SlideShare una empresa de Scribd logo
Practica Unidad 03
QUE PRESENTA:
INGENIERÍA INDUSTRIAL SEMI PRESCENCIAL
Materia: Investigación de operaciones 1
DOCENTE:
Núñez Durán Salvador
INSTITUTO TECNOLÓGICO DE TIJUANA
TIJUANA, B.C. 16 DE MARZO 2024
Cruz Aguilar Jorge 22210507
Delgado Rivera Abraham Ricardo 22210510
Frayjo Siqueiros Joel 22210517
Juárez García Osvaldo Jahir 22210843
Rentería Zamora Alejandro Javier 22210570
Bautista Sarabia Virgilio 22210498
Problemas de programación lineal entera
(PLE)
En estos problemas, la función objetivo y las restricciones son lineales, y todas las
variables de decisión deben ser números enteros. Algunos ejemplos de problemas PLE
incluyen:
 Planificación de producción: determinar la cantidad de cada producto que se debe
producir para maximizar las ganancias.
 Planificación de rutas: encontrar la ruta más corta que visite un conjunto de
ciudades.
 Asignación de recursos: asignar recursos a diferentes tareas para minimizar el costo
total.
Problemas de programación entera mixta
(PEM)
En estos problemas, la función objetivo y las restricciones pueden ser lineales o no lineales,
y algunas de las variables de decisión pueden ser números reales mientras que otras deben
ser números enteros. Algunos ejemplos de problemas PEM incluyen:
 Diseño de plantas: determinar la ubicación y el tamaño de las instalaciones para
minimizar el costo total.
 Selección de inversiones: elegir un conjunto de inversiones que maximice el retorno
total.
 Planificación de la fuerza laboral: determinar el número de empleados que se
necesitan para cada turno para minimizar el costo total.
Problemas de programación entera binaria
(PEB)
En estos problemas, todas las variables de decisión son binarias, es decir, solo pueden
tomar los valores 0 o 1. Algunos ejemplos de problemas PEB incluyen:
 Localización de instalaciones: decidir en qué ubicaciones se deben instalar nuevas
instalaciones.
 Selección de proyectos: elegir un conjunto de proyectos para financiar.
 Asignación de tareas: asignar tareas a diferentes empleados.
Ejemplos de aplicaciones de la
programación entera
La programación entera se utiliza en una amplia variedad de áreas, incluyendo:
 Ingeniería: diseño de productos, planificación de producción, gestión de proyectos.
 Finanzas: planificación financiera, selección de inversiones, gestión de riesgos.
 Logística: planificación de rutas, gestión de almacenes, distribución.
 Manufactura: programación de la producción, control de calidad, gestión de
inventario.
 Telecomunicaciones: diseño de redes, planificación de la capacidad, gestión del
tráfico
Características del algoritmo de
Ramificación y Acotamiento (B&B)
El algoritmo de Ramificación y Acotamiento (B&B) es una técnica poderosa para resolver
problemas de optimización combinatoria, especialmente aquellos que son NP-difíciles.
Las principales características de este algoritmo son:
 1. Exploración y poda: B&B explora el espacio de soluciones de forma sistemática
mediante un proceso de ramificación y poda. En la ramificación, se divide el problema
en subproblemas más pequeños. En la poda, se eliminan subproblemas que no
pueden contener una solución óptima.
 2. Cotas superior e inferior: B&B utiliza cotas superior e inferior para guiar la
búsqueda. La cota superior es un valor que es mayor o igual que el valor de la
solución óptima. La cota inferior es un valor que es menor o igual que el valor de la
solución óptima.
 3. Heurísticas: B&B utiliza heurísticas para mejorar la eficiencia de la búsqueda. Las
heurísticas son reglas o procedimientos que se utilizan para seleccionar qué
subproblema ramificar a continuación.
 4. Implementación: B&B se puede implementar de diferentes maneras. La
implementación más común es el método del árbol de búsqueda.
 5. Ventajas: B&B es un algoritmo muy flexible que se puede aplicar a una amplia
variedad de problemas. B&B es capaz de encontrar soluciones óptimas o casi
óptimas para problemas NP-difíciles.
 6. Desventajas: B&B puede ser un algoritmo lento para algunos problemas. B&B
puede requerir una gran cantidad de memoria para almacenar el árbol de
búsqueda.
 7. Resumen: B&B es un algoritmo poderoso para resolver problemas de
optimización combinatoria. B&B es flexible, eficiente y capaz de encontrar
soluciones óptimas o casi óptimas para problemas NP-difíciles.
Ejemplos de aplicaciones del algoritmo
B&B
 Logística: planificación de rutas, gestión de almacenes, distribución.
 Manufactura: programación de la producción, control de calidad, gestión de
inventario.
 Telecomunicaciones: diseño de redes, planificación de la capacidad, gestión del
tráfico.
 Finanzas: planificación financiera, selección de inversiones, gestión de riesgos.
 Ingeniería: diseño de productos, planificación de producción, gestión de
proyectos.
Relación entre algoritmos de programación
entera y criterios de optimización
Los algoritmos de programación entera (PE) y los criterios de optimización están
estrechamente relacionados. Los criterios de optimización se utilizan para definir el objetivo
que se desea alcanzar con la solución del problema, mientras que los algoritmos de PE se
utilizan para encontrar la solución que mejor cumpla con ese objetivo.
Criterios de optimización:
Los criterios de optimización son los objetivos que se persiguen al resolver un problema de
PE. Algunos de los criterios de optimización más comunes son:
 Maximizar: encontrar la solución que maximice un valor objetivo, como la ganancia, la
eficiencia o la productividad.
 Minimizar: encontrar la solución que minimice un valor objetivo, como el costo, el
tiempo o el riesgo.
 Satisfacer restricciones: encontrar una solución que satisfaga un conjunto de
restricciones, como las limitaciones de recursos o las normas de seguridad.
Algoritmos de PE.
Los algoritmos de PE son técnicas para encontrar soluciones a problemas de PE. Algunos
de los algoritmos de PE más comunes son:
 Ramificación y acotamiento: un algoritmo que divide el problema en subproblemas
más pequeños y elimina subproblemas que no pueden contener una solución óptima.
 Programación lineal entera: una técnica para resolver problemas de PE donde la
función objetivo y las restricciones son lineales.
 Programación entera mixta: una técnica para resolver problemas de PE donde la
función objetivo o las restricciones pueden ser no lineales.
Relación entre criterios de optimización y algoritmos de PE.
La elección del algoritmo de PE adecuado depende del criterio de optimización que se
esté utilizando. Por ejemplo, si el objetivo es maximizar la ganancia, se puede utilizar un
algoritmo de ramificación y acotamiento con una función objetivo que represente la
ganancia. Si el objetivo es minimizar el costo, se puede utilizar un algoritmo de
programación lineal entera con una función objetivo que represente el costo.
Ejemplos.
 Ejemplo 1: Una empresa desea maximizar la producción de una fábrica. El criterio
de optimización en este caso es maximizar la producción. Se puede utilizar un
algoritmo de ramificación y acotamiento con una función objetivo que represente
la producción.
 Ejemplo 2: Una empresa desea minimizar el costo de transporte de un producto.
El criterio de optimización en este caso es minimizar el costo. Se puede utilizar un
algoritmo de programación lineal entera con una función objetivo que represente
el costo.
Conclusiones y recomendaciones.
 En conclusión, los diferentes métodos de programación entera son herramientas
poderosas que nos permiten resolver problemas de optimización en diversas áreas
de aplicación.
 Estos métodos son especialmente útiles cuando se enfrentan restricciones y
decisiones que requieren que las variables de decisión sean enteras. El método de
ramificación y acotamiento es ampliamente utilizado debido a su capacidad para
encontrar soluciones óptimas y su eficiencia en muchos casos.
 Sin embargo, en problemas complejos, puede requerir mucho tiempo de cómputo.
En general, los métodos de programación entera nos permiten abordar problemas de
optimización con restricciones y decisiones enteras, lo que puede ser crucial en áreas
como la planificación de la producción, la logística, la asignación de recursos y
muchas otras aplicaciones. Estos métodos nos ayudan a encontrar soluciones
óptimas o cercanas a lo óptimo, optimizando la utilización de recursos, minimizando
los costos y maximizando los resultados deseados.
 La IO ha demostrado ser una herramienta valiosa para el estudio del modelo. El
modelo ha permitido obtener una mejor comprensión del problema, identificar los
factores clave que lo afectan y obtener soluciones óptimas o casi óptimas. Se
recomienda implementar las soluciones obtenidas con el modelo, monitorizar su
rendimiento y realizar ajustes cuando sea necesario.
 Es importante destacar que la IO no es una solución mágica, sino una herramienta que
debe utilizarse de forma adecuada. Para obtener el máximo provecho de la IO, es
necesario contar con un equipo de profesionales con experiencia en esta área.
Recomendaciones:
 Implementar las soluciones obtenidas con el modelo.
 Monitorizar el rendimiento del modelo y realizar ajustes cuando sea necesario.
 Utilizar el modelo para analizar nuevos escenarios y estrategias.
 Capacitar al personal en el uso del modelo.
Referencias
 Operaciones, D. E. (s/f). HAMDY A. TAHA. Edu.pe. Recuperado el 16 de marzo de 2024,
de https://fad.unsa.edu.pe/bancayseguros/wp-
content/uploads/sites/4/2019/03/investigacic3b3n-de-operaciones-9na-edicic3b3n-
hamdy-a-taha-fl.pdf
 Programación entera. (s/f). Academia-lab.com. Recuperado el 16 de marzo de 2024, de
https://academia-lab.com/enciclopedia/programacion-entera/
 Romero, C. (2019). Introducción a la investigación de operaciones, 9na Edición -
Frederick S. Hillier & Gerald J. Lieberman. Uomac.
https://www.academia.edu/40205737/Introducci%C3%B3n_a_la_investigaci%C3%B3n_d
e_operaciones_9na_Edici%C3%B3n_Frederick_S_Hillier_and_Gerald_J_Lieberman

Más contenido relacionado

Similar a Problemas de programación lineal entera.pptx

Metodología y Modelos de la Investigación de Operaciones.pdf
Metodología y Modelos de la Investigación de Operaciones.pdfMetodología y Modelos de la Investigación de Operaciones.pdf
Metodología y Modelos de la Investigación de Operaciones.pdf
angeldiaz04
 
Introduccion Inv Oper
Introduccion Inv  OperIntroduccion Inv  Oper
Introduccion Inv Oper
ITESH
 
Método heurístico
Método heurísticoMétodo heurístico
Método heurístico
Israel Flores
 
Optimizacion De Sistemas
Optimizacion De Sistemas Optimizacion De Sistemas
Optimizacion De Sistemas
Mario Gonzalez
 
Matematicas tomas
Matematicas tomasMatematicas tomas
Matematicas tomas
consultorguzman
 
Modulo6
Modulo6Modulo6
Modulo6
Juan Coronel
 
Teoria optimizacion
Teoria optimizacionTeoria optimizacion
Teoria optimizacion
Robert Rivero
 
Documents.mx 13 enfoque-en-la-toma-de-decisiones
Documents.mx 13 enfoque-en-la-toma-de-decisionesDocuments.mx 13 enfoque-en-la-toma-de-decisiones
Documents.mx 13 enfoque-en-la-toma-de-decisiones
hugo santiago champs
 
2.3keidy
2.3keidy2.3keidy
2.3keidy
Roberto Gómez
 
Introduccion inv. oper
Introduccion inv. operIntroduccion inv. oper
Introduccion inv. oper
enlacebj
 
Investigación de Operaciones
Investigación de OperacionesInvestigación de Operaciones
Investigación de Operaciones
Rosario Elizabeh Guamán Tandazo
 
I N T R O D U C C I O N I N V. O P E R
I N T R O D U C C I O N  I N V.  O P E RI N T R O D U C C I O N  I N V.  O P E R
I N T R O D U C C I O N I N V. O P E R
parroquiadetepeapulco
 
Optimizacion de Sistemas y Funciones PSM
Optimizacion de Sistemas y Funciones PSMOptimizacion de Sistemas y Funciones PSM
Optimizacion de Sistemas y Funciones PSM
Pablo Duarte
 
Introduccion a la Investigación de Operaciones
Introduccion a la Investigación de OperacionesIntroduccion a la Investigación de Operaciones
Introduccion a la Investigación de Operaciones
angelica maria salado ortiz
 
Introducción Investigación Operativa
Introducción Investigación OperativaIntroducción Investigación Operativa
Introducción Investigación Operativa
Abigail Criollo
 
INTRODUCCIÓN I.O
INTRODUCCIÓN I.OINTRODUCCIÓN I.O
INTRODUCCIÓN I.O
sophylu94sanchez
 
Introduccion inv. oper
Introduccion inv. operIntroduccion inv. oper
Introduccion inv. oper
Mary Criollo
 
Introduccion inv. oper
Introduccion inv. operIntroduccion inv. oper
Introduccion inv. oper
Deisy Shambi
 
Introduccion inv. oper
Introduccion inv. operIntroduccion inv. oper
Introduccion inv. oper
Elyzabeth Tarco
 
INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES
INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONESINTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES
INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES
Rubí Parra
 

Similar a Problemas de programación lineal entera.pptx (20)

Metodología y Modelos de la Investigación de Operaciones.pdf
Metodología y Modelos de la Investigación de Operaciones.pdfMetodología y Modelos de la Investigación de Operaciones.pdf
Metodología y Modelos de la Investigación de Operaciones.pdf
 
Introduccion Inv Oper
Introduccion Inv  OperIntroduccion Inv  Oper
Introduccion Inv Oper
 
Método heurístico
Método heurísticoMétodo heurístico
Método heurístico
 
Optimizacion De Sistemas
Optimizacion De Sistemas Optimizacion De Sistemas
Optimizacion De Sistemas
 
Matematicas tomas
Matematicas tomasMatematicas tomas
Matematicas tomas
 
Modulo6
Modulo6Modulo6
Modulo6
 
Teoria optimizacion
Teoria optimizacionTeoria optimizacion
Teoria optimizacion
 
Documents.mx 13 enfoque-en-la-toma-de-decisiones
Documents.mx 13 enfoque-en-la-toma-de-decisionesDocuments.mx 13 enfoque-en-la-toma-de-decisiones
Documents.mx 13 enfoque-en-la-toma-de-decisiones
 
2.3keidy
2.3keidy2.3keidy
2.3keidy
 
Introduccion inv. oper
Introduccion inv. operIntroduccion inv. oper
Introduccion inv. oper
 
Investigación de Operaciones
Investigación de OperacionesInvestigación de Operaciones
Investigación de Operaciones
 
I N T R O D U C C I O N I N V. O P E R
I N T R O D U C C I O N  I N V.  O P E RI N T R O D U C C I O N  I N V.  O P E R
I N T R O D U C C I O N I N V. O P E R
 
Optimizacion de Sistemas y Funciones PSM
Optimizacion de Sistemas y Funciones PSMOptimizacion de Sistemas y Funciones PSM
Optimizacion de Sistemas y Funciones PSM
 
Introduccion a la Investigación de Operaciones
Introduccion a la Investigación de OperacionesIntroduccion a la Investigación de Operaciones
Introduccion a la Investigación de Operaciones
 
Introducción Investigación Operativa
Introducción Investigación OperativaIntroducción Investigación Operativa
Introducción Investigación Operativa
 
INTRODUCCIÓN I.O
INTRODUCCIÓN I.OINTRODUCCIÓN I.O
INTRODUCCIÓN I.O
 
Introduccion inv. oper
Introduccion inv. operIntroduccion inv. oper
Introduccion inv. oper
 
Introduccion inv. oper
Introduccion inv. operIntroduccion inv. oper
Introduccion inv. oper
 
Introduccion inv. oper
Introduccion inv. operIntroduccion inv. oper
Introduccion inv. oper
 
INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES
INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONESINTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES
INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES
 

Último

utadeigraduandos2020documentopubñico0.pptx
utadeigraduandos2020documentopubñico0.pptxutadeigraduandos2020documentopubñico0.pptx
utadeigraduandos2020documentopubñico0.pptx
AndrsMartinez54
 
Regiones del mundo por posesión de vivienda particular (2024).pdf
Regiones del mundo por posesión de vivienda particular (2024).pdfRegiones del mundo por posesión de vivienda particular (2024).pdf
Regiones del mundo por posesión de vivienda particular (2024).pdf
JC Díaz Herrera
 
La celula eucariota, investigación de morfología
La celula eucariota, investigación de morfologíaLa celula eucariota, investigación de morfología
La celula eucariota, investigación de morfología
amebgirl
 
Resumen----_------Ejecutivo. universidad
Resumen----_------Ejecutivo. universidadResumen----_------Ejecutivo. universidad
Resumen----_------Ejecutivo. universidad
lilyv195
 
MONOGRAFIA DEL BUSCADOR YAHOO! APSTI1"A"
MONOGRAFIA DEL BUSCADOR YAHOO! APSTI1"A"MONOGRAFIA DEL BUSCADOR YAHOO! APSTI1"A"
MONOGRAFIA DEL BUSCADOR YAHOO! APSTI1"A"
darkskills2011
 
formato CORPORACIÖN TECNICA ALEMANA.pdf
formato CORPORACIÖN TECNICA  ALEMANA.pdfformato CORPORACIÖN TECNICA  ALEMANA.pdf
formato CORPORACIÖN TECNICA ALEMANA.pdf
Unidad de Emprendimiento ambulante
 
Geografía migración . Internacional
Geografía migración                 . InternacionalGeografía migración                 . Internacional
Geografía migración . Internacional
skylopez0530
 
diuresis.pdf solución a lo que buscabas.
diuresis.pdf solución a lo que buscabas.diuresis.pdf solución a lo que buscabas.
diuresis.pdf solución a lo que buscabas.
RogerVelarde6
 
PLAN DE MANEJO AMBIENTAL.docx...................................................
PLAN DE MANEJO AMBIENTAL.docx...................................................PLAN DE MANEJO AMBIENTAL.docx...................................................
PLAN DE MANEJO AMBIENTAL.docx...................................................
AlinaTicllaDiaz2
 
Grupo 04: Dispersión y absorción de luz.pdf
Grupo 04: Dispersión y absorción de luz.pdfGrupo 04: Dispersión y absorción de luz.pdf
Grupo 04: Dispersión y absorción de luz.pdf
naticlas0
 
Guía para la visualización de datos_ VOSviewer.pdf
Guía para la visualización de datos_ VOSviewer.pdfGuía para la visualización de datos_ VOSviewer.pdf
Guía para la visualización de datos_ VOSviewer.pdf
omoreno1
 
740177312-Estudio-Salarial-Per-2024-Nivel-Gerencial-Hunters-Group-2.pdf
740177312-Estudio-Salarial-Per-2024-Nivel-Gerencial-Hunters-Group-2.pdf740177312-Estudio-Salarial-Per-2024-Nivel-Gerencial-Hunters-Group-2.pdf
740177312-Estudio-Salarial-Per-2024-Nivel-Gerencial-Hunters-Group-2.pdf
ChristianAngelesMend
 
Analisis inferencial de contro interno del peru
Analisis inferencial de contro interno del peruAnalisis inferencial de contro interno del peru
Analisis inferencial de contro interno del peru
PabloCornelioCuellar1
 
263101106-Nom-022-Terapia-de-Infusion-Presentacion.pptx
263101106-Nom-022-Terapia-de-Infusion-Presentacion.pptx263101106-Nom-022-Terapia-de-Infusion-Presentacion.pptx
263101106-Nom-022-Terapia-de-Infusion-Presentacion.pptx
AzulVillegas1
 
Analítica y Datos-Beatriz García-Jun 2024.pdf
Analítica y Datos-Beatriz García-Jun 2024.pdfAnalítica y Datos-Beatriz García-Jun 2024.pdf
Analítica y Datos-Beatriz García-Jun 2024.pdf
analiticaydatos
 
Imagenes de la Inteligencia Artificial -Analitica y Datos-Beatriz Garcia-Mayo...
Imagenes de la Inteligencia Artificial -Analitica y Datos-Beatriz Garcia-Mayo...Imagenes de la Inteligencia Artificial -Analitica y Datos-Beatriz Garcia-Mayo...
Imagenes de la Inteligencia Artificial -Analitica y Datos-Beatriz Garcia-Mayo...
analiticaydatos
 
Presidentes de la Reserva Federal en el período neoliberal (1980-2024).pdf
Presidentes de la Reserva Federal en el período neoliberal (1980-2024).pdfPresidentes de la Reserva Federal en el período neoliberal (1980-2024).pdf
Presidentes de la Reserva Federal en el período neoliberal (1980-2024).pdf
JC Díaz Herrera
 
AVANCE TECNOLOGICO AREAS DE IMPACTO DEL AVANCE TECNOLOGICO
AVANCE TECNOLOGICO AREAS DE IMPACTO DEL AVANCE TECNOLOGICOAVANCE TECNOLOGICO AREAS DE IMPACTO DEL AVANCE TECNOLOGICO
AVANCE TECNOLOGICO AREAS DE IMPACTO DEL AVANCE TECNOLOGICO
ronaldomarca1999
 
350253832-Triptico-de-1111111La-Papa.pdf
350253832-Triptico-de-1111111La-Papa.pdf350253832-Triptico-de-1111111La-Papa.pdf
350253832-Triptico-de-1111111La-Papa.pdf
PedroJoseFelipaBazal
 
PROYECTO TERMINADO ACERCA DEL SUPERMERCADO METRO .
PROYECTO TERMINADO ACERCA DEL SUPERMERCADO METRO .PROYECTO TERMINADO ACERCA DEL SUPERMERCADO METRO .
PROYECTO TERMINADO ACERCA DEL SUPERMERCADO METRO .
fiorelaanalisalazarl
 

Último (20)

utadeigraduandos2020documentopubñico0.pptx
utadeigraduandos2020documentopubñico0.pptxutadeigraduandos2020documentopubñico0.pptx
utadeigraduandos2020documentopubñico0.pptx
 
Regiones del mundo por posesión de vivienda particular (2024).pdf
Regiones del mundo por posesión de vivienda particular (2024).pdfRegiones del mundo por posesión de vivienda particular (2024).pdf
Regiones del mundo por posesión de vivienda particular (2024).pdf
 
La celula eucariota, investigación de morfología
La celula eucariota, investigación de morfologíaLa celula eucariota, investigación de morfología
La celula eucariota, investigación de morfología
 
Resumen----_------Ejecutivo. universidad
Resumen----_------Ejecutivo. universidadResumen----_------Ejecutivo. universidad
Resumen----_------Ejecutivo. universidad
 
MONOGRAFIA DEL BUSCADOR YAHOO! APSTI1"A"
MONOGRAFIA DEL BUSCADOR YAHOO! APSTI1"A"MONOGRAFIA DEL BUSCADOR YAHOO! APSTI1"A"
MONOGRAFIA DEL BUSCADOR YAHOO! APSTI1"A"
 
formato CORPORACIÖN TECNICA ALEMANA.pdf
formato CORPORACIÖN TECNICA  ALEMANA.pdfformato CORPORACIÖN TECNICA  ALEMANA.pdf
formato CORPORACIÖN TECNICA ALEMANA.pdf
 
Geografía migración . Internacional
Geografía migración                 . InternacionalGeografía migración                 . Internacional
Geografía migración . Internacional
 
diuresis.pdf solución a lo que buscabas.
diuresis.pdf solución a lo que buscabas.diuresis.pdf solución a lo que buscabas.
diuresis.pdf solución a lo que buscabas.
 
PLAN DE MANEJO AMBIENTAL.docx...................................................
PLAN DE MANEJO AMBIENTAL.docx...................................................PLAN DE MANEJO AMBIENTAL.docx...................................................
PLAN DE MANEJO AMBIENTAL.docx...................................................
 
Grupo 04: Dispersión y absorción de luz.pdf
Grupo 04: Dispersión y absorción de luz.pdfGrupo 04: Dispersión y absorción de luz.pdf
Grupo 04: Dispersión y absorción de luz.pdf
 
Guía para la visualización de datos_ VOSviewer.pdf
Guía para la visualización de datos_ VOSviewer.pdfGuía para la visualización de datos_ VOSviewer.pdf
Guía para la visualización de datos_ VOSviewer.pdf
 
740177312-Estudio-Salarial-Per-2024-Nivel-Gerencial-Hunters-Group-2.pdf
740177312-Estudio-Salarial-Per-2024-Nivel-Gerencial-Hunters-Group-2.pdf740177312-Estudio-Salarial-Per-2024-Nivel-Gerencial-Hunters-Group-2.pdf
740177312-Estudio-Salarial-Per-2024-Nivel-Gerencial-Hunters-Group-2.pdf
 
Analisis inferencial de contro interno del peru
Analisis inferencial de contro interno del peruAnalisis inferencial de contro interno del peru
Analisis inferencial de contro interno del peru
 
263101106-Nom-022-Terapia-de-Infusion-Presentacion.pptx
263101106-Nom-022-Terapia-de-Infusion-Presentacion.pptx263101106-Nom-022-Terapia-de-Infusion-Presentacion.pptx
263101106-Nom-022-Terapia-de-Infusion-Presentacion.pptx
 
Analítica y Datos-Beatriz García-Jun 2024.pdf
Analítica y Datos-Beatriz García-Jun 2024.pdfAnalítica y Datos-Beatriz García-Jun 2024.pdf
Analítica y Datos-Beatriz García-Jun 2024.pdf
 
Imagenes de la Inteligencia Artificial -Analitica y Datos-Beatriz Garcia-Mayo...
Imagenes de la Inteligencia Artificial -Analitica y Datos-Beatriz Garcia-Mayo...Imagenes de la Inteligencia Artificial -Analitica y Datos-Beatriz Garcia-Mayo...
Imagenes de la Inteligencia Artificial -Analitica y Datos-Beatriz Garcia-Mayo...
 
Presidentes de la Reserva Federal en el período neoliberal (1980-2024).pdf
Presidentes de la Reserva Federal en el período neoliberal (1980-2024).pdfPresidentes de la Reserva Federal en el período neoliberal (1980-2024).pdf
Presidentes de la Reserva Federal en el período neoliberal (1980-2024).pdf
 
AVANCE TECNOLOGICO AREAS DE IMPACTO DEL AVANCE TECNOLOGICO
AVANCE TECNOLOGICO AREAS DE IMPACTO DEL AVANCE TECNOLOGICOAVANCE TECNOLOGICO AREAS DE IMPACTO DEL AVANCE TECNOLOGICO
AVANCE TECNOLOGICO AREAS DE IMPACTO DEL AVANCE TECNOLOGICO
 
350253832-Triptico-de-1111111La-Papa.pdf
350253832-Triptico-de-1111111La-Papa.pdf350253832-Triptico-de-1111111La-Papa.pdf
350253832-Triptico-de-1111111La-Papa.pdf
 
PROYECTO TERMINADO ACERCA DEL SUPERMERCADO METRO .
PROYECTO TERMINADO ACERCA DEL SUPERMERCADO METRO .PROYECTO TERMINADO ACERCA DEL SUPERMERCADO METRO .
PROYECTO TERMINADO ACERCA DEL SUPERMERCADO METRO .
 

Problemas de programación lineal entera.pptx

  • 2. QUE PRESENTA: INGENIERÍA INDUSTRIAL SEMI PRESCENCIAL Materia: Investigación de operaciones 1 DOCENTE: Núñez Durán Salvador INSTITUTO TECNOLÓGICO DE TIJUANA TIJUANA, B.C. 16 DE MARZO 2024 Cruz Aguilar Jorge 22210507 Delgado Rivera Abraham Ricardo 22210510 Frayjo Siqueiros Joel 22210517 Juárez García Osvaldo Jahir 22210843 Rentería Zamora Alejandro Javier 22210570 Bautista Sarabia Virgilio 22210498
  • 3. Problemas de programación lineal entera (PLE) En estos problemas, la función objetivo y las restricciones son lineales, y todas las variables de decisión deben ser números enteros. Algunos ejemplos de problemas PLE incluyen:  Planificación de producción: determinar la cantidad de cada producto que se debe producir para maximizar las ganancias.  Planificación de rutas: encontrar la ruta más corta que visite un conjunto de ciudades.  Asignación de recursos: asignar recursos a diferentes tareas para minimizar el costo total.
  • 4. Problemas de programación entera mixta (PEM) En estos problemas, la función objetivo y las restricciones pueden ser lineales o no lineales, y algunas de las variables de decisión pueden ser números reales mientras que otras deben ser números enteros. Algunos ejemplos de problemas PEM incluyen:  Diseño de plantas: determinar la ubicación y el tamaño de las instalaciones para minimizar el costo total.  Selección de inversiones: elegir un conjunto de inversiones que maximice el retorno total.  Planificación de la fuerza laboral: determinar el número de empleados que se necesitan para cada turno para minimizar el costo total.
  • 5. Problemas de programación entera binaria (PEB) En estos problemas, todas las variables de decisión son binarias, es decir, solo pueden tomar los valores 0 o 1. Algunos ejemplos de problemas PEB incluyen:  Localización de instalaciones: decidir en qué ubicaciones se deben instalar nuevas instalaciones.  Selección de proyectos: elegir un conjunto de proyectos para financiar.  Asignación de tareas: asignar tareas a diferentes empleados.
  • 6. Ejemplos de aplicaciones de la programación entera La programación entera se utiliza en una amplia variedad de áreas, incluyendo:  Ingeniería: diseño de productos, planificación de producción, gestión de proyectos.  Finanzas: planificación financiera, selección de inversiones, gestión de riesgos.  Logística: planificación de rutas, gestión de almacenes, distribución.  Manufactura: programación de la producción, control de calidad, gestión de inventario.  Telecomunicaciones: diseño de redes, planificación de la capacidad, gestión del tráfico
  • 7. Características del algoritmo de Ramificación y Acotamiento (B&B) El algoritmo de Ramificación y Acotamiento (B&B) es una técnica poderosa para resolver problemas de optimización combinatoria, especialmente aquellos que son NP-difíciles. Las principales características de este algoritmo son:  1. Exploración y poda: B&B explora el espacio de soluciones de forma sistemática mediante un proceso de ramificación y poda. En la ramificación, se divide el problema en subproblemas más pequeños. En la poda, se eliminan subproblemas que no pueden contener una solución óptima.  2. Cotas superior e inferior: B&B utiliza cotas superior e inferior para guiar la búsqueda. La cota superior es un valor que es mayor o igual que el valor de la solución óptima. La cota inferior es un valor que es menor o igual que el valor de la solución óptima.
  • 8.  3. Heurísticas: B&B utiliza heurísticas para mejorar la eficiencia de la búsqueda. Las heurísticas son reglas o procedimientos que se utilizan para seleccionar qué subproblema ramificar a continuación.  4. Implementación: B&B se puede implementar de diferentes maneras. La implementación más común es el método del árbol de búsqueda.  5. Ventajas: B&B es un algoritmo muy flexible que se puede aplicar a una amplia variedad de problemas. B&B es capaz de encontrar soluciones óptimas o casi óptimas para problemas NP-difíciles.  6. Desventajas: B&B puede ser un algoritmo lento para algunos problemas. B&B puede requerir una gran cantidad de memoria para almacenar el árbol de búsqueda.  7. Resumen: B&B es un algoritmo poderoso para resolver problemas de optimización combinatoria. B&B es flexible, eficiente y capaz de encontrar soluciones óptimas o casi óptimas para problemas NP-difíciles.
  • 9. Ejemplos de aplicaciones del algoritmo B&B  Logística: planificación de rutas, gestión de almacenes, distribución.  Manufactura: programación de la producción, control de calidad, gestión de inventario.  Telecomunicaciones: diseño de redes, planificación de la capacidad, gestión del tráfico.  Finanzas: planificación financiera, selección de inversiones, gestión de riesgos.  Ingeniería: diseño de productos, planificación de producción, gestión de proyectos.
  • 10. Relación entre algoritmos de programación entera y criterios de optimización Los algoritmos de programación entera (PE) y los criterios de optimización están estrechamente relacionados. Los criterios de optimización se utilizan para definir el objetivo que se desea alcanzar con la solución del problema, mientras que los algoritmos de PE se utilizan para encontrar la solución que mejor cumpla con ese objetivo. Criterios de optimización: Los criterios de optimización son los objetivos que se persiguen al resolver un problema de PE. Algunos de los criterios de optimización más comunes son:  Maximizar: encontrar la solución que maximice un valor objetivo, como la ganancia, la eficiencia o la productividad.  Minimizar: encontrar la solución que minimice un valor objetivo, como el costo, el tiempo o el riesgo.  Satisfacer restricciones: encontrar una solución que satisfaga un conjunto de restricciones, como las limitaciones de recursos o las normas de seguridad.
  • 11. Algoritmos de PE. Los algoritmos de PE son técnicas para encontrar soluciones a problemas de PE. Algunos de los algoritmos de PE más comunes son:  Ramificación y acotamiento: un algoritmo que divide el problema en subproblemas más pequeños y elimina subproblemas que no pueden contener una solución óptima.  Programación lineal entera: una técnica para resolver problemas de PE donde la función objetivo y las restricciones son lineales.  Programación entera mixta: una técnica para resolver problemas de PE donde la función objetivo o las restricciones pueden ser no lineales. Relación entre criterios de optimización y algoritmos de PE. La elección del algoritmo de PE adecuado depende del criterio de optimización que se esté utilizando. Por ejemplo, si el objetivo es maximizar la ganancia, se puede utilizar un algoritmo de ramificación y acotamiento con una función objetivo que represente la ganancia. Si el objetivo es minimizar el costo, se puede utilizar un algoritmo de programación lineal entera con una función objetivo que represente el costo.
  • 12. Ejemplos.  Ejemplo 1: Una empresa desea maximizar la producción de una fábrica. El criterio de optimización en este caso es maximizar la producción. Se puede utilizar un algoritmo de ramificación y acotamiento con una función objetivo que represente la producción.  Ejemplo 2: Una empresa desea minimizar el costo de transporte de un producto. El criterio de optimización en este caso es minimizar el costo. Se puede utilizar un algoritmo de programación lineal entera con una función objetivo que represente el costo.
  • 13. Conclusiones y recomendaciones.  En conclusión, los diferentes métodos de programación entera son herramientas poderosas que nos permiten resolver problemas de optimización en diversas áreas de aplicación.  Estos métodos son especialmente útiles cuando se enfrentan restricciones y decisiones que requieren que las variables de decisión sean enteras. El método de ramificación y acotamiento es ampliamente utilizado debido a su capacidad para encontrar soluciones óptimas y su eficiencia en muchos casos.  Sin embargo, en problemas complejos, puede requerir mucho tiempo de cómputo. En general, los métodos de programación entera nos permiten abordar problemas de optimización con restricciones y decisiones enteras, lo que puede ser crucial en áreas como la planificación de la producción, la logística, la asignación de recursos y muchas otras aplicaciones. Estos métodos nos ayudan a encontrar soluciones óptimas o cercanas a lo óptimo, optimizando la utilización de recursos, minimizando los costos y maximizando los resultados deseados.
  • 14.  La IO ha demostrado ser una herramienta valiosa para el estudio del modelo. El modelo ha permitido obtener una mejor comprensión del problema, identificar los factores clave que lo afectan y obtener soluciones óptimas o casi óptimas. Se recomienda implementar las soluciones obtenidas con el modelo, monitorizar su rendimiento y realizar ajustes cuando sea necesario.  Es importante destacar que la IO no es una solución mágica, sino una herramienta que debe utilizarse de forma adecuada. Para obtener el máximo provecho de la IO, es necesario contar con un equipo de profesionales con experiencia en esta área. Recomendaciones:  Implementar las soluciones obtenidas con el modelo.  Monitorizar el rendimiento del modelo y realizar ajustes cuando sea necesario.  Utilizar el modelo para analizar nuevos escenarios y estrategias.  Capacitar al personal en el uso del modelo.
  • 15. Referencias  Operaciones, D. E. (s/f). HAMDY A. TAHA. Edu.pe. Recuperado el 16 de marzo de 2024, de https://fad.unsa.edu.pe/bancayseguros/wp- content/uploads/sites/4/2019/03/investigacic3b3n-de-operaciones-9na-edicic3b3n- hamdy-a-taha-fl.pdf  Programación entera. (s/f). Academia-lab.com. Recuperado el 16 de marzo de 2024, de https://academia-lab.com/enciclopedia/programacion-entera/  Romero, C. (2019). Introducción a la investigación de operaciones, 9na Edición - Frederick S. Hillier & Gerald J. Lieberman. Uomac. https://www.academia.edu/40205737/Introducci%C3%B3n_a_la_investigaci%C3%B3n_d e_operaciones_9na_Edici%C3%B3n_Frederick_S_Hillier_and_Gerald_J_Lieberman