SlideShare una empresa de Scribd logo
1 de 16
Descargar para leer sin conexión
471
ENERGÍA EÓLICA20
20.1. Origen .......................................................................................473
20.2. Potencial ....................................................................................476
20.3. Tecnología..................................................................................478
20.4. Costes .......................................................................................483
20.5. Impacto ambiental ......................................................................484
20.6. Situación actual ..........................................................................486
472
473
20. ENERGÍA EÓLICA
20.1. Origen
La energía eólica es la energía cinética del
viento.
El viento es una consecuencia de la radiación
solar. Debido, fundamentalmente, a la redondez
de la Tierra se originan diferencias de insolación
entre distintos puntos del planeta. En los polos,
los rayos solares inciden oblicuamente, por lo que
calientan menos la superficie de la Tierra. Los
rayos solares inciden perpendicularamente en el
ecuador y calientan más la superficie de la Tierra,
ya que se reparten sobre una superficie más
pequeña que en los polos. Estas diferencias de
insolación dan lugar a diferentes zonas térmicas
que provocan diferencias de densidad en las
masas de aire. En el ecuador, el aire al calentarse
se hace más ligero (menos denso) y asciende
a las capas altas de la atmósfera dejando tras
de si una zona de baja presión; en los polos, el
aire es más pesado (más denso) y desciende
aumentando la presión. El aire que envuelve a
la Tierra, como cualquier gas, se mueve desde
las zonas de mayor presión atmosférica (mayor
densidad) a las de menor presión; es decir, desde
los polos al ecuador por las capas bajas de la
atmósfera y del ecuador a los polos por las capas
altas siguiendo un ciclo de movimiento de aire
en cada hemisferio (figura 20.1). Este aire en
movimiento horizontal es el viento.
Sin embargo, es necesario aclarar que la
circulación global del aire sobre el planeta es
mucho más compleja que la descrita, ya que
en ella intervienen muchos factores. Entre los
factores que intervienen se pueden señalar la
rotación de la Tierra sobre su eje, la composición
de la Tierra en océanos y continentes (con
diferentes calores específicos- indicador de la
cantidad de calor que puede almacenar la materia
por unidad de masa, Kcal/kg-), el movimiento de
translación de la Tierra en torno del Sol, que hace
que la intensidad de la radiación solar recibida
por las diferentes zonas de la Tierra sea distinta
según las estaciones del año, y las perturbaciones
atmosféricas.
El movimiento de rotación de la Tierra da lugar a la aparición de las fuerzas de
Coriolis, las cuales actúan sobre la masa de aire en movimiento desviándola
hacia la derecha en el hemisferio norte y hacia la izquierda en el hemisferio
sur. Estas fuerzas originan los denominados vientos de poniente (del Oeste)
y alisios (del Este). En la figura 20.2 se muestra como el conjunto de factores
que influyen sobre la masa de aire (sin tener en cuenta las estaciones y en
ausencia de continentes), da lugar a que el ciclo de movimiento de aire en
Radiación solar
Radiación solar
Vientos
del
N
orte Vien
t
o
s
delNorte
ECUADOR
Vientos del Sur
Vientos del Norte
Polo Norte
Polo Sur
Vientos
de
l
Sur Vient
os
delSur
Figura 20.1. Circulación atmosférica general
Vientos del Sudoeste
zona de ascendencia
zona de descendencia
zona de ascendencia
zona de ascendencia
zona de descendencia
Vientos del Noreste
Vientos del Sudeste
Anticiclón polar
Aire frío descendente
Aire caliente ascendente
Zona subpolar
de bajas presiones
Zona subtropical
de altas presiones
Zona subtropical
de altas presiones
Anticiclón polar
Los rayos solares inciden
perpendicularmente en
el ecuador y calientan
más la superficie
de la Tierra
En los polos, los rayos solares inciden
oblicuamente, por lo que calientan
menos la superficie de la Tierra
Radiación solar
Radiación solar
Figura 20.2. Efecto de la fuerza de Coriolis en la
circulación atmosférica general
474
cada hemisferio se descomponga en tres ciclos independientes. Además,
la circulación global se ve perturbada por la formación de torbellinos que se
generan en las zonas de interrelación de los diferentes ciclos.
Los vientos generales que circundan el globo terrestre se llaman macro
climáticos. Estos debido a la orografía del terreno y las diferencias de presión
varían sus características, lo que origina los vientos llamados micro climáticos
o locales. Estos últimos pueden ser clasificados en: vientos inducidos
térmicamente, vientos inducidos por la orografía y vientos generales
influenciados por los efectos climáticos locales.
Entre los vientos inducidos térmicamente pueden señalarse las brisas
marinas y las corrientes valle-montaña. Las brisas marinas se originan como
consecuencia de los distintos calores específicos, y la diferente velocidad de
calentamiento y enfriamiento del mar y la tierra. Durante el día, la tierra se
calienta más rápidamente que el mar, haciendo que el viento sople del mar
a la tierra (mediodía y tarde). Por la noche y el amanecer el viento sopla
hacia el mar, ya que la tierra se enfría más rápidamente que el mar (figura
20.3). Los vientos valle-montaña se producen por un proceso parecido.
Unas laderas reciben más insolación que otras, en función de su pendiente y
B
D
Aire frío
Brisa marina
El mar está más frío
La tierra se calienta más rápidamente
que el mar
Aire calido que
asciende por
convensión
C
A Aire frío
Brisa de tierra
El mar conserva más el calor
La tierra se enfría más rápidamente
que el mar
D
C
B
A
(b)
Figura 20.3. Brisa marina (a) mediodía y tarde; (b) noche y amanecer
(a)
La fuerza de denominada de Coriolis es una fuerza ficticia que debe su nombre al ingeniero y
matemático francés Gustave Gaspard Coriolis (1792-1843)
Una forma simple de empezar a visualizar como opera la fuerza de desviación es imaginarse un
disco que gira respecto de su eje. Si con un rotulador se trata de trazar una línea recta desde
el centro del disco a un punto de la periferia, no se consigue; la raya dibujada mientras el disco
gira será siempre una curva. Es decir, existen dos movimientos: el de la mano con el rotulador
(rectilíneo) y el del disco (circular). Conforme la mano avanza en dirección del borde, los sucesivos
puntos por los que va pasando se distancian, cada vez más, de la línea recta que se intento dibujar,
a causa del giro del disco.
Si una persona estuviese encima del disco, girando con él y no pudiese ver más allá del borde del
disco, a dicha persona le parecería que el disco está inmóvil, ya que no podría referir su movimiento
a ningún punto fijo. A este viajero que gira con el disco le parecería que una fuerza actuaba sobre
el rotulador, desviándolo de su trayectoria. Esa fuerza, ficticia, es la fuerza de Coriolis. En el caso
de la Tierra que gira (con coordenadas de referencia, de latitud y longitud, que giran), existe una
desviación aparente de los objetos en movimiento hacia la derecha de su línea de movimiento en
el hemisferio norte y hacia la izquierda en el hemisferio sur, tal como lo ven los observadores
situados en al Tierra. La fuerza de desviación (por unidad de masa) se expresa por:
-2ωV∙sen Φ
donde ω es la velocidad de giro de la Tierra=7,29 x 10-5 rad/s; Φ = la latitud y V= la velocidad
de la masa de aire. Como sen 0º=0 y sen 90º=1, el efecto desviador es máximo en los polos y es
cero en el ecuador.
475
orientación. Estos vientos soplan durante toda la
noche desde la montaña al valle y desde el valle
a la montaña durante el día.
Las brisas son vientos de poca velocidad aunque
alcancen en ciertos sitios hasta los 13m/s.
Los vientos inducidos por la orografía dependen
del obstáculo y su orientación. El aire que se
desplaza en la proximidad de la superficie te-
rrestre debe sortear los innumerables obstáculos
que encuentra a su paso, cambiando en mayor
o menor medida sus características. Si la distri-
bución orográfica es tal que hay dos zonas mon-
tañosas próximas (figura 20.4), el flujo de aire
se ve obligado a penetrar por un estrecho canal.
El teorema de Bernouille establece que la veloci-
dad de un fluido aumenta cuando la sección por
la que pasa disminuye. Por tanto, en este caso,
como la sección por la que discurre el aire entre
las dos montañas es mucho más estrecha que fuera y las líneas de corriente
están muy próximas, la velocidad aumenta. Los Pirineos y los Alpes forman
una especie de embudo, y cuando los vientos en el extremo del embudo lle-
gan al Mediterráneo, salen a gran velocidad. Por el mismo efecto de Bernoui-
lle encima de las montañas el viento aumenta de intensidad (figura 20.5).
Inversamente, en un valle el viento disminuye.
De forma general, se puede considerar que los factores que influyen en el
régimen de vientos en una zona determinada son:
• Situación geográfica
• Características climáticas locales.
• Topografía de la zona.
• Irregularidades del terreno.
Figura 20.4. Flujo de aire entre dos zonas
montañosas
Dirección del viento
Cerro
Flujo de aire
Figura 20.5. Flujo de aire en el caso de un obstáculo montañoso
476
20.2. Potencial
Sólo un 2% de la energía solar que llega a la Tierra se convierte en energía
eólica. En teoría, los vientos distribuyen anualmente entre 2,5 y 5x105
kWh.
Una cantidad enorme de energía, pero solo una parte de la misma puede ser
aprovechada, ya que se presenta en forma muy diluida.
En la figura 20.6 se muestra la distribución estimada del potencial eólico del
mundo.
El viento ha tenido tal especial importancia en la vida cotidiana del hombre en la antigüedad que
éste llegó a elevarlo, debido a la falta de conocimientos, a la categoría de Dios.
En la Mitología griega el Dios padre de los vientos era Eolo, de ahí el nombre de Energía Eólica, que
los tenía encerrados en un zurrón y los sacaba cuando le parecía oportuno, según cuenta Homero
en uno de los cantos de su inmortal obra La odisea.
Eolo era el intermediario entre Zeus y los pequeños dioses eólicos. Estos estaban divididos en dos
grupos, los benefactores y los funestos. Entre los primeros se encontraban el viento del Norte
(Bóreas), el del Sur (Austro o Noto), el del Sureste (Euros), y el del Oeste (Zefiros). Dentro de los
segundos estaba Tyferus, dios del huracán.
Para las civilizaciones eslavas el dios de los vientos era Striborg, para los vikingos este Dios era
Thor. Huracán es el corazón del cielo según los Mayas, y Tifón es el dios del mal en el antiguo
Egipto.
Pero no sólo veían al viento como un dios sino que intentaban que les afectase lo menos posible;
en China se orientaban las aberturas de las viviendas en unas direcciones determinadas, aunque
desde el punto de vista del confort estuviesen mal orientadas.
Aún en 1904 se editaban libros sobre conocimientos populares que también atribuían orígenes
divinos al viento.
El refranero español recoge diversos dichos sobre el viento en los que se relaciona el viento con
acontecimientos atmosférico. “El viento que anda por San Juan (24 de junio), todo el año correrá”,
“El sol lleva en verano al viento de la mano”, “El viento de San Matías (24 de Febrero) dura
cuarenta días”,…
1
2
3
4
5
6
7
8
9
10
Fuerza
del viento
Figura 20.6. Distribución estimada del potencial eólico en el mundo
477
Cuando se habla del potencial eólico de una región es necesario especificar la
altura sobre el terreno a la que se refiere, ya que el viento varía su velocidad
con la altura debido al rozamiento que genera la superficie terrestre. Existen
varias expresiones que tratan de reflejar estas variaciones; una de ellas es
la conocida como ley potencial.
V = V0
(H/H0
)α
Donde V y Vo
son las velocidades del viento a las alturas H y Ho
y α
un exponente que representa una forma de medida del rozamiento
superficial encontrado por el viento. Existen estimaciones del parámetro
α en función de la naturaleza del terreno por donde discurre el viento.
Para un terreno descubierto, un valor típico estimado es 0,14.
Para realizar la medida de las velocidades del viento se utilizan aparatos
llamados anemómetros. De estos dispositivos existen multitud de tipos
y modelos, sin embargo, el más utilizado es el denominado de cazoletas.
Para la medida de la dirección se emplean, frecuentemente, dispositivos
denominados veletas (figura 20.7). La Organización Meteorológica
Mundial (OMM) recomienda que estos dispositivos se sitúen a 10 metros
sobre el nivel del suelo.
Teóricamente la potencia que existe en una corriente de aire a su paso
a través de un área A viene dada por:
P = ½·ρAV³
donde P es la potencia en W, ρ la densidad del aire en kg/m3
, A la
superficie en m2
y V es la velocidad del viento en m/s.
La velocidad del viento es un vector, por tanto, viene definida por el módulo, la dirección y el
sentido. El módulo indica la intensidad del viento y se suele expresar en m/s, km/h o en nudos
(1nudo=0,514m/s). La dirección y el sentido se expresan en grados sexagesimales, es decir, según
un círculo graduado en 360º, significando “de donde viene” el viento. Por ejemplo, si se señala que
el viento es del Noreste se está especificando que la dirección del viento se encuentra en la recta
que une el Noreste con el Suroeste y que el sentido es de Noreste a Suroeste.
El primer molino de viento que
se conoce con cierto detalle es
el molino persa de eje vertical.
Este molino se utilizaba para
moler grano y fue de uso co-
rriente en la antigua Persia, po-
siblemente varios siglos antes
de nuestra era (figura 20.8)
Las máquinas eólicas han ex-
perimentado una considerable
y larga evolución durante un
periodo de más de 2000 años.
Durante ese largo periodo histó-
rico pueden señalarse diversas
etapas de desarrollo. Desde las
primeras máquinas conocidas
hasta el siglo XV la evolución
es lenta y de escaso desarrollo
técnico (figura 20.9) Figura 20.9. Molino típico del
siglo XV
Figura 20.8. Molino persa de
eje vertical
Figura 20.7. Estación
anemométrica
478
Sin embargo, no toda la potencia P anterior puede ser transformada, por los
dispositivos tecnológicos existentes, para su utilización en forma de potencia
mecánica o eléctrica. Puede demostrarse que, idealmente, la máxima
potencia mecánica que se puede extraer de la vena de aire es el 60% de la
que transporta la vena de aire cuando incide sobre el dispositivo captador
de energía. En realidad la potencia recuperable es menor que la señalada
como consecuencia de los rendimientos de los equipos de transformación
energética.
20.3. Tecnología
La tecnología de la energía eólica está teniendo un vertiginoso desarrollo.
En la actualidad más de cuarenta mil turbinas de medio tamaño están en
funcionando en el mundo, fundamentalmente en Europa, Estados Unidos y
la India. Estas máquinas pueden producir anualmente alrededor de 20.000
millones de kWh de electricidad a partir de la energía cinética del viento.
Una de las primeras máquinas eólicas construida expresamente para producir
electricidad (aerogenerador) data del año 1892 y su diseño fue llevado a
cabo por el profesor Lacour en Dinamarca.
A partir de la segunda mitad del siglo XX las máquinas eólicas no han
presentado evoluciones considerables en su diseño; todas ellas están
integradas por un conjunto de subsistemas cuyo objetivo es captar la energía
cinética del viento y transformarla en energía eléctrica (fundamentalmente)
de la forma más óptima posible.
De forma general pueden señalarse los siguientes subsistemas
componentes:
• Subsistema de captación
• Subsistema de transmisión mecánica
En el periodo comprendido
entre el comienzo del Re-
nacimiento y el comienzo
de la Revolución Industrial
se multiplican las invencio-
nes que utilizan las ruedas
hidráulicas o los molinos de
viento como fuerza impul-
sora (figura 20.10)
Desde mediados del siglo
XIX hasta mediados del si-
glo XX se desarrolla la teo-
ría aerodinámica y otras
ciencias de carácter técni-
co, lo que origina que las
máquinas eólicas sufran
una completa transforma-
ción (figura 20.11). A partir
de la segunda mitad del siglo XX hasta nuestros días se producen
importantes modificaciones de carácter técnico, que se traducen
en la utilización de materiales más ligeros y resistentes, y el em-
pleo de sistemas electrónicos de regulación y control.
Figura 20.11. Aerogenerador
de mediados del
siglo XX
Figura 20.10. Molino utilizado al
principio de la revolución industrial
479
• Subsistema de generación eléctrica
• Subsistema de orientación
• Subsistema de regulación
• Subsistema soporte
El subsistema de captación es el encargado de transformar la energía ciné-
tica del viento en energía mecánica de rotación. Está integrado por el rotor,
el cual se compone de las palas y del buje (figura 20.12)
En función de la posición del eje de giro del rotor las máquinas eólicas se cla-
sifican en máquinas de eje horizontal y de eje vertical (figura 20.13). Estas
últimas, debido a su bajo rendimiento, prácticamente han desaparecido del
mercado actual.
Figura 20.13. Aerogeneradores de eje horizontal
y de eje vertical
Figura 20.14. Molino multipala
Buje
Palas
Árbol
principal
Árbol
secundario
Carcasa
Freno
Multiplicador
Bastidor
Orientación
Generador
Figura 20.12. Diversos componentes de un aerogenerador
480
Dependiendo del número de palas de los rotores estos se clasifican en roto-
res multipala (o rotores lentos), con un número de palas comprendido entre
6 y 24, y en rotores tipo hélice (o rotores rápidos), que pueden ser tripala
(el más utilizado), bipala o monopala. Los rotores multipala giran a baja
velocidad y se han destinado tradicionalmente al bombeo de agua (figura
20.14). Los rotores tipo hélice giran a mayores velocidades y presentan me-
jores rendimientos aerodinámicos que los rotores multipala, por lo que se
suelen destinar a la generación de electricidad.
La potencia mecánica que una turbina eólica es capaz de extraer de la ener-
gía cinética del viento depende fundamentalmente del diámetro del circulo
barrido por las palas (figura 20.15) y del rendimiento aerodinámico del rotor
(que depende de la forma aerodinámica de la pala), ya que el número de
palas prácticamente no tiene influencia en el rendimiento cuando se utilizan
más de tres palas (especialmente cuando se trata de rotores rápidos)
En función de la disposición del rotor frente a la
velocidad del viento estos pueden clasificarse
en rotores de barlovento (los más frecuentes)
o de sotavento o autoorientables, cuyas palas
presentan una cierta inclinación respecto del
plano de giro de tal manera que el rotor al
girar describe un cono (figura 20.16).
Aunque históricamente se han utilizado una
gran variedad de materiales para la fabricación
de las palas (telas, maderas, chapas metálicas,
aluminio), los materiales más utilizados
actualmente son las resinas de poliéster
reforzadas con fibras de vidrio, los cuales
proporcionan ligereza, resistencia mecánica y
una cierta resistencia a la agresión del medio
ambiente.
El buje es el elemento soporte de las palas y
está montado en un extremo del árbol principal
de transmisión (figura 20.12). En función de
la rigidez de movimiento de la unión de las
palas al buje en la dirección perpendicular
Sotavento Barlovento
Viento
Figura 20.16. Aerogeneradores con rotor a
sotavento y rotor a barlovento.
5 10 50 200 1.000 5.000 20.000 kW
250
200
150
100
50
0
VELOCIDAD DE DISEÑO 7,5 m/s
m.
5m. 8,5m.
13m.
24m.
50m.
101m.
185m.
Figura 20.15. Potencia de las turbinas eólicas en función del diámetro
del rotor
481
al plano del rotor, los bujes se clasifican en rígidos y basculantes (usados
principalmente en rotores bipalas). En el primer grupo las palas se atornillan
al buje y este se une rígidamente al árbol principal de transmisión. En el
segundo grupo el buje admite pequeños movimientos de pivote con el objeto
de equilibrar las cargas aerodinámicas.
Dependiendo que el rotor permita que cada pala pueda girar o no respecto
a su respectivo eje longitudinal los rotores se clasifican en rotores con palas
de paso variable o de paso fijo. Los rotores con palas de paso variable (figura
20.12) permiten regular más adecuadamente la potencia generada por la
máquina eólica y es utilizado en prácticamente todos los aerogeneradores
de mediana y alta potencia.
El subsistema de transmisión mecánica se sitúa entre el subsistema de
captación y el subsistema de generación. En la mayoría de los diseños de
aerogeneradores la velocidad de giro del subsistema de captación es menor
que la velocidad a la que debe girar el generador eléctrico. Por este motivo
es necesario incluir una caja multiplicadora de la velocidad y un árbol de
transmisión secundario que una dicha caja al generador (figura 20.12)
El subsistema de generación eléctrica está constituido básicamente por el
aerogenerador (figura 20.12). Este está formado por una máquina eléctrica
encargada de transformar la energía mecánica de rotación en energía
eléctrica. El generador puede ser de corriente continua (dinamo) o de
corriente alterna (alternador). Estos últimos son los únicos que actualmente
se utilizan en los aerogeneradores de mediana y alta potencia.
El alternador está compuesto de dos partes fundamentales: El rotor o
inductor móvil, encargado de generar un campo magnético variable al girar
arrastrado por el árbol de transmisión y el estator o inducido fijo, en el que
se genera la corriente eléctrica. Las máquinas eléctricas de corriente alterna
típicamente utilizadas se clasifican en máquinas síncronas y máquinas
asíncronas o de inducción (los más utilizados actualmente). La mayor
desventaja de los generadores síncronos es que necesitan de una batería de
condensadores conectada a la salida, la cual compense la energía reactiva
generada. Los generadores síncronos necesitan que se les excite con una
corriente continua, que se puede generar internamente (autoexitación) o
con una dinamo auxiliar.
El subsistema de orientación es el encargado de detectar la dirección del
viento y situar el plano del rotor perpendicular en esa dirección. Prácticamente
todas las máquinas eólicas de eje horizontal necesitan de un subsistema
de orientación, con excepción de las máquinas que disponen de rotor a
sotavento, ya que el propio viento puede orientarlas debido a las fuerzas
aerodinámicas que origina la conicidad del rotor. Entre los subsistemas de
orientación más utilizados actualmente se encuentran las veletas o colas de
orientación, utilizadas en máquinas de pequeña potencia, y los servomotores
que detectan la dirección del viento mediante una veleta y orientan a la
máquina mediante motores de orientación situados en la base de la góndola
(figura 20.12)
El subsistema de sustentación está constituido por la góndola y la torre.
La góndola está formada por el bastidor, en el que se montan los distintos
subsistemas de la máquina eólica, y la carcasa que, diseñada de forma
aerodinámica, los protege de los agentes atmosféricos. La torre es el elemento
encargado de elevar el rotor de la máquina respecto del nivel del suelo. La
altura mínima de la torre está condicionada por el diámetro del rotor del
subsistema de captación y la altura máxima por el coste y la dificultad
de instalación. Para permitir el giro de la góndola respecto de la torre en
las maniobras de orientación de la máquina el bastidor se monta sobre un
rodamiento que lo une de forma solidaria a la torre. Aunque las primeras
482
torres de sustentación que se utilizaron en los aerogeneradores eran de
estructura de celosía actualmente es más frecuente el uso de torres tubulares
cilíndricas o troncocónicas de acero (fundamentalmente) u hormigón.
Para acceder a la góndola en las máquinas eólicas pequeñas la torre suele
disponer de escalera exterior. En los aerogeneradores de mediano y gran
tamaño el acceso suele realizarse por el interior de la torre, la cual dispone
de escalera y, en algunos casos, de ascensor. La torre se ancla en el suelo
mediante una cimentación de hormigón armado cuya dimensión depende
de las características del terreno, del tamaño de la máquina eólica y de los
esfuerzos que produzca el régimen de vientos de la zona de instalación.
El subsistema de control y regulación
tiene la misión incrementar la
captación de energía cinética
del viento, mejorar la potencia
eléctrica generada y garantizar
un funcionamiento seguro de la
máquina. Para ello el subsistema de
control supervisa el funcionamiento
de la máquina eólica y gestiona las
secuencias de arranque, parada, etc.,
además de controlar al subsistema
de orientación, regular la potencia
captada del viento y producida por
el aerogenerador.
La mayoría de las máquinas eólicas
modernas disponen de rotor de paso
variable, por lo que disponen de dis-
positivos que permiten girar la pala
alrededor de su eje longitudinal con
el propósito de controlar la potencia
y velocidad de giro del rotor y frenar
aerodinámicamente el subsistema
de captación en caso de avería. Asimismo, las máquinas eóli-
cas están equipadas con frenos mecánicos (figura 20.12) con
el objetivo de de mantener bloqueado el árbol de transmisión
durante la operaciones de puesta en marcha y mantenimiento,
además de ayudar al frenado dinámico durante los procesos
de parada de emergencia.
Las aplicaciones de los aerogeneradores pueden clasificarse
en dos grupos: Aerogeneradores conectados a la red eléctrica
de distribución general y aerogeneradores aislados, es decir
no conectados a la red eléctrica. El primer grupo es el más nu-
meroso y puede a su vez clasificarse en dos grupos: Instala-
ciones de un único aerogenerador e instalaciones que cuentan
con una agrupación de varios aerogeneradores a la cual se le
denomina parque eólico (figura 20.17)
Las instalaciones aisladas suelen realizarse en zonas muy
alejadas del trazado de la red eléctrica. Normalmente estas
instalaciones se dimensionan para satisfacer un determinado
consumo, se ubican en la proximidad del lugar de consumo y
precisan de sistemas de almacenamiento (baterías, depósitos
de agua, etc.) donde guardar la energía eléctrica generada, en
el caso de aerogeneradores, o de agua impulsada, en el caso
de que la energía generada sea mecánica.
En el caso que la instalación aislada deba satisfacer un consumo
importante de energía eléctrica y de forma permanente se
Figura 20.17. Instalación conectada a la red
Figura 20.18. Instalación aislada
483
recurre, normalmente, a las instalaciones híbridas eólico-diesel, las cuales
constan de aerogeneradores interconectados a grupos diesel (figura 20.18)
20.4. Costes
El coste de cada kilowatio-hora obtenido mediante un sistema eólico depende
del coste de la instalación, la cual debe amortizarse a lo largo de la vida;
del coste de explotación; y de la energía
producida, que depende en gran medida
de la velocidad media del viento en el
emplazamiento.
El coste de la instalación depende del
coste de los siguientes elementos:
aerogeneradores, obra civil (accesos,
cimentaciones, edificaciones),
sistema eléctrico (líneas eléctricas,
transformadores, sistema de control), e
ingeniería y dirección.
En los últimos años se ha incrementado
de forma apreciable el tamaño de los
aerogeneradores lo que ha llevado
aparejado la disminución del coste de la
unidad de potencia instalada. En el caso de
los países de mayor potencia instalada en
Europa (Alemania, España y Dinamarca)
el coste del kW instalado puede estimarse
entre 1.000 y 1.200 euros.
En lo que respecta al coste de los distin-
tos componentes que integran un aero-
generador pueden indicarse los porcen-
tajes estimativos reflejados en la figura
20.19.
La inversión necesaria para llevar a cabo
una instalación eólica conectada a la red
puede estimarse descompuesta en cuatro
grandes partidas (figura 20.20). El coste
de los aerogeneradores constituye el por-
centaje más alto de la inversión. Los cos-
tes exfactory de los aerogeneradores se
sitúan en el rango de los 600-700euros/
kW, variando en función de la tecnología
y el tamaño de la máquina.
Para los parque de potencia media que se
instalan en España los costes de explota-
ción pueden estimarse alrededor 3,3 %
de la inversión. Estos costes se desglosan
en costes por alquiler de terrenos, costes
de operación y mantenimiento (personal,
repuestos y consumibles), costes de ges-
tión y administración y costes de seguros
e impuestos. Los porcentajes estimados
de cada uno de estos costes se reflejan
en la figura 20.21.
Figura 20.19. Distribución de los costes de los
Figura 20.20. Distribución de las inversiones necesarias
Figura 20.21. Distribución de los costes de explotación
484
Los costes de generación varían entre 4 y 8 céntimos de Euro por KWh pro-
ducido. Estos costes están ligados al tamaño de la instalación y, fundamen-
talmente, a las características del viento del emplazamiento.
20.5. Impacto ambiental
La incidencia que las instalaciones de aprovechamiento de la energía eólica
pueden tener sobre el medio ambiente hay que analizarlos desde dos
vertientes. Desde el punto de vista de los beneficios que supone la reducción
de la emisión de contaminantes a la atmósfera y por otro desde el punto de
vista de la afectación al medio ambiente.
Las posibles alteraciones del medio físico que las instalaciones eólicas pueden
generar se centran en cuatro apartados: impacto sobre las aves, impacto
visual, ruido y erosión.
Los estudios que se han realizado llegan a la conclusión que las líneas
eléctricas suele presentarse como la causa más importante de accidentes
de aves, pero que pueden evitarse utilizando líneas subterráneas. De la
experiencia española se concluye que dicho impacto ha sido nulo.
El impacto visual es muy subjetivo. Un parque adecuadamente diseñado
puede llegar a ser incluso objeto de atracción (figura 20.22)
El origen del ruido en los aerogeneradores se debe a factores mecánicos y
aerodinámicos. La influencia de dicho impacto depende de la distancia. En
Figura 20.22. Impacto visual
485
las poblaciones cercanas a dichas instalaciones es más importante el ruido
producido por el propio viento (figura 20.23)
Los impactos por erosión son generados principalmente por el movimiento
de tierras para el trazado de los accesos y en segundo lugar por las excava-
ciones realizadas para la construcción de las cimentaciones (figura 20.24).
Estos impactos pueden minimizarse realizando adecuados trazados de los
caminos y llevando a cabo adecuadas medidas correctoras. Entre estas pue-
den señalarse la revegetación y remodelación de las pendientes y la reposi-
ción de la vegetación.
Figura 20.23. Ruido producido por un aerogenerador
Figura 20.24. Impacto por erosión
486
20.6. Situación actual
En la actualidad el sector eólico está experimentando, a nivel mundial,
unas tasas de crecimiento muy altas, tanto a nivel de potencia instalada
como a nivel de desarrollo tecnológico. Las plantas eólicas destinadas a
la producción de energía eléctrica se han integrado completamente en la
estructura energética de los países con recursos eólicos. A finales de 2001
la potencia mundial de origen eólico superaba los 23GW, con una tasa anual
de crecimiento del 30%. La Unión Europea lidera el panorama mundial,
ya que supera el 80% del total de potencia instalada. Le siguen a gran
distancia América y Asia. Entre los países de la Unión Europea el liderazgo
lo ostenta Alemania, con más de 10.000MW instalados. Le siguen España
y Dinamarca. Estos tres países de la Unión Europea lideran actualmente el
panorama eólico mundial, tanto por la potencia instalada como por el número
de aerogeneradores que fabrican e introducen en el mercado.
Sumando los objetivos de potencia eólica instalada, trazados por las distintas
comunidades autónomas españolas, en el año 2010 se alcanzarían 8.974MW.
Canarias, con 250MW, se situaría en la posición número 7; compartiendo
posición con Asturias, Cantabria, y Murcia.

Más contenido relacionado

La actualidad más candente

clasificacion y funcionamiento de bombas centrifugas
clasificacion y funcionamiento de bombas centrifugasclasificacion y funcionamiento de bombas centrifugas
clasificacion y funcionamiento de bombas centrifugasoscar guerrero
 
Fallas del motor de inducción
Fallas del motor de inducciónFallas del motor de inducción
Fallas del motor de inducciónCICB Latin America
 
Protecciones mecanicas de los transfomadores
Protecciones mecanicas de los transfomadoresProtecciones mecanicas de los transfomadores
Protecciones mecanicas de los transfomadoresAsley Alba
 
Interruptores De Potencia
Interruptores De PotenciaInterruptores De Potencia
Interruptores De Potenciateoriaelectro
 
Maquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de Loja
Maquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de LojaMaquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de Loja
Maquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de LojaUniversidad Nacional de Loja
 
Turbinas de gas_expocision
Turbinas de gas_expocisionTurbinas de gas_expocision
Turbinas de gas_expocisionJuan Hidalgo
 
Maquinas Eléctricas Asincronas (Universidad Nacional de Loja)
Maquinas Eléctricas Asincronas (Universidad Nacional de Loja)Maquinas Eléctricas Asincronas (Universidad Nacional de Loja)
Maquinas Eléctricas Asincronas (Universidad Nacional de Loja)Universidad Nacional de Loja
 
TRANSFORMADORES.pptx
TRANSFORMADORES.pptxTRANSFORMADORES.pptx
TRANSFORMADORES.pptxoscar458945
 
Calculo transformadores
Calculo transformadoresCalculo transformadores
Calculo transformadoresleonikko
 
Cuestionario del capitulo 7, edison guaman, felipe quevedo, leonardo sarmiento
Cuestionario del capitulo 7, edison guaman, felipe quevedo, leonardo sarmientoCuestionario del capitulo 7, edison guaman, felipe quevedo, leonardo sarmiento
Cuestionario del capitulo 7, edison guaman, felipe quevedo, leonardo sarmientoLuis Felipe Quevedo Avila
 
Corrección del factor de potencia en sistemas trifásicos
Corrección del factor de potencia  en sistemas trifásicosCorrección del factor de potencia  en sistemas trifásicos
Corrección del factor de potencia en sistemas trifásicosLux Deray
 

La actualidad más candente (20)

clasificacion y funcionamiento de bombas centrifugas
clasificacion y funcionamiento de bombas centrifugasclasificacion y funcionamiento de bombas centrifugas
clasificacion y funcionamiento de bombas centrifugas
 
Motores sincronos
Motores sincronosMotores sincronos
Motores sincronos
 
Fallas del motor de inducción
Fallas del motor de inducciónFallas del motor de inducción
Fallas del motor de inducción
 
Protecciones mecanicas de los transfomadores
Protecciones mecanicas de los transfomadoresProtecciones mecanicas de los transfomadores
Protecciones mecanicas de los transfomadores
 
Generadores sincronos
Generadores sincronosGeneradores sincronos
Generadores sincronos
 
Interruptores De Potencia
Interruptores De PotenciaInterruptores De Potencia
Interruptores De Potencia
 
Rotor devanado
Rotor devanadoRotor devanado
Rotor devanado
 
Maquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de Loja
Maquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de LojaMaquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de Loja
Maquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de Loja
 
Turbinas de gas_expocision
Turbinas de gas_expocisionTurbinas de gas_expocision
Turbinas de gas_expocision
 
Bombas especiales
Bombas especialesBombas especiales
Bombas especiales
 
Maquinas Eléctricas Asincronas (Universidad Nacional de Loja)
Maquinas Eléctricas Asincronas (Universidad Nacional de Loja)Maquinas Eléctricas Asincronas (Universidad Nacional de Loja)
Maquinas Eléctricas Asincronas (Universidad Nacional de Loja)
 
Tipos de turbinas
Tipos de turbinasTipos de turbinas
Tipos de turbinas
 
Maquinas de corriente continua (CC)
Maquinas de corriente continua (CC)Maquinas de corriente continua (CC)
Maquinas de corriente continua (CC)
 
TRANSFORMADORES.pptx
TRANSFORMADORES.pptxTRANSFORMADORES.pptx
TRANSFORMADORES.pptx
 
Turbina de Gas
Turbina de GasTurbina de Gas
Turbina de Gas
 
Calculo transformadores
Calculo transformadoresCalculo transformadores
Calculo transformadores
 
Generadores de vapor
Generadores de vaporGeneradores de vapor
Generadores de vapor
 
Cuestionario del capitulo 7, edison guaman, felipe quevedo, leonardo sarmiento
Cuestionario del capitulo 7, edison guaman, felipe quevedo, leonardo sarmientoCuestionario del capitulo 7, edison guaman, felipe quevedo, leonardo sarmiento
Cuestionario del capitulo 7, edison guaman, felipe quevedo, leonardo sarmiento
 
El compresor
El compresorEl compresor
El compresor
 
Corrección del factor de potencia en sistemas trifásicos
Corrección del factor de potencia  en sistemas trifásicosCorrección del factor de potencia  en sistemas trifásicos
Corrección del factor de potencia en sistemas trifásicos
 

Destacado

Destacado (9)

EL AGUA
EL AGUAEL AGUA
EL AGUA
 
Origen del lenguaje
Origen del lenguajeOrigen del lenguaje
Origen del lenguaje
 
La chira geografia fisical informe final
La chira geografia fisical informe finalLa chira geografia fisical informe final
La chira geografia fisical informe final
 
Energia hidraulica
Energia hidraulicaEnergia hidraulica
Energia hidraulica
 
Recursos naturales
Recursos naturales Recursos naturales
Recursos naturales
 
Energia solar
Energia solarEnergia solar
Energia solar
 
EL CLIMA
EL CLIMAEL CLIMA
EL CLIMA
 
EL SUELO
EL SUELOEL SUELO
EL SUELO
 
Propiedades física de los suelos
Propiedades física de los suelos Propiedades física de los suelos
Propiedades física de los suelos
 

Similar a Energia eolica

U2 l1mediciontratamientoestadisticosdelosdatoseolicos
U2 l1mediciontratamientoestadisticosdelosdatoseolicosU2 l1mediciontratamientoestadisticosdelosdatoseolicos
U2 l1mediciontratamientoestadisticosdelosdatoseolicosSoporte Adi Unefm Punto Fijo
 
exposicion_meteorologia_PPT.pptx
exposicion_meteorologia_PPT.pptxexposicion_meteorologia_PPT.pptx
exposicion_meteorologia_PPT.pptxRodolfoPeralta13
 
Modulo 4: CIRCULACIÓN DE LA ATMÓSFERA
Modulo 4: CIRCULACIÓN DE LA ATMÓSFERA Modulo 4: CIRCULACIÓN DE LA ATMÓSFERA
Modulo 4: CIRCULACIÓN DE LA ATMÓSFERA lolatorrez
 
Circulación General
Circulación GeneralCirculación General
Circulación GeneralGiselVega2
 
Foro de ambiental (1)
Foro de ambiental (1)Foro de ambiental (1)
Foro de ambiental (1)GiselVega2
 
Modulo 4 foro_3 alcoba veronica
Modulo 4 foro_3 alcoba veronicaModulo 4 foro_3 alcoba veronica
Modulo 4 foro_3 alcoba veronicaVeronica Alcoba
 
Elementos y factores (Conceptos Básicos de Climatología Básica)
Elementos y factores (Conceptos Básicos de Climatología Básica)Elementos y factores (Conceptos Básicos de Climatología Básica)
Elementos y factores (Conceptos Básicos de Climatología Básica)Bruno More
 
15. la atmósfera
15. la atmósfera15. la atmósfera
15. la atmósferaJORGE REYES
 
Energía eólica. Una muy buena Energía Renovable
Energía eólica. Una muy buena Energía RenovableEnergía eólica. Una muy buena Energía Renovable
Energía eólica. Una muy buena Energía RenovableAris Mejia
 
Factor viento en la producción de semillas
Factor viento en la producción de semillasFactor viento en la producción de semillas
Factor viento en la producción de semillasSergio Nicolas Julian
 
Factor viento en la producción de semillas
Factor viento en la producción de semillasFactor viento en la producción de semillas
Factor viento en la producción de semillasSergio Nicolas Julian
 
4_geometria-solarrr pag 17.pdf
4_geometria-solarrr pag 17.pdf4_geometria-solarrr pag 17.pdf
4_geometria-solarrr pag 17.pdfjuanpablozarate7
 

Similar a Energia eolica (20)

Energia eólica
Energia eólicaEnergia eólica
Energia eólica
 
U2 l1mediciontratamientoestadisticosdelosdatoseolicos
U2 l1mediciontratamientoestadisticosdelosdatoseolicosU2 l1mediciontratamientoestadisticosdelosdatoseolicos
U2 l1mediciontratamientoestadisticosdelosdatoseolicos
 
TEMA II.pptx
TEMA II.pptxTEMA II.pptx
TEMA II.pptx
 
EDSE_U1_A1_GLIT
EDSE_U1_A1_GLITEDSE_U1_A1_GLIT
EDSE_U1_A1_GLIT
 
exposicion_meteorologia_PPT.pptx
exposicion_meteorologia_PPT.pptxexposicion_meteorologia_PPT.pptx
exposicion_meteorologia_PPT.pptx
 
Modulo 4: CIRCULACIÓN DE LA ATMÓSFERA
Modulo 4: CIRCULACIÓN DE LA ATMÓSFERA Modulo 4: CIRCULACIÓN DE LA ATMÓSFERA
Modulo 4: CIRCULACIÓN DE LA ATMÓSFERA
 
Energia eolica
Energia eolicaEnergia eolica
Energia eolica
 
7 ventilacion
7 ventilacion7 ventilacion
7 ventilacion
 
Circulación General
Circulación GeneralCirculación General
Circulación General
 
Recursos energéticos
Recursos energéticosRecursos energéticos
Recursos energéticos
 
Foro de ambiental (1)
Foro de ambiental (1)Foro de ambiental (1)
Foro de ambiental (1)
 
Modulo 4 foro_3 alcoba veronica
Modulo 4 foro_3 alcoba veronicaModulo 4 foro_3 alcoba veronica
Modulo 4 foro_3 alcoba veronica
 
Elementos y factores (Conceptos Básicos de Climatología Básica)
Elementos y factores (Conceptos Básicos de Climatología Básica)Elementos y factores (Conceptos Básicos de Climatología Básica)
Elementos y factores (Conceptos Básicos de Climatología Básica)
 
15. la atmósfera
15. la atmósfera15. la atmósfera
15. la atmósfera
 
Energía eólica. Una muy buena Energía Renovable
Energía eólica. Una muy buena Energía RenovableEnergía eólica. Una muy buena Energía Renovable
Energía eólica. Una muy buena Energía Renovable
 
Inicios15
Inicios15Inicios15
Inicios15
 
El viento
El vientoEl viento
El viento
 
Factor viento en la producción de semillas
Factor viento en la producción de semillasFactor viento en la producción de semillas
Factor viento en la producción de semillas
 
Factor viento en la producción de semillas
Factor viento en la producción de semillasFactor viento en la producción de semillas
Factor viento en la producción de semillas
 
4_geometria-solarrr pag 17.pdf
4_geometria-solarrr pag 17.pdf4_geometria-solarrr pag 17.pdf
4_geometria-solarrr pag 17.pdf
 

Último

Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PCCesarFernandez937857
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.José Luis Palma
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdfBaker Publishing Company
 
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docxGLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docxAleParedes11
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfAngélica Soledad Vega Ramírez
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdfgimenanahuel
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para eventoDiegoMtsS
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleJonathanCovena1
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdfDemetrio Ccesa Rayme
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...JAVIER SOLIS NOYOLA
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arteRaquel Martín Contreras
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadAlejandrino Halire Ccahuana
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptxFelicitasAsuncionDia
 
EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.DaluiMonasterio
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMarjorie Burga
 

Último (20)

Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PC
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf
 
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docxGLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para evento
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo Sostenible
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdf
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arte
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdad
 
Defendamos la verdad. La defensa es importante.
Defendamos la verdad. La defensa es importante.Defendamos la verdad. La defensa es importante.
Defendamos la verdad. La defensa es importante.
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptx
 
EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
La Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdfLa Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdf
 

Energia eolica

  • 1. 471 ENERGÍA EÓLICA20 20.1. Origen .......................................................................................473 20.2. Potencial ....................................................................................476 20.3. Tecnología..................................................................................478 20.4. Costes .......................................................................................483 20.5. Impacto ambiental ......................................................................484 20.6. Situación actual ..........................................................................486
  • 2. 472
  • 3. 473 20. ENERGÍA EÓLICA 20.1. Origen La energía eólica es la energía cinética del viento. El viento es una consecuencia de la radiación solar. Debido, fundamentalmente, a la redondez de la Tierra se originan diferencias de insolación entre distintos puntos del planeta. En los polos, los rayos solares inciden oblicuamente, por lo que calientan menos la superficie de la Tierra. Los rayos solares inciden perpendicularamente en el ecuador y calientan más la superficie de la Tierra, ya que se reparten sobre una superficie más pequeña que en los polos. Estas diferencias de insolación dan lugar a diferentes zonas térmicas que provocan diferencias de densidad en las masas de aire. En el ecuador, el aire al calentarse se hace más ligero (menos denso) y asciende a las capas altas de la atmósfera dejando tras de si una zona de baja presión; en los polos, el aire es más pesado (más denso) y desciende aumentando la presión. El aire que envuelve a la Tierra, como cualquier gas, se mueve desde las zonas de mayor presión atmosférica (mayor densidad) a las de menor presión; es decir, desde los polos al ecuador por las capas bajas de la atmósfera y del ecuador a los polos por las capas altas siguiendo un ciclo de movimiento de aire en cada hemisferio (figura 20.1). Este aire en movimiento horizontal es el viento. Sin embargo, es necesario aclarar que la circulación global del aire sobre el planeta es mucho más compleja que la descrita, ya que en ella intervienen muchos factores. Entre los factores que intervienen se pueden señalar la rotación de la Tierra sobre su eje, la composición de la Tierra en océanos y continentes (con diferentes calores específicos- indicador de la cantidad de calor que puede almacenar la materia por unidad de masa, Kcal/kg-), el movimiento de translación de la Tierra en torno del Sol, que hace que la intensidad de la radiación solar recibida por las diferentes zonas de la Tierra sea distinta según las estaciones del año, y las perturbaciones atmosféricas. El movimiento de rotación de la Tierra da lugar a la aparición de las fuerzas de Coriolis, las cuales actúan sobre la masa de aire en movimiento desviándola hacia la derecha en el hemisferio norte y hacia la izquierda en el hemisferio sur. Estas fuerzas originan los denominados vientos de poniente (del Oeste) y alisios (del Este). En la figura 20.2 se muestra como el conjunto de factores que influyen sobre la masa de aire (sin tener en cuenta las estaciones y en ausencia de continentes), da lugar a que el ciclo de movimiento de aire en Radiación solar Radiación solar Vientos del N orte Vien t o s delNorte ECUADOR Vientos del Sur Vientos del Norte Polo Norte Polo Sur Vientos de l Sur Vient os delSur Figura 20.1. Circulación atmosférica general Vientos del Sudoeste zona de ascendencia zona de descendencia zona de ascendencia zona de ascendencia zona de descendencia Vientos del Noreste Vientos del Sudeste Anticiclón polar Aire frío descendente Aire caliente ascendente Zona subpolar de bajas presiones Zona subtropical de altas presiones Zona subtropical de altas presiones Anticiclón polar Los rayos solares inciden perpendicularmente en el ecuador y calientan más la superficie de la Tierra En los polos, los rayos solares inciden oblicuamente, por lo que calientan menos la superficie de la Tierra Radiación solar Radiación solar Figura 20.2. Efecto de la fuerza de Coriolis en la circulación atmosférica general
  • 4. 474 cada hemisferio se descomponga en tres ciclos independientes. Además, la circulación global se ve perturbada por la formación de torbellinos que se generan en las zonas de interrelación de los diferentes ciclos. Los vientos generales que circundan el globo terrestre se llaman macro climáticos. Estos debido a la orografía del terreno y las diferencias de presión varían sus características, lo que origina los vientos llamados micro climáticos o locales. Estos últimos pueden ser clasificados en: vientos inducidos térmicamente, vientos inducidos por la orografía y vientos generales influenciados por los efectos climáticos locales. Entre los vientos inducidos térmicamente pueden señalarse las brisas marinas y las corrientes valle-montaña. Las brisas marinas se originan como consecuencia de los distintos calores específicos, y la diferente velocidad de calentamiento y enfriamiento del mar y la tierra. Durante el día, la tierra se calienta más rápidamente que el mar, haciendo que el viento sople del mar a la tierra (mediodía y tarde). Por la noche y el amanecer el viento sopla hacia el mar, ya que la tierra se enfría más rápidamente que el mar (figura 20.3). Los vientos valle-montaña se producen por un proceso parecido. Unas laderas reciben más insolación que otras, en función de su pendiente y B D Aire frío Brisa marina El mar está más frío La tierra se calienta más rápidamente que el mar Aire calido que asciende por convensión C A Aire frío Brisa de tierra El mar conserva más el calor La tierra se enfría más rápidamente que el mar D C B A (b) Figura 20.3. Brisa marina (a) mediodía y tarde; (b) noche y amanecer (a) La fuerza de denominada de Coriolis es una fuerza ficticia que debe su nombre al ingeniero y matemático francés Gustave Gaspard Coriolis (1792-1843) Una forma simple de empezar a visualizar como opera la fuerza de desviación es imaginarse un disco que gira respecto de su eje. Si con un rotulador se trata de trazar una línea recta desde el centro del disco a un punto de la periferia, no se consigue; la raya dibujada mientras el disco gira será siempre una curva. Es decir, existen dos movimientos: el de la mano con el rotulador (rectilíneo) y el del disco (circular). Conforme la mano avanza en dirección del borde, los sucesivos puntos por los que va pasando se distancian, cada vez más, de la línea recta que se intento dibujar, a causa del giro del disco. Si una persona estuviese encima del disco, girando con él y no pudiese ver más allá del borde del disco, a dicha persona le parecería que el disco está inmóvil, ya que no podría referir su movimiento a ningún punto fijo. A este viajero que gira con el disco le parecería que una fuerza actuaba sobre el rotulador, desviándolo de su trayectoria. Esa fuerza, ficticia, es la fuerza de Coriolis. En el caso de la Tierra que gira (con coordenadas de referencia, de latitud y longitud, que giran), existe una desviación aparente de los objetos en movimiento hacia la derecha de su línea de movimiento en el hemisferio norte y hacia la izquierda en el hemisferio sur, tal como lo ven los observadores situados en al Tierra. La fuerza de desviación (por unidad de masa) se expresa por: -2ωV∙sen Φ donde ω es la velocidad de giro de la Tierra=7,29 x 10-5 rad/s; Φ = la latitud y V= la velocidad de la masa de aire. Como sen 0º=0 y sen 90º=1, el efecto desviador es máximo en los polos y es cero en el ecuador.
  • 5. 475 orientación. Estos vientos soplan durante toda la noche desde la montaña al valle y desde el valle a la montaña durante el día. Las brisas son vientos de poca velocidad aunque alcancen en ciertos sitios hasta los 13m/s. Los vientos inducidos por la orografía dependen del obstáculo y su orientación. El aire que se desplaza en la proximidad de la superficie te- rrestre debe sortear los innumerables obstáculos que encuentra a su paso, cambiando en mayor o menor medida sus características. Si la distri- bución orográfica es tal que hay dos zonas mon- tañosas próximas (figura 20.4), el flujo de aire se ve obligado a penetrar por un estrecho canal. El teorema de Bernouille establece que la veloci- dad de un fluido aumenta cuando la sección por la que pasa disminuye. Por tanto, en este caso, como la sección por la que discurre el aire entre las dos montañas es mucho más estrecha que fuera y las líneas de corriente están muy próximas, la velocidad aumenta. Los Pirineos y los Alpes forman una especie de embudo, y cuando los vientos en el extremo del embudo lle- gan al Mediterráneo, salen a gran velocidad. Por el mismo efecto de Bernoui- lle encima de las montañas el viento aumenta de intensidad (figura 20.5). Inversamente, en un valle el viento disminuye. De forma general, se puede considerar que los factores que influyen en el régimen de vientos en una zona determinada son: • Situación geográfica • Características climáticas locales. • Topografía de la zona. • Irregularidades del terreno. Figura 20.4. Flujo de aire entre dos zonas montañosas Dirección del viento Cerro Flujo de aire Figura 20.5. Flujo de aire en el caso de un obstáculo montañoso
  • 6. 476 20.2. Potencial Sólo un 2% de la energía solar que llega a la Tierra se convierte en energía eólica. En teoría, los vientos distribuyen anualmente entre 2,5 y 5x105 kWh. Una cantidad enorme de energía, pero solo una parte de la misma puede ser aprovechada, ya que se presenta en forma muy diluida. En la figura 20.6 se muestra la distribución estimada del potencial eólico del mundo. El viento ha tenido tal especial importancia en la vida cotidiana del hombre en la antigüedad que éste llegó a elevarlo, debido a la falta de conocimientos, a la categoría de Dios. En la Mitología griega el Dios padre de los vientos era Eolo, de ahí el nombre de Energía Eólica, que los tenía encerrados en un zurrón y los sacaba cuando le parecía oportuno, según cuenta Homero en uno de los cantos de su inmortal obra La odisea. Eolo era el intermediario entre Zeus y los pequeños dioses eólicos. Estos estaban divididos en dos grupos, los benefactores y los funestos. Entre los primeros se encontraban el viento del Norte (Bóreas), el del Sur (Austro o Noto), el del Sureste (Euros), y el del Oeste (Zefiros). Dentro de los segundos estaba Tyferus, dios del huracán. Para las civilizaciones eslavas el dios de los vientos era Striborg, para los vikingos este Dios era Thor. Huracán es el corazón del cielo según los Mayas, y Tifón es el dios del mal en el antiguo Egipto. Pero no sólo veían al viento como un dios sino que intentaban que les afectase lo menos posible; en China se orientaban las aberturas de las viviendas en unas direcciones determinadas, aunque desde el punto de vista del confort estuviesen mal orientadas. Aún en 1904 se editaban libros sobre conocimientos populares que también atribuían orígenes divinos al viento. El refranero español recoge diversos dichos sobre el viento en los que se relaciona el viento con acontecimientos atmosférico. “El viento que anda por San Juan (24 de junio), todo el año correrá”, “El sol lleva en verano al viento de la mano”, “El viento de San Matías (24 de Febrero) dura cuarenta días”,… 1 2 3 4 5 6 7 8 9 10 Fuerza del viento Figura 20.6. Distribución estimada del potencial eólico en el mundo
  • 7. 477 Cuando se habla del potencial eólico de una región es necesario especificar la altura sobre el terreno a la que se refiere, ya que el viento varía su velocidad con la altura debido al rozamiento que genera la superficie terrestre. Existen varias expresiones que tratan de reflejar estas variaciones; una de ellas es la conocida como ley potencial. V = V0 (H/H0 )α Donde V y Vo son las velocidades del viento a las alturas H y Ho y α un exponente que representa una forma de medida del rozamiento superficial encontrado por el viento. Existen estimaciones del parámetro α en función de la naturaleza del terreno por donde discurre el viento. Para un terreno descubierto, un valor típico estimado es 0,14. Para realizar la medida de las velocidades del viento se utilizan aparatos llamados anemómetros. De estos dispositivos existen multitud de tipos y modelos, sin embargo, el más utilizado es el denominado de cazoletas. Para la medida de la dirección se emplean, frecuentemente, dispositivos denominados veletas (figura 20.7). La Organización Meteorológica Mundial (OMM) recomienda que estos dispositivos se sitúen a 10 metros sobre el nivel del suelo. Teóricamente la potencia que existe en una corriente de aire a su paso a través de un área A viene dada por: P = ½·ρAV³ donde P es la potencia en W, ρ la densidad del aire en kg/m3 , A la superficie en m2 y V es la velocidad del viento en m/s. La velocidad del viento es un vector, por tanto, viene definida por el módulo, la dirección y el sentido. El módulo indica la intensidad del viento y se suele expresar en m/s, km/h o en nudos (1nudo=0,514m/s). La dirección y el sentido se expresan en grados sexagesimales, es decir, según un círculo graduado en 360º, significando “de donde viene” el viento. Por ejemplo, si se señala que el viento es del Noreste se está especificando que la dirección del viento se encuentra en la recta que une el Noreste con el Suroeste y que el sentido es de Noreste a Suroeste. El primer molino de viento que se conoce con cierto detalle es el molino persa de eje vertical. Este molino se utilizaba para moler grano y fue de uso co- rriente en la antigua Persia, po- siblemente varios siglos antes de nuestra era (figura 20.8) Las máquinas eólicas han ex- perimentado una considerable y larga evolución durante un periodo de más de 2000 años. Durante ese largo periodo histó- rico pueden señalarse diversas etapas de desarrollo. Desde las primeras máquinas conocidas hasta el siglo XV la evolución es lenta y de escaso desarrollo técnico (figura 20.9) Figura 20.9. Molino típico del siglo XV Figura 20.8. Molino persa de eje vertical Figura 20.7. Estación anemométrica
  • 8. 478 Sin embargo, no toda la potencia P anterior puede ser transformada, por los dispositivos tecnológicos existentes, para su utilización en forma de potencia mecánica o eléctrica. Puede demostrarse que, idealmente, la máxima potencia mecánica que se puede extraer de la vena de aire es el 60% de la que transporta la vena de aire cuando incide sobre el dispositivo captador de energía. En realidad la potencia recuperable es menor que la señalada como consecuencia de los rendimientos de los equipos de transformación energética. 20.3. Tecnología La tecnología de la energía eólica está teniendo un vertiginoso desarrollo. En la actualidad más de cuarenta mil turbinas de medio tamaño están en funcionando en el mundo, fundamentalmente en Europa, Estados Unidos y la India. Estas máquinas pueden producir anualmente alrededor de 20.000 millones de kWh de electricidad a partir de la energía cinética del viento. Una de las primeras máquinas eólicas construida expresamente para producir electricidad (aerogenerador) data del año 1892 y su diseño fue llevado a cabo por el profesor Lacour en Dinamarca. A partir de la segunda mitad del siglo XX las máquinas eólicas no han presentado evoluciones considerables en su diseño; todas ellas están integradas por un conjunto de subsistemas cuyo objetivo es captar la energía cinética del viento y transformarla en energía eléctrica (fundamentalmente) de la forma más óptima posible. De forma general pueden señalarse los siguientes subsistemas componentes: • Subsistema de captación • Subsistema de transmisión mecánica En el periodo comprendido entre el comienzo del Re- nacimiento y el comienzo de la Revolución Industrial se multiplican las invencio- nes que utilizan las ruedas hidráulicas o los molinos de viento como fuerza impul- sora (figura 20.10) Desde mediados del siglo XIX hasta mediados del si- glo XX se desarrolla la teo- ría aerodinámica y otras ciencias de carácter técni- co, lo que origina que las máquinas eólicas sufran una completa transforma- ción (figura 20.11). A partir de la segunda mitad del siglo XX hasta nuestros días se producen importantes modificaciones de carácter técnico, que se traducen en la utilización de materiales más ligeros y resistentes, y el em- pleo de sistemas electrónicos de regulación y control. Figura 20.11. Aerogenerador de mediados del siglo XX Figura 20.10. Molino utilizado al principio de la revolución industrial
  • 9. 479 • Subsistema de generación eléctrica • Subsistema de orientación • Subsistema de regulación • Subsistema soporte El subsistema de captación es el encargado de transformar la energía ciné- tica del viento en energía mecánica de rotación. Está integrado por el rotor, el cual se compone de las palas y del buje (figura 20.12) En función de la posición del eje de giro del rotor las máquinas eólicas se cla- sifican en máquinas de eje horizontal y de eje vertical (figura 20.13). Estas últimas, debido a su bajo rendimiento, prácticamente han desaparecido del mercado actual. Figura 20.13. Aerogeneradores de eje horizontal y de eje vertical Figura 20.14. Molino multipala Buje Palas Árbol principal Árbol secundario Carcasa Freno Multiplicador Bastidor Orientación Generador Figura 20.12. Diversos componentes de un aerogenerador
  • 10. 480 Dependiendo del número de palas de los rotores estos se clasifican en roto- res multipala (o rotores lentos), con un número de palas comprendido entre 6 y 24, y en rotores tipo hélice (o rotores rápidos), que pueden ser tripala (el más utilizado), bipala o monopala. Los rotores multipala giran a baja velocidad y se han destinado tradicionalmente al bombeo de agua (figura 20.14). Los rotores tipo hélice giran a mayores velocidades y presentan me- jores rendimientos aerodinámicos que los rotores multipala, por lo que se suelen destinar a la generación de electricidad. La potencia mecánica que una turbina eólica es capaz de extraer de la ener- gía cinética del viento depende fundamentalmente del diámetro del circulo barrido por las palas (figura 20.15) y del rendimiento aerodinámico del rotor (que depende de la forma aerodinámica de la pala), ya que el número de palas prácticamente no tiene influencia en el rendimiento cuando se utilizan más de tres palas (especialmente cuando se trata de rotores rápidos) En función de la disposición del rotor frente a la velocidad del viento estos pueden clasificarse en rotores de barlovento (los más frecuentes) o de sotavento o autoorientables, cuyas palas presentan una cierta inclinación respecto del plano de giro de tal manera que el rotor al girar describe un cono (figura 20.16). Aunque históricamente se han utilizado una gran variedad de materiales para la fabricación de las palas (telas, maderas, chapas metálicas, aluminio), los materiales más utilizados actualmente son las resinas de poliéster reforzadas con fibras de vidrio, los cuales proporcionan ligereza, resistencia mecánica y una cierta resistencia a la agresión del medio ambiente. El buje es el elemento soporte de las palas y está montado en un extremo del árbol principal de transmisión (figura 20.12). En función de la rigidez de movimiento de la unión de las palas al buje en la dirección perpendicular Sotavento Barlovento Viento Figura 20.16. Aerogeneradores con rotor a sotavento y rotor a barlovento. 5 10 50 200 1.000 5.000 20.000 kW 250 200 150 100 50 0 VELOCIDAD DE DISEÑO 7,5 m/s m. 5m. 8,5m. 13m. 24m. 50m. 101m. 185m. Figura 20.15. Potencia de las turbinas eólicas en función del diámetro del rotor
  • 11. 481 al plano del rotor, los bujes se clasifican en rígidos y basculantes (usados principalmente en rotores bipalas). En el primer grupo las palas se atornillan al buje y este se une rígidamente al árbol principal de transmisión. En el segundo grupo el buje admite pequeños movimientos de pivote con el objeto de equilibrar las cargas aerodinámicas. Dependiendo que el rotor permita que cada pala pueda girar o no respecto a su respectivo eje longitudinal los rotores se clasifican en rotores con palas de paso variable o de paso fijo. Los rotores con palas de paso variable (figura 20.12) permiten regular más adecuadamente la potencia generada por la máquina eólica y es utilizado en prácticamente todos los aerogeneradores de mediana y alta potencia. El subsistema de transmisión mecánica se sitúa entre el subsistema de captación y el subsistema de generación. En la mayoría de los diseños de aerogeneradores la velocidad de giro del subsistema de captación es menor que la velocidad a la que debe girar el generador eléctrico. Por este motivo es necesario incluir una caja multiplicadora de la velocidad y un árbol de transmisión secundario que una dicha caja al generador (figura 20.12) El subsistema de generación eléctrica está constituido básicamente por el aerogenerador (figura 20.12). Este está formado por una máquina eléctrica encargada de transformar la energía mecánica de rotación en energía eléctrica. El generador puede ser de corriente continua (dinamo) o de corriente alterna (alternador). Estos últimos son los únicos que actualmente se utilizan en los aerogeneradores de mediana y alta potencia. El alternador está compuesto de dos partes fundamentales: El rotor o inductor móvil, encargado de generar un campo magnético variable al girar arrastrado por el árbol de transmisión y el estator o inducido fijo, en el que se genera la corriente eléctrica. Las máquinas eléctricas de corriente alterna típicamente utilizadas se clasifican en máquinas síncronas y máquinas asíncronas o de inducción (los más utilizados actualmente). La mayor desventaja de los generadores síncronos es que necesitan de una batería de condensadores conectada a la salida, la cual compense la energía reactiva generada. Los generadores síncronos necesitan que se les excite con una corriente continua, que se puede generar internamente (autoexitación) o con una dinamo auxiliar. El subsistema de orientación es el encargado de detectar la dirección del viento y situar el plano del rotor perpendicular en esa dirección. Prácticamente todas las máquinas eólicas de eje horizontal necesitan de un subsistema de orientación, con excepción de las máquinas que disponen de rotor a sotavento, ya que el propio viento puede orientarlas debido a las fuerzas aerodinámicas que origina la conicidad del rotor. Entre los subsistemas de orientación más utilizados actualmente se encuentran las veletas o colas de orientación, utilizadas en máquinas de pequeña potencia, y los servomotores que detectan la dirección del viento mediante una veleta y orientan a la máquina mediante motores de orientación situados en la base de la góndola (figura 20.12) El subsistema de sustentación está constituido por la góndola y la torre. La góndola está formada por el bastidor, en el que se montan los distintos subsistemas de la máquina eólica, y la carcasa que, diseñada de forma aerodinámica, los protege de los agentes atmosféricos. La torre es el elemento encargado de elevar el rotor de la máquina respecto del nivel del suelo. La altura mínima de la torre está condicionada por el diámetro del rotor del subsistema de captación y la altura máxima por el coste y la dificultad de instalación. Para permitir el giro de la góndola respecto de la torre en las maniobras de orientación de la máquina el bastidor se monta sobre un rodamiento que lo une de forma solidaria a la torre. Aunque las primeras
  • 12. 482 torres de sustentación que se utilizaron en los aerogeneradores eran de estructura de celosía actualmente es más frecuente el uso de torres tubulares cilíndricas o troncocónicas de acero (fundamentalmente) u hormigón. Para acceder a la góndola en las máquinas eólicas pequeñas la torre suele disponer de escalera exterior. En los aerogeneradores de mediano y gran tamaño el acceso suele realizarse por el interior de la torre, la cual dispone de escalera y, en algunos casos, de ascensor. La torre se ancla en el suelo mediante una cimentación de hormigón armado cuya dimensión depende de las características del terreno, del tamaño de la máquina eólica y de los esfuerzos que produzca el régimen de vientos de la zona de instalación. El subsistema de control y regulación tiene la misión incrementar la captación de energía cinética del viento, mejorar la potencia eléctrica generada y garantizar un funcionamiento seguro de la máquina. Para ello el subsistema de control supervisa el funcionamiento de la máquina eólica y gestiona las secuencias de arranque, parada, etc., además de controlar al subsistema de orientación, regular la potencia captada del viento y producida por el aerogenerador. La mayoría de las máquinas eólicas modernas disponen de rotor de paso variable, por lo que disponen de dis- positivos que permiten girar la pala alrededor de su eje longitudinal con el propósito de controlar la potencia y velocidad de giro del rotor y frenar aerodinámicamente el subsistema de captación en caso de avería. Asimismo, las máquinas eóli- cas están equipadas con frenos mecánicos (figura 20.12) con el objetivo de de mantener bloqueado el árbol de transmisión durante la operaciones de puesta en marcha y mantenimiento, además de ayudar al frenado dinámico durante los procesos de parada de emergencia. Las aplicaciones de los aerogeneradores pueden clasificarse en dos grupos: Aerogeneradores conectados a la red eléctrica de distribución general y aerogeneradores aislados, es decir no conectados a la red eléctrica. El primer grupo es el más nu- meroso y puede a su vez clasificarse en dos grupos: Instala- ciones de un único aerogenerador e instalaciones que cuentan con una agrupación de varios aerogeneradores a la cual se le denomina parque eólico (figura 20.17) Las instalaciones aisladas suelen realizarse en zonas muy alejadas del trazado de la red eléctrica. Normalmente estas instalaciones se dimensionan para satisfacer un determinado consumo, se ubican en la proximidad del lugar de consumo y precisan de sistemas de almacenamiento (baterías, depósitos de agua, etc.) donde guardar la energía eléctrica generada, en el caso de aerogeneradores, o de agua impulsada, en el caso de que la energía generada sea mecánica. En el caso que la instalación aislada deba satisfacer un consumo importante de energía eléctrica y de forma permanente se Figura 20.17. Instalación conectada a la red Figura 20.18. Instalación aislada
  • 13. 483 recurre, normalmente, a las instalaciones híbridas eólico-diesel, las cuales constan de aerogeneradores interconectados a grupos diesel (figura 20.18) 20.4. Costes El coste de cada kilowatio-hora obtenido mediante un sistema eólico depende del coste de la instalación, la cual debe amortizarse a lo largo de la vida; del coste de explotación; y de la energía producida, que depende en gran medida de la velocidad media del viento en el emplazamiento. El coste de la instalación depende del coste de los siguientes elementos: aerogeneradores, obra civil (accesos, cimentaciones, edificaciones), sistema eléctrico (líneas eléctricas, transformadores, sistema de control), e ingeniería y dirección. En los últimos años se ha incrementado de forma apreciable el tamaño de los aerogeneradores lo que ha llevado aparejado la disminución del coste de la unidad de potencia instalada. En el caso de los países de mayor potencia instalada en Europa (Alemania, España y Dinamarca) el coste del kW instalado puede estimarse entre 1.000 y 1.200 euros. En lo que respecta al coste de los distin- tos componentes que integran un aero- generador pueden indicarse los porcen- tajes estimativos reflejados en la figura 20.19. La inversión necesaria para llevar a cabo una instalación eólica conectada a la red puede estimarse descompuesta en cuatro grandes partidas (figura 20.20). El coste de los aerogeneradores constituye el por- centaje más alto de la inversión. Los cos- tes exfactory de los aerogeneradores se sitúan en el rango de los 600-700euros/ kW, variando en función de la tecnología y el tamaño de la máquina. Para los parque de potencia media que se instalan en España los costes de explota- ción pueden estimarse alrededor 3,3 % de la inversión. Estos costes se desglosan en costes por alquiler de terrenos, costes de operación y mantenimiento (personal, repuestos y consumibles), costes de ges- tión y administración y costes de seguros e impuestos. Los porcentajes estimados de cada uno de estos costes se reflejan en la figura 20.21. Figura 20.19. Distribución de los costes de los Figura 20.20. Distribución de las inversiones necesarias Figura 20.21. Distribución de los costes de explotación
  • 14. 484 Los costes de generación varían entre 4 y 8 céntimos de Euro por KWh pro- ducido. Estos costes están ligados al tamaño de la instalación y, fundamen- talmente, a las características del viento del emplazamiento. 20.5. Impacto ambiental La incidencia que las instalaciones de aprovechamiento de la energía eólica pueden tener sobre el medio ambiente hay que analizarlos desde dos vertientes. Desde el punto de vista de los beneficios que supone la reducción de la emisión de contaminantes a la atmósfera y por otro desde el punto de vista de la afectación al medio ambiente. Las posibles alteraciones del medio físico que las instalaciones eólicas pueden generar se centran en cuatro apartados: impacto sobre las aves, impacto visual, ruido y erosión. Los estudios que se han realizado llegan a la conclusión que las líneas eléctricas suele presentarse como la causa más importante de accidentes de aves, pero que pueden evitarse utilizando líneas subterráneas. De la experiencia española se concluye que dicho impacto ha sido nulo. El impacto visual es muy subjetivo. Un parque adecuadamente diseñado puede llegar a ser incluso objeto de atracción (figura 20.22) El origen del ruido en los aerogeneradores se debe a factores mecánicos y aerodinámicos. La influencia de dicho impacto depende de la distancia. En Figura 20.22. Impacto visual
  • 15. 485 las poblaciones cercanas a dichas instalaciones es más importante el ruido producido por el propio viento (figura 20.23) Los impactos por erosión son generados principalmente por el movimiento de tierras para el trazado de los accesos y en segundo lugar por las excava- ciones realizadas para la construcción de las cimentaciones (figura 20.24). Estos impactos pueden minimizarse realizando adecuados trazados de los caminos y llevando a cabo adecuadas medidas correctoras. Entre estas pue- den señalarse la revegetación y remodelación de las pendientes y la reposi- ción de la vegetación. Figura 20.23. Ruido producido por un aerogenerador Figura 20.24. Impacto por erosión
  • 16. 486 20.6. Situación actual En la actualidad el sector eólico está experimentando, a nivel mundial, unas tasas de crecimiento muy altas, tanto a nivel de potencia instalada como a nivel de desarrollo tecnológico. Las plantas eólicas destinadas a la producción de energía eléctrica se han integrado completamente en la estructura energética de los países con recursos eólicos. A finales de 2001 la potencia mundial de origen eólico superaba los 23GW, con una tasa anual de crecimiento del 30%. La Unión Europea lidera el panorama mundial, ya que supera el 80% del total de potencia instalada. Le siguen a gran distancia América y Asia. Entre los países de la Unión Europea el liderazgo lo ostenta Alemania, con más de 10.000MW instalados. Le siguen España y Dinamarca. Estos tres países de la Unión Europea lideran actualmente el panorama eólico mundial, tanto por la potencia instalada como por el número de aerogeneradores que fabrican e introducen en el mercado. Sumando los objetivos de potencia eólica instalada, trazados por las distintas comunidades autónomas españolas, en el año 2010 se alcanzarían 8.974MW. Canarias, con 250MW, se situaría en la posición número 7; compartiendo posición con Asturias, Cantabria, y Murcia.