Presentación elaborada por la profesora Ana Mª Zapatero a partir
de los materiales utilizados en el centro (Editorial SM)
Integrales indefinidas. Teoremas
2º Bachillerato
Esquema
Primitiva de una función
La función G(x) es una primitiva de la función f(x) en un intervalo I
si G'(x) = f(x) para todo x del intervalo I.
Ejemplo: la función F(x) =
x4
4 es una primitiva de f(x) ya que F '(x) = x3
.
También la función G(x) =
x4
4
+ 2 es una primitiva de f . Ambas en
cualquier intervalo de la recta real.
Integral indefinida
Ejemplo: la integral indefinida de f(x) = ex
es G(x) = ex
+ C, donde C es una cons-
tante. Se expresa de la siguiente manera: ⌡⌠ ex
dx = ex
+ C
Si G(x) es una primitiva de f(x) en un intervalo I, todas las primitivas de f(x) son
de la forma G(x) + C, donde C es una constante arbitraria que puede ser
cualquier número real.
Las primitivas se diferencian en una constante
Integrando
↓↑Derivando
Propiedades de la integral indefinida
I ⌡
⌠ k f(x) dx = k ⌡
⌠ f(x) dx con k ∈ R
Las constantes pueden salir y entrar fuera del
signo de la integral indefinida.
II ⌡
⌠
[ f(x) ± g(x)] dx = ⌡
⌠ f(x) dx ±⌡
⌠ g(x) dx
La integral indefinida de una suma (resta) de
dos funciones es la suma (resta) de las inte-
grales indefinidas.
Propiedades de la integral indefinida
Propiedades de la derivada
I (kf )' (x) = k f '(x) con k ∈ R
La derivada de una constante por una
función es el producto de la constante
por la derivada de la función.
II (f ± g) ' (x) = f ' (x) ± g ' (x)
La derivada de una suma (resta) de dos
funciones es la suma (resta) de las deri-
vadas de cada una de ellas.
Integrales inmediatas
Integrales inmediatas: una tabla de derivadas leída al revés proporciona
primitivas e integrales indefinidas.
1.- ⌡
⌠
xa
dx =
xa+1
a+1
+ C, si a ≠-1, a ∈R
2.-
⌡

⌠ 1
x
dx = ln x + C
3.- ⌡
⌠
ex
dx = ex
+ C
4.- ∫ax
= + C, si a>0, a ≠1
5.- ⌡
⌠
sen x dx = – cos x + C
6.- ⌡
⌠
cos x dx = sen x + C
7.-
8.-
Integrales inmediatas para funciones compuestas
•
⌡


⌠
xr
dx =
xr+1
r + 1
+ C, para cualquier constante r ≠ – 1
⌡


⌠
f '(x) [f(x)]r dx =
[f(x)]r+1
r + 1
+ C para r ≠-1
1
2 ⌡

⌠
2 cos 2x sen3 2x dx =
1
2
sen4
2x
4 =
1
8 sen4 2x + C
Tipo general
•
⌡


⌠
cos 2x sen3 2x dx =
Ejemplo:
Integrales inmediatas para funciones compuestas
Tipo general
Ejemplo:
∫ dx
xf
xf
)(
)('
= ln |f(x)| + C
•
⌡


⌠
tg 3x dx =
– 1
3 ⌡

⌠– 3 sen 3x
cos 3x
dx = –
1
3
ln |cos 3x | + C
Integrales inmediatas para funciones compuestas
Tipo general
Ejemplo:
⌡


⌠
f '(x) af(x) dx =
af(x)
ln a
+ C, para a > 0
•
⌡


⌠
x2
ex3
dx =
1
3 ⌡


⌠
3x2
ex3
dx =
1
3
ex3
+ C
Integrales inmediatas para funciones compuestas
Tipo general
Ejemplo:
⌡


⌠
f '(x) sen f(x) dx = – cos f(x) + C
•
⌡


⌠
e3x
sen (e3x
+ 5) dx = 1
3 ⌡


⌠
3 e3x
sen (e3x
+ 5) dx = –
1
3
cos (e3x
+ 5) + C
Integrales inmediatas para funciones compuestas
Tipo general
Ejemplo:
⌡


⌠
f '(x) cos f(x) dx = sen f(x) + C
•
⌡


⌠
e7x
cos (e7x
+ 5) dx =
1
7 ⌡


⌠
7 e7x
cos (e7x
+ 5) dx =
1
7
sen (e7x
+ 5) + C
Integrales inmediatas para funciones compuestas
Tipo
general
Ejemplo:
⌡

⌠ g '(x)
1 - [g(x)]2 dx = arcsen g(x) + C
•
⌡

⌠ e3x
1 – e6x dx =
⌡

⌠e3x
1 – (e3x
)2 dx =
1
3 ⌡

⌠3e3x
1 – (e3x
)2 dx =
1
3
arcsen e3x
+ C
Integrales inmediatas para funciones compuestas
Tipo
general
•
⌡

⌠ 1
1 + 2x2 dx =
Ejemplo:
⌡

⌠ 1
1 + ( 2x)2 dx =
1
2 ⌡

⌠ 2
1 + ( 2x)2 dx =
Integración por partes
Es muy frecuente expresar esta fórmula con la siguiente notación abreviada que se obtiene
poniendo: u = f(x), dv = g '(x)dx, v = g(x) y du = f ' (x) dx:
⌡

⌠
u dv = uv – ⌡

⌠
v du
Consejos 1. Llamar g′ a una función de la que sea cómodo obtener g.
2. Si es cómodo obtener g sea cual fuere la elección que hagamos para
g′, llamar entonces g′ a aquella que haga que ∫ f ′g se más cómoda
que ∫ f g ′ .
Integración por partes: Ejemplos
= x2
ex
– 2[xex
–
⌡


⌠
ex
dx ] = ex
(x2
– 2x + 2) + C
•⌡


⌠
x2
ex
dx = x2
ex
–
⌡


⌠
ex
2x dx = x2
ex
– 2
⌡


⌠
x ex
dx =
u = x2
⇒ du = 2x dx
dv = ex
. dx ⇒ v = ex
u = x ⇒ du = dx
dv = ex
. dx ⇒ v = ex
u = sen (L x) ⇒ du = cos(L x) . (1/x) . dx
dv = dx ⇒ v = x
= x . sen(ln x) – x cos(ln x) –
⌡


⌠
sen(ln x) . dx
Despejando la integral buscada queda:
u = cos (L x) ⇒ du = – sen(L x) . (1/x) . dx
dv = dx ⇒ v = x
x . sen (ln x) –
⌡


⌠
cos (ln x) . dx =•⌡


⌠
sen(ln x) . dx =
⌡


⌠
sen(ln x) . dx =
1
2
x [sen(ln x) – cos(ln x)] + C
Integración por sustitución o cambio de variable
Si F es una primitiva de f, y g es derivable se tiene:
(F o g)'(x) =F(g(x))’= F '[g(x)] g'(x) = f[g(x)] g'(x)
Por lo que la integral del elemento final es:
⌡

⌠
f[g(x)]g'(x) dx = F[g(x)] + C
Si se escribe u = g(x), entonces du = g' (x) dx.
Con esta sustitución se tiene ⌡


⌠
f(u) du = F(u) + C
Integración por sustitución: Ejemplos I
•
⌡

⌠ 1
x ln x
dx
Cambio ln x = u ⇒ dx / x = du
= =
⌡


⌠ 1
u du = ln | u | + C
deshacer el cambio
= ln | ln x | + C
Para calcular una integral por cambio de variable:
• Buscar una transformación u = g(x) que reduzca su cálculo al de una integral
inmediata.
• Cuando se realiza el cambio debe transformarse también la diferencial
mediante.
du = g'(x) dx
• Después de calcular la integral inmediata debe deshacerse el cambio
poniendo g(x) de nuevo en lugar de u para obtener el resultado final.
Integración por sustitución: Ejemplos II
deshacer el cambio
•
⌡


⌠
x3
x4
+ 2 dx =
Cambio x4
+ 2 = u ⇒ 4x3
. dx = du ⇒ x3
dx = du/4
•
⌡


⌠
sen3
2x .
cos 2x dx =
1
2 ⌡


⌠
t3 .
dt =
Cambio sen 2x = t ⇒ 2 cos 2x . dx = dt ⇒ cos 2x dx =
dt/2
=
1
8
sen4
2x + C
1
2
t4
4
+ C
deshacer el cambio
Integración de funciones racionales
Pretendemos obtener
⌡

⌠P(x)
Q(x)
dx en donde P(x) y Q(x) son polinomios tales que
grad[P(x)] = m y grad[Q(x)] = n
Caso 1: m ≥ n. Veremos que este caso se puede convertir al Caso 2.
P(x) Q(x)
C(x)R(x)
con grad[R(x)] < grad[Q(x)]
⇔ P(x) = C(x) . Q(x) + R(x) ⇔
P(x)
Q(x)
= C(x) +
R(x)
Q(x)
Por tanto:
⌡

⌠P(x)
Q(x)
dx =
⌡


⌠
C(x) .dx +
⌡

⌠R(x)
Q(x)
dx
En donde la primera
integral es inmediata y la
segunda corresponde al
Caso 2
Caso 2: m < n. Entonces la integral se hace por descomposición en fracciones simples.
Como m ≥ n, es posible la división entera entre P(x) y Q(x)
Descomposición en fracciones simples I
Pretendemos obtener
⌡

⌠ P(x)
Q(x)
dx en donde P(x) y Q(x) son polinomios tales que
grad[P(x)] = m < grad[Q(x)] = n
• Supongamos que es posible factorizar el polinomio Q(x). Ello equivale a resolver la
ecuación Q(x) = 0.
• Supongamos que la ecuación Q(x) = 0 tiene:
• Soluciones reales sencillas (por ejemplo x1).
• Soluciones reales múltiples (por ejemplo x2 con orden de multiplicidad 2).
• Soluciones complejas sencillas (por ejemplo tiene dos soluciones, que
son necesariamente conjugadas).
• El caso soluciones complejas múltiples no se estudia.
Por ej. Si tiene una raíz simple una doble y dos complejas conjugadas, entonces dicho
polinomio se factoriza de la siguiente manera:
Q(x) = ao(x – x1) .
(x – x2)2 .
(x2
+ bx + c)
tal que ao es el coeficiente del término de mayor grado.
⌡

⌠P(x)
Q(x)
dx =
1
ao ⌡

⌠ P(x)
(x – x1) .
(x – x2)2 .
(x2
+ bx + c)
dx =
Paso 1. Factorización del polinomio Q(x)
Descomposición en fracciones simples II
Paso 2. Descomponer el integrando en fracciones simples
P(x)
(x – x1) .
(x – x2)2 .
(x2
+ bx + c)
=
A
x – x1
+
B
(x – x2)2 +
C
x – x2
+
Mx + N
x2
+ bx + c
Paso 3. Cálculo de los coeficientes indeterminados
Proceso de cálculo:
• Eliminar denominadores en la igualdad anterior, para obtener una
identidad polinómica.
• Dar valores numéricos cualesquiera, tantos como coeficientes
indeterminados (en el ejemplo 5: x1, x2 y 3 valores más).
• Resolver el sistema.
Descomposición en fracciones simples: ejemplo
Descomponer en fracciones simples:
x2
+ x + 1
x5
– x4
– x + 1
Paso 1. Factorización del polinomio denominador
Por Ruffini obtenemos: x5
– x4
– x + 1 = (x + 1) .
(x – 1)2 .
(x2
+ 1)
Paso 2. Descomponer en fracciones simples
x2
+ x + 1
x5
– x4
– x + 1
=
A
x + 1
+
B
(x – 1)2 +
C
x – 1
+
Mx + N
x2
+ 1
Paso 3. Cálculo de los coeficientes indeterminados
x2
+ x + 1= A(x–1)2
(x2
+1) + B(x+1)(x2
+1) + C(x–1)(x+1)(x2
+1) + (Mx+N) (x+1)(x–1)2




x=1 →B=3/4
x=–1 →A=1/8
x=0 →– C + N = 1/8
x=2 →5C+2M+N = –13/8
x=–2 →5C+6M–3N = 3/8
Y de aquí: A = 1/8; B = 3/4; N = –1/4; C = –3/8; M = 1/4
Integrales racionales con denominador de grado 2
Estudio de la integral
⌡

⌠Mx + N
ax2
+ bx + c
dx
Sea D el discriminante del
denominador: D = b2
– 4ac
Si la derivada del denominador es el numerador salvo una constante, la integral podrá ser
resuelta como inmediata tipo neperiano.
En caso contrario:
• Si D ≥ 0 ⇒ la integral se obtiene por descomposición en fracciones simples.
• Si D < 0 ⇒ la integral es tipo neperiano + arco tangente.
Pasos para su obtención:
M ≠ 0
Paso 1: se busca la derivada del denominador en el numerador.
Paso 2: como consecuencia se puede descomponer la integral en suma de otras
dos: la primera es inmediata (neperiano) y la segunda es tipo arco tangente.
M = 0 (Cálculo de la integral tipo arco tangente).
Paso3: se convierte el denominador en un número (k) más un binomio al cuadrado
(cosa que es posible por ser D < 0). Si previamente se multiplica por 4a se evitan
los números fraccionarios.
Paso 4: se convierte el denominador en la unidad más una función al cuadrado
(sacando factor común k en el denominador), ajustamos con constantes, e
integramos como inmediata tipo arco tangente
Integración de funciones trigonométricas:
fórmulas
Fórmulas trigonométricas fundamentales
sen2
px + cos2
px = 1
Fórmula fundamental de la
trigonometría.
sen 2px = 2 sen px . cos px
cos 2px = cos2
px – sen2
px
Seno y coseno del ángulo
doble.
cos2
px =
1 + cos 2px
2
sen2
px =
1 – cos 2px
2
Fórmulas de reducción de
grado.
sen a . cos b =
1
2 sen (a + b) +
1
2 sen (a – b)
cos a . cos b =
1
2 cos (a + b) +
1
2 cos (a – b)
sen a . sen b = –
1
2
cos (a + b) +
1
2
cos (a – b)
Fórmulas de conversión de
productos de senos y
cosenos en suma.
sen (– px) = – sen px
cos (– px) = cos px
Seno y coseno del ángulo
opuesto.
1 + tg2
px = sec2
px;
1 + ctg2
px = csc2
px
Integración de funciones trigonométricas: métodos
Forma Condiciones Método
n par
Reducir el grado del integrando por medio de
las fórmulas de reducción de grado (3), según
convenga.(I) ⌡

⌠
senn
px dx
⌡

⌠
cosn
px dx
n impar
Sacar un factor (seno o coseno) de la potencia
sustituyendo en el resto de la potencia la rela-
ción 1. Al desarrollar la potencia se obtienen
integrales inmediatas tipo potencial.
m y n pares Reducir el grado del integrando aplicando las
fórmulas 3.
(II)⌡

⌠
senn
px . cosn
px dx
m ó n impares
De la potencia de exponente impar se saca un
factor, sustituyendo en el resto de la potencia la
relación 1. Al desarrollar la potencia se obtie-
nen integrales inmediatas tipo potencial.
Caso particular  Si m = n Aplicar la relación (2a) para obtener:
⌡

⌠
senn
px . cosn
px dx =
1
2n
⌡

⌠
senn
2px dx
que es del tipo (I).
Forma Condiciones Método
(III)
⌡

⌠
sen px.cos qx.dx
⌡

⌠
sen px.sen qx.dx
⌡

⌠
cos px.cos qx..dx
p y q números
reales cuales-
quiera
Convertir los productos en sumas mediante la
relaciones 4 según convenga.
Integración de funciones trigonométricas: métodos II
Integración de funciones trigonométricas: ejemplos I
= ⌡

⌠
sen3x.dx +⌡

⌠
cos4
3x sen 3x.dx –2⌡

⌠
cos2
3x sen 3x.dx =
= –
1
3
cos 3x -
2
9
cos3
3x +
1
15
cos5
3x+C
Tipo I. Exponente impar
=
1
4
x +
1
4 ⌡

⌠1 + cos
4x
3
2
dx –
3
4
sen
2x
3
=
3x
8
–
3
4
sen
2x
3
+
3
32
sen
4x
3
+ C
Tipo I. Exponente par
•⌡

⌠
sen5
3x.dx = ⌡

⌠
(sen2
3x)2
sen 3x.dx = ⌡

⌠
(1–cos2
3x)2
sen 3x.dx =
•
⌡


⌠
sen4 x
3 dx = 1
4 ⌡

⌠






1 + cos2 2x
3
– 2 cos
2x
3
dx =⌡

⌠








sen2 x
3
2
dx =
⌡

⌠





1 – cos
2x
3
2
2
dx =
=
1
4 ⌡

⌠
1.dx +
1
4 ⌡


⌠
cos2 2x
3 dx – 2
1
4 ⌡


⌠
cos
2x
3 dx =
Integración de funciones trigonométricas: ejemplos
II
Tipo II. Al menos un exponente impar
•⌡


⌠
cos4
5x.sen3
5xdx =
⌡


⌠
cos4
5x . sen2
5x .sen 5x . dx =
⌡


⌠
cos4
5x . (1 – cos2
5x).sen 5x.dx =
=
⌡


⌠
cos4
5x.sen 5x.dx –
⌡


⌠
cos6
5x.sen 5x.dx =
=
– 1
25
cos5
5x +
1
35
cos7
5x + C
=
1
8 ⌡

⌠1 – cos 12x
2
dx –
1
48
sen3
6x
3
=
=
1
8 ⌡


⌠
sen2
6x dx –
1
8 ⌡


⌠
sen2
6x .cos 6x.dx =
=
x
16
–
1
144
sen3
6x –
1
192
sen 12x + C
Tipo II. Todos los exponentes pares
•⌡


⌠
sen4
3x .cos2
3x.dx =
⌡


⌠
(sen2
3x)2
.cos2
3x.dx =
⌡

⌠





1 – cos 6x
2
2 1 + cos 6x
2
dx =
=
1
8 ⌡


⌠
(1 – cos 6x)(1 – cos2
6x) dx =
( 1 – cos 6x) ( 1 – cos 6x) ( 1 + cos 6x)
( 1 – cos 6x) ( 1 – cos2
6x)
sen2
6x
Integración de funciones trigonométricas: ejemplos III
Tipo III: Producto de funciones con distinto argumento
•⌡


⌠
sen 3x.cos 5x.dx = 1
2 ⌡


⌠
sen 8x .dx +
1
2 ⌡


⌠
sen( – 2x) .dx =
= –
1
16
cos 8x +
1
4
cos( – 2x) + C == –
1
16
cos 8x +
1
4
cos 2x + C
Para resolverlas hay que utilizar las fórmulas de trasformación de sumas
en productos
Cálculo de áreas
• En multitud de problemas que se presentan en Ciencia y Tecnología es preciso
calcular el área encerrada por varias curvas.
• Este problema pasa por encontrar el área limitada por una curva y = f(x), el eje OX y
las abcisas x = a, x = b.
Área (Trapecio rectilíneo) =
=
f(a) + f(b)
2
.
(b – a)
Área (Trapecio curvilíneo) ≈
≈
f(a) + f(b)
2
.
(b – a)
Error

Integrales indefinidas

  • 1.
    Presentación elaborada porla profesora Ana Mª Zapatero a partir de los materiales utilizados en el centro (Editorial SM) Integrales indefinidas. Teoremas 2º Bachillerato
  • 2.
  • 3.
    Primitiva de unafunción La función G(x) es una primitiva de la función f(x) en un intervalo I si G'(x) = f(x) para todo x del intervalo I. Ejemplo: la función F(x) = x4 4 es una primitiva de f(x) ya que F '(x) = x3 . También la función G(x) = x4 4 + 2 es una primitiva de f . Ambas en cualquier intervalo de la recta real.
  • 4.
    Integral indefinida Ejemplo: laintegral indefinida de f(x) = ex es G(x) = ex + C, donde C es una cons- tante. Se expresa de la siguiente manera: ⌡⌠ ex dx = ex + C Si G(x) es una primitiva de f(x) en un intervalo I, todas las primitivas de f(x) son de la forma G(x) + C, donde C es una constante arbitraria que puede ser cualquier número real.
  • 5.
    Las primitivas sediferencian en una constante Integrando ↓↑Derivando
  • 6.
    Propiedades de laintegral indefinida I ⌡ ⌠ k f(x) dx = k ⌡ ⌠ f(x) dx con k ∈ R Las constantes pueden salir y entrar fuera del signo de la integral indefinida. II ⌡ ⌠ [ f(x) ± g(x)] dx = ⌡ ⌠ f(x) dx ±⌡ ⌠ g(x) dx La integral indefinida de una suma (resta) de dos funciones es la suma (resta) de las inte- grales indefinidas. Propiedades de la integral indefinida Propiedades de la derivada I (kf )' (x) = k f '(x) con k ∈ R La derivada de una constante por una función es el producto de la constante por la derivada de la función. II (f ± g) ' (x) = f ' (x) ± g ' (x) La derivada de una suma (resta) de dos funciones es la suma (resta) de las deri- vadas de cada una de ellas.
  • 7.
    Integrales inmediatas Integrales inmediatas:una tabla de derivadas leída al revés proporciona primitivas e integrales indefinidas. 1.- ⌡ ⌠ xa dx = xa+1 a+1 + C, si a ≠-1, a ∈R 2.- ⌡  ⌠ 1 x dx = ln x + C 3.- ⌡ ⌠ ex dx = ex + C 4.- ∫ax = + C, si a>0, a ≠1 5.- ⌡ ⌠ sen x dx = – cos x + C 6.- ⌡ ⌠ cos x dx = sen x + C 7.- 8.-
  • 8.
    Integrales inmediatas parafunciones compuestas • ⌡   ⌠ xr dx = xr+1 r + 1 + C, para cualquier constante r ≠ – 1 ⌡   ⌠ f '(x) [f(x)]r dx = [f(x)]r+1 r + 1 + C para r ≠-1 1 2 ⌡  ⌠ 2 cos 2x sen3 2x dx = 1 2 sen4 2x 4 = 1 8 sen4 2x + C Tipo general • ⌡   ⌠ cos 2x sen3 2x dx = Ejemplo:
  • 9.
    Integrales inmediatas parafunciones compuestas Tipo general Ejemplo: ∫ dx xf xf )( )(' = ln |f(x)| + C • ⌡   ⌠ tg 3x dx = – 1 3 ⌡  ⌠– 3 sen 3x cos 3x dx = – 1 3 ln |cos 3x | + C
  • 10.
    Integrales inmediatas parafunciones compuestas Tipo general Ejemplo: ⌡   ⌠ f '(x) af(x) dx = af(x) ln a + C, para a > 0 • ⌡   ⌠ x2 ex3 dx = 1 3 ⌡   ⌠ 3x2 ex3 dx = 1 3 ex3 + C
  • 11.
    Integrales inmediatas parafunciones compuestas Tipo general Ejemplo: ⌡   ⌠ f '(x) sen f(x) dx = – cos f(x) + C • ⌡   ⌠ e3x sen (e3x + 5) dx = 1 3 ⌡   ⌠ 3 e3x sen (e3x + 5) dx = – 1 3 cos (e3x + 5) + C
  • 12.
    Integrales inmediatas parafunciones compuestas Tipo general Ejemplo: ⌡   ⌠ f '(x) cos f(x) dx = sen f(x) + C • ⌡   ⌠ e7x cos (e7x + 5) dx = 1 7 ⌡   ⌠ 7 e7x cos (e7x + 5) dx = 1 7 sen (e7x + 5) + C
  • 13.
    Integrales inmediatas parafunciones compuestas Tipo general Ejemplo: ⌡  ⌠ g '(x) 1 - [g(x)]2 dx = arcsen g(x) + C • ⌡  ⌠ e3x 1 – e6x dx = ⌡  ⌠e3x 1 – (e3x )2 dx = 1 3 ⌡  ⌠3e3x 1 – (e3x )2 dx = 1 3 arcsen e3x + C
  • 14.
    Integrales inmediatas parafunciones compuestas Tipo general • ⌡  ⌠ 1 1 + 2x2 dx = Ejemplo: ⌡  ⌠ 1 1 + ( 2x)2 dx = 1 2 ⌡  ⌠ 2 1 + ( 2x)2 dx =
  • 15.
    Integración por partes Esmuy frecuente expresar esta fórmula con la siguiente notación abreviada que se obtiene poniendo: u = f(x), dv = g '(x)dx, v = g(x) y du = f ' (x) dx: ⌡  ⌠ u dv = uv – ⌡  ⌠ v du Consejos 1. Llamar g′ a una función de la que sea cómodo obtener g. 2. Si es cómodo obtener g sea cual fuere la elección que hagamos para g′, llamar entonces g′ a aquella que haga que ∫ f ′g se más cómoda que ∫ f g ′ .
  • 16.
    Integración por partes:Ejemplos = x2 ex – 2[xex – ⌡   ⌠ ex dx ] = ex (x2 – 2x + 2) + C •⌡   ⌠ x2 ex dx = x2 ex – ⌡   ⌠ ex 2x dx = x2 ex – 2 ⌡   ⌠ x ex dx = u = x2 ⇒ du = 2x dx dv = ex . dx ⇒ v = ex u = x ⇒ du = dx dv = ex . dx ⇒ v = ex u = sen (L x) ⇒ du = cos(L x) . (1/x) . dx dv = dx ⇒ v = x = x . sen(ln x) – x cos(ln x) – ⌡   ⌠ sen(ln x) . dx Despejando la integral buscada queda: u = cos (L x) ⇒ du = – sen(L x) . (1/x) . dx dv = dx ⇒ v = x x . sen (ln x) – ⌡   ⌠ cos (ln x) . dx =•⌡   ⌠ sen(ln x) . dx = ⌡   ⌠ sen(ln x) . dx = 1 2 x [sen(ln x) – cos(ln x)] + C
  • 17.
    Integración por sustitucióno cambio de variable Si F es una primitiva de f, y g es derivable se tiene: (F o g)'(x) =F(g(x))’= F '[g(x)] g'(x) = f[g(x)] g'(x) Por lo que la integral del elemento final es: ⌡  ⌠ f[g(x)]g'(x) dx = F[g(x)] + C Si se escribe u = g(x), entonces du = g' (x) dx. Con esta sustitución se tiene ⌡   ⌠ f(u) du = F(u) + C
  • 18.
    Integración por sustitución:Ejemplos I • ⌡  ⌠ 1 x ln x dx Cambio ln x = u ⇒ dx / x = du = = ⌡   ⌠ 1 u du = ln | u | + C deshacer el cambio = ln | ln x | + C Para calcular una integral por cambio de variable: • Buscar una transformación u = g(x) que reduzca su cálculo al de una integral inmediata. • Cuando se realiza el cambio debe transformarse también la diferencial mediante. du = g'(x) dx • Después de calcular la integral inmediata debe deshacerse el cambio poniendo g(x) de nuevo en lugar de u para obtener el resultado final.
  • 19.
    Integración por sustitución:Ejemplos II deshacer el cambio • ⌡   ⌠ x3 x4 + 2 dx = Cambio x4 + 2 = u ⇒ 4x3 . dx = du ⇒ x3 dx = du/4 • ⌡   ⌠ sen3 2x . cos 2x dx = 1 2 ⌡   ⌠ t3 . dt = Cambio sen 2x = t ⇒ 2 cos 2x . dx = dt ⇒ cos 2x dx = dt/2 = 1 8 sen4 2x + C 1 2 t4 4 + C deshacer el cambio
  • 20.
    Integración de funcionesracionales Pretendemos obtener ⌡  ⌠P(x) Q(x) dx en donde P(x) y Q(x) son polinomios tales que grad[P(x)] = m y grad[Q(x)] = n Caso 1: m ≥ n. Veremos que este caso se puede convertir al Caso 2. P(x) Q(x) C(x)R(x) con grad[R(x)] < grad[Q(x)] ⇔ P(x) = C(x) . Q(x) + R(x) ⇔ P(x) Q(x) = C(x) + R(x) Q(x) Por tanto: ⌡  ⌠P(x) Q(x) dx = ⌡   ⌠ C(x) .dx + ⌡  ⌠R(x) Q(x) dx En donde la primera integral es inmediata y la segunda corresponde al Caso 2 Caso 2: m < n. Entonces la integral se hace por descomposición en fracciones simples. Como m ≥ n, es posible la división entera entre P(x) y Q(x)
  • 21.
    Descomposición en fraccionessimples I Pretendemos obtener ⌡  ⌠ P(x) Q(x) dx en donde P(x) y Q(x) son polinomios tales que grad[P(x)] = m < grad[Q(x)] = n • Supongamos que es posible factorizar el polinomio Q(x). Ello equivale a resolver la ecuación Q(x) = 0. • Supongamos que la ecuación Q(x) = 0 tiene: • Soluciones reales sencillas (por ejemplo x1). • Soluciones reales múltiples (por ejemplo x2 con orden de multiplicidad 2). • Soluciones complejas sencillas (por ejemplo tiene dos soluciones, que son necesariamente conjugadas). • El caso soluciones complejas múltiples no se estudia. Por ej. Si tiene una raíz simple una doble y dos complejas conjugadas, entonces dicho polinomio se factoriza de la siguiente manera: Q(x) = ao(x – x1) . (x – x2)2 . (x2 + bx + c) tal que ao es el coeficiente del término de mayor grado. ⌡  ⌠P(x) Q(x) dx = 1 ao ⌡  ⌠ P(x) (x – x1) . (x – x2)2 . (x2 + bx + c) dx = Paso 1. Factorización del polinomio Q(x)
  • 22.
    Descomposición en fraccionessimples II Paso 2. Descomponer el integrando en fracciones simples P(x) (x – x1) . (x – x2)2 . (x2 + bx + c) = A x – x1 + B (x – x2)2 + C x – x2 + Mx + N x2 + bx + c Paso 3. Cálculo de los coeficientes indeterminados Proceso de cálculo: • Eliminar denominadores en la igualdad anterior, para obtener una identidad polinómica. • Dar valores numéricos cualesquiera, tantos como coeficientes indeterminados (en el ejemplo 5: x1, x2 y 3 valores más). • Resolver el sistema.
  • 23.
    Descomposición en fraccionessimples: ejemplo Descomponer en fracciones simples: x2 + x + 1 x5 – x4 – x + 1 Paso 1. Factorización del polinomio denominador Por Ruffini obtenemos: x5 – x4 – x + 1 = (x + 1) . (x – 1)2 . (x2 + 1) Paso 2. Descomponer en fracciones simples x2 + x + 1 x5 – x4 – x + 1 = A x + 1 + B (x – 1)2 + C x – 1 + Mx + N x2 + 1 Paso 3. Cálculo de los coeficientes indeterminados x2 + x + 1= A(x–1)2 (x2 +1) + B(x+1)(x2 +1) + C(x–1)(x+1)(x2 +1) + (Mx+N) (x+1)(x–1)2     x=1 →B=3/4 x=–1 →A=1/8 x=0 →– C + N = 1/8 x=2 →5C+2M+N = –13/8 x=–2 →5C+6M–3N = 3/8 Y de aquí: A = 1/8; B = 3/4; N = –1/4; C = –3/8; M = 1/4
  • 24.
    Integrales racionales condenominador de grado 2 Estudio de la integral ⌡  ⌠Mx + N ax2 + bx + c dx Sea D el discriminante del denominador: D = b2 – 4ac Si la derivada del denominador es el numerador salvo una constante, la integral podrá ser resuelta como inmediata tipo neperiano. En caso contrario: • Si D ≥ 0 ⇒ la integral se obtiene por descomposición en fracciones simples. • Si D < 0 ⇒ la integral es tipo neperiano + arco tangente. Pasos para su obtención: M ≠ 0 Paso 1: se busca la derivada del denominador en el numerador. Paso 2: como consecuencia se puede descomponer la integral en suma de otras dos: la primera es inmediata (neperiano) y la segunda es tipo arco tangente. M = 0 (Cálculo de la integral tipo arco tangente). Paso3: se convierte el denominador en un número (k) más un binomio al cuadrado (cosa que es posible por ser D < 0). Si previamente se multiplica por 4a se evitan los números fraccionarios. Paso 4: se convierte el denominador en la unidad más una función al cuadrado (sacando factor común k en el denominador), ajustamos con constantes, e integramos como inmediata tipo arco tangente
  • 25.
    Integración de funcionestrigonométricas: fórmulas Fórmulas trigonométricas fundamentales sen2 px + cos2 px = 1 Fórmula fundamental de la trigonometría. sen 2px = 2 sen px . cos px cos 2px = cos2 px – sen2 px Seno y coseno del ángulo doble. cos2 px = 1 + cos 2px 2 sen2 px = 1 – cos 2px 2 Fórmulas de reducción de grado. sen a . cos b = 1 2 sen (a + b) + 1 2 sen (a – b) cos a . cos b = 1 2 cos (a + b) + 1 2 cos (a – b) sen a . sen b = – 1 2 cos (a + b) + 1 2 cos (a – b) Fórmulas de conversión de productos de senos y cosenos en suma. sen (– px) = – sen px cos (– px) = cos px Seno y coseno del ángulo opuesto. 1 + tg2 px = sec2 px; 1 + ctg2 px = csc2 px
  • 26.
    Integración de funcionestrigonométricas: métodos Forma Condiciones Método n par Reducir el grado del integrando por medio de las fórmulas de reducción de grado (3), según convenga.(I) ⌡  ⌠ senn px dx ⌡  ⌠ cosn px dx n impar Sacar un factor (seno o coseno) de la potencia sustituyendo en el resto de la potencia la rela- ción 1. Al desarrollar la potencia se obtienen integrales inmediatas tipo potencial. m y n pares Reducir el grado del integrando aplicando las fórmulas 3. (II)⌡  ⌠ senn px . cosn px dx m ó n impares De la potencia de exponente impar se saca un factor, sustituyendo en el resto de la potencia la relación 1. Al desarrollar la potencia se obtie- nen integrales inmediatas tipo potencial. Caso particular  Si m = n Aplicar la relación (2a) para obtener: ⌡  ⌠ senn px . cosn px dx = 1 2n ⌡  ⌠ senn 2px dx que es del tipo (I).
  • 27.
    Forma Condiciones Método (III) ⌡  ⌠ senpx.cos qx.dx ⌡  ⌠ sen px.sen qx.dx ⌡  ⌠ cos px.cos qx..dx p y q números reales cuales- quiera Convertir los productos en sumas mediante la relaciones 4 según convenga. Integración de funciones trigonométricas: métodos II
  • 28.
    Integración de funcionestrigonométricas: ejemplos I = ⌡  ⌠ sen3x.dx +⌡  ⌠ cos4 3x sen 3x.dx –2⌡  ⌠ cos2 3x sen 3x.dx = = – 1 3 cos 3x - 2 9 cos3 3x + 1 15 cos5 3x+C Tipo I. Exponente impar = 1 4 x + 1 4 ⌡  ⌠1 + cos 4x 3 2 dx – 3 4 sen 2x 3 = 3x 8 – 3 4 sen 2x 3 + 3 32 sen 4x 3 + C Tipo I. Exponente par •⌡  ⌠ sen5 3x.dx = ⌡  ⌠ (sen2 3x)2 sen 3x.dx = ⌡  ⌠ (1–cos2 3x)2 sen 3x.dx = • ⌡   ⌠ sen4 x 3 dx = 1 4 ⌡  ⌠       1 + cos2 2x 3 – 2 cos 2x 3 dx =⌡  ⌠         sen2 x 3 2 dx = ⌡  ⌠      1 – cos 2x 3 2 2 dx = = 1 4 ⌡  ⌠ 1.dx + 1 4 ⌡   ⌠ cos2 2x 3 dx – 2 1 4 ⌡   ⌠ cos 2x 3 dx =
  • 29.
    Integración de funcionestrigonométricas: ejemplos II Tipo II. Al menos un exponente impar •⌡   ⌠ cos4 5x.sen3 5xdx = ⌡   ⌠ cos4 5x . sen2 5x .sen 5x . dx = ⌡   ⌠ cos4 5x . (1 – cos2 5x).sen 5x.dx = = ⌡   ⌠ cos4 5x.sen 5x.dx – ⌡   ⌠ cos6 5x.sen 5x.dx = = – 1 25 cos5 5x + 1 35 cos7 5x + C = 1 8 ⌡  ⌠1 – cos 12x 2 dx – 1 48 sen3 6x 3 = = 1 8 ⌡   ⌠ sen2 6x dx – 1 8 ⌡   ⌠ sen2 6x .cos 6x.dx = = x 16 – 1 144 sen3 6x – 1 192 sen 12x + C Tipo II. Todos los exponentes pares •⌡   ⌠ sen4 3x .cos2 3x.dx = ⌡   ⌠ (sen2 3x)2 .cos2 3x.dx = ⌡  ⌠      1 – cos 6x 2 2 1 + cos 6x 2 dx = = 1 8 ⌡   ⌠ (1 – cos 6x)(1 – cos2 6x) dx = ( 1 – cos 6x) ( 1 – cos 6x) ( 1 + cos 6x) ( 1 – cos 6x) ( 1 – cos2 6x) sen2 6x
  • 30.
    Integración de funcionestrigonométricas: ejemplos III Tipo III: Producto de funciones con distinto argumento •⌡   ⌠ sen 3x.cos 5x.dx = 1 2 ⌡   ⌠ sen 8x .dx + 1 2 ⌡   ⌠ sen( – 2x) .dx = = – 1 16 cos 8x + 1 4 cos( – 2x) + C == – 1 16 cos 8x + 1 4 cos 2x + C Para resolverlas hay que utilizar las fórmulas de trasformación de sumas en productos
  • 31.
    Cálculo de áreas •En multitud de problemas que se presentan en Ciencia y Tecnología es preciso calcular el área encerrada por varias curvas. • Este problema pasa por encontrar el área limitada por una curva y = f(x), el eje OX y las abcisas x = a, x = b. Área (Trapecio rectilíneo) = = f(a) + f(b) 2 . (b – a) Área (Trapecio curvilíneo) ≈ ≈ f(a) + f(b) 2 . (b – a) Error