SlideShare una empresa de Scribd logo
TEMA 2
SUSTANCIA PURAS
Sustancia pura
Es cualquier sustancia con una composición
química definida, sin importar su procedencia. Por ejemplo,
una muestra de agua tiene las mismas propiedades y la
misma proporción de hidrogeno y oxigeno sin importar si la
muestra se aísla. Una sustancia pura no puede separarse en
otras sustancias por ningún medio mecánico. Estas
sustancias pueden clasificarse en dos grupos:
los compuestos están
formados por dos o más tipos
de átomos de distintos
elementos.
Las sustancias simples están
formadas por átomos de un
mismo elemento
Equilibrio de fase
Equilibrio líquido-vapor y sólido-vapor
En estos dos casos el V molar del gas es mucho mayor que el del líquido o
que el del sólido por lo que puede hacerse la aproximación
Si además se hace la suposición de que el gas se comporta como gas
ideal la ecuación de Clapeyron se transforma en:
Esta ecuación se suele expresar como
llamada ecuación de Clausius Clapeyron
Si el rango de temperatura analizado es pequeño, se puede suponer que
ΔH es constante a lo largo de la línea de equilibrio, y por tanto:
Clausius-Clapeyron integrada
Equilibrio sólido-líquido
Para estudiar los equilibrios de fase sólido-líquido, no puede utilizarse la
ecuación de Clausius-Clapeyron ya que para obtenerla se han realizado una
serie de aproximaciones válidas cuando una de las fases que interviene es gas.
En este caso la variación de la P de equilibrio cuando cambia la T se obtiene
directamente a partir de la ecuación de Clapeyron:
Los valores de ΔHfus y de ΔVfus varían a lo largo de la curva de equilibrio
sólido-líquido, las funciones de estado H y V son funciones de T y P, y por lo
tanto lo son también ΔHfus y de ΔVfus. Sin embargo la elevada pendiente de
esta línea en el diagrama P-T implica que a menos que P cambie en una
cantidad considerable, la variación de T será muy pequeña, por tanto podemos
tomar como aproximación:
El estudio del equilibrio de fases en sistemas formados por un solo
componente Para especificar el estado termodinámico de un sistema formado
por una sustancia pura el número variables intensivas independientes que hay
conocer (grados de libertad) es:
Si hay presente una fase, L=1componente-1fase+2=2 variables, es
necesario especificar por ejemplo la P y la T
Si hay presente dos fases, L=1componente-2fases+2=1 variable, es
necesario especificar sólo P o T
Si hay presente tres fases, L=1componente-3fases+2=0 variables
Podemos representar cualquier estado de equilibrio del sistema formado
por una sustancia pura mediante un punto en un diagrama bidimensional de
presión-temperatura. Este diagrama se denomina diagrama de fases. Un
ejemplo del diagrama de fases de una sustancia.
En el diagrama de la figura las líneas AB, BD y BC corresponden a valores (P,T)
en las que coexisten dos fases:
• En AB coexisten en equilibrio sólido y gas. La
curva AB es la curva de presión de vapor del
sólido
• En BD coexisten en equilibrio sólido y líquido.
• En BC coexisten en equilibrio líquido y gas.
El punto B marca los valores de P y T en los que
coexisten tres fases, sólido, líquido y gas, y se
denomina Punto Triple. Este punto, que indica la
temperatura mínima a la que el líquido puede existir,
es característico de cada sustancia, y puede
emplearse como referencia para calibrar termómetros.
El punto C indica el valor máximo (PC,TC) en el que pueden coexistir en
equilibrio dos fases, y se denomina Punto Crítico. Representa la temperatura
máxima a la cual se puede licuar el gas simplemente aumentando la presión.
Fluidos con T y P mayores que TC y PC se denominan fluidos supercríticos.
P = F/A
Donde:
F= fuerza aplicada
A = Área donde se ejerce la fuerza,
P = ρ *g . h
Donde: = ρ = densidad del fluido g =
aceleración de gravedad. h = altura
barométrica
P = Patm * A + w
Donde:
P: Presión Patm = Presión atmosférica A =
Área del recipiente W =Peso ejercido
Ecuaciones
W = mg/A
Propiedades independientes de una sustancia pura
Una razón importante para introducir el concepto de una sustancia pura es
que el estado de una sustancia pura, comprensible, simple (es decir una
sustancia pura en ausencia de movimiento, gravedad y efectos de superficie,
magnéticos o eléctricos) se define por dos propiedades independientes. Por
ejemplo, si se especifican la temperatura y el volumen especifico del vapor
sobrecalentado, se determina el estado del vapor
Para comprender la importancia del término propiedad independiente,
considérese los estados de líquido saturado y vapor saturado de una sustancia
pura. Estos dos estados tienen la misma presión y la misma temperatura, pero
definitivamente no son el mismo estado. Por lo tanto, en un estado de
saturación, la presión y la temperatura no son propiedades independientes. Para
especificar el estado de saturación de una sustancia pura se requieren dos
propiedades independientes como la presión y el volumen específico, o la
presión y la calidad
Para una masa de control difásica, la calidad varía desde 0, cuando la
masada control está compuesta únicamente de líquido saturado, hasta 1,
cuando está constituida únicamente por vapor saturado. Con frecuencia,
la calidad también se expresa como un porcentaje. Obsérvese que la
calidad sólo está definida para la mezcla difásica constituida por líquido y
vapor. El volumen del sistema a lo largo de la línea difásica es: V= Vliq+
Vvap Si consideramos una masa m que tiene una calidad x. La expresión
anterior definirá el volumen o sea la suma del volumen del líquido y el
volumen del vapor. En términos de la masa, la ecuación anterior se
puede escribir en la forma mv = m liq v liq + m vap v vap. Ya se había
definido v f, para referirnos al volumen especifico del liquido saturado y v
g , para el volumen especifico del vapor saturado, ahora bien la
diferencia entre estos dos v g - v f , representa el incremento en volumen
especifico cuando el estado cambia de liquido saturado a vapor saturado
y de identifica como v fg
Ecuaciones de estado para la fase vapor
A partir de observaciones experimentales se ha establecido que el
comportamiento, según las propiedades P, v y T, de gases a baja
densidad, esta representado muy aproximadamente por la siguiente
ecuación de estado.
Pv = Rg
Ten donde, Rg= Ru/M.en que Rg
del gas, M el peso molecular y Ru
es la constante universal de logases. El valor de Ru depende de las
unidades elegidas para P, v y T. Los valores que se usarán más frecuencia
en este texto son: R
u
= 848 kgfm/kgmol ºK = 1545 pies lbf/lbmol ºR = 1.987 Btu/lbmol ºR
Es cuando el Número de mach es mayor que " 0.3" por lo cual se
presenten variaciones apreciables de densidad. Cuando ocurre lo
anterior quiere decir que las variaciones de las presiones y temperaturas
también son significativas. Esas grandes variaciones de temperatura
implica que las ecuaciones de la energía siguientes no se pueden
despreciar:
Estas ecuaciones se resuelven simultáneamente para obtener las
cuatro incógnitas siguientes:
1.- Presión
2.- Densidad
3.- Temperatura
4.- Velocidad
Superficie Termodinámica
Las superficies termodinámicas están formadas por presión (p), volumen
(v) y temperatura (T), que sería en resumen P-v-T. Estas superficies son las
que ayudan y permiten identificar los diferentes tipos de estados y como estos
pasan de un estado a otro, mas que todo, los resultados se pueden
representar en coordenadas rectangulares y es a esto lo que se llama
superficie P-v-T.
Estas superficies, presión (p), volumen (v) y temperatura (T) sirven para
calcular los valores que pertenecen a una sustancia de trabajo cuando se
encuentra en cualquier estado de la superficie.
Si una superficie tiene mayor temperatura que la temperatura crítica, no
será capaz de condensar a la fase líquida, independientemente de cuan alta
sea la presión que se ejerce sobre ella. Cuando la presión es mayor que la
presión crítica, el estado se conoce como estado supercrítico

Más contenido relacionado

La actualidad más candente

Sustancia pura
Sustancia puraSustancia pura
Sustancia pura
Mileydi Lugo
 
SUSTANCIAS PURA
SUSTANCIAS PURASUSTANCIAS PURA
SUSTANCIAS PURA
Ozsxkr Shurio
 
Presentación3 sustancia pura engels leotta
Presentación3 sustancia pura engels leottaPresentación3 sustancia pura engels leotta
Presentación3 sustancia pura engels leotta
leottaengels
 
Sustancias Puras, Gases Ideales, Diagrama De Propiedades
Sustancias Puras, Gases Ideales, Diagrama De PropiedadesSustancias Puras, Gases Ideales, Diagrama De Propiedades
Sustancias Puras, Gases Ideales, Diagrama De Propiedadesmarilys
 
Sustancia Pura
Sustancia PuraSustancia Pura
Sustancia Pura
Juan Jose Cabrera
 
Termodinámica Sustancia Pura
Termodinámica   Sustancia PuraTermodinámica   Sustancia Pura
Termodinámica Sustancia Pura
kattyrivero7
 
Termodinamica de las fases del agua
Termodinamica de las fases del aguaTermodinamica de las fases del agua
Termodinamica de las fases del aguaESPOL
 
sustancias puras
sustancias purassustancias puras
sustancias puras
jose luis tapia rejo
 
59740987 sustancias-puras
59740987 sustancias-puras59740987 sustancias-puras
59740987 sustancias-puras
elen mora
 
Sustancia pura
Sustancia puraSustancia pura
Sustancia pura
VVMIGUEL
 
Sustancias puras
Sustancias purasSustancias puras
Sustancias puras
Johan_23
 
Termodinamica Dubraska Espinoza
Termodinamica Dubraska EspinozaTermodinamica Dubraska Espinoza
Termodinamica Dubraska Espinoza
Dubrazka Espinoza
 
Sustancias puras
Sustancias purasSustancias puras
Sustancias puras
Luis Rojas
 
Sustancias puras
Sustancias purasSustancias puras
Sustancias puras
Aimee Escalona Pittol
 
Presentación 1 sustancia pura ronald
Presentación 1  sustancia pura ronaldPresentación 1  sustancia pura ronald
Presentación 1 sustancia pura ronald
ronaldhz
 
Termodinamica Anthonny Diaz
Termodinamica Anthonny DiazTermodinamica Anthonny Diaz
Termodinamica Anthonny Diaz
Anthony Jhon
 
Clase 04 propiedades sustancias puras (saturación) vv
Clase 04 propiedades sustancias puras (saturación) vvClase 04 propiedades sustancias puras (saturación) vv
Clase 04 propiedades sustancias puras (saturación) vvRenato Pantoja Guerrero
 
Sustancia pura
Sustancia puraSustancia pura
Sustancia pura
Clenil Vegas
 
Sustancias puras
Sustancias purasSustancias puras
Sustancias puras
Stuart Braga
 

La actualidad más candente (20)

Sustancia pura
Sustancia puraSustancia pura
Sustancia pura
 
SUSTANCIAS PURA
SUSTANCIAS PURASUSTANCIAS PURA
SUSTANCIAS PURA
 
Presentación3 sustancia pura engels leotta
Presentación3 sustancia pura engels leottaPresentación3 sustancia pura engels leotta
Presentación3 sustancia pura engels leotta
 
Sustancias Puras, Gases Ideales, Diagrama De Propiedades
Sustancias Puras, Gases Ideales, Diagrama De PropiedadesSustancias Puras, Gases Ideales, Diagrama De Propiedades
Sustancias Puras, Gases Ideales, Diagrama De Propiedades
 
Sustancia Pura
Sustancia PuraSustancia Pura
Sustancia Pura
 
Termodinámica Sustancia Pura
Termodinámica   Sustancia PuraTermodinámica   Sustancia Pura
Termodinámica Sustancia Pura
 
Termodinamica de las fases del agua
Termodinamica de las fases del aguaTermodinamica de las fases del agua
Termodinamica de las fases del agua
 
sustancias puras
sustancias purassustancias puras
sustancias puras
 
59740987 sustancias-puras
59740987 sustancias-puras59740987 sustancias-puras
59740987 sustancias-puras
 
Sustancia pura
Sustancia puraSustancia pura
Sustancia pura
 
Sustancias puras
Sustancias purasSustancias puras
Sustancias puras
 
Termodinamica Dubraska Espinoza
Termodinamica Dubraska EspinozaTermodinamica Dubraska Espinoza
Termodinamica Dubraska Espinoza
 
Sustancias puras
Sustancias purasSustancias puras
Sustancias puras
 
Sustancias puras
Sustancias purasSustancias puras
Sustancias puras
 
Presentación 1 sustancia pura ronald
Presentación 1  sustancia pura ronaldPresentación 1  sustancia pura ronald
Presentación 1 sustancia pura ronald
 
Termodinamica Anthonny Diaz
Termodinamica Anthonny DiazTermodinamica Anthonny Diaz
Termodinamica Anthonny Diaz
 
Clase 04 propiedades sustancias puras (saturación) vv
Clase 04 propiedades sustancias puras (saturación) vvClase 04 propiedades sustancias puras (saturación) vv
Clase 04 propiedades sustancias puras (saturación) vv
 
Sustancia pura
Sustancia puraSustancia pura
Sustancia pura
 
Diagramas de-fases
Diagramas de-fasesDiagramas de-fases
Diagramas de-fases
 
Sustancias puras
Sustancias purasSustancias puras
Sustancias puras
 

Similar a Presentación4 wilmer bravo sustancia puras

Sustancias puras1
Sustancias puras1Sustancias puras1
Sustancias puras1
Luis Rojas
 
Presentación6 kevin sanchez sustancia puras
Presentación6 kevin sanchez sustancia purasPresentación6 kevin sanchez sustancia puras
Presentación6 kevin sanchez sustancia puras
kevinS24
 
GUIA PEDAGOGICA TERMODINAMICA SUSTANCIAS PURAS.pdf
GUIA PEDAGOGICA TERMODINAMICA SUSTANCIAS PURAS.pdfGUIA PEDAGOGICA TERMODINAMICA SUSTANCIAS PURAS.pdf
GUIA PEDAGOGICA TERMODINAMICA SUSTANCIAS PURAS.pdf
CarlosJosFuentesApon
 
Sustancia pura
Sustancia pura  Sustancia pura
Sustancia pura
Edward Jerr
 
Sustancia pura
Sustancia puraSustancia pura
Sustancia pura
Sustancia puraSustancia pura
Sustancia puraDyba28
 
Sustancia pura
Sustancia puraSustancia pura
Sustancia puraDyba28
 
Propiedades de las sustancias puras.pptx
Propiedades de las sustancias puras.pptxPropiedades de las sustancias puras.pptx
Propiedades de las sustancias puras.pptx
DavidJuarez756830
 
Sustancias puras
Sustancias purasSustancias puras
Sustancias puras
jose luis tapia rejo
 
Sustancia pura
Sustancia puraSustancia pura
Sustancia puraVVMIGUEL
 
Sustancias puras
Sustancias purasSustancias puras
Sustancias puras
Rusbeidi
 
Diagramas y ecuación de estado
Diagramas y ecuación de estadoDiagramas y ecuación de estado
Diagramas y ecuación de estado
Norman Rivera
 
Unidad 2 sustancias puras
Unidad 2 sustancias purasUnidad 2 sustancias puras
Unidad 2 sustancias puras
Francisco Vargas
 
Sustancia Pura
Sustancia PuraSustancia Pura
Sustancia Pura
Naisbelandreina
 
Sustancias pura
Sustancias puraSustancias pura
Sustancias pura
juan infante
 
110449040 determinacion-del-punto-triple-de-una-sustancia-pura
110449040 determinacion-del-punto-triple-de-una-sustancia-pura110449040 determinacion-del-punto-triple-de-una-sustancia-pura
110449040 determinacion-del-punto-triple-de-una-sustancia-puraNorma Villalva
 
OB notas de clase flash.pdf
OB notas de clase flash.pdfOB notas de clase flash.pdf
OB notas de clase flash.pdf
LuisFernandoUriona
 

Similar a Presentación4 wilmer bravo sustancia puras (20)

Sustancias puras1
Sustancias puras1Sustancias puras1
Sustancias puras1
 
Presentación6 kevin sanchez sustancia puras
Presentación6 kevin sanchez sustancia purasPresentación6 kevin sanchez sustancia puras
Presentación6 kevin sanchez sustancia puras
 
GUIA PEDAGOGICA TERMODINAMICA SUSTANCIAS PURAS.pdf
GUIA PEDAGOGICA TERMODINAMICA SUSTANCIAS PURAS.pdfGUIA PEDAGOGICA TERMODINAMICA SUSTANCIAS PURAS.pdf
GUIA PEDAGOGICA TERMODINAMICA SUSTANCIAS PURAS.pdf
 
Sustancia pura
Sustancia pura  Sustancia pura
Sustancia pura
 
Sustancia pura
Sustancia puraSustancia pura
Sustancia pura
 
Sustancia pura
Sustancia puraSustancia pura
Sustancia pura
 
Sustancia pura
Sustancia puraSustancia pura
Sustancia pura
 
Propiedades de las sustancias puras.pptx
Propiedades de las sustancias puras.pptxPropiedades de las sustancias puras.pptx
Propiedades de las sustancias puras.pptx
 
Sustancias puras
Sustancias purasSustancias puras
Sustancias puras
 
Sustancia pura
Sustancia puraSustancia pura
Sustancia pura
 
Sustancias puras
Sustancias purasSustancias puras
Sustancias puras
 
Diagramas y ecuación de estado
Diagramas y ecuación de estadoDiagramas y ecuación de estado
Diagramas y ecuación de estado
 
T2
T2T2
T2
 
Unidad 2 sustancias puras
Unidad 2 sustancias purasUnidad 2 sustancias puras
Unidad 2 sustancias puras
 
Sustancia Pura
Sustancia PuraSustancia Pura
Sustancia Pura
 
Sustancias pura
Sustancias puraSustancias pura
Sustancias pura
 
Bases del comportamiento de fases
Bases del comportamiento de fasesBases del comportamiento de fases
Bases del comportamiento de fases
 
110449040 determinacion-del-punto-triple-de-una-sustancia-pura
110449040 determinacion-del-punto-triple-de-una-sustancia-pura110449040 determinacion-del-punto-triple-de-una-sustancia-pura
110449040 determinacion-del-punto-triple-de-una-sustancia-pura
 
Guía de apoyo nº2 q2 m 2013 estado gaseoso
Guía de apoyo nº2 q2 m 2013 estado gaseosoGuía de apoyo nº2 q2 m 2013 estado gaseoso
Guía de apoyo nº2 q2 m 2013 estado gaseoso
 
OB notas de clase flash.pdf
OB notas de clase flash.pdfOB notas de clase flash.pdf
OB notas de clase flash.pdf
 

Último

INFORME DE LAS FICHAS.docx.pdf LICEO DEPARTAMENTAL
INFORME DE LAS FICHAS.docx.pdf LICEO DEPARTAMENTALINFORME DE LAS FICHAS.docx.pdf LICEO DEPARTAMENTAL
INFORME DE LAS FICHAS.docx.pdf LICEO DEPARTAMENTAL
CrystalRomero18
 
Estructuras Básicas_ Conceptos Basicos De Programacion.pdf
Estructuras Básicas_ Conceptos Basicos De Programacion.pdfEstructuras Básicas_ Conceptos Basicos De Programacion.pdf
Estructuras Básicas_ Conceptos Basicos De Programacion.pdf
IsabellaRubio6
 
Ventajas y desventajas de la desinfección con cloro
Ventajas y desventajas de la desinfección con cloroVentajas y desventajas de la desinfección con cloro
Ventajas y desventajas de la desinfección con cloro
durangense277
 
proyecto invernadero desde el departamento de tecnología para Erasmus
proyecto invernadero desde el departamento de tecnología para Erasmusproyecto invernadero desde el departamento de tecnología para Erasmus
proyecto invernadero desde el departamento de tecnología para Erasmus
raquelariza02
 
maestria-motores-combustion-interna-alternativos (1).pdf
maestria-motores-combustion-interna-alternativos (1).pdfmaestria-motores-combustion-interna-alternativos (1).pdf
maestria-motores-combustion-interna-alternativos (1).pdf
JimmyTejadaSalizar
 
Estructuras básicas_ conceptos de programación (1).docx
Estructuras básicas_ conceptos de programación  (1).docxEstructuras básicas_ conceptos de programación  (1).docx
Estructuras básicas_ conceptos de programación (1).docx
SamuelRamirez83524
 
biogas industrial para guiarse en proyectos
biogas industrial para guiarse en proyectosbiogas industrial para guiarse en proyectos
biogas industrial para guiarse en proyectos
Luis Enrique Zafra Haro
 
Desarrollo de Habilidades de Pensamiento.
Desarrollo de Habilidades de Pensamiento.Desarrollo de Habilidades de Pensamiento.
Desarrollo de Habilidades de Pensamiento.
AlejandraCasallas7
 
Desarrollo de Habilidades de Pensamiento.docx (3).pdf
Desarrollo de Habilidades de Pensamiento.docx (3).pdfDesarrollo de Habilidades de Pensamiento.docx (3).pdf
Desarrollo de Habilidades de Pensamiento.docx (3).pdf
AlejandraCasallas7
 
MANUAL DEL DECODIFICADOR DVB S2. PARA VSAT
MANUAL DEL DECODIFICADOR DVB  S2. PARA VSATMANUAL DEL DECODIFICADOR DVB  S2. PARA VSAT
MANUAL DEL DECODIFICADOR DVB S2. PARA VSAT
Ing. Julio Iván Mera Casas
 
(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática
(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática
(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática
vazquezgarciajesusma
 
Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024
Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024
Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024
CesarPazosQuispe
 
ACTIVIDAD DE TECNOLOGÍA AÑO LECTIVO 2024
ACTIVIDAD DE TECNOLOGÍA AÑO LECTIVO 2024ACTIVIDAD DE TECNOLOGÍA AÑO LECTIVO 2024
ACTIVIDAD DE TECNOLOGÍA AÑO LECTIVO 2024
DanielErazoMedina
 
trabajo de tecnologia, segundo periodo 9-6f
trabajo de tecnologia, segundo periodo 9-6ftrabajo de tecnologia, segundo periodo 9-6f
trabajo de tecnologia, segundo periodo 9-6f
zoecaicedosalazar
 
DESARROLLO DE HABILIDADES DE PENSAMIENTO.pdf
DESARROLLO DE HABILIDADES DE PENSAMIENTO.pdfDESARROLLO DE HABILIDADES DE PENSAMIENTO.pdf
DESARROLLO DE HABILIDADES DE PENSAMIENTO.pdf
sarasofiamontezuma
 
(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática
(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática
(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática
vazquezgarciajesusma
 
Conceptos Básicos de Programación L.D 10-5
Conceptos Básicos de Programación L.D 10-5Conceptos Básicos de Programación L.D 10-5
Conceptos Básicos de Programación L.D 10-5
JulyMuoz18
 
Estructuras básicas_ conceptos básicos de programación.pdf
Estructuras básicas_  conceptos básicos de programación.pdfEstructuras básicas_  conceptos básicos de programación.pdf
Estructuras básicas_ conceptos básicos de programación.pdf
ItsSofi
 
Conceptos Básicos de Programación. Tecnología
Conceptos Básicos de Programación. TecnologíaConceptos Básicos de Programación. Tecnología
Conceptos Básicos de Programación. Tecnología
coloradxmaria
 
EduFlex, una educación accesible para quienes no entienden en clases
EduFlex, una educación accesible para quienes no entienden en clasesEduFlex, una educación accesible para quienes no entienden en clases
EduFlex, una educación accesible para quienes no entienden en clases
PABLOCESARGARZONBENI
 

Último (20)

INFORME DE LAS FICHAS.docx.pdf LICEO DEPARTAMENTAL
INFORME DE LAS FICHAS.docx.pdf LICEO DEPARTAMENTALINFORME DE LAS FICHAS.docx.pdf LICEO DEPARTAMENTAL
INFORME DE LAS FICHAS.docx.pdf LICEO DEPARTAMENTAL
 
Estructuras Básicas_ Conceptos Basicos De Programacion.pdf
Estructuras Básicas_ Conceptos Basicos De Programacion.pdfEstructuras Básicas_ Conceptos Basicos De Programacion.pdf
Estructuras Básicas_ Conceptos Basicos De Programacion.pdf
 
Ventajas y desventajas de la desinfección con cloro
Ventajas y desventajas de la desinfección con cloroVentajas y desventajas de la desinfección con cloro
Ventajas y desventajas de la desinfección con cloro
 
proyecto invernadero desde el departamento de tecnología para Erasmus
proyecto invernadero desde el departamento de tecnología para Erasmusproyecto invernadero desde el departamento de tecnología para Erasmus
proyecto invernadero desde el departamento de tecnología para Erasmus
 
maestria-motores-combustion-interna-alternativos (1).pdf
maestria-motores-combustion-interna-alternativos (1).pdfmaestria-motores-combustion-interna-alternativos (1).pdf
maestria-motores-combustion-interna-alternativos (1).pdf
 
Estructuras básicas_ conceptos de programación (1).docx
Estructuras básicas_ conceptos de programación  (1).docxEstructuras básicas_ conceptos de programación  (1).docx
Estructuras básicas_ conceptos de programación (1).docx
 
biogas industrial para guiarse en proyectos
biogas industrial para guiarse en proyectosbiogas industrial para guiarse en proyectos
biogas industrial para guiarse en proyectos
 
Desarrollo de Habilidades de Pensamiento.
Desarrollo de Habilidades de Pensamiento.Desarrollo de Habilidades de Pensamiento.
Desarrollo de Habilidades de Pensamiento.
 
Desarrollo de Habilidades de Pensamiento.docx (3).pdf
Desarrollo de Habilidades de Pensamiento.docx (3).pdfDesarrollo de Habilidades de Pensamiento.docx (3).pdf
Desarrollo de Habilidades de Pensamiento.docx (3).pdf
 
MANUAL DEL DECODIFICADOR DVB S2. PARA VSAT
MANUAL DEL DECODIFICADOR DVB  S2. PARA VSATMANUAL DEL DECODIFICADOR DVB  S2. PARA VSAT
MANUAL DEL DECODIFICADOR DVB S2. PARA VSAT
 
(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática
(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática
(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática
 
Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024
Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024
Semana 10_MATRIZ IPER_UPN_ADM_03.06.2024
 
ACTIVIDAD DE TECNOLOGÍA AÑO LECTIVO 2024
ACTIVIDAD DE TECNOLOGÍA AÑO LECTIVO 2024ACTIVIDAD DE TECNOLOGÍA AÑO LECTIVO 2024
ACTIVIDAD DE TECNOLOGÍA AÑO LECTIVO 2024
 
trabajo de tecnologia, segundo periodo 9-6f
trabajo de tecnologia, segundo periodo 9-6ftrabajo de tecnologia, segundo periodo 9-6f
trabajo de tecnologia, segundo periodo 9-6f
 
DESARROLLO DE HABILIDADES DE PENSAMIENTO.pdf
DESARROLLO DE HABILIDADES DE PENSAMIENTO.pdfDESARROLLO DE HABILIDADES DE PENSAMIENTO.pdf
DESARROLLO DE HABILIDADES DE PENSAMIENTO.pdf
 
(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática
(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática
(PROYECTO) Límites entre el Arte, los Medios de Comunicación y la Informática
 
Conceptos Básicos de Programación L.D 10-5
Conceptos Básicos de Programación L.D 10-5Conceptos Básicos de Programación L.D 10-5
Conceptos Básicos de Programación L.D 10-5
 
Estructuras básicas_ conceptos básicos de programación.pdf
Estructuras básicas_  conceptos básicos de programación.pdfEstructuras básicas_  conceptos básicos de programación.pdf
Estructuras básicas_ conceptos básicos de programación.pdf
 
Conceptos Básicos de Programación. Tecnología
Conceptos Básicos de Programación. TecnologíaConceptos Básicos de Programación. Tecnología
Conceptos Básicos de Programación. Tecnología
 
EduFlex, una educación accesible para quienes no entienden en clases
EduFlex, una educación accesible para quienes no entienden en clasesEduFlex, una educación accesible para quienes no entienden en clases
EduFlex, una educación accesible para quienes no entienden en clases
 

Presentación4 wilmer bravo sustancia puras

  • 2. Sustancia pura Es cualquier sustancia con una composición química definida, sin importar su procedencia. Por ejemplo, una muestra de agua tiene las mismas propiedades y la misma proporción de hidrogeno y oxigeno sin importar si la muestra se aísla. Una sustancia pura no puede separarse en otras sustancias por ningún medio mecánico. Estas sustancias pueden clasificarse en dos grupos: los compuestos están formados por dos o más tipos de átomos de distintos elementos. Las sustancias simples están formadas por átomos de un mismo elemento
  • 3. Equilibrio de fase Equilibrio líquido-vapor y sólido-vapor En estos dos casos el V molar del gas es mucho mayor que el del líquido o que el del sólido por lo que puede hacerse la aproximación Si además se hace la suposición de que el gas se comporta como gas ideal la ecuación de Clapeyron se transforma en: Esta ecuación se suele expresar como llamada ecuación de Clausius Clapeyron Si el rango de temperatura analizado es pequeño, se puede suponer que ΔH es constante a lo largo de la línea de equilibrio, y por tanto: Clausius-Clapeyron integrada
  • 4. Equilibrio sólido-líquido Para estudiar los equilibrios de fase sólido-líquido, no puede utilizarse la ecuación de Clausius-Clapeyron ya que para obtenerla se han realizado una serie de aproximaciones válidas cuando una de las fases que interviene es gas. En este caso la variación de la P de equilibrio cuando cambia la T se obtiene directamente a partir de la ecuación de Clapeyron: Los valores de ΔHfus y de ΔVfus varían a lo largo de la curva de equilibrio sólido-líquido, las funciones de estado H y V son funciones de T y P, y por lo tanto lo son también ΔHfus y de ΔVfus. Sin embargo la elevada pendiente de esta línea en el diagrama P-T implica que a menos que P cambie en una cantidad considerable, la variación de T será muy pequeña, por tanto podemos tomar como aproximación:
  • 5. El estudio del equilibrio de fases en sistemas formados por un solo componente Para especificar el estado termodinámico de un sistema formado por una sustancia pura el número variables intensivas independientes que hay conocer (grados de libertad) es: Si hay presente una fase, L=1componente-1fase+2=2 variables, es necesario especificar por ejemplo la P y la T Si hay presente dos fases, L=1componente-2fases+2=1 variable, es necesario especificar sólo P o T Si hay presente tres fases, L=1componente-3fases+2=0 variables Podemos representar cualquier estado de equilibrio del sistema formado por una sustancia pura mediante un punto en un diagrama bidimensional de presión-temperatura. Este diagrama se denomina diagrama de fases. Un ejemplo del diagrama de fases de una sustancia.
  • 6. En el diagrama de la figura las líneas AB, BD y BC corresponden a valores (P,T) en las que coexisten dos fases: • En AB coexisten en equilibrio sólido y gas. La curva AB es la curva de presión de vapor del sólido • En BD coexisten en equilibrio sólido y líquido. • En BC coexisten en equilibrio líquido y gas. El punto B marca los valores de P y T en los que coexisten tres fases, sólido, líquido y gas, y se denomina Punto Triple. Este punto, que indica la temperatura mínima a la que el líquido puede existir, es característico de cada sustancia, y puede emplearse como referencia para calibrar termómetros. El punto C indica el valor máximo (PC,TC) en el que pueden coexistir en equilibrio dos fases, y se denomina Punto Crítico. Representa la temperatura máxima a la cual se puede licuar el gas simplemente aumentando la presión. Fluidos con T y P mayores que TC y PC se denominan fluidos supercríticos.
  • 7. P = F/A Donde: F= fuerza aplicada A = Área donde se ejerce la fuerza, P = ρ *g . h Donde: = ρ = densidad del fluido g = aceleración de gravedad. h = altura barométrica P = Patm * A + w Donde: P: Presión Patm = Presión atmosférica A = Área del recipiente W =Peso ejercido Ecuaciones W = mg/A
  • 8. Propiedades independientes de una sustancia pura Una razón importante para introducir el concepto de una sustancia pura es que el estado de una sustancia pura, comprensible, simple (es decir una sustancia pura en ausencia de movimiento, gravedad y efectos de superficie, magnéticos o eléctricos) se define por dos propiedades independientes. Por ejemplo, si se especifican la temperatura y el volumen especifico del vapor sobrecalentado, se determina el estado del vapor Para comprender la importancia del término propiedad independiente, considérese los estados de líquido saturado y vapor saturado de una sustancia pura. Estos dos estados tienen la misma presión y la misma temperatura, pero definitivamente no son el mismo estado. Por lo tanto, en un estado de saturación, la presión y la temperatura no son propiedades independientes. Para especificar el estado de saturación de una sustancia pura se requieren dos propiedades independientes como la presión y el volumen específico, o la presión y la calidad
  • 9. Para una masa de control difásica, la calidad varía desde 0, cuando la masada control está compuesta únicamente de líquido saturado, hasta 1, cuando está constituida únicamente por vapor saturado. Con frecuencia, la calidad también se expresa como un porcentaje. Obsérvese que la calidad sólo está definida para la mezcla difásica constituida por líquido y vapor. El volumen del sistema a lo largo de la línea difásica es: V= Vliq+ Vvap Si consideramos una masa m que tiene una calidad x. La expresión anterior definirá el volumen o sea la suma del volumen del líquido y el volumen del vapor. En términos de la masa, la ecuación anterior se puede escribir en la forma mv = m liq v liq + m vap v vap. Ya se había definido v f, para referirnos al volumen especifico del liquido saturado y v g , para el volumen especifico del vapor saturado, ahora bien la diferencia entre estos dos v g - v f , representa el incremento en volumen especifico cuando el estado cambia de liquido saturado a vapor saturado y de identifica como v fg
  • 10. Ecuaciones de estado para la fase vapor A partir de observaciones experimentales se ha establecido que el comportamiento, según las propiedades P, v y T, de gases a baja densidad, esta representado muy aproximadamente por la siguiente ecuación de estado. Pv = Rg Ten donde, Rg= Ru/M.en que Rg del gas, M el peso molecular y Ru es la constante universal de logases. El valor de Ru depende de las unidades elegidas para P, v y T. Los valores que se usarán más frecuencia en este texto son: R u = 848 kgfm/kgmol ºK = 1545 pies lbf/lbmol ºR = 1.987 Btu/lbmol ºR Es cuando el Número de mach es mayor que " 0.3" por lo cual se presenten variaciones apreciables de densidad. Cuando ocurre lo anterior quiere decir que las variaciones de las presiones y temperaturas también son significativas. Esas grandes variaciones de temperatura implica que las ecuaciones de la energía siguientes no se pueden despreciar:
  • 11. Estas ecuaciones se resuelven simultáneamente para obtener las cuatro incógnitas siguientes: 1.- Presión 2.- Densidad 3.- Temperatura 4.- Velocidad
  • 12. Superficie Termodinámica Las superficies termodinámicas están formadas por presión (p), volumen (v) y temperatura (T), que sería en resumen P-v-T. Estas superficies son las que ayudan y permiten identificar los diferentes tipos de estados y como estos pasan de un estado a otro, mas que todo, los resultados se pueden representar en coordenadas rectangulares y es a esto lo que se llama superficie P-v-T. Estas superficies, presión (p), volumen (v) y temperatura (T) sirven para calcular los valores que pertenecen a una sustancia de trabajo cuando se encuentra en cualquier estado de la superficie. Si una superficie tiene mayor temperatura que la temperatura crítica, no será capaz de condensar a la fase líquida, independientemente de cuan alta sea la presión que se ejerce sobre ella. Cuando la presión es mayor que la presión crítica, el estado se conoce como estado supercrítico