 ESTEREOQUÍMICA
TEMA 2
La estereoquímica es el estudio de las moléculas en tres
dimensiones.
Imagen
especular
original
Molécula
original
Molécula
quiral: La
molécula
rotada
no puede
superponerse
a su imagen
especular.
Imagen
especular
original
Molécula
original
Molécula
aquiral: La
molécula
rotada se
superpone
a su imagen
especular.
Quiralidad vs Aquiralidad
Quiralidad (del griego Cheir que significa mano) es la propiedad que tienen
ciertos objetos de poder existir bajo dos formas que son imágenes especulares
una de otra y que no se pueden superponer.
Enantiomeros - Diasteroisómeros
 Los Carbonos que tienen unidos 4 grupos
diferentes, se llaman Carbonos Quirales o
Asimétricos.
 ENANTIÓMEROS:
Son estereoisómeros que son imágenes
especulares entre sí, no superponibles.
Los enantiómeros tienen igual Propiedades
Químicas, pero difieren en la Actividad Optica.
3
Pruebas de Quiralidad: Planos de Simetría
Plano de Simetría No hay Plano de Simetría
Aquiral Quiral
Pruebas de Quiralidad: Planos de Simetría
El cis-1,2-diclorociclopentano tiene un plano de simetría especular.
Un plano de simetría divide la molécula en dos imágenes especulares internas
Cualquier compuesto con un plano de simetría especular interno no
puede ser quiral.
Pruebas de Quiralidad: Planos de Simetría
El trans-1,2-diclorociclopentano no tiene plano de simetría especular.
Por lo que estos dos compuestos son quirales
Configuración Absoluta
Configuración del estereocentro: R/S
Cahn, Ingold y Prelog establecieron el sistema de nomenclatura R/S para nombrar la
configuración absoluta de un centro quiral.
En sentido de las
agujas del reloj
En sentido contrario a las
agujas del reloj
Se deja el grupo de prioridad menor (4) hacia atrás y se observa el sentido de giro para ir
desde el grupo de más prioridad (1) hacia el de menor (3) de los tres que quedan. Si el sentido
es el de las agujas del reloj, la configuración es R (rectus). Al contrario es S (sinister).
Resumen de las reglas de prelación
El número atómico de los átomos
directamente unidos al estereocentro
determina su orden de prioridad.
El átomo de mayor numero atómico tiene la
mayor prioridad. Si uno de ellos es un
hidrógeno, éste será el de prioridad menor.
Si hay dos átomos iguales unidos al
estereocentro, se observa en la posición
siguiente qué atomo tiene el número atómico
mayor. En caso de nueva coincidencia se
sigue a la siguiente posición, y así
sucesivamente.
Si alguno de los átomos unidos al
estereocentro participa en un enlace doble o
triple, se supone que aquél está unido por
enlaces sencillos a un numero
respectivamente doble o triple de átomos.
Mezclas Racémicas
Se denomina mezcla racémica o racemato, cuando un par de enantiómeros
están en una proporción del 50% de cada uno.
Esta mezcla no produce desviación de la luz polarizada, es decir, no tiene actividad óptica.
Una mezcla racémica se simboliza escribiendo (±) o (d,l) antes del nombre del compuesto.
Por ejemplo, el 2-butanol racémico se simboliza por (±)-2-butanol o «(d,l)-2-butanol
Moléculas quirales sin estereocentro o centros
quirales
Bifenilos
El bifenilo tetrasustituido no puede transformarse en su conformación simétrica porque los
átomos de yodo y de bromo son demasiado voluminosos. La molécula está «bloqueada» en
una de las dos conformaciones alternadas quirales, enantioméricas
Moléculas quirales sin estereocentro o centros
quirales
Alenos
• 2,3-pentadieno, el átomo de carbono central de un aleno tiene hibridación sp y es lineal,
mientras que los átomos de carbono de los extremos tienen hibridación sp2 y son
trigonales. Los alenos son quirales cuando cada uno de los átomos de carbono tienen al
final dos sustituyentes diferentes
Moléculas quirales sin estereocentro o centros
quirales
Alenos
Bifenilos
Binaftilos
No hay plano de
simetría. La
molécula y su
imagen especular
no son
superponibles
Asigne la configuración absoluta R o S para cada uno de los siguientes
compuestos:
Ejercicios
Asigne la configuración absoluta R o S para cada uno de los siguientes
compuestos:
Ejercicios
Mayor
prioridad
Menor
prioridad
R
R
PROYECCIÓN DE FISCHER
PROYECCIÓN DE FISCHER
orientar
Construir proyección
Fischer
Asignar prioridad
Determinar
configuración
Si el último grupo en prioridad está en la horizontal y la unión 1→ 2→ 3 va en
sentido R la configuración del estereocentro es opuesta, o sea, S
Si el último grupo en prioridad está en la horizontal y la unión 1→ 2→ 3 va en
sentido S la configuración del estereocentro es opuesta, o sea, R.
El giro de 180º conserva la configuración
Este giro de 180° en el plano en una proyección de Fischer equivale a
un número par de intercambios de grupos
atras
La rotación de una proyección de Fischer afecta a la configuración del estereocentro
representado:
La rotación de una proyección de Fischer afecta a la configuración del estereocentro
representado:
El giro de 90º invierte la configuración
Un giro de 90° equivale a un número impar de intercambios (un total de tres
interconversiones)
Moléculas con más de un centro quiral.
 Si una molécula tiene un único carbono quiral, sólo puede existir un
par de enantiómeros.
 Si tiene dos carbonos quirales tiene un máximo de cuatro
estereoisómeros (dos pares de enantiómeros).
 En general, una molécula con n carbonos quirales tiene un número
máximo de 2n estereoisómeros posibles.
Por ejemplo, el 3-bromo-2-butanol tiene dos carbonos quirales, por lo
tanto, se esperaría 4 estereoisómeros.
*CH3 CH
OH
CH CH3
Br
*
Cuantos estereoisómeros son posibles?
Acido dihidroxibutanoico
Acido
(2R, 3R)-dihidroxibutanoico
Proyección de Fischer
Cuando Hay dos sustiyentes iguales en la molecula de dos Estereocentros:
Diasteroisómero Eritro, los sustituyentes están a un mismo en la Proyc. Fischer.
Diasteroisómero Treo, los sustituyentes están de lados opuestos la Proyc. Fischer.
2R, 3R 2S, 3S 2R, 3S 2S, 3R
Eritro
Treo
C
C
HO CH3
CH3Br
H
H
C
C
OHH3C
H3C Br
H
H
C
C
HO CH3
CH3H
H
Br
C
C
OHH3C
H3C H
H
Br
Flechas horizontales: enantiómeros
Flechas verticales y oblicuas: diastereoisómeros
(2S, 3R) (2R, 3S)
(2S, 3S) (2R, 3R)
3-bromo-2-butanol
Moléculas con más de un centro quiral
Enantiómeros
Diasteroisómeros
Moléculas con más de un centro quiral.
1-bromo-2-chlorocyclopropane
Tipos de isómeros.
Entre los estereoisómeros hay enantiómeros, que son imágenes especulares, no
superponibles y diastereómeros no son imágenes especulares uno de otro. Los
diastereómeros se encuentran en compuestos con dos o más átomos de carbono
quirales en la molécula.
El 2,3-dibromobutano, ejemplo de un compuesto que tiene cuatro permutaciones de
las configuraciones (R) y (S) en C2 y C3 se representan a continuación.
Compuestos meso.
D,l-Treo Eritro -Meso
Moléculas disimétricas.
los términos eritro y treo se utilizan con moléculas disimétricas, cuyos
extremos son diferentes
Los términos meso y (+), (-), o (d),(l) se suelen utilizar con moléculas que
poseen extremos iguales.
¿Por qué en el caso del ácido tartárico (ácido 2,3-dihidroxibutanodioico),
con dos estereocentros, sólo se producen tres estereoisómeros?
(+)-tartaric acid: [α]D = +12º m.p. 170 ºC
(–)-tartaric acid: [α]D = –12º m.p. 170 ºC
meso-tartaric acid: [α]D = 0º m.p. 140 ºC
LA FORMA MESO
Compuestos meso.
(+)-tartaric acid: [α]D = +12º m.p. 170 ºC
(–)-tartaric acid: [α]D = –12º m.p. 170 ºC
meso-tartaric acid: [α]D = 0º m.p. 140 ºC
•Una forma meso es un compuesto que contiene dos o más estereocentros y
es superponible con su imagen especular.
•Los compuesto meso contienen un plano de simetría que divide la molécula en
dos, de tal forma que una mitad es la imagen especular de la otra
Compuestos meso.

Estereoquimica

  • 1.
     ESTEREOQUÍMICA TEMA 2 Laestereoquímica es el estudio de las moléculas en tres dimensiones.
  • 2.
    Imagen especular original Molécula original Molécula quiral: La molécula rotada no puede superponerse asu imagen especular. Imagen especular original Molécula original Molécula aquiral: La molécula rotada se superpone a su imagen especular. Quiralidad vs Aquiralidad Quiralidad (del griego Cheir que significa mano) es la propiedad que tienen ciertos objetos de poder existir bajo dos formas que son imágenes especulares una de otra y que no se pueden superponer.
  • 3.
    Enantiomeros - Diasteroisómeros Los Carbonos que tienen unidos 4 grupos diferentes, se llaman Carbonos Quirales o Asimétricos.  ENANTIÓMEROS: Son estereoisómeros que son imágenes especulares entre sí, no superponibles. Los enantiómeros tienen igual Propiedades Químicas, pero difieren en la Actividad Optica. 3
  • 4.
    Pruebas de Quiralidad:Planos de Simetría Plano de Simetría No hay Plano de Simetría Aquiral Quiral
  • 5.
    Pruebas de Quiralidad:Planos de Simetría El cis-1,2-diclorociclopentano tiene un plano de simetría especular. Un plano de simetría divide la molécula en dos imágenes especulares internas Cualquier compuesto con un plano de simetría especular interno no puede ser quiral.
  • 6.
    Pruebas de Quiralidad:Planos de Simetría El trans-1,2-diclorociclopentano no tiene plano de simetría especular. Por lo que estos dos compuestos son quirales
  • 7.
  • 8.
    Configuración del estereocentro:R/S Cahn, Ingold y Prelog establecieron el sistema de nomenclatura R/S para nombrar la configuración absoluta de un centro quiral. En sentido de las agujas del reloj En sentido contrario a las agujas del reloj Se deja el grupo de prioridad menor (4) hacia atrás y se observa el sentido de giro para ir desde el grupo de más prioridad (1) hacia el de menor (3) de los tres que quedan. Si el sentido es el de las agujas del reloj, la configuración es R (rectus). Al contrario es S (sinister).
  • 9.
    Resumen de lasreglas de prelación El número atómico de los átomos directamente unidos al estereocentro determina su orden de prioridad. El átomo de mayor numero atómico tiene la mayor prioridad. Si uno de ellos es un hidrógeno, éste será el de prioridad menor. Si hay dos átomos iguales unidos al estereocentro, se observa en la posición siguiente qué atomo tiene el número atómico mayor. En caso de nueva coincidencia se sigue a la siguiente posición, y así sucesivamente. Si alguno de los átomos unidos al estereocentro participa en un enlace doble o triple, se supone que aquél está unido por enlaces sencillos a un numero respectivamente doble o triple de átomos.
  • 11.
    Mezclas Racémicas Se denominamezcla racémica o racemato, cuando un par de enantiómeros están en una proporción del 50% de cada uno. Esta mezcla no produce desviación de la luz polarizada, es decir, no tiene actividad óptica. Una mezcla racémica se simboliza escribiendo (±) o (d,l) antes del nombre del compuesto. Por ejemplo, el 2-butanol racémico se simboliza por (±)-2-butanol o «(d,l)-2-butanol
  • 12.
    Moléculas quirales sinestereocentro o centros quirales Bifenilos El bifenilo tetrasustituido no puede transformarse en su conformación simétrica porque los átomos de yodo y de bromo son demasiado voluminosos. La molécula está «bloqueada» en una de las dos conformaciones alternadas quirales, enantioméricas
  • 13.
    Moléculas quirales sinestereocentro o centros quirales Alenos • 2,3-pentadieno, el átomo de carbono central de un aleno tiene hibridación sp y es lineal, mientras que los átomos de carbono de los extremos tienen hibridación sp2 y son trigonales. Los alenos son quirales cuando cada uno de los átomos de carbono tienen al final dos sustituyentes diferentes
  • 14.
    Moléculas quirales sinestereocentro o centros quirales Alenos Bifenilos Binaftilos No hay plano de simetría. La molécula y su imagen especular no son superponibles
  • 15.
    Asigne la configuraciónabsoluta R o S para cada uno de los siguientes compuestos: Ejercicios
  • 16.
    Asigne la configuraciónabsoluta R o S para cada uno de los siguientes compuestos: Ejercicios Mayor prioridad Menor prioridad R R
  • 17.
  • 18.
  • 19.
  • 20.
    Si el últimogrupo en prioridad está en la horizontal y la unión 1→ 2→ 3 va en sentido R la configuración del estereocentro es opuesta, o sea, S Si el último grupo en prioridad está en la horizontal y la unión 1→ 2→ 3 va en sentido S la configuración del estereocentro es opuesta, o sea, R.
  • 21.
    El giro de180º conserva la configuración Este giro de 180° en el plano en una proyección de Fischer equivale a un número par de intercambios de grupos atras La rotación de una proyección de Fischer afecta a la configuración del estereocentro representado:
  • 22.
    La rotación deuna proyección de Fischer afecta a la configuración del estereocentro representado: El giro de 90º invierte la configuración Un giro de 90° equivale a un número impar de intercambios (un total de tres interconversiones)
  • 23.
    Moléculas con másde un centro quiral.  Si una molécula tiene un único carbono quiral, sólo puede existir un par de enantiómeros.  Si tiene dos carbonos quirales tiene un máximo de cuatro estereoisómeros (dos pares de enantiómeros).  En general, una molécula con n carbonos quirales tiene un número máximo de 2n estereoisómeros posibles. Por ejemplo, el 3-bromo-2-butanol tiene dos carbonos quirales, por lo tanto, se esperaría 4 estereoisómeros. *CH3 CH OH CH CH3 Br *
  • 24.
    Cuantos estereoisómeros sonposibles? Acido dihidroxibutanoico
  • 25.
  • 26.
    Cuando Hay dossustiyentes iguales en la molecula de dos Estereocentros: Diasteroisómero Eritro, los sustituyentes están a un mismo en la Proyc. Fischer. Diasteroisómero Treo, los sustituyentes están de lados opuestos la Proyc. Fischer. 2R, 3R 2S, 3S 2R, 3S 2S, 3R
  • 27.
  • 28.
    C C HO CH3 CH3Br H H C C OHH3C H3C Br H H C C HOCH3 CH3H H Br C C OHH3C H3C H H Br Flechas horizontales: enantiómeros Flechas verticales y oblicuas: diastereoisómeros (2S, 3R) (2R, 3S) (2S, 3S) (2R, 3R) 3-bromo-2-butanol
  • 29.
    Moléculas con másde un centro quiral
  • 30.
    Enantiómeros Diasteroisómeros Moléculas con másde un centro quiral. 1-bromo-2-chlorocyclopropane
  • 31.
    Tipos de isómeros. Entrelos estereoisómeros hay enantiómeros, que son imágenes especulares, no superponibles y diastereómeros no son imágenes especulares uno de otro. Los diastereómeros se encuentran en compuestos con dos o más átomos de carbono quirales en la molécula.
  • 32.
    El 2,3-dibromobutano, ejemplode un compuesto que tiene cuatro permutaciones de las configuraciones (R) y (S) en C2 y C3 se representan a continuación. Compuestos meso. D,l-Treo Eritro -Meso
  • 33.
    Moléculas disimétricas. los términoseritro y treo se utilizan con moléculas disimétricas, cuyos extremos son diferentes Los términos meso y (+), (-), o (d),(l) se suelen utilizar con moléculas que poseen extremos iguales.
  • 34.
    ¿Por qué enel caso del ácido tartárico (ácido 2,3-dihidroxibutanodioico), con dos estereocentros, sólo se producen tres estereoisómeros? (+)-tartaric acid: [α]D = +12º m.p. 170 ºC (–)-tartaric acid: [α]D = –12º m.p. 170 ºC meso-tartaric acid: [α]D = 0º m.p. 140 ºC LA FORMA MESO
  • 35.
    Compuestos meso. (+)-tartaric acid:[α]D = +12º m.p. 170 ºC (–)-tartaric acid: [α]D = –12º m.p. 170 ºC meso-tartaric acid: [α]D = 0º m.p. 140 ºC
  • 37.
    •Una forma mesoes un compuesto que contiene dos o más estereocentros y es superponible con su imagen especular. •Los compuesto meso contienen un plano de simetría que divide la molécula en dos, de tal forma que una mitad es la imagen especular de la otra
  • 38.