Profesora: MeryProfesora: Mery
MartínezMartínez
Contenidos
1.Función cuadrática
2.Ecuación de 2º grado
1.1 Intersección con el eje Y
1.2 Concavidad
1.3 Eje de simetría y vértice
2.1 Raíces de una ecuación cuadrática
2.2 Propiedades de las raíces
2.3 Discriminante
1.4 Discriminante
1. Función Cuadrática
Es de la forma:
f(x) = ax2
+ bx + c
Ejemplos:
y su gráfica es una parábola.
a) Si f(x) = 2x2
+ 3x + 1
b) Si f(x) = 4x2
- 5x - 2
a = 2, b = 3 y c = 1
a = 4, b = -5 y c = -2
⇒
⇒
con a =0; a,b,c ∈ IR
1.1. Intersección con eje Y
En la función cuadrática, f(x) = ax2
+ bx + c ,
el coeficiente c indica la ordenada del punto donde
la parábola intersecta al eje Y.
x
y
x
y
c
(0,C)
1.2. Concavidad
En la función cuadrática, f(x) = ax2
+ bx + c ,
el coeficiente a indica si la parábola es cóncava
hacia arriba o hacia abajo.
Si a > 0,
es cóncava hacia arriba
Si a < 0,
es cóncava hacia abajo
Si f(x) = ax2
+ bx + c , entonces:
b) Su vértice es:
a) Su eje de simetría es:
2a 2a
V =
-b , f -b
4a
-b , 4ac – b2
2a
V =
-b
2a
x =
f(x)
V = ( -1, -9 )
x = -1
Eje de simetría:
Vértice:
El discriminante se define como:
Δ = b2
- 4ac
Si el discriminante es positivo, entonces la parábola
intersecta en dos puntos al eje X.
Δ > 0
1.6. Discriminante
x2
x1
2. Ecuación de segundo grado
Una ecuación cuadrática o de segundo grado es
de la forma:
ax2
+ bx + c = 0, con a ≠ 0
Toda ecuación de segundo grado tiene 2 soluciones o
raíces. Si éstas son reales, corresponden a los puntos
de intersección de la parábola f(x) = ax2
+ bx + c
con el eje X.
x2
x
y
x1
Ejemplo:
En la función f(x) = x2
- 3x - 4 , la ecuación asociada:
x2
- 3x - 4 = 0 , tiene raíces -1 y 4.
Luego, la parábola intersecta al eje X en esos puntos.
2.1. Raíces de una ecuación de 2° grado
Fórmula para determinar las soluciones (raíces)
de una ecuación de segundo grado:
- b ± b2
– 4ac
2a
x =
Ejemplo:
Determinar las raíces de la ecuación: x2
- 3x - 4 = 0
-(-3) ± (-3)2
– 4·1(- 4)
2
x =
3 ± 9 + 16
2
x =
3 ± 25
2
x =
2
x = 3 ± 5
2
x = 8
2
x = -2
x1 = 4 x2 = -1
También se puede obtener las raíces de la ecuación
factorizando como producto de binomios:
x2
- 3x - 4 = 0
(x - 4)(x + 1) = 0
(x - 4)= 0 ó (x + 1)= 0
x1 = 4 x2 = -1
⇒
2.2. Propiedades de las raíces
Si x1 y x2 son las raíces de una ecuación de segundo
grado de la forma ax2
+ bx + c = 0, entonces:
-b
a
x1 + x2 =
c
a
x1 · x2 =
Δ
a
x1 - x2 = ±
1)
2)
3)
Dadas las raíces o soluciones de una ecuación de segundo
grado, se puede determinar la ecuación asociada a ellas.
a(x – x1)(x – x2) = 0
En una ecuación de segundo grado, el discriminante
Δ = b2
- 4ac
a) Si el discriminante es positivo, entonces la ecuación
cuadrática tiene dos soluciones reales x1, x2 y distintas.
La parábola intersecta
en dos puntos al eje X.
Δ > 0
2.3. Discriminante
permite conocer la naturaleza de las raíces.
x1, x2 son reales y
x1 ≠ x2
x2
x1

Resumen de la Función Cuadrática

  • 1.
  • 2.
    Contenidos 1.Función cuadrática 2.Ecuación de2º grado 1.1 Intersección con el eje Y 1.2 Concavidad 1.3 Eje de simetría y vértice 2.1 Raíces de una ecuación cuadrática 2.2 Propiedades de las raíces 2.3 Discriminante 1.4 Discriminante
  • 3.
    1. Función Cuadrática Esde la forma: f(x) = ax2 + bx + c Ejemplos: y su gráfica es una parábola. a) Si f(x) = 2x2 + 3x + 1 b) Si f(x) = 4x2 - 5x - 2 a = 2, b = 3 y c = 1 a = 4, b = -5 y c = -2 ⇒ ⇒ con a =0; a,b,c ∈ IR
  • 4.
    1.1. Intersección coneje Y En la función cuadrática, f(x) = ax2 + bx + c , el coeficiente c indica la ordenada del punto donde la parábola intersecta al eje Y. x y x y c (0,C)
  • 5.
    1.2. Concavidad En lafunción cuadrática, f(x) = ax2 + bx + c , el coeficiente a indica si la parábola es cóncava hacia arriba o hacia abajo. Si a > 0, es cóncava hacia arriba Si a < 0, es cóncava hacia abajo
  • 6.
    Si f(x) =ax2 + bx + c , entonces: b) Su vértice es: a) Su eje de simetría es: 2a 2a V = -b , f -b 4a -b , 4ac – b2 2a V = -b 2a x =
  • 7.
    f(x) V = (-1, -9 ) x = -1 Eje de simetría: Vértice:
  • 8.
    El discriminante sedefine como: Δ = b2 - 4ac Si el discriminante es positivo, entonces la parábola intersecta en dos puntos al eje X. Δ > 0 1.6. Discriminante
  • 9.
    x2 x1 2. Ecuación desegundo grado Una ecuación cuadrática o de segundo grado es de la forma: ax2 + bx + c = 0, con a ≠ 0 Toda ecuación de segundo grado tiene 2 soluciones o raíces. Si éstas son reales, corresponden a los puntos de intersección de la parábola f(x) = ax2 + bx + c con el eje X.
  • 10.
    x2 x y x1 Ejemplo: En la funciónf(x) = x2 - 3x - 4 , la ecuación asociada: x2 - 3x - 4 = 0 , tiene raíces -1 y 4. Luego, la parábola intersecta al eje X en esos puntos.
  • 11.
    2.1. Raíces deuna ecuación de 2° grado Fórmula para determinar las soluciones (raíces) de una ecuación de segundo grado: - b ± b2 – 4ac 2a x = Ejemplo: Determinar las raíces de la ecuación: x2 - 3x - 4 = 0 -(-3) ± (-3)2 – 4·1(- 4) 2 x = 3 ± 9 + 16 2 x =
  • 12.
    3 ± 25 2 x= 2 x = 3 ± 5 2 x = 8 2 x = -2 x1 = 4 x2 = -1 También se puede obtener las raíces de la ecuación factorizando como producto de binomios: x2 - 3x - 4 = 0 (x - 4)(x + 1) = 0 (x - 4)= 0 ó (x + 1)= 0 x1 = 4 x2 = -1 ⇒
  • 13.
    2.2. Propiedades delas raíces Si x1 y x2 son las raíces de una ecuación de segundo grado de la forma ax2 + bx + c = 0, entonces: -b a x1 + x2 = c a x1 · x2 = Δ a x1 - x2 = ± 1) 2) 3) Dadas las raíces o soluciones de una ecuación de segundo grado, se puede determinar la ecuación asociada a ellas. a(x – x1)(x – x2) = 0
  • 14.
    En una ecuaciónde segundo grado, el discriminante Δ = b2 - 4ac a) Si el discriminante es positivo, entonces la ecuación cuadrática tiene dos soluciones reales x1, x2 y distintas. La parábola intersecta en dos puntos al eje X. Δ > 0 2.3. Discriminante permite conocer la naturaleza de las raíces. x1, x2 son reales y x1 ≠ x2 x2 x1