TRACCIÓN INDIRECTA
MEDIDA DE LA RESISTENCIA A LA TRACCIÓN INDIRECTA
Carmen Antonieta Esparza Villalba
 
Peso Especifico De Materiales Bituminos 2
Peso Especifico De Materiales Bituminos 2Peso Especifico De Materiales Bituminos 2
Peso Especifico De Materiales Bituminos 2
Carmen Antonieta Esparza Villalba
 
Recubrimiento Y Peladura De Mezclas Biyuminosas 02
Recubrimiento Y Peladura De Mezclas Biyuminosas  02Recubrimiento Y Peladura De Mezclas Biyuminosas  02
Recubrimiento Y Peladura De Mezclas Biyuminosas 02
Carmen Antonieta Esparza Villalba
 
Punto de ablandamiento de Asfaltos
Punto de ablandamiento de AsfaltosPunto de ablandamiento de Asfaltos
Punto de ablandamiento de Asfaltos
Carmen Antonieta Esparza Villalba
 

Destacado (20)

Matlab 2 Capitulo 3
Matlab 2 Capitulo 3Matlab 2 Capitulo 3
Matlab 2 Capitulo 3
 
CAPAS DE RODADURA _Semana 1-4
CAPAS DE RODADURA _Semana 1-4CAPAS DE RODADURA _Semana 1-4
CAPAS DE RODADURA _Semana 1-4
 
Determinación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos GranularesDeterminación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos Granulares
 
Determinación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos GranularesDeterminación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos Granulares
 
Determinación de la Gravedad Específica de Partículas SóLidas
Determinación de la Gravedad Específica de  Partículas SóLidasDeterminación de la Gravedad Específica de  Partículas SóLidas
Determinación de la Gravedad Específica de Partículas SóLidas
 
DETERMINACIÓN DE DELETÉREOS
DETERMINACIÓN DE DELETÉREOSDETERMINACIÓN DE DELETÉREOS
DETERMINACIÓN DE DELETÉREOS
 
ENSAYO DE LA PELICULA DELGADA EN EL HORNO
ENSAYO DE LA PELICULA DELGADA EN EL HORNOENSAYO DE LA PELICULA DELGADA EN EL HORNO
ENSAYO DE LA PELICULA DELGADA EN EL HORNO
 
Determinación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos GranularesDeterminación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos Granulares
 
Determinación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos GranularesDeterminación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos Granulares
 
Determinación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos GranularesDeterminación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos Granulares
 
Clase 13 2009 06 Ejercicio En Clase De Plaxis
Clase 13 2009 06 Ejercicio En Clase De PlaxisClase 13 2009 06 Ejercicio En Clase De Plaxis
Clase 13 2009 06 Ejercicio En Clase De Plaxis
 
ESTRUCTURA DEL PAVIMENTO_(Semana 1-1)
ESTRUCTURA DEL PAVIMENTO_(Semana 1-1)ESTRUCTURA DEL PAVIMENTO_(Semana 1-1)
ESTRUCTURA DEL PAVIMENTO_(Semana 1-1)
 
Viscosidad de un Betún Asfáltico
Viscosidad de un Betún AsfálticoViscosidad de un Betún Asfáltico
Viscosidad de un Betún Asfáltico
 
Determinación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos GranularesDeterminación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos Granulares
 
Determinación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos GranularesDeterminación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos Granulares
 
MEDIDA DE LA RESISTENCIA A LA TRACCIÓN INDIRECTA
MEDIDA DE LA RESISTENCIA A LA TRACCIÓN INDIRECTAMEDIDA DE LA RESISTENCIA A LA TRACCIÓN INDIRECTA
MEDIDA DE LA RESISTENCIA A LA TRACCIÓN INDIRECTA
 
Peso Especifico De Materiales Bituminos 2
Peso Especifico De Materiales Bituminos 2Peso Especifico De Materiales Bituminos 2
Peso Especifico De Materiales Bituminos 2
 
Recubrimiento Y Peladura De Mezclas Biyuminosas 02
Recubrimiento Y Peladura De Mezclas Biyuminosas  02Recubrimiento Y Peladura De Mezclas Biyuminosas  02
Recubrimiento Y Peladura De Mezclas Biyuminosas 02
 
Punto de ablandamiento de Asfaltos
Punto de ablandamiento de AsfaltosPunto de ablandamiento de Asfaltos
Punto de ablandamiento de Asfaltos
 
Matlab 2 Capitulo 2
Matlab 2 Capitulo 2Matlab 2 Capitulo 2
Matlab 2 Capitulo 2
 

Similar a Consolidación Unidimensional de los Suelos

Consolidación Unidimensional de los Suelos
Consolidación Unidimensional de los SuelosConsolidación Unidimensional de los Suelos
Consolidación Unidimensional de los Suelosguest7fb308
 
Consolidación Unidimensional de los Suelos
Consolidación Unidimensional de los SuelosConsolidación Unidimensional de los Suelos
Consolidación Unidimensional de los Suelosguest7fb308
 
Consolidación Unidimensional de los Suelos
Consolidación Unidimensional de los SuelosConsolidación Unidimensional de los Suelos
Consolidación Unidimensional de los Suelosguest7fb308
 
Consolidacinunidimensionaldelossuelos 100 0%25
Consolidacinunidimensionaldelossuelos 100 0%25Consolidacinunidimensionaldelossuelos 100 0%25
Consolidacinunidimensionaldelossuelos 100 0%25
Marco Reyes
 
Consolidación Unidimensional de los Suelos
Consolidación Unidimensional de los SuelosConsolidación Unidimensional de los Suelos
Consolidación Unidimensional de los Suelosguest7fb308
 
Consolidacinunidimensionaldelossuelos 090806143638-phpapp01
Consolidacinunidimensionaldelossuelos 090806143638-phpapp01Consolidacinunidimensionaldelossuelos 090806143638-phpapp01
Consolidacinunidimensionaldelossuelos 090806143638-phpapp01Graciela Mojica
 
Determinación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos GranularesDeterminación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos Granularesguest7fb308
 
GRAVEDAD ESPECÍFICA Y ABSORCIÓN DE AGREGADO GRUESO
GRAVEDAD ESPECÍFICA Y ABSORCIÓN DE AGREGADO GRUESOGRAVEDAD ESPECÍFICA Y ABSORCIÓN DE AGREGADO GRUESO
GRAVEDAD ESPECÍFICA Y ABSORCIÓN DE AGREGADO GRUESO
Carmen Antonieta Esparza Villalba
 
Determinación de la Gravedad Específica de Partículas Sólidas
Determinación de la Gravedad Específica de  Partículas SólidasDeterminación de la Gravedad Específica de  Partículas Sólidas
Determinación de la Gravedad Específica de Partículas Sólidasguest7fb308
 
Determinación de la Gravedad Específica de Partículas Sólidas
Determinación de la Gravedad Específica de  Partículas SólidasDeterminación de la Gravedad Específica de  Partículas Sólidas
Determinación de la Gravedad Específica de Partículas Sólidasguest7fb308
 
Determinación de la Gravedad Específica de Partículas Sólidas
Determinación de la Gravedad Específica de  Partículas SólidasDeterminación de la Gravedad Específica de  Partículas Sólidas
Determinación de la Gravedad Específica de Partículas Sólidasguest7fb308
 
Deseño de mezcla
Deseño de mezclaDeseño de mezcla
Deseño de mezcla
Abrahan Salvatierra Mendoza
 
7507 guia de_laboratorio_8-1569419801
7507 guia de_laboratorio_8-15694198017507 guia de_laboratorio_8-1569419801
7507 guia de_laboratorio_8-1569419801
flornuoncca
 
determinacindelcoeficientedepermeabilidadparasuelosgranulares-090622173348-ph...
determinacindelcoeficientedepermeabilidadparasuelosgranulares-090622173348-ph...determinacindelcoeficientedepermeabilidadparasuelosgranulares-090622173348-ph...
determinacindelcoeficientedepermeabilidadparasuelosgranulares-090622173348-ph...
David Rivera
 

Similar a Consolidación Unidimensional de los Suelos (20)

Consolidación Unidimensional de los Suelos
Consolidación Unidimensional de los SuelosConsolidación Unidimensional de los Suelos
Consolidación Unidimensional de los Suelos
 
Consolidación Unidimensional de los Suelos
Consolidación Unidimensional de los SuelosConsolidación Unidimensional de los Suelos
Consolidación Unidimensional de los Suelos
 
Consolidación Unidimensional de los Suelos
Consolidación Unidimensional de los SuelosConsolidación Unidimensional de los Suelos
Consolidación Unidimensional de los Suelos
 
Consolidacinunidimensionaldelossuelos 100 0%25
Consolidacinunidimensionaldelossuelos 100 0%25Consolidacinunidimensionaldelossuelos 100 0%25
Consolidacinunidimensionaldelossuelos 100 0%25
 
Consolidación Unidimensional de los Suelos
Consolidación Unidimensional de los SuelosConsolidación Unidimensional de los Suelos
Consolidación Unidimensional de los Suelos
 
Consolidacinunidimensionaldelossuelos 090806143638-phpapp01
Consolidacinunidimensionaldelossuelos 090806143638-phpapp01Consolidacinunidimensionaldelossuelos 090806143638-phpapp01
Consolidacinunidimensionaldelossuelos 090806143638-phpapp01
 
Determinación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos GranularesDeterminación del Coeficiente de Permeabilidad para Suelos Granulares
Determinación del Coeficiente de Permeabilidad para Suelos Granulares
 
ENSAYO DE CORTE DIRECTO (Consolidado - Drenado)
ENSAYO DE CORTE DIRECTO  (Consolidado - Drenado)ENSAYO DE CORTE DIRECTO  (Consolidado - Drenado)
ENSAYO DE CORTE DIRECTO (Consolidado - Drenado)
 
Ensayo de Compresión Triaxial para Suelos Cohesivos
Ensayo de Compresión Triaxial para Suelos CohesivosEnsayo de Compresión Triaxial para Suelos Cohesivos
Ensayo de Compresión Triaxial para Suelos Cohesivos
 
GRAVEDAD ESPECÍFICA Y ABSORCIÓN DE AGREGADO GRUESO
GRAVEDAD ESPECÍFICA Y ABSORCIÓN DE AGREGADO GRUESOGRAVEDAD ESPECÍFICA Y ABSORCIÓN DE AGREGADO GRUESO
GRAVEDAD ESPECÍFICA Y ABSORCIÓN DE AGREGADO GRUESO
 
PORCENTAJE DE EXTRACCIÓN DE ASFALTO
PORCENTAJE DE EXTRACCIÓN DE ASFALTOPORCENTAJE DE EXTRACCIÓN DE ASFALTO
PORCENTAJE DE EXTRACCIÓN DE ASFALTO
 
Determinación de la Gravedad Específica de Partículas Sólidas
Determinación de la Gravedad Específica de  Partículas SólidasDeterminación de la Gravedad Específica de  Partículas Sólidas
Determinación de la Gravedad Específica de Partículas Sólidas
 
Determinación de la Gravedad Específica de Partículas Sólidas
Determinación de la Gravedad Específica de  Partículas SólidasDeterminación de la Gravedad Específica de  Partículas Sólidas
Determinación de la Gravedad Específica de Partículas Sólidas
 
Determinación de la Gravedad Específica de Partículas Sólidas
Determinación de la Gravedad Específica de  Partículas SólidasDeterminación de la Gravedad Específica de  Partículas Sólidas
Determinación de la Gravedad Específica de Partículas Sólidas
 
Triaxial
TriaxialTriaxial
Triaxial
 
GRAVEDAD ESPECÍFICA Y ABSORCIÓN DE AGREGADO GRUESO
GRAVEDAD ESPECÍFICA Y ABSORCIÓN DE AGREGADO GRUESOGRAVEDAD ESPECÍFICA Y ABSORCIÓN DE AGREGADO GRUESO
GRAVEDAD ESPECÍFICA Y ABSORCIÓN DE AGREGADO GRUESO
 
Deseño de mezcla
Deseño de mezclaDeseño de mezcla
Deseño de mezcla
 
7507 guia de_laboratorio_8-1569419801
7507 guia de_laboratorio_8-15694198017507 guia de_laboratorio_8-1569419801
7507 guia de_laboratorio_8-1569419801
 
PESO ESPECÍFICO BULK DE LAS BRIQUETAS
PESO ESPECÍFICO BULK DE LAS BRIQUETASPESO ESPECÍFICO BULK DE LAS BRIQUETAS
PESO ESPECÍFICO BULK DE LAS BRIQUETAS
 
determinacindelcoeficientedepermeabilidadparasuelosgranulares-090622173348-ph...
determinacindelcoeficientedepermeabilidadparasuelosgranulares-090622173348-ph...determinacindelcoeficientedepermeabilidadparasuelosgranulares-090622173348-ph...
determinacindelcoeficientedepermeabilidadparasuelosgranulares-090622173348-ph...
 

Más de Carmen Antonieta Esparza Villalba

EQUIPOS DE COMPACTACIÓN - (SECCIÓN 6-2)
EQUIPOS DE COMPACTACIÓN - (SECCIÓN 6-2)EQUIPOS DE COMPACTACIÓN - (SECCIÓN 6-2)
EQUIPOS DE COMPACTACIÓN - (SECCIÓN 6-2)
Carmen Antonieta Esparza Villalba
 
EQUIPOS DE COMPACTACIÓN - (SECCIÓN 6)
EQUIPOS DE COMPACTACIÓN - (SECCIÓN 6)EQUIPOS DE COMPACTACIÓN - (SECCIÓN 6)
EQUIPOS DE COMPACTACIÓN - (SECCIÓN 6)
Carmen Antonieta Esparza Villalba
 
COLOCACIÓN DE MEZCLAS ASFÁLTICAS - (SECCIÓN 5)
COLOCACIÓN DE MEZCLAS ASFÁLTICAS - (SECCIÓN 5)COLOCACIÓN DE MEZCLAS ASFÁLTICAS - (SECCIÓN 5)
COLOCACIÓN DE MEZCLAS ASFÁLTICAS - (SECCIÓN 5)
Carmen Antonieta Esparza Villalba
 
DISEÑO DE MEZCLAS MÉTODO MARSHALL E INTERPRETACIÓN DE RESULTADOS
DISEÑO DE MEZCLAS MÉTODO MARSHALL E INTERPRETACIÓN DE RESULTADOSDISEÑO DE MEZCLAS MÉTODO MARSHALL E INTERPRETACIÓN DE RESULTADOS
DISEÑO DE MEZCLAS MÉTODO MARSHALL E INTERPRETACIÓN DE RESULTADOSCarmen Antonieta Esparza Villalba
 
PORCENTAJE DE VACIOS CON AIRE EN MEZCLAS BITUMINOSAS DENSAS Y ABIERTAS
PORCENTAJE DE VACIOS CON AIRE EN MEZCLAS BITUMINOSAS DENSAS Y ABIERTASPORCENTAJE DE VACIOS CON AIRE EN MEZCLAS BITUMINOSAS DENSAS Y ABIERTAS
PORCENTAJE DE VACIOS CON AIRE EN MEZCLAS BITUMINOSAS DENSAS Y ABIERTASCarmen Antonieta Esparza Villalba
 
PLANTAS ASFÁLTICA - (SEMANA 4-2)
PLANTAS ASFÁLTICA - (SEMANA 4-2)PLANTAS ASFÁLTICA - (SEMANA 4-2)
PLANTAS ASFÁLTICA - (SEMANA 4-2)
Carmen Antonieta Esparza Villalba
 
PLANTAS ASFÁLTICAS - (SEMANA 4)
PLANTAS ASFÁLTICAS - (SEMANA 4)PLANTAS ASFÁLTICAS - (SEMANA 4)
PLANTAS ASFÁLTICAS - (SEMANA 4)
Carmen Antonieta Esparza Villalba
 
PRODUCCIÓN DE AGREGADOS - (SEMANA 3-2)
PRODUCCIÓN DE AGREGADOS - (SEMANA 3-2)PRODUCCIÓN DE AGREGADOS - (SEMANA 3-2)
PRODUCCIÓN DE AGREGADOS - (SEMANA 3-2)
Carmen Antonieta Esparza Villalba
 
PRODUCCIÓN DE AGREGADOS - SEMANA 3
PRODUCCIÓN DE AGREGADOS - SEMANA 3PRODUCCIÓN DE AGREGADOS - SEMANA 3
PRODUCCIÓN DE AGREGADOS - SEMANA 3
Carmen Antonieta Esparza Villalba
 
Determinación de la Gravedad Específica de Partículas Sólidas
Determinación de la Gravedad Específica de  Partículas SólidasDeterminación de la Gravedad Específica de  Partículas Sólidas
Determinación de la Gravedad Específica de Partículas SólidasCarmen Antonieta Esparza Villalba
 

Más de Carmen Antonieta Esparza Villalba (20)

EQUIPOS DE COMPACTACIÓN - (SECCIÓN 6-2)
EQUIPOS DE COMPACTACIÓN - (SECCIÓN 6-2)EQUIPOS DE COMPACTACIÓN - (SECCIÓN 6-2)
EQUIPOS DE COMPACTACIÓN - (SECCIÓN 6-2)
 
EQUIPOS DE COMPACTACIÓN - (SECCIÓN 6)
EQUIPOS DE COMPACTACIÓN - (SECCIÓN 6)EQUIPOS DE COMPACTACIÓN - (SECCIÓN 6)
EQUIPOS DE COMPACTACIÓN - (SECCIÓN 6)
 
COLOCACIÓN DE MEZCLAS ASFÁLTICAS - (SECCIÓN 5)
COLOCACIÓN DE MEZCLAS ASFÁLTICAS - (SECCIÓN 5)COLOCACIÓN DE MEZCLAS ASFÁLTICAS - (SECCIÓN 5)
COLOCACIÓN DE MEZCLAS ASFÁLTICAS - (SECCIÓN 5)
 
RICE
RICERICE
RICE
 
DISEÑO DE MEZCLAS MÉTODO MARSHALL E INTERPRETACIÓN DE RESULTADOS
DISEÑO DE MEZCLAS MÉTODO MARSHALL E INTERPRETACIÓN DE RESULTADOSDISEÑO DE MEZCLAS MÉTODO MARSHALL E INTERPRETACIÓN DE RESULTADOS
DISEÑO DE MEZCLAS MÉTODO MARSHALL E INTERPRETACIÓN DE RESULTADOS
 
ENSAYO DE PELÍCULA DELGADA EN HORNO
ENSAYO DE PELÍCULA DELGADA EN HORNOENSAYO DE PELÍCULA DELGADA EN HORNO
ENSAYO DE PELÍCULA DELGADA EN HORNO
 
MEDIDA DE LA RESISTENCIA A TRACCIÓN DIRECTA
MEDIDA DE LA RESISTENCIA A TRACCIÓN DIRECTAMEDIDA DE LA RESISTENCIA A TRACCIÓN DIRECTA
MEDIDA DE LA RESISTENCIA A TRACCIÓN DIRECTA
 
GRAVEDAD ESPECÍFICA Y ABSORCIÓN DE AGREGADO FINO
GRAVEDAD ESPECÍFICA Y ABSORCIÓN DE AGREGADO FINOGRAVEDAD ESPECÍFICA Y ABSORCIÓN DE AGREGADO FINO
GRAVEDAD ESPECÍFICA Y ABSORCIÓN DE AGREGADO FINO
 
DETERMINACIÓN DE PARTÍCULAS LARGAS Y ACHATADAS
DETERMINACIÓN DE PARTÍCULAS LARGAS Y ACHATADASDETERMINACIÓN DE PARTÍCULAS LARGAS Y ACHATADAS
DETERMINACIÓN DE PARTÍCULAS LARGAS Y ACHATADAS
 
DETERMINACIÓN DE CARAS FRACTURADAS
DETERMINACIÓN DE CARAS FRACTURADASDETERMINACIÓN DE CARAS FRACTURADAS
DETERMINACIÓN DE CARAS FRACTURADAS
 
DETERMINACIÓN DE PARTÍCULAS LARGAS Y ACHATADAS
DETERMINACIÓN DE PARTÍCULAS LARGAS Y ACHATADASDETERMINACIÓN DE PARTÍCULAS LARGAS Y ACHATADAS
DETERMINACIÓN DE PARTÍCULAS LARGAS Y ACHATADAS
 
RESISTENCIA A LOS SULFATOS
RESISTENCIA A LOS SULFATOSRESISTENCIA A LOS SULFATOS
RESISTENCIA A LOS SULFATOS
 
PESO ESPECIFÍCO BULK DE BRIQUETAS
PESO ESPECIFÍCO BULK DE BRIQUETASPESO ESPECIFÍCO BULK DE BRIQUETAS
PESO ESPECIFÍCO BULK DE BRIQUETAS
 
DETERMINACIÓN DE DELETÉREOS
DETERMINACIÓN DE DELETÉREOSDETERMINACIÓN DE DELETÉREOS
DETERMINACIÓN DE DELETÉREOS
 
PORCENTAJE DE VACIOS CON AIRE EN MEZCLAS BITUMINOSAS DENSAS Y ABIERTAS
PORCENTAJE DE VACIOS CON AIRE EN MEZCLAS BITUMINOSAS DENSAS Y ABIERTASPORCENTAJE DE VACIOS CON AIRE EN MEZCLAS BITUMINOSAS DENSAS Y ABIERTAS
PORCENTAJE DE VACIOS CON AIRE EN MEZCLAS BITUMINOSAS DENSAS Y ABIERTAS
 
PLANTAS ASFÁLTICA - (SEMANA 4-2)
PLANTAS ASFÁLTICA - (SEMANA 4-2)PLANTAS ASFÁLTICA - (SEMANA 4-2)
PLANTAS ASFÁLTICA - (SEMANA 4-2)
 
PLANTAS ASFÁLTICAS - (SEMANA 4)
PLANTAS ASFÁLTICAS - (SEMANA 4)PLANTAS ASFÁLTICAS - (SEMANA 4)
PLANTAS ASFÁLTICAS - (SEMANA 4)
 
PRODUCCIÓN DE AGREGADOS - (SEMANA 3-2)
PRODUCCIÓN DE AGREGADOS - (SEMANA 3-2)PRODUCCIÓN DE AGREGADOS - (SEMANA 3-2)
PRODUCCIÓN DE AGREGADOS - (SEMANA 3-2)
 
PRODUCCIÓN DE AGREGADOS - SEMANA 3
PRODUCCIÓN DE AGREGADOS - SEMANA 3PRODUCCIÓN DE AGREGADOS - SEMANA 3
PRODUCCIÓN DE AGREGADOS - SEMANA 3
 
Determinación de la Gravedad Específica de Partículas Sólidas
Determinación de la Gravedad Específica de  Partículas SólidasDeterminación de la Gravedad Específica de  Partículas Sólidas
Determinación de la Gravedad Específica de Partículas Sólidas
 

Último

Presentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos DigitalesPresentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos Digitales
nievesjiesc03
 
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernándezPRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
Ruben53283
 
El Liberalismo económico en la sociedad y en el mundo
El Liberalismo económico en la sociedad y en el mundoEl Liberalismo económico en la sociedad y en el mundo
El Liberalismo económico en la sociedad y en el mundo
SandraBenitez52
 
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptxc3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
Martín Ramírez
 
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdfTexto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
ClaudiaAlcondeViadez
 
corpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdfcorpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdf
YolandaRodriguezChin
 
Fase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría AnalíticaFase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría Analítica
YasneidyGonzalez
 
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCIONCAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
MasielPMP
 
Fase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcionalFase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcional
YasneidyGonzalez
 
Fase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometricoFase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometrico
YasneidyGonzalez
 
T3-Instrumento de evaluacion_Planificación Analìtica_Actividad con IA.pdf
T3-Instrumento de evaluacion_Planificación Analìtica_Actividad con IA.pdfT3-Instrumento de evaluacion_Planificación Analìtica_Actividad con IA.pdf
T3-Instrumento de evaluacion_Planificación Analìtica_Actividad con IA.pdf
eliecerespinosa
 
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIACONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
BetzabePecheSalcedo1
 
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
auxsoporte
 
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptxCLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
LilianaRivera778668
 
El fundamento del gobierno de Dios. El amor
El fundamento del gobierno de Dios. El amorEl fundamento del gobierno de Dios. El amor
El fundamento del gobierno de Dios. El amor
Alejandrino Halire Ccahuana
 
Friedrich Nietzsche. Presentación de 2 de Bachillerato.
Friedrich Nietzsche. Presentación de 2 de Bachillerato.Friedrich Nietzsche. Presentación de 2 de Bachillerato.
Friedrich Nietzsche. Presentación de 2 de Bachillerato.
pablomarin116
 
Sesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdfSesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdf
https://gramadal.wordpress.com/
 
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdfAsistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Demetrio Ccesa Rayme
 
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptxSemana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
LorenaCovarrubias12
 
Educar por Competencias GS2 Ccesa007.pdf
Educar por Competencias GS2 Ccesa007.pdfEducar por Competencias GS2 Ccesa007.pdf
Educar por Competencias GS2 Ccesa007.pdf
Demetrio Ccesa Rayme
 

Último (20)

Presentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos DigitalesPresentación Revistas y Periódicos Digitales
Presentación Revistas y Periódicos Digitales
 
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernándezPRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
PRÁCTICAS PEDAGOGÍA.pdf_Educación Y Sociedad_AnaFernández
 
El Liberalismo económico en la sociedad y en el mundo
El Liberalismo económico en la sociedad y en el mundoEl Liberalismo económico en la sociedad y en el mundo
El Liberalismo económico en la sociedad y en el mundo
 
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptxc3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
 
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdfTexto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
 
corpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdfcorpus-christi-sesion-de-aprendizaje.pdf
corpus-christi-sesion-de-aprendizaje.pdf
 
Fase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría AnalíticaFase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría Analítica
 
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCIONCAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
CAPACIDADES SOCIOMOTRICES LENGUAJE, INTROYECCIÓN, INTROSPECCION
 
Fase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcionalFase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcional
 
Fase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometricoFase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometrico
 
T3-Instrumento de evaluacion_Planificación Analìtica_Actividad con IA.pdf
T3-Instrumento de evaluacion_Planificación Analìtica_Actividad con IA.pdfT3-Instrumento de evaluacion_Planificación Analìtica_Actividad con IA.pdf
T3-Instrumento de evaluacion_Planificación Analìtica_Actividad con IA.pdf
 
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIACONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
 
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
 
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptxCLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
CLASE N.1 ANÁLISIS ADMINISTRATIVO EMPRESARIAL presentación.pptx
 
El fundamento del gobierno de Dios. El amor
El fundamento del gobierno de Dios. El amorEl fundamento del gobierno de Dios. El amor
El fundamento del gobierno de Dios. El amor
 
Friedrich Nietzsche. Presentación de 2 de Bachillerato.
Friedrich Nietzsche. Presentación de 2 de Bachillerato.Friedrich Nietzsche. Presentación de 2 de Bachillerato.
Friedrich Nietzsche. Presentación de 2 de Bachillerato.
 
Sesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdfSesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdf
 
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdfAsistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
 
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptxSemana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
 
Educar por Competencias GS2 Ccesa007.pdf
Educar por Competencias GS2 Ccesa007.pdfEducar por Competencias GS2 Ccesa007.pdf
Educar por Competencias GS2 Ccesa007.pdf
 

Consolidación Unidimensional de los Suelos

  • 1. ASTM D 2435-90 AASHTO T 216 ENSAYO DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 2. ALCANCE Este ensayo describe el procedimiento para determinar el grado de asentamiento que experimenta una muestra de suelo al someterla a una serie de incrementos de presión o carga. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 3. EQUIPO Aparato de carga.- con una precisión de 0.5% de la carga aplicada. Piedras porosas.- Caja de consolidación.- Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 4. EQUIPO Anillo cortante cilíndrico.- con altura 2.54 cm y el diámetro de 6.35 cm. Deformímetro.- con una sensibilidad de 0.01 mm (0.00254 in). Balanza.- Con aproximación a 0.01 g Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 5. EQUIPO Otros equipos.- Recipientes para horno determinar el contenido de humedad de acuerdo con la norma ASTM D 2216, sierra de alambre, cuchillos, calibrador, cronómetro y agua destilada. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 6. MUESTRA DE ENSAYO  Para este ensayo generalmente se utilizan muestras inalteradas (ASTM D 3550) obtenidas de bloques inalterados grandes fabricados y sellados con parafina en el campo.  El almacenamiento de muestras2: selladas cubierta con parafina. Foto Nº Muestra inalterada deberá ser tal que no pierdan humedad y que no haya evidencia de secamiento parcial ni de contracción de los extremos de la muestra. El tiempo de almacenamiento deberá reducirse al mínimo. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 7. PREPARACIÓN DE LA MUESTRA  Retire la capa de parafina de las paredes del bloque inalterado.  Inserte el anillo cortante en el bloque inalterado y recorte la muestra utilizando un cuchillo o Foto Nº 3: Toma de muestras con el anillo cortante sierra de alambre. en el bloque inalterado. Enrase las caras superior e inferior de la muestra con un cuchillo y llene los vacíos con el material recortado. Foto Nº 4: Enrasado de las superficies planas de la muestra Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 8. PREPARACIÓN DE LA MUESTRA  Extraiga la muestra del anillo cortante y determine la altura inicial (Ho) y el diámetro (D) de la muestra tomando el promedio de por lo menos tres medidas. Foto Nº 5: Medición de la muestra  Calcule el volumen inicial (Vo) de la muestra, en función del diámetro y de la altura inicial de la muestra. Pese el anillo de consolidación y registre su masa (Manillo), con una precisión de 0.01 g. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 9. PREPARACIÓN DE LA MUESTRA  Inserte la muestra en el anillo de consolidación y determine la masa inicial de la muestra (MTo) pesando el conjunto anillo más muestra y restando la masa del anillo.  Obtenga dos o tres Foto Nº 6: Peso del anillo más muestra. determinaciones del contenido de humedad inicial, utilizando el material recortado de la muestra, de acuerdo con la norma ASTM D 2216. Foto Nº 7: Contenido de humedad inicial. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 10. PROCEDIMIENTO  Humedezca las piedras porosas y el papel filtro si el suelo está parcialmente saturado o manténgalas secas si el suelo es expansivo.  Ensamble la caja de consolidación colocando la muestra entre papel filtro y las piedras porosas. Foto Nº 8: Ensamblado de la caja de consolidación. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 11. PROCEDIMIENTO  Coloque la caja de consolidación en el dispositivo de carga poniendo sobre la muestra el disco móvil de acero para uniformizar la carga.  Coloque el deformímetro en el aparato de carga con su dispositivo para sujetarse. Foto Nº 9: Colocación del deformímetro. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 12. PROCEDIMIENTO  Aplique una carga de asentamiento de 5 kPa (100 lb/ft2) para suelos firmes y de 2 ó 3 kPa (alrededor de 50 lb/ft2) para suelos blandos, (para producir estas presiones se deben aplicar cargas de 160 y 80 g respectivamente). Foto Nº 10: Colocación de carga de asentamiento.  Aplicada la carga de asentamiento llene con agua la caja de consolidación y deje que la muestra se sature. Foto Nº 11: Saturación de la muestra. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 13. PROCEDIMIENTO  Coloque cargas sobre el consolidómetro para obtener presiones sobre el suelo de aproximadamente 30.40, 61.80, 123.60, 248.20, 495.40, 991.80 etc. kPa, (para producir estas presiones se deben aplicar cargas de 1, 2, 4, 8, 16, 32 Kg respectivamente). Antes de aplicar un incremento de presion, registre la altura de la muestra. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 14. PROCEDIMIENTO  La duración de cada incremento de carga debe ser de 24 horas. Inmediatamente aplicado cada incremento de carga, ponga en marcha el cronómetro y registre las lecturas de deformación de la muestra a intervalos de 0.1, 0.25, Foto Nº 12: Colocación de cargas sobre el aparato de consolidación. 0.5, 1, 2, 4, 8, 15 y 30 minutos y 1, 2, 4, 8, y 24 horas. Una vez tomada la última lectura con el último incremento de carga, descargue el suelo mediante reducciones de carga. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 15. PROCEDIMIENTO  Para disminuir la expansión durante la descarga, deberá descargarse la muestra hasta la carga establecida de 5 kPa (100 lb/ft2) para suelos firmes y de 2 ó 3 kPa (alrededor de 50 lb/ft2) para suelos blandos. Una vez que se ha concluido el ensayo, quite la carga final y desarme rápidamente la caja de consolidación.  Pese la masa de la muestra extraída de la caja de consolidación (MTf) pesando el conjunto anillo más muestra y restando la masa del anillo, con una precisión de 0.01 g. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 16. PROCEDIMIENTO  Seque la muestra en el horno hasta una masa constante a una temperatura de 110 5 C (230 9 F), pese su masa seca (MSf) y determine el contenido de humedad Foto Nº 13: Secado al horno de la muestra. final, (Wf) de acuerdo con la norma ASTM D 2216. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 17. CÁLCULOS  Calcule el contenido de humedad inicial y final, mediante la siguiente ecuación:  Contenido de humedad inicial: Donde: MHO=Peso del recipiente + muestra húmeda antes del ensayo, g. MS=Peso del recipiente + suelo seco antes del ensayo, g. M recipiente=Peso del recipiente, g. Wo=Contenido de humedad inicial, % Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 18. CÁLCULOS  Contenido de humedad final: Donde: MTf=Peso del anillo + muestra húmeda después del ensayo, g. MSf=Peso del anillo + suelo seco después del ensayo, g. M anillo=Peso del anillo, g. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 19. CÁLCULOS  Calcule la densidad seca inicial de la muestra, como se indica: M Sf d Vo Donde: Ρd=Densidad seca de la muestra, g/cm3 ó Kg/m3. Vo=Volumen inicial de la muestra, cm3 ó m3. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 20. CÁLCULOS  Calcule el volumen de los sólidos, como se indica: M Sf Vs G* w Donde: Vs=Volumen de sólidos, cm 3. G=Gravedad específica de los sólidos. Ρw=Densidad del agua, 1.0 g/cm 3 ó Mg/m3. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 21. CÁLCULOS  Calcular la altura de los sólidos, como sigue: Vs Hs A Donde: Hs=Altura de sólidos, cm (in). A=Área de la muestra, cm2 (in2). Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 22. CÁLCULOS  Si no se conoce el valor de G, la altura de sólidos (Hs) de la probeta, se puede calcular una vez concluido el ensayo, mediante la expresión: M Tf M Sf Hs Ho H A Donde: Ho=Altura inicial de la muestra, cm (in). ΔH=Asentamiento total de la muestra al finalizar el ensayo, cm (in). Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 23. CÁLCULOS  Calcule la relación de vacíos inicial y final, mediante la siguiente ecuación:  Relación de vacíos inicial Ho Hs eo Hs  Relación de vacíos final Hf Hs ef Hs Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 24. CÁLCULOS Por lo tanto, la altura final se determina así: Hf = Ho – ΔH Donde: Ho=Altura inicial de la muestra, cm (in). Hf=Altura final de la muestra para cada incremento de carga, cm (in). Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 25. CÁLCULOS  Calcule el grado de saturación inicial y final, mediante la siguiente ecuación:  Grado de saturación inicial So M To M Sf * 100 A* w * (H o Hs )  Grado de saturación final Sf M Tf M Sf *100 A * w * (H f H s ) Donde: So=Grado de saturación inicial, % Sf=Grado de saturación final, % Ρw=Densidad del agua= 1 g/cm3 Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 26. CÁLCULOS  Calcule la relación de vacíos para cada incremento de carga, mediante la siguiente ecuación: Hc e eo Hs Donde: eo=Relación de vacíos inicial. ΔHc=Variación de asentamiento para cada incremento de carga, cm (in). Hs=Altura de sólidos, cm (in). Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 27. CÁLCULOS  Calcular la altura final para cada incremento de carga, mediante la siguiente ecuación: Donde: ΔHc-1=Variación del asentamiento para un incremento de carga anterior, cm (in) Hfc=Altura final para cada incremento de carga , cm (in) Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 28. CÁLCULOS  Calcular la altura promedio (H) para cada incremento de carga, mediante la siguiente expresión: Ho H fc H 2 Donde: Ho=Altura inicial de la muestra, cm ó mm. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 29. CÁLCULOS  Calcular la longitud promedio de la trayectoria de drenaje (Hm), para cada incremento de carga, mediante la siguiente expresión: H Hm 2 Donde: H=Altura promedio para cada incremento de carga, cm (in). Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 30. Método del Logaritmo del Tiempo  Se grafica en escala semilogarítmica la curva deformación (ordenadas) vs log tiempo (abscisas ). Fig. 5.1 Curva deformación versus Log tiempo Fuente: Norma ASTM D 2435 – 90 Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 31. Método del Logaritmo del Tiempo Procedimiento para determinar el 100, 0 y 50% teórico de consolidación primaria: • Trace una línea recta (C) a través de los puntos que representan las lecturas finales y que exhiben una tendencia recta y una inclinación suave. • Trace una segunda recta tangente a la parte más pronunciada de la curva (D). La intersección entre las dos rectas representa la deformación d100, y tiempo t100, correspondiente al 100% de la consolidación primaria. La consolidación que sobrepase el 100% se define como consolidación secundaria. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 32. Método del Logaritmo del Tiempo Procedimiento para determinar el 100, 0 y 50% teórico de consolidación primaria: • Determine la deformación que representa el 0% de la consolidación primaria, escogiendo un punto de la curva próximo al eje de deformaciones (t1), observe el tiempo que le corresponde, localice sobre la curva el punto cuya abscisa sea cuatro veces la del punto originalmente elegido (t2); la diferencia de ordenadas entre ambos puntos se duplica y éste valor se lleva a partir del segundo punto mencionado, sobre una paralela al eje de ordenadas obteniéndose de este modo un tercer punto sobre el cual se hará pasar una paralela al eje de los tiempos que es la que define el 0% teórico de consolidación. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 33. Método del Logaritmo del Tiempo Procedimiento para determinar el 100, 0 y 50% teórico de consolidación primaria:  Al punto medio del segmento entre el 0 y 100% teóricos de consolidación corresponderá el 50%. El tiempo correspondiente a este porcentaje t50, queda determinado por la abscisa del punto de intersección de la curva y una paralela al eje de los tiempos, trazada por el punto medio del segmento. La determinación de t50 debe hacerse para cada una de las curvas obtenidas en el proceso de consolidación. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 34. Método de la Raíz Cuadrada del Tiempo • Se grafica en escala aritmética la curva deformación (ordenadas) vs raíz cuadrada del tiempo (abscisas ). Fig. 5.2 Curva deformación versus raíz cuadrada del tiempo Fuente: Norma ASTM D 2435 – 90 Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 35. Método de la Raíz Cuadrada del Tiempo Procedimiento para determinar el 0, 90 y 100% de consolidación primaria: • Trace una segunda línea recta (C) tomando dos o más puntos de la línea correspondiente del 0% de consolidación y multiplique las abscisas correspondientes por la constante 1.15. La intersección de ésta con la curva define por su abscisa el tiempo que corresponde al t90. • La deformación al 100% de la consolidación primaria es 1/9 mayor que la diferencia entre las deformaciones a 0 y 90% de consolidación. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 36. Método de la Raíz Cuadrada del Tiempo Procedimiento para determinar el 0, 90 y 100% de consolidación primaria: • Trace una línea recta (A) a través de los puntos que representan las lecturas iniciales que muestra una tendencia de línea recta. Extrapole la línea hasta t = 0 y obtenga la ordenada de deformación que representa el 0% de la consolidación primaria. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 37. Método de la Raíz Cuadrada del Tiempo Calcule el coeficiente de consolidación para cada incremento de carga, como sigue:  Para curva deformación versus log tiempo 0.197 xHm 2 Cv t 50 Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 38. Método de la Raíz Cuadrada del Tiempo Calcule el coeficiente de consolidación para cada incremento de carga, como sigue:  Para curva deformación versus raíz cuadrada del tiempo Donde: Cv= Coeficiente de consolidación, cm2/s. Hm2=Longitud promedio de la 0.197 xHm 2 trayectoria de drenaje para cada Cv t 50 incremento de carga. t50, 90=Tiempo correspondiente al grado de consolidación para 50% ó 90%, s ó min. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 39. Método de la Raíz Cuadrada del Tiempo Grafique la curva relación de vacíos (e) versus presión (P) en escala semilogarítmica. Fig. 5.3 Curva relación de vacios versus presión Fuente: Norma ASTM D 2435 – 90 Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 40. Método de la Raíz Cuadrada del Tiempo • Esta gráfica es conocida como: Curva de compresibilidad, que permite determinar la carga de preconsolidación Pc, en kg/cm2, los índices de compresión, expansión y compresnsibilidad, de la siguiente manera: Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 41. Método de la Raíz Cuadrada del Tiempo Carga de Preconsolidación  Estime el punto máximo de curvatura, en la rama de carga (B).  En el punto (B) dibuje una línea tangente (C), y una línea paralela al eje de las presiones (D), y trace la bisectriz de estas dos rectas (E).  Extienda una tangente que pase por la parte lineal de la curva de carga (curva virgen) (F), hasta la intersección con la bisectriz (E) en el punto (G).  La proyección del punto (G) sobre el eje de las abscisas define la carga de preconsolidación, Pc. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 42. Método de la Raíz Cuadrada del Tiempo Índice de compresión  La pendiente de la curva virgen del tramo de carga determina el índice de compresión Cc, mediante la siguiente expresión: e e1 e2 Cc P log P 2 log P1 Donde: Δe=Variación de la relación de vacíos. ΔP=Variación de los logaritmos de la presión. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 43. Método de la Raíz Cuadrada del Tiempo Índice de expansión  La pendiente de la parte recta del tramo de descarga determina el índice de expansión Ce, mediante la siguientes expresión: e3 e 2 Ce log P 2 log P3 Donde: e3– e2=Variación de la relación de vacíos. P2-P3=Variación de los logaritmos de la presión. Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 44. Método de la Raíz Cuadrada del Tiempo Coeficiente de compresibilidad  La pendiente de la curva virgen del tramo de carga determina el índice de compresibilidad av, mediante la siguiente expresión: e e2 e1 av P P 2 P1 Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 45. Método de la Raíz Cuadrada del Tiempo Determine y registre el coeficiente de permeabilidad (k), mediante la siguiente ecuación: Cvm * av * w k 1 em Por lo tanto Cvm y em, se determinan así: Competencias Técnicas de Laboratorista en Mecánica de Suelos
  • 46. Método de la Raíz Cuadrada del Tiempo Donde: Cv1=Coeficiente de compresibilidad correspondiente a la presión del punto e1. Cv2=Coeficiente de compresibilidad correspondiente a la presión del punto e2. Cvm=Media aritmética entre el coeficiente Cv1 y Cv2. Em=Media aritmética entre e1 y e2. K=Coeficiente de permeabilidad en cm2/ s. Competencias Técnicas de Laboratorista en Mecánica de Suelos