SlideShare una empresa de Scribd logo
1 de 22
Descargar para leer sin conexión
UNIVERSIDAD NACIONAL
DE INGENIERÍA
FACULTAD DE INGENIERÍA MECÁNICA
Departamento Académica de Ciencias Básicas, Humanidades y
Cursos Complementarios
METODOS NUMERICOS (MB –536)
SOLUCION DE SISTEMAS LINEALES
METODOS ITERATIVOS
Profesores:
Garrido Juárez, Rosa
Castro Salguero, Robert
Obregón Ramos, Máximo
2009-1
UNI-FIM-DACIBAHCC Métodos Numéricos - MB536
Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 1
Métodos Iterativos para la Solución de Sistemas Lineales
Sean los Sistemas Lineales bAx = donde:
A Matriz de coeficientes nn×
x Vector de variables 1×n
b Vector independiente (constantes) 1×n
Idea general de los Métodos Iterativos
Convertir el sistema de ecuaciones bAx = en un proceso iterativo )(xcTxx ϕ=+= ,
donde:
T Matriz con dimensiones nn×
c Vector con dimensiones 1×n
)(xϕ Función de iteración matricial
Esquema Iterativo Propuesto
Partiendo de un vector de aproximación inicial )(o
x , se construye una secuencia iterativa
de vectores:
)( )()()1( oo
xcTxx ϕ=+=
)( )1()1()2(
xcTxx ϕ=+=
M
)( )1()1()( −−
=+= kkk
xcTxx ϕ
Forma General
)( )()1( kk
xx ϕ=+
Observación
Si la secuencia de aproximación
)(o
x ,
)1(
x ,
)2(
x , ......,
)(k
x es tal que
cTx k
k
+α=α⇒α=
∞→
)(
lim , entonces α es la solución del sistema bAx = .
Criterios de Parada
Como en todos los procesos iterativos, se necesita de un criterio para finalizar el proceso.
a) Máximo error absoluto:
)1()(
,1
)(
max −
=
−=ε k
i
k
i
ni
k
xx
b) Máximo error relativo:
)(
,1
)(
)(
max k
i
ni
k
k
x
=
ε
=δ
UNI-FIM-DACIBAHCC Métodos Numéricos - MB536
Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 2
c) El error de sucesión de x por x(k)
, x - x(k)
,satisfacen
∞
−
∞
∞
∞
−
−
≤−=ε )1()()()(
1
kkkk
xx
T
T
xx , k=1,2,...
De esta forma, dada una precisión TOL, el vector )(k
x , será escogido como solución
aproximada de la solución exacta, si TOLk
<ε )(
, o dependiendo de, TOLk
<δ )(
.
Método Iterativo de Jacobi
Considere el siguiente sistema Lineal:








=++++
=++++
=++++
nnnnnnn
nn
nn
bxaxaxaxa
bxaxaxaxa
bxaxaxaxa
............
..................................................................
..................................................................
...........
..............
332211
22323222121
11313212111
Suponga niaii ,...,2,1,0 =≠ , despejando el vector x mediante:
)..........(
1
)..........(
1
)..........(
1
)(
11
)(
22
)(
11
)1(
)(
2
)(
323
)(
1212
22
)1(
2
)(
1
)(
313
)(
2121
11
)1(
1
k
nnn
k
n
k
nn
nn
k
n
k
nn
kkk
k
nn
kkk
xaxaxab
a
x
xaxaxab
a
x
xaxaxab
a
x
−−
+
+
+
−−−−=
−−−−=
−−−−=
M
Así mismo, se tiene el sistema iterativo en forma matricial cTXX += , donde:












−−−
−−−
−−−
=
0///
//0/
///0
321
22222232221
11111131112
L
MMMMM
L
L
nnnnnnnnn
n
n
aaaaaa
aaaaaa
aaaaaa
T












=
nnn ab
ab
ab
c
/
/
/
222
111
M
UNI-FIM-DACIBAHCC Métodos Numéricos - MB536
Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 3
Dada un vector inicial )(o
x , el Método de Jacobi consiste en obtener una secuencia )(o
x ,
)1(
x , )2(
x , ......, )(k
x , por medio de la relación recursiva:
cTxx kk
+= − )1()(
. k = 1,2,…
Observe que el proceso iterativo utiliza solamente aproximaciones de la iteración anterior.
Ejemplo 1
Resolver el sistema de ecuaciones Lineales, por el Método de Jacobi con solución inicial
[ ]To
x 6,06,17,0)(
−= y tolerancia 05,0≤ε .
61032
85
7210
321
321
321
=++
−=++
=++
xxx
xxx
xxx
Solución
Separando los elementos diagonal, se tiene:
)326(
10
1
)8(
5
1
)27(
10
1
)(
2
)(
1
)1(
3
)(
3
)(
1
)1(
2
)(
3
)(
2
)1(
1
kkk
kkk
kkk
xxx
xxx
xxx
−−=
−−−=
−−=
+
+
+
Algoritmo elemento a elemento
Arreglamos en forma matricial












−=












−−
−−
−−
=
106
5
8
10
7
0
10
3
10
2
5
10
5
1
10
1
10
20
cT
Solución para k=1 )1()0()1(
xcTxx ⇒+=
( )
( )










−=












−+










−












−−
−−
−−
=
94,0
86,1
96,0
106
5
8
10
7
6,0
6,1
7,0
0
10
3
10
2
5
10
5
1
10
1
10
20
1
1
x
x
UNI-FIM-DACIBAHCC Métodos Numéricos - MB536
Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 4
Cálculo de )1(
ε :
34,094,06,0
26,06,186,1
26,096,07,0
)0(
3
)1(
3
)0(
2
)1(
2
)0(
1
)1(
1
=−=−
=−−=−
=−=−
xx
xx
xx
TOL
xi
i
>===
=
1828,0
86,1
34,0
max
34,0
)1(
3,1
)1(
δ
Para k=2:
TOLX >==⇒










−= 0606,0
98,1
12,0
966,0
98,1
978,0
)2()2(
δ
Para k=3:
TOLX <==⇒










−= 0163,0
9888,1
0324,0
99984,0
9888,1
9994,0
)3()3(
δ










−≈
9984,0
9888,1
9994,0
x Solución con error menor que 0,05.
Condiciones suficientes para la convergencia del Método de Jacobi
Teorema 1
Sean T∈ℜnxn
y c∈ℜn
. Si para alguna norma inducida se verifica que 1<T , entonces:
Existe solamente una y una solución x ∈ℜn
de la ecuación cTxx += .
La sucesión {x(k)
}, generada por la expresión de recurrencia cTxx kk
+= − )1()(
, k = 1,2 ...,
converge para x, cualquiera que sea su punto inicial x(0)
.
El error de sucesión de x por x(k)
, x- x(k)
,satisfacen
)1()()(
1
−
−
−
≤− kkk
xx
T
T
xx , k=1,2,... (*)
Demostración:
La ecuación cTxx += es equivalente a ( ) cxTI =− , que tendrá una y solo una solución si
la matriz ( )TI − es no singular.
Suponga que I-T es singular. Entonces existe 0≠x (en Rn
) tal que (I-T)x= 0, y además
Txx = . Luego, para la norma considerada, se verifica que:
UNI-FIM-DACIBAHCC Métodos Numéricos - MB536
Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 5
xTTxx ≤= ,
concluyéndose inmediatamente que 1≥T . Como este factor es contrario a la hipótesis que
1<T , a la matriz I-T no debe ser singular, como se pretende mostrar
Como xTx = +c y cTxx kk
+= − )1()(
, k∀ se verifica que
( ))1()1()(
)( −−
−=+−+=− kkk
xxTcxTcTxxx , k = 1,2,...
Aplicando sucesivamente esta expresión, se concluye que
( ) ( ) ( ))0()2(2)1()(
xxTxxTxxTxx kkkk
−==−=−=− −−
L , k = 1,2,...
Se puede escribir entonces como )0()(
xxTxx kk
−≤−
Por otro lado, se tiene que
k
veceskvecesk
k
TTTTTTTT =≤∗∗∗=
44 844 7644 844 76
*....**....
Como 1<T , se puede afirmar que el lim k ∞
k
T =0, resultando entonces que
limk ∞
)(k
xx − =0, como se pretende mostrar.
Partiendo de la expresión
)( )1()( −
−=− kk
xxTxx ,
válida para k=1,2,..., vista anteriormente, podemos concluir que
( )
)()()( )1()()(1)()()( −−
−+−=−+−=− kkkkkkk
xxTxxTxxxxTxx
De esta expresión resulta que
)()(
)()(
)1()()(
)1()()()(
−
−
−+−≤
−+−≤−
kkk
kkkk
xxTxxT
xxTxxTxx
que puede ser re-escrita como
)()1( )1()()( −
−≤−− kkk
xxTxxT
Dado que 1<T , se tiene que ( 0>−1 )T , y se obtiene inmediatamente la ecuación (*).
Si nuevamente A∈Rnxn
. Se dice que la matriz A es estrictamente diagonalmente dominante
por líneas cuando se verifica
,∑
≠
1=
>
n
ij
j
ijii aa i = 1,...,n,
o sea, cuando para cada fila de la matriz se verifica que el valor absoluto de los elementos
de la diagonal es superior a la suma de los valores absolutos de todos los demás elementos.
El resultado siguiente proporciona condiciones suficientes para la convergencia del método
de Jacobi. No siempre estas condiciones son necesarias para la convergencia del método de
Jacobi. Esto es, hay casos en que estas condiciones no se verifican y el método converge.
UNI-FIM-DACIBAHCC Métodos Numéricos - MB536
Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 6
Teorema 2
Sea A∈ Rnxn
y b∈Rn
. Sea la matriz A estrictamente diagonal dominante por filas entonces
la sucesión generada por el método de Jacobi converge a una única solución del sistema de
ecuaciones Ax=b, cualquiera que sea el punto inicial x(0)
.
Demostración La expresión de recurrencia del método de Jacobi es:
cTxx kk
+= − )1()(
,
Donde T y c son obtenido a costa de A y b, de acuerdo con las expresiones vistas
anteriormente. Siendo A estrictamente diagonal dominante por filas, se verifica que todos
los elementos de su diagonal no sean nulos. Luego la matriz b y o el vector c están bien
definidos.
Se tiene también, para cualquier i =1,...,n que
1<
1
== ∑∑∑
≠
1=
≠
1=1=
n
ij
j
ij
ii
n
ij
j ii
ij
n
j
ij a
aa
a
t ,
se concluye inmediatamente que
1<∞
T
Aplicando ahora el resultado sobre la convergencia de los métodos iterativos, se puede
afirmar que la ecuación x=Tx+c tiene una y solo una solución x , y también que el método
de Jacobi converge a x , cualquiera que sea el punto inicial x(0)
.
Como corolario de este resultado se tiene que toda matriz cuadrada estrictamente diagonal
dominante por filas es no singular.
De hecho, si en la matriz A los coeficientes del sistema no fueran estrictamente diagonal
dominante por filas no se garantiza la convergencia del método. En tal situación deberá
proceder a una previa manipulación de A de forma que satisfaga las condiciones de
convergencia. Esta manipulación puede pasar por el intercambio de filas de la matriz, o
intercambio de columnas (cambiando el orden de las variables), o realizando otras
operaciones sobre la matriz que mantenga la equivalencia del sistema de ecuaciones.
Ejemplo 2
Sea el sistema de ecuaciones lineales:
33
3
21
21
−=−
=+
xx
xx
13
11
22
11
>=−=
>==
a
a
Las Condiciones de convergencia del teorema 2 no son satisfechas, pero el método de
Jacobi genera una secuencia convergente a la solución exacta [ ]T
x
2
3
2
3= . Si las
condiciones de suficiencia no se satisfacen, no significa que el método no pueda converger.
UNI-FIM-DACIBAHCC Métodos Numéricos - MB536
Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 7
Si analizamos el criterio de la norma de la matriz de iteración
1557.0)( max
1
<=λ=ρ=
<=<=
∞ i
ni
TT , concluimos que converge.
Ejemplo 3
Considere el sistema Lineal:
6860
3225
23
321
321
321
−=++
=++
−=++
xxx
xxx
xxx
6608
6251
4131
860
225
131
=+>=
=+>=
=+>=










=A no cumple 17511.2)( max
1
>=λ=ρ=
<=<=
∞ i
ni
TT
Las condiciones do teorema 2 no son satisfechas. Una Solución posible es permutar las
ecuaciones. Sea en el ejemplo se permuta la primera ecuación con la segunda ecuación:
6608
2113
4225
860
131
225
=+>=
=+>=
=+>=










=A si cumple 17223.0)( max
1
>=λ=ρ=
<=<=
∞ i
ni
TT
Las condiciones pasan a ser satisfechas y la convergencia esta garantizada para cualquier
vector inicial. Este tipo de procedimiento no siempre es posible.
Deducción de la fórmula matricial del Método Jacobi
Decomponga la matriz de coeficientes de A en:
ULDA −−=
Donde:
L – Matriz Triangular Inferior
D – Matriz Diagonal
U – Matriz Triangular Superior
















−
−−
−−−
=
















=
















−−−
−−
−
=
−
− 0000
000
00
0
000
000
000
000
0
00
000
0000
1
223
11312
33
22
11
121
3231
21
L
OMMM
ML
L
L
L
MOMMM
L
L
L
L
MOMMM
L
L
L
nn
n
n
nnnnnn
a
aa
aaa
U
d
d
d
d
D
aaa
aa
a
L
UNI-FIM-DACIBAHCC Métodos Numéricos - MB536
Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 8
cTxx
bDxULDx
xULbDx
xULbDx
bUxLxDx
bxULD
kk
kk
kk
+=
++=
++=
++=
=−−
=−−
+
−−+
+
)()1(
1)(1)1(
)()1(
)(
)(
)(
)(
bDc
ULDT
j
j
1
1
)(
−
−
=
+=
Ejemplo 4
Aplicando el método de Jacobi, obtenga una solución aproximada del sistema de
ecuaciones, con un error máximo absoluto en cada variable de 5x10-3
23
33
324
21
321
321
=+−
=+−
=+−
xx
xxx
xxx










=




















−
−
−
2
3
3
031
311
124
3
2
1
x
x
x
Solución
La matriz de coeficientes del sistema no es estrictamente diagonalmente dominante por
filas. Sin embargo, intercambiando la segunda ecuación con la tercera ecuación se obtiene
el sistema equivalente










=




















−
−
−
3
2
3
311
031
124
3
2
1
x
x
x
cuya matriz de coeficientes ya es estrictamente diagonalmente dominante por filas,
garantizando la convergencia del método de Jacobi.
La expresión de recurrencia del método de Jacobi es cTxx kk
+= − )1()(
, donde
T=
















−
−
0
3
1
3
1
00
3
1
4
1
2
1
0
y
















=
1
3
2
4
3
c
UNI-FIM-DACIBAHCC Métodos Numéricos - MB536
Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 9
Siendo e(k)
el error en la iteración k, es una vez que
4
3
=∞
T
∞
−
∞
−
∞
−=−
−
≤ )1()()1()(
4
3
4
3
)(
3
1
kkkkk
xxxxe
garantizando un error máximo absoluto en cada variable de 5x10-3
en la iteración k y
equivalente a 3−
∞
105≤ xe k)(
. Para lo cual, bastará calcular 3)1()(
1053 −
∞
−
<−= xxx kk
kε ,
que será la condición de parada del método.
Partiendo de la condición inicial nula, se obtuvieron los resultados presentados en la tabla.
De acuerdo con la estimación del error.
Una solución del sistema es x1 = x2 = x3 =1, obteniéndose en la iteración 10 errores máximos
absolutos en todas las variables inferiores a 5x10-4
, pero el error estimado utilizado es, en
este caso, algo conservadora.
k=0
T=
+


























−
−
0
0
0
0
3
1
3
1
00
3
1
4
1
2
1
0
















1
3
2
4
3
=
















=
=
=
0000.11
6667.0
3
2
7500.0
4
3
k=1 31*33 )0()1(
1 ==−=
∞
XXε
T= +
































−
−
1
3
2
4
3
0
3
1
3
1
00
3
1
4
1
2
1
0
















1
3
2
4
3
=
















=
=
=
9722.0
36
35
9167.0
12
11
8333.0
6
5
75.025.0*33 )1()2(
2 ==−=
∞
xxε
Resumen de iteraciones:
k x1 x2 x3 εk
0
1
2
3
4
….
9
10
0
0.7500
0.8333
0.9653
0.9653
………
1.0002
0.9996
0
0.6667
0.9167
0.9444
0.9884
……….
0.9994
1.0000
0
1.0000
0.9722
1.0278
0.9931
……..
1.0006
0.9998
----
3
0.75
0.40
0.13
……
0.6x0-3
0.26x10-3
UNI-FIM-DACIBAHCC Métodos Numéricos - MB536
Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 10
Método Iterativo de Gauss-Seidel
Así como no Método de Jacobi el sistema Lineal bAx = es escrito en la forma equivalente:
cTxx +=
Como en el Método Jacobi, se despeja la diagonal, y el proceso iterativo de actualización es
secuencial, componente por componente. La diferencia es que, en el momento de realizarse
la actualización de las componentes del vector en una determinada iteración, el algoritmo
utiliza las componentes de la iteración ya actualizadas en la iteración actual, con las
restantes no actualizadas de la iteración anterior. Por ejemplo, si se va a calcular la
componente )1( +k
jx de la iteración (k+1), se utiliza en el cálculo las componentes ya
actualizadas )1(
1
)1(
2
)1(
1 ,...,, +
−
++ k
j
kk
xxx además de las componentes no actualizadas de la
iteración anterior )()(
2
)(
1 ,...,, k
n
k
j
k
j xxx ++ .
)..........(
1
)..........(
1
)..........(
1
)..........(
1
)1(
11
)1(
33
)1(
22
)1(
11
)1(
)(
2
)(
434
)1(
232
)1(
1313
22
)1(
3
)(
2
)(
424
)(
323
)1(
1212
22
)1(
2
)(
1
)(
414
)(
313
)(
2121
11
)1(
1
+
−−
++++
+++
++
+
−−−−=
−−−−−=
−−−−=
−−−−−=
k
nnn
k
n
k
n
k
nn
nn
k
n
k
nn
kkkk
k
nn
kkkk
k
nn
kkkk
xaxaxaxab
a
x
xaxaxaxab
a
x
xaxaxaxab
a
x
xaxaxaxab
a
x
M
Ejemplo 5
Resolver el sistema lineal utilizando el Método Iterativo de Gauss-Seidel, con To
x ]0,0,0[=
y tolerancia 2
105 −
×≤TOL .
0633
643
55
321
321
321
=++
=++
=++
xxx
xxx
xxx
Solución
El proceso iterativo es dado por:
)330(
6
1
)36(
4
1
)5(
5
1
)1(
2
)1(
1
)1(
3
)(
3
)1(
1
)1(
2
)(
3
)(
2
)1(
1
+++
++
+
−−=
−−=
−−=
kkk
kkk
kkk
xxx
xxx
xxx
UNI-FIM-DACIBAHCC Métodos Numéricos - MB536
Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 11
Para k=1 y To
x ]0,0,0[=










−
=
875,0
75,0
1
1
x
Cálculo de )1(
ε :
ε>==
ε
=δ
=−−=−
=−=−
=−=−
=
=
0,1
0,1
0,1
max
max
875,00875,0
75,00,075,0
0,100,1
)1(
3,1
)1(
3,1)1(
)0(
3
)1(
3
)0(
2
)1(
2
)0(
1
)1(
1
i
i
i
i
x
xx
xx
xx
Para k=2 y ( ) T
X ]875,0,75,0,0,1[1
−= :










−
=
9875,0
95,0
025,1
)2(
x
1125,0)875,0(9875,0
20,075,095,0
025,00,1025,1
)1(
3
)2(
3
)1(
2
)2(
2
)1(
1
)2(
1
=−−−=−
=−=−
=−=−
xx
xx
xx
TOL
xi
i
i
i
>==
ε
=δ
=
=
1957,0
025,1
20,0
max
max
)2(
3,1
)2(
3,1)2(
Para k=3 y T
x ]9875,0,95,0,0025,1[)2(
−= :
UNI-FIM-DACIBAHCC Métodos Numéricos - MB536
Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 12
TOL
x
xx
xx
xx
x
i
i
i
i
<===
=−−−=−
=−=−
=−=−










−
=
=
=
0383,0
075,1
0412,0
max
max
0119,0)9875,0(9994,0
0412,095,09912,0
0175,0025,1075,1
9994,0
9912,0
0075,1
)3(
3,1
)3(
3,1)3(
)2(
3
)3(
3
)2(
2
)3(
2
)2(
1
)3(
1
)3(
ε
δ










−
=
9994,0
9912,0
0075,1
x es solución con menor error que 0,05.
Deducción de la fórmula matricial del Método Gauss-Seidel
Descomposición de la matriz de coeficientes A en:
UDLA ++=
Donde:
L – Matriz Triangular Inferior
D – Matriz Diagonal
U – Matriz Triangular Superior
















−
−−
−−−
=
















=
















−−−
−−
−
=
−
− 0000
000
00
0
000
000
000
000
0
00
000
0000
1
223
11312
33
22
11
121
3231
21
L
OMMM
ML
L
L
L
MOMMM
L
L
L
L
MOMMM
L
L
L
nn
n
n
nnnnnn
a
aa
aaa
U
d
d
d
d
D
aaa
aa
a
L
UxDLxDbDx
xULbDx
bUxLxDx
bxULD
111
)(
)(
−−−
++=
++=
=−−
=−−
( ) ( )
cTxx
bLDUxLDx
UxDLxDbDx
kk
kk
kkk
+=
−+−=
++=
+
−−+
−+−−+
)()1(
1)(1)1(
)(1)1(11)1(
UNI-FIM-DACIBAHCC Métodos Numéricos - MB536
Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 13
Interpretación Geométrica del Caso 22×
Considere o Sistema Lineal:
33
3
21
21
−=−
=+
xx
xx
El esquema iterativo utilizando por el Método de Gauss-Seidel es dado por:
)33(
3
1
)3(
1
1
)1(
1
)1(
2
)(
2
)1(
1
++
+
+=
−=
kk
kk
xx
xx
Para k=0 y T
x ]00[
)0(
= :
2
3
)1(
2
)1(
1
=
=
x
x
Para k=1 y T
x ]23[
)1(
= :
3
4
1
)2(
2
)2(
1
=
=
x
x
Para k=2 y T
x ]
3
41[
)2(
= :
9
14
3
5
)3(
2
)3(
1
=
=
x
x
La solución exacta es dada por: T
x ]
2
3
2
3[= .
Este proceso iterativo hasta la convergencia puede ser interpretado geométricamente en un
gráfico con una componente 1x en la abscisa y una componente 2x en la ordenada.
-5 -4 -3 -2 -1 0 1 2 3 4 5
-2
-1
0
1
2
3
4
5
6
7
8
x2
x1(0,0) (0,3)
(3,2)(1,2)
(1,4/3)
(4/3,5/3)
x1+x2=3
x1-3x2=-3
UNI-FIM-DACIBAHCC Métodos Numéricos - MB536
Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 14
Observación 1: Se verifica por el gráfico anterior que la secuencia )(o
x , )1(
x , )2(
x , ......,
)(k
x está convergiendo para la solución exacta T
x ]
2
3
2
3[= .
Observación 2: La secuencia generada por el Método de Gauss-Seidel depende
fuertemente de la posición de las ecuaciones. Esta observación puede ser mejor entendida
modificando el orden de las ecuaciones del ejemplo anterior.
Considere el mismo sistema lineal anterior, pero modificando el orden de las ecuaciones:
3
33
21
21
=+
−=−
xx
xx
El esquema iterativo utilizando el Método de Gauss-Seidel es dado por:
)3(
)33(
)1(
1
)1(
2
)(
2
)1(
1
++
+
−=
+−=
kk
kk
xx
xx
Para k=0 y T
x ]00[
)0(
= :
6
3
)1(
2
)1(
1
−=
−=
x
x
Para k=1 y T
x ]63[
)1(
−−= :
12
15
)1(
2
)1(
1
−=
=
x
x
Método de SobreRelajación (SOR)
Se han realizado varios intentos de incrementar la velocidad de convergencia de la iteración
de Jacobi y Gauss-Seidel. Uno de ellos es el de relajación sucesiva.
Este método se basa en la idea que una vez producido un nuevo valor (k)
ix~ mediante el
método de Gauss-Seidel, puede lograrse una mejor aproximación formando un promedio
ponderado de los valores actual y anterior, de esta manera quedaría:
21
~)1( )()1()(
<ω<
ω+ω−= − k
i
k
i
k
i xxx
-5 -4 -3 -2 -1 0 1 2 3 4 5
-2
-1
0
1
2
3
4
5
6
7
8
x
(0,0)
(0,-3)
(-3,6) ......(6,15)
x2
x1
x1+x2=3
x1-3x2= -3






−−
ω
+ω−= ∑ ∑
−
= +=
−−
1
1 1
)1()()1()(
)1(:generalEn
i
j
n
ij
k
jij
k
jiji
ii
k
i
k
i xaxab
a
xx
UNI-FIM-DACIBAHCC Métodos Numéricos - MB536
Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 15
En forma matricial
x(k)
=Tωωωωx(k-1)
+cωωωω
( ) ( ){ }ωUDω1ωLDT
1
ω +−−=
−
( ) bωωLDc
1
ω
−
−=
Teorema de Stein-Rosemberg : Si aij≤0 i≠j
aii>0 i = 1,2,...,n
Entonces se satisface una y solamente una de las siguientes afirmaciones:
x(k)
=Tx(k-1)
+c y se puede demostrar que son convergentes cuando ρρρρ(T)<1.
a) 0<ρρρρ(Tg)<ρρρρ(Tj)<1
b) 1<ρρρρ(Tj)<ρρρρ(Tg)
c) ρρρρ(Tj)=ρρρρ(Tj)=0
d) ρρρρ(Tj)=ρρρρ(Tg)=1
Teorema : Si aii≠0 para i=1,2,...,n, entonces ρ(Tω)≥|ω-1|. Esto implica que ρ(Tω)<1 sólo si
0<ω<2, donde:
Teorema : (Ostrwki-Reich) Si A es una matriz definida positiva y 0<ωωωω<2, entonces el
método SOR converge para cualquier elección de la aproximación inicial x(0)
del vector
solución.
Teorema : Si A es definida positiva y tridiagonal, entonces ρρρρ(Tg)=[ρρρρ(Tj)]2
<1, y la elección
óptima de ω para el método SOR es:
Ejemplo 6
Sea Ax = b un sistema de ecuaciones lineales.
a)señalar tres criterios de convergencia que permitan resolverlo por Gauss - Seidel.
b)Dado
x x x
x x x
x x x
1 2 3
1 2 3
1 2 3
8 10
7 9
9 11
+ + =
+ + =
+ + =
1)(y
)]([11
2
2
−=
−+
= ωωρ
ρ
ω T
Tj
UNI-FIM-DACIBAHCC Métodos Numéricos - MB536
Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 16
realice las transformaciones más adecuadas que permitan resolverlo por Gauss - Seidel,
iniciando con ( 0 , 0 , 0 ). Realizar tres iteraciones.
c)Calcular una cota del error obtenido.
∞
−
−
≤ )1()0(
1
xx
T
T
error
n
Solución
a) El método de Gauss converge si:
i)La matriz A es diagonal - dominante. Esto es:
a aii ij
j
j i
n
>
=
≠
∑1
ii)La matriz A es simétrica y definida positiva.
iii)El radio espectral de la matriz iterativa T es menor que 1
propiosvalores:;max=)(donde1)( i
i
λλρρ iTT <
b)
A pivoteo A=










→ → =




















1 8 1
1 1 7
9 1 1
9 1 1
1 8 1
1 1 7
) )
; b =
11
10
9
Ahora la matriz es diagonal - dominante
7
9
8
10
9
11
21
3
31
2
32
1
xx
x
xx
x
xx
x
−−
=
−−
=
−−
=
k x1 x2 x3
0 0 0 0
1 1.222 1.097 0.954
2 0.994 1.007 1.000
3 0.999 1.000 1.000
UNI-FIM-DACIBAHCC Métodos Numéricos - MB536
Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 17
c)Cota de error:
∑
≠
∞
−
−
≤
n
ij
1j= ii
ij)1()0(
a
a
max=donde;
1
Txx
T
T
E
n
{ } 286.0286.0,25.0,225.0max ==T
( )E ≤
−
=∞
( . )
.
. , . , . .
0 286
1 0 286
1222 1097 0 954 0 04
3
∴ cota de error = 0.04
Ejemplo 7
Sea el sistema A x = b :
a) Para k=-1, es la matriz A definida positiva?
b) Para que valores de k el sistema converge, al usar el método de Gauss-Seidel?
c) Hacer 03 iteraciones de Gauss-Seidel para k=-3
Solución
a) A es definida positiva si:
[ ] nulo.noxtodopara02)(2
31
12
nulonocolumnavectortodopara,0
2
2
2
21
2
1
2
1
21 >+−+=











−
−
>
xxxx
x
x
xx
xAxxT
b)
6k6-:quesiemprecumpleseEsto
1)(T:cuandoiaconvergencExiste
6/)(6/0
))(
6
(
6/0
2/0
00
0
3/16/1
02/1
3/16/1
02/1
)(
31
02
)(
)(
G
max21
1
1
<<
<
−==−==
−−−=−






−
−
=




 −






−
=






=−






−
=−
−=
−
−
ρ
λρλλ
λλλ
kTk
k
ITDet
k
kk
T
LD
LD
ULDT
G
G
G
G






=











− 9
6
31
2
2
1
x
xk
UNI-FIM-DACIBAHCC Métodos Numéricos - MB536
Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 18
3/3
5.13
-3)(kSeidel-GaussParac)
)1(
1
)1(
2
)(
2
)1(
1
++
+
+=
+=
=
nn
nn
xx
xx
n x1 x2
0 0 0
1 3 4
2 9 6
3 12 7
4 13.5 7.5
5 14.25 7.75
6 14.625 7.875
7 14.8125 7.9375
Ejemplo 8
Sea el método iterativo de Gauss_ Seidel






6
2
+











00
−0
=











3
02
2
1
1+
2
1+
1
)(
)(
)(
)(
k
k
k
k
x
xk
x
x
k
a) Para que valores de k el método converge.
b) Realice tres iteraciones eligiendo k=1. Usando como vector inicial (0,0)t
c) Para k=1, encuentre el woptimo.
d) Realice 02 iteraciones partiendo como vector inicial el último resultado obtenido en b).
Comente sus resultados. Usar SOR.
Solución
a)






−
+










 −
=

















−
+










 −






−
=





+
+
+
+
3/2
1
6/0
2/0
6
2
2
03
6
1
00
0
2
03
6
1
)(
2
)(
1
2)1(
2
)1(
1
)(
2
)(
1
)1(
2
)1(
1
kx
x
k
k
x
x
kx
xk
kx
x
k
k
k
k
k
k
k
k
0)6/( 2
=−−=− λλλ kITgs ( ) 6/max 2
kTgs == λρ <1 66 <<− k
b) 





+










 −
=





+
+
3/5
1
6/10
2/10
)(
2
)(
1
)1(
2
)1(
1
k
k
k
k
x
x
x
x
UNI-FIM-DACIBAHCC Métodos Numéricos - MB536
Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 19






=





=





+










 −
=











=





=





+










 −
=





9444.1
1667.0
18/35
6/1
3/5
1
3/5
1
6/10
2/10
667.1
1
3/5
1
3/5
1
0
0
6/10
2/10
)2(
2
)2(
1
)1(
2
)1(
1
x
x
x
x
c) 6/1)( =gsTρ
)(11
2
gs
opt
T
w
ρ−+
= = 1.0455
d)
)6(
3
)1(
)2(
2
)1(
)1(
1
)(
2
)1(
2
)(
2
)(
1
)1(
1
++
+
−+−=
−+−=
kkk
kkk
x
w
xwx
x
w
xwx






=











=





9997.1
0016.0
9951.1
0215.0
)2(
2
)2(
1
)1(
2
)1(
1
x
x
x
x
Se observa claramente la convergencia.
Problemas Propuestos
P1
Se considera el sistema lineal:










+
−
=




















ba
ba
z
y
x
ab
bab
ba
0
0
0
a) Calcular la matriz de la iteración de Jacobi y obtener su polinomio característico y a
partir de él los valores propios. ¿Qué relación debe existir entre los coeficientes a y
b para que el método de Jacobi sea convergente?
b) Tomando a=3 y b=2, calcular 03 iteraciones utilizando el método de Jacobi con
vector inicial nulo.
c) Cuántas iteraciones se necesitarían para calcular la solución aproximada con 3 c.d.e.
UNI-FIM-DACIBAHCC Métodos Numéricos - MB536
Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 20
P2
a) Evalué el valor de α para que el método de Gauss Seidel converja






−
=





+−
−+
4
5
21
13
x
α
α
Donde α es un parámetro real.
b) Si α =1 y x(0)
= [0 0]t
encuentre x(3)
usando Gauss-Seidel.
c) Estime el máximo error relativo cometido en esta iteración.
P3
Un método iterativo poco usual es el método de Richardson, que establece que:
bxAIx kk
+−=+ )()1(
)(
Donde “I” es la matriz identidad.
a) Para el sistema:






=











− 9
6
11
1
2
1
x
xk
Obtener los valores “k” de tal manera que el radio espectral de Richardson ( )RTρ
sea de 0.9.
b) Con el valor de “k” obtenido en a) realice 03 iteraciones partiendo de ( )T
0,0 ,y
estime el error.
P4
Sea el método iterativo de Gauss_ Seidel






6
2
+











00
−0
=











3
02
2
1
1+
2
1+
1
)(
)(
)(
)(
k
k
k
k
x
xk
x
x
k
a) Para que valores de k el método converge.
b) Realice tres iteraciones eligiendo k=1. Usando como vector inicial (0,0)t
c) Para k=1, encuentre el ωóptimo.
d)Realice 02 iteraciones partiendo como vector inicial el último resultado obtenido
en b). Comente sus resultados.
P5
La distribución de esfuerzos en una barra longitudinal depende de los coeficientes
α y β y pueden aproximarse resolviendo el siguiente sistema de ecuaciones
lineales:










=




















−
−−
−
100
100
100
0
0
3
2
1
σ
σ
σ
αβ
βαβ
βα
a) Encuentre una relación entre α y β para todos los casos de convergencia del
método de Jacobi.
b) Analice la convergencia para el método de Gauss-Seidel, con 2=α y 1=β
UNI-FIM-DACIBAHCC Métodos Numéricos - MB536
Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 21
c) Para 4=α y 1=β determine el ω óptimo y realice 03 iteraciones a partir
de (0, 0, 0)T
.
P6
Un móvil de masa 1m se desplaza en el plano YX − con dos tripulantes a bordo de
masas 2m y 3m
, respectivamente; se sabe que la trayectoria obedece a la siguiente
función:
32
2
1 memxmy x
++=
Experimentalmente se tomaron tres puntos de dicha trayectoria:
x 1 1.5 2
y 0.733 1.464 2.513
a) Plantee el sistema de ecuaciones para obtener las masas.
b) Analice la convergencia del sistema para el método de Jacobi.
c) Si existe convergencia realice 03 iteraciones de Jacobi partiendo de un vector nulo y
muestre el error, en caso contrario resuelva el sistema usando eliminación Gaussiana
con pivoteo total.

Más contenido relacionado

La actualidad más candente

Cuadratura de gauss
Cuadratura de gaussCuadratura de gauss
Cuadratura de gaussTensor
 
Aplicaciones La Transformada De Laplace
Aplicaciones La Transformada De LaplaceAplicaciones La Transformada De Laplace
Aplicaciones La Transformada De LaplaceKJEP
 
Soluciones de sistema de ecuaciones en Matlab
Soluciones de sistema de ecuaciones en MatlabSoluciones de sistema de ecuaciones en Matlab
Soluciones de sistema de ecuaciones en MatlabHugo Piure
 
METODOS NUMERICOS para ingenieria -Chapra
METODOS NUMERICOS para ingenieria -ChapraMETODOS NUMERICOS para ingenieria -Chapra
METODOS NUMERICOS para ingenieria -ChapraAdriana Oleas
 
Ejercicios resueltos(f.vectoriales)(1)
Ejercicios resueltos(f.vectoriales)(1)Ejercicios resueltos(f.vectoriales)(1)
Ejercicios resueltos(f.vectoriales)(1)ratix
 
Metodos numericos 5
Metodos numericos 5Metodos numericos 5
Metodos numericos 5monica
 
Métodos numéricos método de la secante
Métodos numéricos   método de la secanteMétodos numéricos   método de la secante
Métodos numéricos método de la secanteHELIMARIANO1
 
Aplicacion de las ecuaciones diferenciales de orden superior
Aplicacion de las ecuaciones diferenciales de orden superiorAplicacion de las ecuaciones diferenciales de orden superior
Aplicacion de las ecuaciones diferenciales de orden superiorIsai Esparza Agustin
 
El método de la secante y secante modificado
El método de la secante y secante modificadoEl método de la secante y secante modificado
El método de la secante y secante modificadoMoises Costa
 
Solución Numérica de Ecuaciones no Lineales:Métodos cerrados
Solución Numérica de Ecuaciones no Lineales:Métodos cerradosSolución Numérica de Ecuaciones no Lineales:Métodos cerrados
Solución Numérica de Ecuaciones no Lineales:Métodos cerradosPervys Rengifo
 
Método de gauss jordan
Método de gauss jordanMétodo de gauss jordan
Método de gauss jordandjelektro
 
Solucionario ecuaciones1
Solucionario ecuaciones1Solucionario ecuaciones1
Solucionario ecuaciones1ERICK CONDE
 
Ejemplo del Método de Falsa Posición
Ejemplo del Método de Falsa PosiciónEjemplo del Método de Falsa Posición
Ejemplo del Método de Falsa PosiciónDaniela Medina
 
Solucionario de dennis g zill ecuaciones diferenciales
Solucionario de dennis g zill   ecuaciones diferencialesSolucionario de dennis g zill   ecuaciones diferenciales
Solucionario de dennis g zill ecuaciones diferencialesjhonpablo8830
 
Métodos numéricos para ecuaciones diferenciales ordinarias
Métodos numéricos para ecuaciones diferenciales ordinariasMétodos numéricos para ecuaciones diferenciales ordinarias
Métodos numéricos para ecuaciones diferenciales ordinariasJaime Martínez Verdú
 

La actualidad más candente (20)

Newton Raphson-ejercicios resueltos.
Newton Raphson-ejercicios resueltos.Newton Raphson-ejercicios resueltos.
Newton Raphson-ejercicios resueltos.
 
Cuadratura de gauss
Cuadratura de gaussCuadratura de gauss
Cuadratura de gauss
 
Aplicaciones La Transformada De Laplace
Aplicaciones La Transformada De LaplaceAplicaciones La Transformada De Laplace
Aplicaciones La Transformada De Laplace
 
Euler y runge kutta
Euler y runge kuttaEuler y runge kutta
Euler y runge kutta
 
Soluciones de sistema de ecuaciones en Matlab
Soluciones de sistema de ecuaciones en MatlabSoluciones de sistema de ecuaciones en Matlab
Soluciones de sistema de ecuaciones en Matlab
 
METODOS NUMERICOS para ingenieria -Chapra
METODOS NUMERICOS para ingenieria -ChapraMETODOS NUMERICOS para ingenieria -Chapra
METODOS NUMERICOS para ingenieria -Chapra
 
Ejercicios resueltos(f.vectoriales)(1)
Ejercicios resueltos(f.vectoriales)(1)Ejercicios resueltos(f.vectoriales)(1)
Ejercicios resueltos(f.vectoriales)(1)
 
Metodos numericos 5
Metodos numericos 5Metodos numericos 5
Metodos numericos 5
 
Métodos numéricos método de la secante
Métodos numéricos   método de la secanteMétodos numéricos   método de la secante
Métodos numéricos método de la secante
 
Aplicacion de las ecuaciones diferenciales de orden superior
Aplicacion de las ecuaciones diferenciales de orden superiorAplicacion de las ecuaciones diferenciales de orden superior
Aplicacion de las ecuaciones diferenciales de orden superior
 
El método de la secante y secante modificado
El método de la secante y secante modificadoEl método de la secante y secante modificado
El método de la secante y secante modificado
 
Solución Numérica de Ecuaciones no Lineales:Métodos cerrados
Solución Numérica de Ecuaciones no Lineales:Métodos cerradosSolución Numérica de Ecuaciones no Lineales:Métodos cerrados
Solución Numérica de Ecuaciones no Lineales:Métodos cerrados
 
Método de gauss jordan
Método de gauss jordanMétodo de gauss jordan
Método de gauss jordan
 
unidad 4 ecuaciones diferenciales
 unidad 4 ecuaciones diferenciales unidad 4 ecuaciones diferenciales
unidad 4 ecuaciones diferenciales
 
Método gauss seidel
Método gauss seidelMétodo gauss seidel
Método gauss seidel
 
Solucionario ecuaciones1
Solucionario ecuaciones1Solucionario ecuaciones1
Solucionario ecuaciones1
 
Ejemplo del Método de Falsa Posición
Ejemplo del Método de Falsa PosiciónEjemplo del Método de Falsa Posición
Ejemplo del Método de Falsa Posición
 
Solucionario de dennis g zill ecuaciones diferenciales
Solucionario de dennis g zill   ecuaciones diferencialesSolucionario de dennis g zill   ecuaciones diferenciales
Solucionario de dennis g zill ecuaciones diferenciales
 
Metodo de cholesky
Metodo de choleskyMetodo de cholesky
Metodo de cholesky
 
Métodos numéricos para ecuaciones diferenciales ordinarias
Métodos numéricos para ecuaciones diferenciales ordinariasMétodos numéricos para ecuaciones diferenciales ordinarias
Métodos numéricos para ecuaciones diferenciales ordinarias
 

Similar a Ejercicios jacobi

Mapa mental analisis numerico
Mapa mental analisis numericoMapa mental analisis numerico
Mapa mental analisis numericoSergio Alarcón
 
Analisis Numerico... Jose Manzanilla
Analisis Numerico... Jose Manzanilla Analisis Numerico... Jose Manzanilla
Analisis Numerico... Jose Manzanilla jgmc251
 
Analisis numerico
Analisis numericoAnalisis numerico
Analisis numericocesarjmm1
 
Solución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones linealesSolución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones linealesdarwinxvb
 
Métodos de eliminación gaussiana
Métodos de eliminación gaussianaMétodos de eliminación gaussiana
Métodos de eliminación gaussianawilmerleon67
 
Análisis numérico (josé monsalve). (autoguardado)
Análisis numérico (josé monsalve). (autoguardado)Análisis numérico (josé monsalve). (autoguardado)
Análisis numérico (josé monsalve). (autoguardado)José Monsalve
 
Análisis Numerico
Análisis NumericoAnálisis Numerico
Análisis Numericojulio perez
 
Sistema de ecuaciones lineales
Sistema de ecuaciones linealesSistema de ecuaciones lineales
Sistema de ecuaciones linealesyeliadan_16
 
7. sistemas de ecuaciones y aplicaciones
7. sistemas de ecuaciones y aplicaciones7. sistemas de ecuaciones y aplicaciones
7. sistemas de ecuaciones y aplicacionesJacquelineSantos10
 
Sistemas de ecuaciones
Sistemas de ecuacionesSistemas de ecuaciones
Sistemas de ecuacionesmaiden_nono
 
sistemas de ecuaciones lineales
sistemas de ecuaciones linealessistemas de ecuaciones lineales
sistemas de ecuaciones linealesIzra Rasta
 
Metodos numericos capitulo 2
Metodos numericos capitulo 2Metodos numericos capitulo 2
Metodos numericos capitulo 2Juan Timoteo Cori
 
Solución de Sistemas de Ecuaciones Lineales Analisis numerico
    Solución de Sistemas de Ecuaciones Lineales   Analisis numerico    Solución de Sistemas de Ecuaciones Lineales   Analisis numerico
Solución de Sistemas de Ecuaciones Lineales Analisis numericolmpd124
 
INVESTIGACION “SOLUCION DE SISTEMAS DE ECUACIONES: METODO DE JACOBY”
INVESTIGACION “SOLUCION DE SISTEMAS DE ECUACIONES: METODO DE JACOBY”INVESTIGACION “SOLUCION DE SISTEMAS DE ECUACIONES: METODO DE JACOBY”
INVESTIGACION “SOLUCION DE SISTEMAS DE ECUACIONES: METODO DE JACOBY”Anel Sosa
 

Similar a Ejercicios jacobi (20)

Mapa mental analisis numerico
Mapa mental analisis numericoMapa mental analisis numerico
Mapa mental analisis numerico
 
Metodos de resolucion
Metodos de resolucionMetodos de resolucion
Metodos de resolucion
 
Analisis Numerico... Jose Manzanilla
Analisis Numerico... Jose Manzanilla Analisis Numerico... Jose Manzanilla
Analisis Numerico... Jose Manzanilla
 
Analisis numerico
Analisis numericoAnalisis numerico
Analisis numerico
 
Solución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones linealesSolución de sistemas de ecuaciones lineales
Solución de sistemas de ecuaciones lineales
 
Analismetodos
AnalismetodosAnalismetodos
Analismetodos
 
Analismetodos
AnalismetodosAnalismetodos
Analismetodos
 
Analismetodos
AnalismetodosAnalismetodos
Analismetodos
 
Métodos de eliminación gaussiana
Métodos de eliminación gaussianaMétodos de eliminación gaussiana
Métodos de eliminación gaussiana
 
Análisis numérico (josé monsalve). (autoguardado)
Análisis numérico (josé monsalve). (autoguardado)Análisis numérico (josé monsalve). (autoguardado)
Análisis numérico (josé monsalve). (autoguardado)
 
Análisis Numerico
Análisis NumericoAnálisis Numerico
Análisis Numerico
 
Sistema de ecuaciones lineales
Sistema de ecuaciones linealesSistema de ecuaciones lineales
Sistema de ecuaciones lineales
 
7. sistemas de ecuaciones y aplicaciones
7. sistemas de ecuaciones y aplicaciones7. sistemas de ecuaciones y aplicaciones
7. sistemas de ecuaciones y aplicaciones
 
Sistemas de ecuaciones
Sistemas de ecuacionesSistemas de ecuaciones
Sistemas de ecuaciones
 
sistemas de ecuaciones lineales
sistemas de ecuaciones linealessistemas de ecuaciones lineales
sistemas de ecuaciones lineales
 
Metodos numericos capitulo 2
Metodos numericos capitulo 2Metodos numericos capitulo 2
Metodos numericos capitulo 2
 
Clase8 minisem
Clase8 minisemClase8 minisem
Clase8 minisem
 
Solución de Sistemas de Ecuaciones Lineales Analisis numerico
    Solución de Sistemas de Ecuaciones Lineales   Analisis numerico    Solución de Sistemas de Ecuaciones Lineales   Analisis numerico
Solución de Sistemas de Ecuaciones Lineales Analisis numerico
 
INVESTIGACION “SOLUCION DE SISTEMAS DE ECUACIONES: METODO DE JACOBY”
INVESTIGACION “SOLUCION DE SISTEMAS DE ECUACIONES: METODO DE JACOBY”INVESTIGACION “SOLUCION DE SISTEMAS DE ECUACIONES: METODO DE JACOBY”
INVESTIGACION “SOLUCION DE SISTEMAS DE ECUACIONES: METODO DE JACOBY”
 
Sistema de ecuaciones lineales
Sistema de ecuaciones linealesSistema de ecuaciones lineales
Sistema de ecuaciones lineales
 

Ejercicios jacobi

  • 1. UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA MECÁNICA Departamento Académica de Ciencias Básicas, Humanidades y Cursos Complementarios METODOS NUMERICOS (MB –536) SOLUCION DE SISTEMAS LINEALES METODOS ITERATIVOS Profesores: Garrido Juárez, Rosa Castro Salguero, Robert Obregón Ramos, Máximo 2009-1
  • 2. UNI-FIM-DACIBAHCC Métodos Numéricos - MB536 Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 1 Métodos Iterativos para la Solución de Sistemas Lineales Sean los Sistemas Lineales bAx = donde: A Matriz de coeficientes nn× x Vector de variables 1×n b Vector independiente (constantes) 1×n Idea general de los Métodos Iterativos Convertir el sistema de ecuaciones bAx = en un proceso iterativo )(xcTxx ϕ=+= , donde: T Matriz con dimensiones nn× c Vector con dimensiones 1×n )(xϕ Función de iteración matricial Esquema Iterativo Propuesto Partiendo de un vector de aproximación inicial )(o x , se construye una secuencia iterativa de vectores: )( )()()1( oo xcTxx ϕ=+= )( )1()1()2( xcTxx ϕ=+= M )( )1()1()( −− =+= kkk xcTxx ϕ Forma General )( )()1( kk xx ϕ=+ Observación Si la secuencia de aproximación )(o x , )1( x , )2( x , ......, )(k x es tal que cTx k k +α=α⇒α= ∞→ )( lim , entonces α es la solución del sistema bAx = . Criterios de Parada Como en todos los procesos iterativos, se necesita de un criterio para finalizar el proceso. a) Máximo error absoluto: )1()( ,1 )( max − = −=ε k i k i ni k xx b) Máximo error relativo: )( ,1 )( )( max k i ni k k x = ε =δ
  • 3. UNI-FIM-DACIBAHCC Métodos Numéricos - MB536 Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 2 c) El error de sucesión de x por x(k) , x - x(k) ,satisfacen ∞ − ∞ ∞ ∞ − − ≤−=ε )1()()()( 1 kkkk xx T T xx , k=1,2,... De esta forma, dada una precisión TOL, el vector )(k x , será escogido como solución aproximada de la solución exacta, si TOLk <ε )( , o dependiendo de, TOLk <δ )( . Método Iterativo de Jacobi Considere el siguiente sistema Lineal:         =++++ =++++ =++++ nnnnnnn nn nn bxaxaxaxa bxaxaxaxa bxaxaxaxa ............ .................................................................. .................................................................. ........... .............. 332211 22323222121 11313212111 Suponga niaii ,...,2,1,0 =≠ , despejando el vector x mediante: )..........( 1 )..........( 1 )..........( 1 )( 11 )( 22 )( 11 )1( )( 2 )( 323 )( 1212 22 )1( 2 )( 1 )( 313 )( 2121 11 )1( 1 k nnn k n k nn nn k n k nn kkk k nn kkk xaxaxab a x xaxaxab a x xaxaxab a x −− + + + −−−−= −−−−= −−−−= M Así mismo, se tiene el sistema iterativo en forma matricial cTXX += , donde:             −−− −−− −−− = 0/// //0/ ///0 321 22222232221 11111131112 L MMMMM L L nnnnnnnnn n n aaaaaa aaaaaa aaaaaa T             = nnn ab ab ab c / / / 222 111 M
  • 4. UNI-FIM-DACIBAHCC Métodos Numéricos - MB536 Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 3 Dada un vector inicial )(o x , el Método de Jacobi consiste en obtener una secuencia )(o x , )1( x , )2( x , ......, )(k x , por medio de la relación recursiva: cTxx kk += − )1()( . k = 1,2,… Observe que el proceso iterativo utiliza solamente aproximaciones de la iteración anterior. Ejemplo 1 Resolver el sistema de ecuaciones Lineales, por el Método de Jacobi con solución inicial [ ]To x 6,06,17,0)( −= y tolerancia 05,0≤ε . 61032 85 7210 321 321 321 =++ −=++ =++ xxx xxx xxx Solución Separando los elementos diagonal, se tiene: )326( 10 1 )8( 5 1 )27( 10 1 )( 2 )( 1 )1( 3 )( 3 )( 1 )1( 2 )( 3 )( 2 )1( 1 kkk kkk kkk xxx xxx xxx −−= −−−= −−= + + + Algoritmo elemento a elemento Arreglamos en forma matricial             −=             −− −− −− = 106 5 8 10 7 0 10 3 10 2 5 10 5 1 10 1 10 20 cT Solución para k=1 )1()0()1( xcTxx ⇒+= ( ) ( )           −=             −+           −             −− −− −− = 94,0 86,1 96,0 106 5 8 10 7 6,0 6,1 7,0 0 10 3 10 2 5 10 5 1 10 1 10 20 1 1 x x
  • 5. UNI-FIM-DACIBAHCC Métodos Numéricos - MB536 Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 4 Cálculo de )1( ε : 34,094,06,0 26,06,186,1 26,096,07,0 )0( 3 )1( 3 )0( 2 )1( 2 )0( 1 )1( 1 =−=− =−−=− =−=− xx xx xx TOL xi i >=== = 1828,0 86,1 34,0 max 34,0 )1( 3,1 )1( δ Para k=2: TOLX >==⇒           −= 0606,0 98,1 12,0 966,0 98,1 978,0 )2()2( δ Para k=3: TOLX <==⇒           −= 0163,0 9888,1 0324,0 99984,0 9888,1 9994,0 )3()3( δ           −≈ 9984,0 9888,1 9994,0 x Solución con error menor que 0,05. Condiciones suficientes para la convergencia del Método de Jacobi Teorema 1 Sean T∈ℜnxn y c∈ℜn . Si para alguna norma inducida se verifica que 1<T , entonces: Existe solamente una y una solución x ∈ℜn de la ecuación cTxx += . La sucesión {x(k) }, generada por la expresión de recurrencia cTxx kk += − )1()( , k = 1,2 ..., converge para x, cualquiera que sea su punto inicial x(0) . El error de sucesión de x por x(k) , x- x(k) ,satisfacen )1()()( 1 − − − ≤− kkk xx T T xx , k=1,2,... (*) Demostración: La ecuación cTxx += es equivalente a ( ) cxTI =− , que tendrá una y solo una solución si la matriz ( )TI − es no singular. Suponga que I-T es singular. Entonces existe 0≠x (en Rn ) tal que (I-T)x= 0, y además Txx = . Luego, para la norma considerada, se verifica que:
  • 6. UNI-FIM-DACIBAHCC Métodos Numéricos - MB536 Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 5 xTTxx ≤= , concluyéndose inmediatamente que 1≥T . Como este factor es contrario a la hipótesis que 1<T , a la matriz I-T no debe ser singular, como se pretende mostrar Como xTx = +c y cTxx kk += − )1()( , k∀ se verifica que ( ))1()1()( )( −− −=+−+=− kkk xxTcxTcTxxx , k = 1,2,... Aplicando sucesivamente esta expresión, se concluye que ( ) ( ) ( ))0()2(2)1()( xxTxxTxxTxx kkkk −==−=−=− −− L , k = 1,2,... Se puede escribir entonces como )0()( xxTxx kk −≤− Por otro lado, se tiene que k veceskvecesk k TTTTTTTT =≤∗∗∗= 44 844 7644 844 76 *....**.... Como 1<T , se puede afirmar que el lim k ∞ k T =0, resultando entonces que limk ∞ )(k xx − =0, como se pretende mostrar. Partiendo de la expresión )( )1()( − −=− kk xxTxx , válida para k=1,2,..., vista anteriormente, podemos concluir que ( ) )()()( )1()()(1)()()( −− −+−=−+−=− kkkkkkk xxTxxTxxxxTxx De esta expresión resulta que )()( )()( )1()()( )1()()()( − − −+−≤ −+−≤− kkk kkkk xxTxxT xxTxxTxx que puede ser re-escrita como )()1( )1()()( − −≤−− kkk xxTxxT Dado que 1<T , se tiene que ( 0>−1 )T , y se obtiene inmediatamente la ecuación (*). Si nuevamente A∈Rnxn . Se dice que la matriz A es estrictamente diagonalmente dominante por líneas cuando se verifica ,∑ ≠ 1= > n ij j ijii aa i = 1,...,n, o sea, cuando para cada fila de la matriz se verifica que el valor absoluto de los elementos de la diagonal es superior a la suma de los valores absolutos de todos los demás elementos. El resultado siguiente proporciona condiciones suficientes para la convergencia del método de Jacobi. No siempre estas condiciones son necesarias para la convergencia del método de Jacobi. Esto es, hay casos en que estas condiciones no se verifican y el método converge.
  • 7. UNI-FIM-DACIBAHCC Métodos Numéricos - MB536 Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 6 Teorema 2 Sea A∈ Rnxn y b∈Rn . Sea la matriz A estrictamente diagonal dominante por filas entonces la sucesión generada por el método de Jacobi converge a una única solución del sistema de ecuaciones Ax=b, cualquiera que sea el punto inicial x(0) . Demostración La expresión de recurrencia del método de Jacobi es: cTxx kk += − )1()( , Donde T y c son obtenido a costa de A y b, de acuerdo con las expresiones vistas anteriormente. Siendo A estrictamente diagonal dominante por filas, se verifica que todos los elementos de su diagonal no sean nulos. Luego la matriz b y o el vector c están bien definidos. Se tiene también, para cualquier i =1,...,n que 1< 1 == ∑∑∑ ≠ 1= ≠ 1=1= n ij j ij ii n ij j ii ij n j ij a aa a t , se concluye inmediatamente que 1<∞ T Aplicando ahora el resultado sobre la convergencia de los métodos iterativos, se puede afirmar que la ecuación x=Tx+c tiene una y solo una solución x , y también que el método de Jacobi converge a x , cualquiera que sea el punto inicial x(0) . Como corolario de este resultado se tiene que toda matriz cuadrada estrictamente diagonal dominante por filas es no singular. De hecho, si en la matriz A los coeficientes del sistema no fueran estrictamente diagonal dominante por filas no se garantiza la convergencia del método. En tal situación deberá proceder a una previa manipulación de A de forma que satisfaga las condiciones de convergencia. Esta manipulación puede pasar por el intercambio de filas de la matriz, o intercambio de columnas (cambiando el orden de las variables), o realizando otras operaciones sobre la matriz que mantenga la equivalencia del sistema de ecuaciones. Ejemplo 2 Sea el sistema de ecuaciones lineales: 33 3 21 21 −=− =+ xx xx 13 11 22 11 >=−= >== a a Las Condiciones de convergencia del teorema 2 no son satisfechas, pero el método de Jacobi genera una secuencia convergente a la solución exacta [ ]T x 2 3 2 3= . Si las condiciones de suficiencia no se satisfacen, no significa que el método no pueda converger.
  • 8. UNI-FIM-DACIBAHCC Métodos Numéricos - MB536 Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 7 Si analizamos el criterio de la norma de la matriz de iteración 1557.0)( max 1 <=λ=ρ= <=<= ∞ i ni TT , concluimos que converge. Ejemplo 3 Considere el sistema Lineal: 6860 3225 23 321 321 321 −=++ =++ −=++ xxx xxx xxx 6608 6251 4131 860 225 131 =+>= =+>= =+>=           =A no cumple 17511.2)( max 1 >=λ=ρ= <=<= ∞ i ni TT Las condiciones do teorema 2 no son satisfechas. Una Solución posible es permutar las ecuaciones. Sea en el ejemplo se permuta la primera ecuación con la segunda ecuación: 6608 2113 4225 860 131 225 =+>= =+>= =+>=           =A si cumple 17223.0)( max 1 >=λ=ρ= <=<= ∞ i ni TT Las condiciones pasan a ser satisfechas y la convergencia esta garantizada para cualquier vector inicial. Este tipo de procedimiento no siempre es posible. Deducción de la fórmula matricial del Método Jacobi Decomponga la matriz de coeficientes de A en: ULDA −−= Donde: L – Matriz Triangular Inferior D – Matriz Diagonal U – Matriz Triangular Superior                 − −− −−− =                 =                 −−− −− − = − − 0000 000 00 0 000 000 000 000 0 00 000 0000 1 223 11312 33 22 11 121 3231 21 L OMMM ML L L L MOMMM L L L L MOMMM L L L nn n n nnnnnn a aa aaa U d d d d D aaa aa a L
  • 9. UNI-FIM-DACIBAHCC Métodos Numéricos - MB536 Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 8 cTxx bDxULDx xULbDx xULbDx bUxLxDx bxULD kk kk kk += ++= ++= ++= =−− =−− + −−+ + )()1( 1)(1)1( )()1( )( )( )( )( bDc ULDT j j 1 1 )( − − = += Ejemplo 4 Aplicando el método de Jacobi, obtenga una solución aproximada del sistema de ecuaciones, con un error máximo absoluto en cada variable de 5x10-3 23 33 324 21 321 321 =+− =+− =+− xx xxx xxx           =                     − − − 2 3 3 031 311 124 3 2 1 x x x Solución La matriz de coeficientes del sistema no es estrictamente diagonalmente dominante por filas. Sin embargo, intercambiando la segunda ecuación con la tercera ecuación se obtiene el sistema equivalente           =                     − − − 3 2 3 311 031 124 3 2 1 x x x cuya matriz de coeficientes ya es estrictamente diagonalmente dominante por filas, garantizando la convergencia del método de Jacobi. La expresión de recurrencia del método de Jacobi es cTxx kk += − )1()( , donde T=                 − − 0 3 1 3 1 00 3 1 4 1 2 1 0 y                 = 1 3 2 4 3 c
  • 10. UNI-FIM-DACIBAHCC Métodos Numéricos - MB536 Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 9 Siendo e(k) el error en la iteración k, es una vez que 4 3 =∞ T ∞ − ∞ − ∞ −=− − ≤ )1()()1()( 4 3 4 3 )( 3 1 kkkkk xxxxe garantizando un error máximo absoluto en cada variable de 5x10-3 en la iteración k y equivalente a 3− ∞ 105≤ xe k)( . Para lo cual, bastará calcular 3)1()( 1053 − ∞ − <−= xxx kk kε , que será la condición de parada del método. Partiendo de la condición inicial nula, se obtuvieron los resultados presentados en la tabla. De acuerdo con la estimación del error. Una solución del sistema es x1 = x2 = x3 =1, obteniéndose en la iteración 10 errores máximos absolutos en todas las variables inferiores a 5x10-4 , pero el error estimado utilizado es, en este caso, algo conservadora. k=0 T= +                           − − 0 0 0 0 3 1 3 1 00 3 1 4 1 2 1 0                 1 3 2 4 3 =                 = = = 0000.11 6667.0 3 2 7500.0 4 3 k=1 31*33 )0()1( 1 ==−= ∞ XXε T= +                                 − − 1 3 2 4 3 0 3 1 3 1 00 3 1 4 1 2 1 0                 1 3 2 4 3 =                 = = = 9722.0 36 35 9167.0 12 11 8333.0 6 5 75.025.0*33 )1()2( 2 ==−= ∞ xxε Resumen de iteraciones: k x1 x2 x3 εk 0 1 2 3 4 …. 9 10 0 0.7500 0.8333 0.9653 0.9653 ……… 1.0002 0.9996 0 0.6667 0.9167 0.9444 0.9884 ………. 0.9994 1.0000 0 1.0000 0.9722 1.0278 0.9931 …….. 1.0006 0.9998 ---- 3 0.75 0.40 0.13 …… 0.6x0-3 0.26x10-3
  • 11. UNI-FIM-DACIBAHCC Métodos Numéricos - MB536 Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 10 Método Iterativo de Gauss-Seidel Así como no Método de Jacobi el sistema Lineal bAx = es escrito en la forma equivalente: cTxx += Como en el Método Jacobi, se despeja la diagonal, y el proceso iterativo de actualización es secuencial, componente por componente. La diferencia es que, en el momento de realizarse la actualización de las componentes del vector en una determinada iteración, el algoritmo utiliza las componentes de la iteración ya actualizadas en la iteración actual, con las restantes no actualizadas de la iteración anterior. Por ejemplo, si se va a calcular la componente )1( +k jx de la iteración (k+1), se utiliza en el cálculo las componentes ya actualizadas )1( 1 )1( 2 )1( 1 ,...,, + − ++ k j kk xxx además de las componentes no actualizadas de la iteración anterior )()( 2 )( 1 ,...,, k n k j k j xxx ++ . )..........( 1 )..........( 1 )..........( 1 )..........( 1 )1( 11 )1( 33 )1( 22 )1( 11 )1( )( 2 )( 434 )1( 232 )1( 1313 22 )1( 3 )( 2 )( 424 )( 323 )1( 1212 22 )1( 2 )( 1 )( 414 )( 313 )( 2121 11 )1( 1 + −− ++++ +++ ++ + −−−−= −−−−−= −−−−= −−−−−= k nnn k n k n k nn nn k n k nn kkkk k nn kkkk k nn kkkk xaxaxaxab a x xaxaxaxab a x xaxaxaxab a x xaxaxaxab a x M Ejemplo 5 Resolver el sistema lineal utilizando el Método Iterativo de Gauss-Seidel, con To x ]0,0,0[= y tolerancia 2 105 − ×≤TOL . 0633 643 55 321 321 321 =++ =++ =++ xxx xxx xxx Solución El proceso iterativo es dado por: )330( 6 1 )36( 4 1 )5( 5 1 )1( 2 )1( 1 )1( 3 )( 3 )1( 1 )1( 2 )( 3 )( 2 )1( 1 +++ ++ + −−= −−= −−= kkk kkk kkk xxx xxx xxx
  • 12. UNI-FIM-DACIBAHCC Métodos Numéricos - MB536 Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 11 Para k=1 y To x ]0,0,0[=           − = 875,0 75,0 1 1 x Cálculo de )1( ε : ε>== ε =δ =−−=− =−=− =−=− = = 0,1 0,1 0,1 max max 875,00875,0 75,00,075,0 0,100,1 )1( 3,1 )1( 3,1)1( )0( 3 )1( 3 )0( 2 )1( 2 )0( 1 )1( 1 i i i i x xx xx xx Para k=2 y ( ) T X ]875,0,75,0,0,1[1 −= :           − = 9875,0 95,0 025,1 )2( x 1125,0)875,0(9875,0 20,075,095,0 025,00,1025,1 )1( 3 )2( 3 )1( 2 )2( 2 )1( 1 )2( 1 =−−−=− =−=− =−=− xx xx xx TOL xi i i i >== ε =δ = = 1957,0 025,1 20,0 max max )2( 3,1 )2( 3,1)2( Para k=3 y T x ]9875,0,95,0,0025,1[)2( −= :
  • 13. UNI-FIM-DACIBAHCC Métodos Numéricos - MB536 Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 12 TOL x xx xx xx x i i i i <=== =−−−=− =−=− =−=−           − = = = 0383,0 075,1 0412,0 max max 0119,0)9875,0(9994,0 0412,095,09912,0 0175,0025,1075,1 9994,0 9912,0 0075,1 )3( 3,1 )3( 3,1)3( )2( 3 )3( 3 )2( 2 )3( 2 )2( 1 )3( 1 )3( ε δ           − = 9994,0 9912,0 0075,1 x es solución con menor error que 0,05. Deducción de la fórmula matricial del Método Gauss-Seidel Descomposición de la matriz de coeficientes A en: UDLA ++= Donde: L – Matriz Triangular Inferior D – Matriz Diagonal U – Matriz Triangular Superior                 − −− −−− =                 =                 −−− −− − = − − 0000 000 00 0 000 000 000 000 0 00 000 0000 1 223 11312 33 22 11 121 3231 21 L OMMM ML L L L MOMMM L L L L MOMMM L L L nn n n nnnnnn a aa aaa U d d d d D aaa aa a L UxDLxDbDx xULbDx bUxLxDx bxULD 111 )( )( −−− ++= ++= =−− =−− ( ) ( ) cTxx bLDUxLDx UxDLxDbDx kk kk kkk += −+−= ++= + −−+ −+−−+ )()1( 1)(1)1( )(1)1(11)1(
  • 14. UNI-FIM-DACIBAHCC Métodos Numéricos - MB536 Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 13 Interpretación Geométrica del Caso 22× Considere o Sistema Lineal: 33 3 21 21 −=− =+ xx xx El esquema iterativo utilizando por el Método de Gauss-Seidel es dado por: )33( 3 1 )3( 1 1 )1( 1 )1( 2 )( 2 )1( 1 ++ + += −= kk kk xx xx Para k=0 y T x ]00[ )0( = : 2 3 )1( 2 )1( 1 = = x x Para k=1 y T x ]23[ )1( = : 3 4 1 )2( 2 )2( 1 = = x x Para k=2 y T x ] 3 41[ )2( = : 9 14 3 5 )3( 2 )3( 1 = = x x La solución exacta es dada por: T x ] 2 3 2 3[= . Este proceso iterativo hasta la convergencia puede ser interpretado geométricamente en un gráfico con una componente 1x en la abscisa y una componente 2x en la ordenada. -5 -4 -3 -2 -1 0 1 2 3 4 5 -2 -1 0 1 2 3 4 5 6 7 8 x2 x1(0,0) (0,3) (3,2)(1,2) (1,4/3) (4/3,5/3) x1+x2=3 x1-3x2=-3
  • 15. UNI-FIM-DACIBAHCC Métodos Numéricos - MB536 Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 14 Observación 1: Se verifica por el gráfico anterior que la secuencia )(o x , )1( x , )2( x , ......, )(k x está convergiendo para la solución exacta T x ] 2 3 2 3[= . Observación 2: La secuencia generada por el Método de Gauss-Seidel depende fuertemente de la posición de las ecuaciones. Esta observación puede ser mejor entendida modificando el orden de las ecuaciones del ejemplo anterior. Considere el mismo sistema lineal anterior, pero modificando el orden de las ecuaciones: 3 33 21 21 =+ −=− xx xx El esquema iterativo utilizando el Método de Gauss-Seidel es dado por: )3( )33( )1( 1 )1( 2 )( 2 )1( 1 ++ + −= +−= kk kk xx xx Para k=0 y T x ]00[ )0( = : 6 3 )1( 2 )1( 1 −= −= x x Para k=1 y T x ]63[ )1( −−= : 12 15 )1( 2 )1( 1 −= = x x Método de SobreRelajación (SOR) Se han realizado varios intentos de incrementar la velocidad de convergencia de la iteración de Jacobi y Gauss-Seidel. Uno de ellos es el de relajación sucesiva. Este método se basa en la idea que una vez producido un nuevo valor (k) ix~ mediante el método de Gauss-Seidel, puede lograrse una mejor aproximación formando un promedio ponderado de los valores actual y anterior, de esta manera quedaría: 21 ~)1( )()1()( <ω< ω+ω−= − k i k i k i xxx -5 -4 -3 -2 -1 0 1 2 3 4 5 -2 -1 0 1 2 3 4 5 6 7 8 x (0,0) (0,-3) (-3,6) ......(6,15) x2 x1 x1+x2=3 x1-3x2= -3       −− ω +ω−= ∑ ∑ − = += −− 1 1 1 )1()()1()( )1(:generalEn i j n ij k jij k jiji ii k i k i xaxab a xx
  • 16. UNI-FIM-DACIBAHCC Métodos Numéricos - MB536 Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 15 En forma matricial x(k) =Tωωωωx(k-1) +cωωωω ( ) ( ){ }ωUDω1ωLDT 1 ω +−−= − ( ) bωωLDc 1 ω − −= Teorema de Stein-Rosemberg : Si aij≤0 i≠j aii>0 i = 1,2,...,n Entonces se satisface una y solamente una de las siguientes afirmaciones: x(k) =Tx(k-1) +c y se puede demostrar que son convergentes cuando ρρρρ(T)<1. a) 0<ρρρρ(Tg)<ρρρρ(Tj)<1 b) 1<ρρρρ(Tj)<ρρρρ(Tg) c) ρρρρ(Tj)=ρρρρ(Tj)=0 d) ρρρρ(Tj)=ρρρρ(Tg)=1 Teorema : Si aii≠0 para i=1,2,...,n, entonces ρ(Tω)≥|ω-1|. Esto implica que ρ(Tω)<1 sólo si 0<ω<2, donde: Teorema : (Ostrwki-Reich) Si A es una matriz definida positiva y 0<ωωωω<2, entonces el método SOR converge para cualquier elección de la aproximación inicial x(0) del vector solución. Teorema : Si A es definida positiva y tridiagonal, entonces ρρρρ(Tg)=[ρρρρ(Tj)]2 <1, y la elección óptima de ω para el método SOR es: Ejemplo 6 Sea Ax = b un sistema de ecuaciones lineales. a)señalar tres criterios de convergencia que permitan resolverlo por Gauss - Seidel. b)Dado x x x x x x x x x 1 2 3 1 2 3 1 2 3 8 10 7 9 9 11 + + = + + = + + = 1)(y )]([11 2 2 −= −+ = ωωρ ρ ω T Tj
  • 17. UNI-FIM-DACIBAHCC Métodos Numéricos - MB536 Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 16 realice las transformaciones más adecuadas que permitan resolverlo por Gauss - Seidel, iniciando con ( 0 , 0 , 0 ). Realizar tres iteraciones. c)Calcular una cota del error obtenido. ∞ − − ≤ )1()0( 1 xx T T error n Solución a) El método de Gauss converge si: i)La matriz A es diagonal - dominante. Esto es: a aii ij j j i n > = ≠ ∑1 ii)La matriz A es simétrica y definida positiva. iii)El radio espectral de la matriz iterativa T es menor que 1 propiosvalores:;max=)(donde1)( i i λλρρ iTT < b) A pivoteo A=           → → =                     1 8 1 1 1 7 9 1 1 9 1 1 1 8 1 1 1 7 ) ) ; b = 11 10 9 Ahora la matriz es diagonal - dominante 7 9 8 10 9 11 21 3 31 2 32 1 xx x xx x xx x −− = −− = −− = k x1 x2 x3 0 0 0 0 1 1.222 1.097 0.954 2 0.994 1.007 1.000 3 0.999 1.000 1.000
  • 18. UNI-FIM-DACIBAHCC Métodos Numéricos - MB536 Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 17 c)Cota de error: ∑ ≠ ∞ − − ≤ n ij 1j= ii ij)1()0( a a max=donde; 1 Txx T T E n { } 286.0286.0,25.0,225.0max ==T ( )E ≤ − =∞ ( . ) . . , . , . . 0 286 1 0 286 1222 1097 0 954 0 04 3 ∴ cota de error = 0.04 Ejemplo 7 Sea el sistema A x = b : a) Para k=-1, es la matriz A definida positiva? b) Para que valores de k el sistema converge, al usar el método de Gauss-Seidel? c) Hacer 03 iteraciones de Gauss-Seidel para k=-3 Solución a) A es definida positiva si: [ ] nulo.noxtodopara02)(2 31 12 nulonocolumnavectortodopara,0 2 2 2 21 2 1 2 1 21 >+−+=            − − > xxxx x x xx xAxxT b) 6k6-:quesiemprecumpleseEsto 1)(T:cuandoiaconvergencExiste 6/)(6/0 ))( 6 ( 6/0 2/0 00 0 3/16/1 02/1 3/16/1 02/1 )( 31 02 )( )( G max21 1 1 << < −==−== −−−=−       − − =      −       − =       =−       − =− −= − − ρ λρλλ λλλ kTk k ITDet k kk T LD LD ULDT G G G G       =            − 9 6 31 2 2 1 x xk
  • 19. UNI-FIM-DACIBAHCC Métodos Numéricos - MB536 Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 18 3/3 5.13 -3)(kSeidel-GaussParac) )1( 1 )1( 2 )( 2 )1( 1 ++ + += += = nn nn xx xx n x1 x2 0 0 0 1 3 4 2 9 6 3 12 7 4 13.5 7.5 5 14.25 7.75 6 14.625 7.875 7 14.8125 7.9375 Ejemplo 8 Sea el método iterativo de Gauss_ Seidel       6 2 +            00 −0 =            3 02 2 1 1+ 2 1+ 1 )( )( )( )( k k k k x xk x x k a) Para que valores de k el método converge. b) Realice tres iteraciones eligiendo k=1. Usando como vector inicial (0,0)t c) Para k=1, encuentre el woptimo. d) Realice 02 iteraciones partiendo como vector inicial el último resultado obtenido en b). Comente sus resultados. Usar SOR. Solución a)       − +            − =                  − +            −       − =      + + + + 3/2 1 6/0 2/0 6 2 2 03 6 1 00 0 2 03 6 1 )( 2 )( 1 2)1( 2 )1( 1 )( 2 )( 1 )1( 2 )1( 1 kx x k k x x kx xk kx x k k k k k k k k 0)6/( 2 =−−=− λλλ kITgs ( ) 6/max 2 kTgs == λρ <1 66 <<− k b)       +            − =      + + 3/5 1 6/10 2/10 )( 2 )( 1 )1( 2 )1( 1 k k k k x x x x
  • 20. UNI-FIM-DACIBAHCC Métodos Numéricos - MB536 Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 19       =      =      +            − =            =      =      +            − =      9444.1 1667.0 18/35 6/1 3/5 1 3/5 1 6/10 2/10 667.1 1 3/5 1 3/5 1 0 0 6/10 2/10 )2( 2 )2( 1 )1( 2 )1( 1 x x x x c) 6/1)( =gsTρ )(11 2 gs opt T w ρ−+ = = 1.0455 d) )6( 3 )1( )2( 2 )1( )1( 1 )( 2 )1( 2 )( 2 )( 1 )1( 1 ++ + −+−= −+−= kkk kkk x w xwx x w xwx       =            =      9997.1 0016.0 9951.1 0215.0 )2( 2 )2( 1 )1( 2 )1( 1 x x x x Se observa claramente la convergencia. Problemas Propuestos P1 Se considera el sistema lineal:           + − =                     ba ba z y x ab bab ba 0 0 0 a) Calcular la matriz de la iteración de Jacobi y obtener su polinomio característico y a partir de él los valores propios. ¿Qué relación debe existir entre los coeficientes a y b para que el método de Jacobi sea convergente? b) Tomando a=3 y b=2, calcular 03 iteraciones utilizando el método de Jacobi con vector inicial nulo. c) Cuántas iteraciones se necesitarían para calcular la solución aproximada con 3 c.d.e.
  • 21. UNI-FIM-DACIBAHCC Métodos Numéricos - MB536 Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 20 P2 a) Evalué el valor de α para que el método de Gauss Seidel converja       − =      +− −+ 4 5 21 13 x α α Donde α es un parámetro real. b) Si α =1 y x(0) = [0 0]t encuentre x(3) usando Gauss-Seidel. c) Estime el máximo error relativo cometido en esta iteración. P3 Un método iterativo poco usual es el método de Richardson, que establece que: bxAIx kk +−=+ )()1( )( Donde “I” es la matriz identidad. a) Para el sistema:       =            − 9 6 11 1 2 1 x xk Obtener los valores “k” de tal manera que el radio espectral de Richardson ( )RTρ sea de 0.9. b) Con el valor de “k” obtenido en a) realice 03 iteraciones partiendo de ( )T 0,0 ,y estime el error. P4 Sea el método iterativo de Gauss_ Seidel       6 2 +            00 −0 =            3 02 2 1 1+ 2 1+ 1 )( )( )( )( k k k k x xk x x k a) Para que valores de k el método converge. b) Realice tres iteraciones eligiendo k=1. Usando como vector inicial (0,0)t c) Para k=1, encuentre el ωóptimo. d)Realice 02 iteraciones partiendo como vector inicial el último resultado obtenido en b). Comente sus resultados. P5 La distribución de esfuerzos en una barra longitudinal depende de los coeficientes α y β y pueden aproximarse resolviendo el siguiente sistema de ecuaciones lineales:           =                     − −− − 100 100 100 0 0 3 2 1 σ σ σ αβ βαβ βα a) Encuentre una relación entre α y β para todos los casos de convergencia del método de Jacobi. b) Analice la convergencia para el método de Gauss-Seidel, con 2=α y 1=β
  • 22. UNI-FIM-DACIBAHCC Métodos Numéricos - MB536 Sistemas de Ecuaciones Lineales- Métodos Iterativos Pag. 21 c) Para 4=α y 1=β determine el ω óptimo y realice 03 iteraciones a partir de (0, 0, 0)T . P6 Un móvil de masa 1m se desplaza en el plano YX − con dos tripulantes a bordo de masas 2m y 3m , respectivamente; se sabe que la trayectoria obedece a la siguiente función: 32 2 1 memxmy x ++= Experimentalmente se tomaron tres puntos de dicha trayectoria: x 1 1.5 2 y 0.733 1.464 2.513 a) Plantee el sistema de ecuaciones para obtener las masas. b) Analice la convergencia del sistema para el método de Jacobi. c) Si existe convergencia realice 03 iteraciones de Jacobi partiendo de un vector nulo y muestre el error, en caso contrario resuelva el sistema usando eliminación Gaussiana con pivoteo total.