SlideShare una empresa de Scribd logo
1 de 29
Esquema
Primitiva de una función
La función G(x) es una primitiva de la función f(x) en un intervalo I
si G'(x) = f(x) para todo x del intervalo I.
Ejemplo: la función F(x) =
x4
4 es una primitiva de f(x) ya que F '(x) = x3
.
También la función G(x) =
x4
4
+ 2 es una primitiva de f . Ambas en
cualquier intervalo de la recta real.
Integral indefinida
Ejemplo: la integral indefinida de f(x) = ex
es G(x) = ex
+ C, donde C es una cons-
tante. Se expresa de la siguiente manera: ⌡⌠ ex
dx = ex
+ C
Si G(x) es una primitiva de f(x) en un intervalo I, todas las primitivas de f(x) son
de la forma G(x) + C, donde C es una constante arbitraria que puede ser
cualquier número real.
Las primitivas se diferencian en una constante
Integrando
↓↑Derivando
Propiedades de la integral indefinida
I ⌡
⌠ k f(x) dx = k ⌡
⌠ f(x) dx con k ∈ R
Las constantes pueden salir y entrar fuera del
signo de la integral indefinida.
II ⌡
⌠
[ f(x) ± g(x)] dx = ⌡
⌠ f(x) dx ±⌡
⌠ g(x) dx
La integral indefinida de una suma (resta) de
dos funciones es la suma (resta) de las inte-
grales indefinidas.
Propiedades de la integral indefinida
Propiedades de la derivada
I (kf )' (x) = k f '(x) con k ∈ R
La derivada de una constante por una
función es el producto de la constante
por la derivada de la función.
II (f ± g) ' (x) = f ' (x) ± g ' (x)
La derivada de una suma (resta) de dos
funciones es la suma (resta) de las deri-
vadas de cada una de ellas.
Integrales inmediatas
Integrales inmediatas: una tabla de derivadas leída al revés proporciona
primitivas e integrales indefinidas.
1.- ⌡
⌠
xa
dx =
xa+1
a+1
+ C, si a ≠-1, a ∈R
2.-
⌡

⌠ 1
x
dx = ln x + C
3.- ⌡
⌠
ex
dx = ex
+ C
4.- ∫ax
= + C, si a>0, a ≠1
5.- ⌡
⌠
sen x dx = – cos x + C
6.- ⌡
⌠
cos x dx = sen x + C
7.-
8.-
Integrales inmediatas para funciones compuestas
•
⌡


⌠
xr
dx =
xr+1
r + 1
+ C, para cualquier constante r ≠ – 1
⌡


⌠
f '(x) [f(x)]r dx =
[f(x)]r+1
r + 1
+ C para r ≠-1
1
2 ⌡

⌠
2 cos 2x sen3 2x dx =
1
2
sen4
2x
4 =
1
8 sen4 2x + C
Tipo general
•
⌡


⌠
cos 2x sen3 2x dx =
Ejemplo:
Integrales inmediatas para funciones compuestas
Tipo general
Ejemplo:
∫ dx
xf
xf
)(
)('
= ln |f(x)| + C
•
⌡


⌠
tg 3x dx =
– 1
3 ⌡

⌠– 3 sen 3x
cos 3x
dx = –
1
3
ln |cos 3x | + C
Integrales inmediatas para funciones compuestas
Tipo general
Ejemplo:
⌡


⌠
f '(x) af(x) dx =
af(x)
ln a
+ C, para a > 0
•
⌡


⌠
x2
ex3
dx =
1
3 ⌡


⌠
3x2
ex3
dx =
1
3
ex3
+ C
Integrales inmediatas para funciones compuestas
Tipo general
Ejemplo:
⌡


⌠
f '(x) sen f(x) dx = – cos f(x) + C
•
⌡


⌠
e3x
sen (e3x
+ 5) dx = 1
3 ⌡


⌠
3 e3x
sen (e3x
+ 5) dx = –
1
3
cos (e3x
+ 5) + C
Integrales inmediatas para funciones compuestas
Tipo general
Ejemplo:
⌡


⌠
f '(x) cos f(x) dx = sen f(x) + C
•
⌡


⌠
e7x
cos (e7x
+ 5) dx =
1
7 ⌡


⌠
7 e7x
cos (e7x
+ 5) dx =
1
7
sen (e7x
+ 5) + C
Integrales inmediatas para funciones compuestas
Tipo
general
Ejemplo:
⌡

⌠ g '(x)
1 - [g(x)]2 dx = arcsen g(x) + C
•
⌡

⌠ e3x
1 – e6x dx =
⌡

⌠e3x
1 – (e3x
)2 dx =
1
3 ⌡

⌠3e3x
1 – (e3x
)2 dx =
1
3
arcsen e3x
+ C
Integrales inmediatas para funciones compuestas
Tipo
general
•
⌡

⌠ 1
1 + 2x2 dx =
Ejemplo:
⌡

⌠ 1
1 + ( 2x)2 dx =
1
2 ⌡

⌠ 2
1 + ( 2x)2 dx =
Integración por partes
Es muy frecuente expresar esta fórmula con la siguiente notación abreviada que se obtiene
poniendo: u = f(x), dv = g '(x)dx, v = g(x) y du = f ' (x) dx:
⌡

⌠
u dv = uv – ⌡

⌠
v du
Consejos 1. Llamar g′ a una función de la que sea cómodo obtener g.
2. Si es cómodo obtener g sea cual fuere la elección que hagamos para
g′, llamar entonces g′ a aquella que haga que ∫ f ′g se más cómoda
que ∫ f g ′ .
Integración por partes: Ejemplos
= x2
ex
– 2[xex
–
⌡


⌠
ex
dx ] = ex
(x2
– 2x + 2) + C
•⌡


⌠
x2
ex
dx = x2
ex
–
⌡


⌠
ex
2x dx = x2
ex
– 2
⌡


⌠
x ex
dx =
u = x2
⇒ du = 2x dx
dv = ex
. dx ⇒ v = ex
u = x ⇒ du = dx
dv = ex
. dx ⇒ v = ex
u = sen (L x) ⇒ du = cos(L x) . (1/x) . dx
dv = dx ⇒ v = x
= x . sen(ln x) – x cos(ln x) –
⌡


⌠
sen(ln x) . dx
Despejando la integral buscada queda:
u = cos (L x) ⇒ du = – sen(L x) . (1/x) . dx
dv = dx ⇒ v = x
x . sen (ln x) –
⌡


⌠
cos (ln x) . dx =•⌡


⌠
sen(ln x) . dx =
⌡


⌠
sen(ln x) . dx =
1
2
x [sen(ln x) – cos(ln x)] + C
Integración por sustitución o cambio de variable
Si F es una primitiva de f, y g es derivable se tiene:
(F o g)'(x) =F(g(x))’= F '[g(x)] g'(x) = f[g(x)] g'(x)
Por lo que la integral del elemento final es:
⌡

⌠
f[g(x)]g'(x) dx = F[g(x)] + C
Si se escribe u = g(x), entonces du = g' (x) dx.
Con esta sustitución se tiene ⌡


⌠
f(u) du = F(u) + C
Integración por sustitución: Ejemplos I
•
⌡

⌠ 1
x ln x
dx
Cambio ln x = u ⇒ dx / x = du
= =
⌡


⌠ 1
u du = ln | u | + C
deshacer el cambio
= ln | ln x | + C
Para calcular una integral por cambio de variable:
• Buscar una transformación u = g(x) que reduzca su cálculo al de una integral
inmediata.
• Cuando se realiza el cambio debe transformarse también la diferencial
mediante.
du = g'(x) dx
• Después de calcular la integral inmediata debe deshacerse el cambio
poniendo g(x) de nuevo en lugar de u para obtener el resultado final.
Integración por sustitución: Ejemplos II
deshacer el cambio
•
⌡


⌠
x3
x4
+ 2 dx =
Cambio x4
+ 2 = u ⇒ 4x3
. dx = du ⇒ x3
dx = du/4
•
⌡


⌠
sen3
2x .
cos 2x dx =
1
2 ⌡


⌠
t3 .
dt =
Cambio sen 2x = t ⇒ 2 cos 2x . dx = dt ⇒ cos 2x dx =
dt/2
=
1
8
sen4
2x + C
1
2
t4
4
+ C
deshacer el cambio
Integración de funciones racionales
Pretendemos obtener
⌡

⌠P(x)
Q(x)
dx en donde P(x) y Q(x) son polinomios tales que
grad[P(x)] = m y grad[Q(x)] = n
Caso 1: m ≥ n. Veremos que este caso se puede convertir al Caso 2.
P(x) Q(x)
C(x)R(x)
con grad[R(x)] < grad[Q(x)]
⇔ P(x) = C(x) . Q(x) + R(x) ⇔
P(x)
Q(x)
= C(x) +
R(x)
Q(x)
Por tanto:
⌡

⌠P(x)
Q(x)
dx =
⌡


⌠
C(x) .dx +
⌡

⌠R(x)
Q(x)
dx
En donde la primera
integral es inmediata y la
segunda corresponde al
Caso 2
Caso 2: m < n. Entonces la integral se hace por descomposición en fracciones simples.
Como m ≥ n, es posible la división entera entre P(x) y Q(x)
Descomposición en fracciones simples I
Pretendemos obtener
⌡

⌠ P(x)
Q(x)
dx en donde P(x) y Q(x) son polinomios tales que
grad[P(x)] = m < grad[Q(x)] = n
• Supongamos que es posible factorizar el polinomio Q(x). Ello equivale a resolver la
ecuación Q(x) = 0.
• Supongamos que la ecuación Q(x) = 0 tiene:
• Soluciones reales sencillas (por ejemplo x1).
• Soluciones reales múltiples (por ejemplo x2 con orden de multiplicidad 2).
• Soluciones complejas sencillas (por ejemplo tiene dos soluciones, que
son necesariamente conjugadas).
• El caso soluciones complejas múltiples no se estudia.
Por ej. Si tiene una raíz simple una doble y dos complejas conjugadas, entonces dicho
polinomio se factoriza de la siguiente manera:
Q(x) = ao(x – x1) .
(x – x2)2 .
(x2
+ bx + c)
tal que ao es el coeficiente del término de mayor grado.
⌡

⌠P(x)
Q(x)
dx =
1
ao ⌡

⌠ P(x)
(x – x1) .
(x – x2)2 .
(x2
+ bx + c)
dx =
Paso 1. Factorización del polinomio Q(x)
Descomposición en fracciones simples II
Paso 2. Descomponer el integrando en fracciones simples
P(x)
(x – x1) .
(x – x2)2 .
(x2
+ bx + c)
=
A
x – x1
+
B
(x – x2)2 +
C
x – x2
+
Mx + N
x2
+ bx + c
Paso 3. Cálculo de los coeficientes indeterminados
Proceso de cálculo:
• Eliminar denominadores en la igualdad anterior, para obtener una
identidad polinómica.
• Dar valores numéricos cualesquiera, tantos como coeficientes
indeterminados (en el ejemplo 5: x1, x2 y 3 valores más).
• Resolver el sistema.
Descomposición en fracciones simples: ejemplo
Descomponer en fracciones simples:
x2
+ x + 1
x5
– x4
– x + 1
Paso 1. Factorización del polinomio denominador
Por Ruffini obtenemos: x5
– x4
– x + 1 = (x + 1) .
(x – 1)2 .
(x2
+ 1)
Paso 2. Descomponer en fracciones simples
x2
+ x + 1
x5
– x4
– x + 1
=
A
x + 1
+
B
(x – 1)2 +
C
x – 1
+
Mx + N
x2
+ 1
Paso 3. Cálculo de los coeficientes indeterminados
x2
+ x + 1= A(x–1)2
(x2
+1) + B(x+1)(x2
+1) + C(x–1)(x+1)(x2
+1) + (Mx+N) (x+1)(x–1)2




x=1 →B=3/4
x=–1 →A=1/8
x=0 →– C + N = 1/8
x=2 →5C+2M+N = –13/8
x=–2 →5C+6M–3N = 3/8
Y de aquí: A = 1/8; B = 3/4; N = –1/4; C = –3/8; M = 1/4
Integrales racionales con denominador de grado 2
Estudio de la integral
⌡

⌠Mx + N
ax2
+ bx + c
dx
Sea D el discriminante del
denominador: D = b2
– 4ac
Si la derivada del denominador es el numerador salvo una constante, la integral podrá ser
resuelta como inmediata tipo neperiano.
En caso contrario:
• Si D ≥ 0 ⇒ la integral se obtiene por descomposición en fracciones simples.
• Si D < 0 ⇒ la integral es tipo neperiano + arco tangente.
Pasos para su obtención:
M ≠ 0
Paso 1: se busca la derivada del denominador en el numerador.
Paso 2: como consecuencia se puede descomponer la integral en suma de otras
dos: la primera es inmediata (neperiano) y la segunda es tipo arco tangente.
M = 0 (Cálculo de la integral tipo arco tangente).
Paso3: se convierte el denominador en un número (k) más un binomio al cuadrado
(cosa que es posible por ser D < 0). Si previamente se multiplica por 4a se evitan
los números fraccionarios.
Paso 4: se convierte el denominador en la unidad más una función al cuadrado
(sacando factor común k en el denominador), ajustamos con constantes, e
integramos como inmediata tipo arco tangente
Integración de funciones trigonométricas:
fórmulas
Fórmulas trigonométricas fundamentales
sen2
px + cos2
px = 1
Fórmula fundamental de la
trigonometría.
sen 2px = 2 sen px . cos px
cos 2px = cos2
px – sen2
px
Seno y coseno del ángulo
doble.
cos2
px =
1 + cos 2px
2
sen2
px =
1 – cos 2px
2
Fórmulas de reducción de
grado.
sen a . cos b =
1
2 sen (a + b) +
1
2 sen (a – b)
cos a . cos b =
1
2 cos (a + b) +
1
2 cos (a – b)
sen a . sen b = –
1
2
cos (a + b) +
1
2
cos (a – b)
Fórmulas de conversión de
productos de senos y
cosenos en suma.
sen (– px) = – sen px
cos (– px) = cos px
Seno y coseno del ángulo
opuesto.
1 + tg2
px = sec2
px;
1 + ctg2
px = csc2
px
Integración de funciones trigonométricas: métodos
Forma Condiciones Método
n par
Reducir el grado del integrando por medio de
las fórmulas de reducción de grado (3), según
convenga.(I) ⌡

⌠
senn
px dx
⌡

⌠
cosn
px dx
n impar
Sacar un factor (seno o coseno) de la potencia
sustituyendo en el resto de la potencia la rela-
ción 1. Al desarrollar la potencia se obtienen
integrales inmediatas tipo potencial.
m y n pares Reducir el grado del integrando aplicando las
fórmulas 3.
(II)⌡

⌠
senn
px . cosn
px dx
m ó n impares
De la potencia de exponente impar se saca un
factor, sustituyendo en el resto de la potencia la
relación 1. Al desarrollar la potencia se obtie-
nen integrales inmediatas tipo potencial.
Caso particular  Si m = n Aplicar la relación (2a) para obtener:
⌡

⌠
senn
px . cosn
px dx =
1
2n
⌡

⌠
senn
2px dx
que es del tipo (I).
Forma Condiciones Método
(III)
⌡

⌠
sen px.cos qx.dx
⌡

⌠
sen px.sen qx.dx
⌡

⌠
cos px.cos qx..dx
p y q números
reales cuales-
quiera
Convertir los productos en sumas mediante la
relaciones 4 según convenga.
Integración de funciones trigonométricas: métodos II
Integración de funciones trigonométricas: ejemplos I
= ⌡

⌠
sen3x.dx +⌡

⌠
cos4
3x sen 3x.dx –2⌡

⌠
cos2
3x sen 3x.dx =
= –
1
3
cos 3x -
2
9
cos3
3x +
1
15
cos5
3x+C
Tipo I. Exponente impar
=
1
4
x +
1
4 ⌡

⌠1 + cos
4x
3
2
dx –
3
4
sen
2x
3
=
3x
8
–
3
4
sen
2x
3
+
3
32
sen
4x
3
+ C
Tipo I. Exponente par
•⌡

⌠
sen5
3x.dx = ⌡

⌠
(sen2
3x)2
sen 3x.dx = ⌡

⌠
(1–cos2
3x)2
sen 3x.dx =
•
⌡


⌠
sen4 x
3 dx = 1
4 ⌡

⌠






1 + cos2 2x
3
– 2 cos
2x
3
dx =⌡

⌠








sen2 x
3
2
dx =
⌡

⌠





1 – cos
2x
3
2
2
dx =
=
1
4 ⌡

⌠
1.dx +
1
4 ⌡


⌠
cos2 2x
3 dx – 2
1
4 ⌡


⌠
cos
2x
3 dx =
Integración de funciones trigonométricas: ejemplos
II
Tipo II. Al menos un exponente impar
•⌡


⌠
cos4
5x.sen3
5xdx =
⌡


⌠
cos4
5x . sen2
5x .sen 5x . dx =
⌡


⌠
cos4
5x . (1 – cos2
5x).sen 5x.dx =
=
⌡


⌠
cos4
5x.sen 5x.dx –
⌡


⌠
cos6
5x.sen 5x.dx =
=
– 1
25
cos5
5x +
1
35
cos7
5x + C
=
1
8 ⌡

⌠1 – cos 12x
2
dx –
1
48
sen3
6x
3
=
=
1
8 ⌡


⌠
sen2
6x dx –
1
8 ⌡


⌠
sen2
6x .cos 6x.dx =
=
x
16
–
1
144
sen3
6x –
1
192
sen 12x + C
Tipo II. Todos los exponentes pares
•⌡


⌠
sen4
3x .cos2
3x.dx =
⌡


⌠
(sen2
3x)2
.cos2
3x.dx =
⌡

⌠





1 – cos 6x
2
2 1 + cos 6x
2
dx =
=
1
8 ⌡


⌠
(1 – cos 6x)(1 – cos2
6x) dx =
( 1 – cos 6x) ( 1 – cos 6x) ( 1 + cos 6x)
( 1 – cos 6x) ( 1 – cos2
6x)
sen2
6x
Integración de funciones trigonométricas: ejemplos III
Tipo III: Producto de funciones con distinto argumento
•⌡


⌠
sen 3x.cos 5x.dx = 1
2 ⌡


⌠
sen 8x .dx +
1
2 ⌡


⌠
sen( – 2x) .dx =
= –
1
16
cos 8x +
1
4
cos( – 2x) + C == –
1
16
cos 8x +
1
4
cos 2x + C
Para resolverlas hay que utilizar las fórmulas de trasformación de sumas
en productos

Más contenido relacionado

La actualidad más candente

Ecuaciones paramétricas
Ecuaciones paramétricas Ecuaciones paramétricas
Ecuaciones paramétricas Elixhg
 
Método de gauss seidel
Método de gauss seidelMétodo de gauss seidel
Método de gauss seidelmariacadena
 
Matriz asociada a una transformacion lineal
Matriz asociada a una transformacion linealMatriz asociada a una transformacion lineal
Matriz asociada a una transformacion linealalgebra
 
Conceptos BáSicos de ecuaciones diferenciales
Conceptos BáSicos de ecuaciones diferencialesConceptos BáSicos de ecuaciones diferenciales
Conceptos BáSicos de ecuaciones diferencialesPaola
 
Tabla de integrales inmediatas
Tabla de integrales inmediatasTabla de integrales inmediatas
Tabla de integrales inmediatasNéstor Oliveris
 
Campos vectoriales
Campos vectorialesCampos vectoriales
Campos vectorialesortari2014
 
Limite y continuidad de funciones de varias variables
Limite y continuidad de funciones de varias variablesLimite y continuidad de funciones de varias variables
Limite y continuidad de funciones de varias variableskactherinevg
 
P. final algebra lineal victoria silva
P. final algebra lineal victoria silvaP. final algebra lineal victoria silva
P. final algebra lineal victoria silvaVictoria Silva
 
Integral definida
Integral definida Integral definida
Integral definida coco123789
 
Ecuación diferencial de Bernoully y Riccati Matemática II
Ecuación diferencial de Bernoully y Riccati Matemática IIEcuación diferencial de Bernoully y Riccati Matemática II
Ecuación diferencial de Bernoully y Riccati Matemática IIJoe Arroyo Suárez
 
Ecuaciones paramétricas
Ecuaciones paramétricasEcuaciones paramétricas
Ecuaciones paramétricasStefanyMarcano
 
Funciòn potencia, exponencial y logaritmica
Funciòn potencia, exponencial y logaritmicaFunciòn potencia, exponencial y logaritmica
Funciòn potencia, exponencial y logaritmicampalmahernandez
 
Solución de Sistemas de Ecuaciones Lineales
Solución de Sistemas de Ecuaciones LinealesSolución de Sistemas de Ecuaciones Lineales
Solución de Sistemas de Ecuaciones Linealesalcalarmando
 
Calculo diferencial, Límites y Continuidad.
Calculo diferencial, Límites y Continuidad.Calculo diferencial, Límites y Continuidad.
Calculo diferencial, Límites y Continuidad.Daniel Ojeda
 
Transformada de laplace
Transformada de laplaceTransformada de laplace
Transformada de laplaceALEANDROpa
 

La actualidad más candente (20)

Ecuaciones paramétricas
Ecuaciones paramétricasEcuaciones paramétricas
Ecuaciones paramétricas
 
Ecuaciones paramétricas
Ecuaciones paramétricas Ecuaciones paramétricas
Ecuaciones paramétricas
 
Método de gauss seidel
Método de gauss seidelMétodo de gauss seidel
Método de gauss seidel
 
funciones de varias variables
funciones de varias variablesfunciones de varias variables
funciones de varias variables
 
Matriz asociada a una transformacion lineal
Matriz asociada a una transformacion linealMatriz asociada a una transformacion lineal
Matriz asociada a una transformacion lineal
 
espacios vectoriales
espacios vectorialesespacios vectoriales
espacios vectoriales
 
Conceptos BáSicos de ecuaciones diferenciales
Conceptos BáSicos de ecuaciones diferencialesConceptos BáSicos de ecuaciones diferenciales
Conceptos BáSicos de ecuaciones diferenciales
 
Integrales Definidas
Integrales DefinidasIntegrales Definidas
Integrales Definidas
 
Tabla de integrales inmediatas
Tabla de integrales inmediatasTabla de integrales inmediatas
Tabla de integrales inmediatas
 
Campos vectoriales
Campos vectorialesCampos vectoriales
Campos vectoriales
 
Limite y continuidad de funciones de varias variables
Limite y continuidad de funciones de varias variablesLimite y continuidad de funciones de varias variables
Limite y continuidad de funciones de varias variables
 
P. final algebra lineal victoria silva
P. final algebra lineal victoria silvaP. final algebra lineal victoria silva
P. final algebra lineal victoria silva
 
Integral definida
Integral definida Integral definida
Integral definida
 
Ecuación diferencial de Bernoully y Riccati Matemática II
Ecuación diferencial de Bernoully y Riccati Matemática IIEcuación diferencial de Bernoully y Riccati Matemática II
Ecuación diferencial de Bernoully y Riccati Matemática II
 
Ecuaciones paramétricas
Ecuaciones paramétricasEcuaciones paramétricas
Ecuaciones paramétricas
 
Derivadas
DerivadasDerivadas
Derivadas
 
Funciòn potencia, exponencial y logaritmica
Funciòn potencia, exponencial y logaritmicaFunciòn potencia, exponencial y logaritmica
Funciòn potencia, exponencial y logaritmica
 
Solución de Sistemas de Ecuaciones Lineales
Solución de Sistemas de Ecuaciones LinealesSolución de Sistemas de Ecuaciones Lineales
Solución de Sistemas de Ecuaciones Lineales
 
Calculo diferencial, Límites y Continuidad.
Calculo diferencial, Límites y Continuidad.Calculo diferencial, Límites y Continuidad.
Calculo diferencial, Límites y Continuidad.
 
Transformada de laplace
Transformada de laplaceTransformada de laplace
Transformada de laplace
 

Similar a Integrales indefinida

Similar a Integrales indefinida (20)

Integrales indefinidas mat apli
Integrales indefinidas mat apliIntegrales indefinidas mat apli
Integrales indefinidas mat apli
 
Integrales indefinidas
Integrales indefinidasIntegrales indefinidas
Integrales indefinidas
 
Integrales indefinidas
Integrales indefinidasIntegrales indefinidas
Integrales indefinidas
 
Integrales indefinidas 1
Integrales indefinidas 1Integrales indefinidas 1
Integrales indefinidas 1
 
Introducción al Calculo Integral Ccesa007
Introducción al  Calculo Integral   Ccesa007Introducción al  Calculo Integral   Ccesa007
Introducción al Calculo Integral Ccesa007
 
Teoria y problemas de calculo integral ccesa007
Teoria y  problemas  de calculo integral   ccesa007Teoria y  problemas  de calculo integral   ccesa007
Teoria y problemas de calculo integral ccesa007
 
integrales indefinidas.ppt
integrales indefinidas.pptintegrales indefinidas.ppt
integrales indefinidas.ppt
 
Introducción al Calculo Integral II ccesa007
Introducción al Calculo Integral II   ccesa007Introducción al Calculo Integral II   ccesa007
Introducción al Calculo Integral II ccesa007
 
Cálculo Integral
Cálculo IntegralCálculo Integral
Cálculo Integral
 
Integrales indefinidas
Integrales indefinidasIntegrales indefinidas
Integrales indefinidas
 
1. INTEGRAL INDEFINIDA.pdf
1. INTEGRAL INDEFINIDA.pdf1. INTEGRAL INDEFINIDA.pdf
1. INTEGRAL INDEFINIDA.pdf
 
1. INTEGRAL INDEFINIDA.pdf
1. INTEGRAL INDEFINIDA.pdf1. INTEGRAL INDEFINIDA.pdf
1. INTEGRAL INDEFINIDA.pdf
 
Tecnicas derivacion
Tecnicas derivacionTecnicas derivacion
Tecnicas derivacion
 
Técnicas de integración
Técnicas de integración Técnicas de integración
Técnicas de integración
 
Integración de funciones racionales
Integración de funciones racionalesIntegración de funciones racionales
Integración de funciones racionales
 
Integralindefinida
IntegralindefinidaIntegralindefinida
Integralindefinida
 
Integral indefinidas
Integral indefinidasIntegral indefinidas
Integral indefinidas
 
Integrales
IntegralesIntegrales
Integrales
 
Introduccion integral indefinida
Introduccion integral indefinidaIntroduccion integral indefinida
Introduccion integral indefinida
 
Integrales indefinidas
Integrales indefinidas Integrales indefinidas
Integrales indefinidas
 

Último

NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFAROJosé Luis Palma
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024IES Vicent Andres Estelles
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para eventoDiegoMtsS
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfsamyarrocha1
 
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALEDUCCUniversidadCatl
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...JAVIER SOLIS NOYOLA
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfvictorbeltuce
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosCesarFernandez937857
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PCCesarFernandez937857
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxOscarEduardoSanchezC
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdfOswaldoGonzalezCruz
 
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIATRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIAAbelardoVelaAlbrecht1
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...fcastellanos3
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPELaura Chacón
 

Último (20)

NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para evento
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdf
 
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos Básicos
 
Power Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptxPower Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptx
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PC
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
 
Defendamos la verdad. La defensa es importante.
Defendamos la verdad. La defensa es importante.Defendamos la verdad. La defensa es importante.
Defendamos la verdad. La defensa es importante.
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
 
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIATRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
 
Unidad 4 | Teorías de las Comunicación | MCDI
Unidad 4 | Teorías de las Comunicación | MCDIUnidad 4 | Teorías de las Comunicación | MCDI
Unidad 4 | Teorías de las Comunicación | MCDI
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPE
 
La Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdfLa Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdf
 

Integrales indefinida

  • 2. Primitiva de una función La función G(x) es una primitiva de la función f(x) en un intervalo I si G'(x) = f(x) para todo x del intervalo I. Ejemplo: la función F(x) = x4 4 es una primitiva de f(x) ya que F '(x) = x3 . También la función G(x) = x4 4 + 2 es una primitiva de f . Ambas en cualquier intervalo de la recta real.
  • 3. Integral indefinida Ejemplo: la integral indefinida de f(x) = ex es G(x) = ex + C, donde C es una cons- tante. Se expresa de la siguiente manera: ⌡⌠ ex dx = ex + C Si G(x) es una primitiva de f(x) en un intervalo I, todas las primitivas de f(x) son de la forma G(x) + C, donde C es una constante arbitraria que puede ser cualquier número real.
  • 4. Las primitivas se diferencian en una constante Integrando ↓↑Derivando
  • 5. Propiedades de la integral indefinida I ⌡ ⌠ k f(x) dx = k ⌡ ⌠ f(x) dx con k ∈ R Las constantes pueden salir y entrar fuera del signo de la integral indefinida. II ⌡ ⌠ [ f(x) ± g(x)] dx = ⌡ ⌠ f(x) dx ±⌡ ⌠ g(x) dx La integral indefinida de una suma (resta) de dos funciones es la suma (resta) de las inte- grales indefinidas. Propiedades de la integral indefinida Propiedades de la derivada I (kf )' (x) = k f '(x) con k ∈ R La derivada de una constante por una función es el producto de la constante por la derivada de la función. II (f ± g) ' (x) = f ' (x) ± g ' (x) La derivada de una suma (resta) de dos funciones es la suma (resta) de las deri- vadas de cada una de ellas.
  • 6. Integrales inmediatas Integrales inmediatas: una tabla de derivadas leída al revés proporciona primitivas e integrales indefinidas. 1.- ⌡ ⌠ xa dx = xa+1 a+1 + C, si a ≠-1, a ∈R 2.- ⌡  ⌠ 1 x dx = ln x + C 3.- ⌡ ⌠ ex dx = ex + C 4.- ∫ax = + C, si a>0, a ≠1 5.- ⌡ ⌠ sen x dx = – cos x + C 6.- ⌡ ⌠ cos x dx = sen x + C 7.- 8.-
  • 7. Integrales inmediatas para funciones compuestas • ⌡   ⌠ xr dx = xr+1 r + 1 + C, para cualquier constante r ≠ – 1 ⌡   ⌠ f '(x) [f(x)]r dx = [f(x)]r+1 r + 1 + C para r ≠-1 1 2 ⌡  ⌠ 2 cos 2x sen3 2x dx = 1 2 sen4 2x 4 = 1 8 sen4 2x + C Tipo general • ⌡   ⌠ cos 2x sen3 2x dx = Ejemplo:
  • 8. Integrales inmediatas para funciones compuestas Tipo general Ejemplo: ∫ dx xf xf )( )(' = ln |f(x)| + C • ⌡   ⌠ tg 3x dx = – 1 3 ⌡  ⌠– 3 sen 3x cos 3x dx = – 1 3 ln |cos 3x | + C
  • 9. Integrales inmediatas para funciones compuestas Tipo general Ejemplo: ⌡   ⌠ f '(x) af(x) dx = af(x) ln a + C, para a > 0 • ⌡   ⌠ x2 ex3 dx = 1 3 ⌡   ⌠ 3x2 ex3 dx = 1 3 ex3 + C
  • 10. Integrales inmediatas para funciones compuestas Tipo general Ejemplo: ⌡   ⌠ f '(x) sen f(x) dx = – cos f(x) + C • ⌡   ⌠ e3x sen (e3x + 5) dx = 1 3 ⌡   ⌠ 3 e3x sen (e3x + 5) dx = – 1 3 cos (e3x + 5) + C
  • 11. Integrales inmediatas para funciones compuestas Tipo general Ejemplo: ⌡   ⌠ f '(x) cos f(x) dx = sen f(x) + C • ⌡   ⌠ e7x cos (e7x + 5) dx = 1 7 ⌡   ⌠ 7 e7x cos (e7x + 5) dx = 1 7 sen (e7x + 5) + C
  • 12. Integrales inmediatas para funciones compuestas Tipo general Ejemplo: ⌡  ⌠ g '(x) 1 - [g(x)]2 dx = arcsen g(x) + C • ⌡  ⌠ e3x 1 – e6x dx = ⌡  ⌠e3x 1 – (e3x )2 dx = 1 3 ⌡  ⌠3e3x 1 – (e3x )2 dx = 1 3 arcsen e3x + C
  • 13. Integrales inmediatas para funciones compuestas Tipo general • ⌡  ⌠ 1 1 + 2x2 dx = Ejemplo: ⌡  ⌠ 1 1 + ( 2x)2 dx = 1 2 ⌡  ⌠ 2 1 + ( 2x)2 dx =
  • 14. Integración por partes Es muy frecuente expresar esta fórmula con la siguiente notación abreviada que se obtiene poniendo: u = f(x), dv = g '(x)dx, v = g(x) y du = f ' (x) dx: ⌡  ⌠ u dv = uv – ⌡  ⌠ v du Consejos 1. Llamar g′ a una función de la que sea cómodo obtener g. 2. Si es cómodo obtener g sea cual fuere la elección que hagamos para g′, llamar entonces g′ a aquella que haga que ∫ f ′g se más cómoda que ∫ f g ′ .
  • 15. Integración por partes: Ejemplos = x2 ex – 2[xex – ⌡   ⌠ ex dx ] = ex (x2 – 2x + 2) + C •⌡   ⌠ x2 ex dx = x2 ex – ⌡   ⌠ ex 2x dx = x2 ex – 2 ⌡   ⌠ x ex dx = u = x2 ⇒ du = 2x dx dv = ex . dx ⇒ v = ex u = x ⇒ du = dx dv = ex . dx ⇒ v = ex u = sen (L x) ⇒ du = cos(L x) . (1/x) . dx dv = dx ⇒ v = x = x . sen(ln x) – x cos(ln x) – ⌡   ⌠ sen(ln x) . dx Despejando la integral buscada queda: u = cos (L x) ⇒ du = – sen(L x) . (1/x) . dx dv = dx ⇒ v = x x . sen (ln x) – ⌡   ⌠ cos (ln x) . dx =•⌡   ⌠ sen(ln x) . dx = ⌡   ⌠ sen(ln x) . dx = 1 2 x [sen(ln x) – cos(ln x)] + C
  • 16. Integración por sustitución o cambio de variable Si F es una primitiva de f, y g es derivable se tiene: (F o g)'(x) =F(g(x))’= F '[g(x)] g'(x) = f[g(x)] g'(x) Por lo que la integral del elemento final es: ⌡  ⌠ f[g(x)]g'(x) dx = F[g(x)] + C Si se escribe u = g(x), entonces du = g' (x) dx. Con esta sustitución se tiene ⌡   ⌠ f(u) du = F(u) + C
  • 17. Integración por sustitución: Ejemplos I • ⌡  ⌠ 1 x ln x dx Cambio ln x = u ⇒ dx / x = du = = ⌡   ⌠ 1 u du = ln | u | + C deshacer el cambio = ln | ln x | + C Para calcular una integral por cambio de variable: • Buscar una transformación u = g(x) que reduzca su cálculo al de una integral inmediata. • Cuando se realiza el cambio debe transformarse también la diferencial mediante. du = g'(x) dx • Después de calcular la integral inmediata debe deshacerse el cambio poniendo g(x) de nuevo en lugar de u para obtener el resultado final.
  • 18. Integración por sustitución: Ejemplos II deshacer el cambio • ⌡   ⌠ x3 x4 + 2 dx = Cambio x4 + 2 = u ⇒ 4x3 . dx = du ⇒ x3 dx = du/4 • ⌡   ⌠ sen3 2x . cos 2x dx = 1 2 ⌡   ⌠ t3 . dt = Cambio sen 2x = t ⇒ 2 cos 2x . dx = dt ⇒ cos 2x dx = dt/2 = 1 8 sen4 2x + C 1 2 t4 4 + C deshacer el cambio
  • 19. Integración de funciones racionales Pretendemos obtener ⌡  ⌠P(x) Q(x) dx en donde P(x) y Q(x) son polinomios tales que grad[P(x)] = m y grad[Q(x)] = n Caso 1: m ≥ n. Veremos que este caso se puede convertir al Caso 2. P(x) Q(x) C(x)R(x) con grad[R(x)] < grad[Q(x)] ⇔ P(x) = C(x) . Q(x) + R(x) ⇔ P(x) Q(x) = C(x) + R(x) Q(x) Por tanto: ⌡  ⌠P(x) Q(x) dx = ⌡   ⌠ C(x) .dx + ⌡  ⌠R(x) Q(x) dx En donde la primera integral es inmediata y la segunda corresponde al Caso 2 Caso 2: m < n. Entonces la integral se hace por descomposición en fracciones simples. Como m ≥ n, es posible la división entera entre P(x) y Q(x)
  • 20. Descomposición en fracciones simples I Pretendemos obtener ⌡  ⌠ P(x) Q(x) dx en donde P(x) y Q(x) son polinomios tales que grad[P(x)] = m < grad[Q(x)] = n • Supongamos que es posible factorizar el polinomio Q(x). Ello equivale a resolver la ecuación Q(x) = 0. • Supongamos que la ecuación Q(x) = 0 tiene: • Soluciones reales sencillas (por ejemplo x1). • Soluciones reales múltiples (por ejemplo x2 con orden de multiplicidad 2). • Soluciones complejas sencillas (por ejemplo tiene dos soluciones, que son necesariamente conjugadas). • El caso soluciones complejas múltiples no se estudia. Por ej. Si tiene una raíz simple una doble y dos complejas conjugadas, entonces dicho polinomio se factoriza de la siguiente manera: Q(x) = ao(x – x1) . (x – x2)2 . (x2 + bx + c) tal que ao es el coeficiente del término de mayor grado. ⌡  ⌠P(x) Q(x) dx = 1 ao ⌡  ⌠ P(x) (x – x1) . (x – x2)2 . (x2 + bx + c) dx = Paso 1. Factorización del polinomio Q(x)
  • 21. Descomposición en fracciones simples II Paso 2. Descomponer el integrando en fracciones simples P(x) (x – x1) . (x – x2)2 . (x2 + bx + c) = A x – x1 + B (x – x2)2 + C x – x2 + Mx + N x2 + bx + c Paso 3. Cálculo de los coeficientes indeterminados Proceso de cálculo: • Eliminar denominadores en la igualdad anterior, para obtener una identidad polinómica. • Dar valores numéricos cualesquiera, tantos como coeficientes indeterminados (en el ejemplo 5: x1, x2 y 3 valores más). • Resolver el sistema.
  • 22. Descomposición en fracciones simples: ejemplo Descomponer en fracciones simples: x2 + x + 1 x5 – x4 – x + 1 Paso 1. Factorización del polinomio denominador Por Ruffini obtenemos: x5 – x4 – x + 1 = (x + 1) . (x – 1)2 . (x2 + 1) Paso 2. Descomponer en fracciones simples x2 + x + 1 x5 – x4 – x + 1 = A x + 1 + B (x – 1)2 + C x – 1 + Mx + N x2 + 1 Paso 3. Cálculo de los coeficientes indeterminados x2 + x + 1= A(x–1)2 (x2 +1) + B(x+1)(x2 +1) + C(x–1)(x+1)(x2 +1) + (Mx+N) (x+1)(x–1)2     x=1 →B=3/4 x=–1 →A=1/8 x=0 →– C + N = 1/8 x=2 →5C+2M+N = –13/8 x=–2 →5C+6M–3N = 3/8 Y de aquí: A = 1/8; B = 3/4; N = –1/4; C = –3/8; M = 1/4
  • 23. Integrales racionales con denominador de grado 2 Estudio de la integral ⌡  ⌠Mx + N ax2 + bx + c dx Sea D el discriminante del denominador: D = b2 – 4ac Si la derivada del denominador es el numerador salvo una constante, la integral podrá ser resuelta como inmediata tipo neperiano. En caso contrario: • Si D ≥ 0 ⇒ la integral se obtiene por descomposición en fracciones simples. • Si D < 0 ⇒ la integral es tipo neperiano + arco tangente. Pasos para su obtención: M ≠ 0 Paso 1: se busca la derivada del denominador en el numerador. Paso 2: como consecuencia se puede descomponer la integral en suma de otras dos: la primera es inmediata (neperiano) y la segunda es tipo arco tangente. M = 0 (Cálculo de la integral tipo arco tangente). Paso3: se convierte el denominador en un número (k) más un binomio al cuadrado (cosa que es posible por ser D < 0). Si previamente se multiplica por 4a se evitan los números fraccionarios. Paso 4: se convierte el denominador en la unidad más una función al cuadrado (sacando factor común k en el denominador), ajustamos con constantes, e integramos como inmediata tipo arco tangente
  • 24. Integración de funciones trigonométricas: fórmulas Fórmulas trigonométricas fundamentales sen2 px + cos2 px = 1 Fórmula fundamental de la trigonometría. sen 2px = 2 sen px . cos px cos 2px = cos2 px – sen2 px Seno y coseno del ángulo doble. cos2 px = 1 + cos 2px 2 sen2 px = 1 – cos 2px 2 Fórmulas de reducción de grado. sen a . cos b = 1 2 sen (a + b) + 1 2 sen (a – b) cos a . cos b = 1 2 cos (a + b) + 1 2 cos (a – b) sen a . sen b = – 1 2 cos (a + b) + 1 2 cos (a – b) Fórmulas de conversión de productos de senos y cosenos en suma. sen (– px) = – sen px cos (– px) = cos px Seno y coseno del ángulo opuesto. 1 + tg2 px = sec2 px; 1 + ctg2 px = csc2 px
  • 25. Integración de funciones trigonométricas: métodos Forma Condiciones Método n par Reducir el grado del integrando por medio de las fórmulas de reducción de grado (3), según convenga.(I) ⌡  ⌠ senn px dx ⌡  ⌠ cosn px dx n impar Sacar un factor (seno o coseno) de la potencia sustituyendo en el resto de la potencia la rela- ción 1. Al desarrollar la potencia se obtienen integrales inmediatas tipo potencial. m y n pares Reducir el grado del integrando aplicando las fórmulas 3. (II)⌡  ⌠ senn px . cosn px dx m ó n impares De la potencia de exponente impar se saca un factor, sustituyendo en el resto de la potencia la relación 1. Al desarrollar la potencia se obtie- nen integrales inmediatas tipo potencial. Caso particular  Si m = n Aplicar la relación (2a) para obtener: ⌡  ⌠ senn px . cosn px dx = 1 2n ⌡  ⌠ senn 2px dx que es del tipo (I).
  • 26. Forma Condiciones Método (III) ⌡  ⌠ sen px.cos qx.dx ⌡  ⌠ sen px.sen qx.dx ⌡  ⌠ cos px.cos qx..dx p y q números reales cuales- quiera Convertir los productos en sumas mediante la relaciones 4 según convenga. Integración de funciones trigonométricas: métodos II
  • 27. Integración de funciones trigonométricas: ejemplos I = ⌡  ⌠ sen3x.dx +⌡  ⌠ cos4 3x sen 3x.dx –2⌡  ⌠ cos2 3x sen 3x.dx = = – 1 3 cos 3x - 2 9 cos3 3x + 1 15 cos5 3x+C Tipo I. Exponente impar = 1 4 x + 1 4 ⌡  ⌠1 + cos 4x 3 2 dx – 3 4 sen 2x 3 = 3x 8 – 3 4 sen 2x 3 + 3 32 sen 4x 3 + C Tipo I. Exponente par •⌡  ⌠ sen5 3x.dx = ⌡  ⌠ (sen2 3x)2 sen 3x.dx = ⌡  ⌠ (1–cos2 3x)2 sen 3x.dx = • ⌡   ⌠ sen4 x 3 dx = 1 4 ⌡  ⌠       1 + cos2 2x 3 – 2 cos 2x 3 dx =⌡  ⌠         sen2 x 3 2 dx = ⌡  ⌠      1 – cos 2x 3 2 2 dx = = 1 4 ⌡  ⌠ 1.dx + 1 4 ⌡   ⌠ cos2 2x 3 dx – 2 1 4 ⌡   ⌠ cos 2x 3 dx =
  • 28. Integración de funciones trigonométricas: ejemplos II Tipo II. Al menos un exponente impar •⌡   ⌠ cos4 5x.sen3 5xdx = ⌡   ⌠ cos4 5x . sen2 5x .sen 5x . dx = ⌡   ⌠ cos4 5x . (1 – cos2 5x).sen 5x.dx = = ⌡   ⌠ cos4 5x.sen 5x.dx – ⌡   ⌠ cos6 5x.sen 5x.dx = = – 1 25 cos5 5x + 1 35 cos7 5x + C = 1 8 ⌡  ⌠1 – cos 12x 2 dx – 1 48 sen3 6x 3 = = 1 8 ⌡   ⌠ sen2 6x dx – 1 8 ⌡   ⌠ sen2 6x .cos 6x.dx = = x 16 – 1 144 sen3 6x – 1 192 sen 12x + C Tipo II. Todos los exponentes pares •⌡   ⌠ sen4 3x .cos2 3x.dx = ⌡   ⌠ (sen2 3x)2 .cos2 3x.dx = ⌡  ⌠      1 – cos 6x 2 2 1 + cos 6x 2 dx = = 1 8 ⌡   ⌠ (1 – cos 6x)(1 – cos2 6x) dx = ( 1 – cos 6x) ( 1 – cos 6x) ( 1 + cos 6x) ( 1 – cos 6x) ( 1 – cos2 6x) sen2 6x
  • 29. Integración de funciones trigonométricas: ejemplos III Tipo III: Producto de funciones con distinto argumento •⌡   ⌠ sen 3x.cos 5x.dx = 1 2 ⌡   ⌠ sen 8x .dx + 1 2 ⌡   ⌠ sen( – 2x) .dx = = – 1 16 cos 8x + 1 4 cos( – 2x) + C == – 1 16 cos 8x + 1 4 cos 2x + C Para resolverlas hay que utilizar las fórmulas de trasformación de sumas en productos