SlideShare una empresa de Scribd logo
1 de 24
Capítulo 27. Corriente y
resistencia
Presentación PowerPoint de
Paul E. Tippens, Profesor de Física
Southern Polytechnic State University
© 2007
Objetivos: Después de completar
este módulo deberá:
• Definir corriente eléctrica y fuerza
electromotriz.
• Escribir y aplicar la ley de Ohm a circuitos
que contengan resistencia y fem.
• Definir la resistividad de un material y
aplicar fórmulas para su cálculo.
• Definir y aplicar el concepto de coeficiente
de temperatura de la resistencia.
Corriente eléctrica
La corriente eléctrica I es la tasa
del flujo de carga Q a través de
una sección transversal A en
una unidad de tiempo t.
Q
I
t

1C
1 A
1 s

Un ampere A es la carga que fluye a
la tasa de un coulomb por segundo.
A
+
-
Alambre
+Q
t
Ejemplo 1. La corriente eléctrica en un alambre
es de 6 A. ¿Cuántos electrones fluyen a través
de un punto dado en un tiempo de 3 s?
I = 6 A
;
q
I q It
t
 
q = (6 A)(3 s) = 18 C
Recuerde que: 1 e- = 1.6 x 10-19 C, luego convierta:
 
-
20
-19
1e
18 C 18 C 1,125 x 10 electrons
1.6 x 10 C
 
 
 
 
En 3 s: 1.12 x 1020 electrones
Corriente convencional
Imagine un capacitor cargado con Q = CV al que
se permite descargarse.
Flujo de electrones: La dirección
de e- que fluye de – a +.
Corriente convencional: El
movimiento de +q de + a –
tiene el mismo efecto.
Los campos eléctricos y el potencial se definen en
términos de +q, así que se supondrá corriente
convencional (incluso si el flujo de electrones puede
ser el flujo real).
+
+
-
-
+ -
Flujo de
electrones
+ -
+ -
e-
Flujo convencional
+
Fuerza electromotriz
Una fuente de fuerza electromotriz (fem) es un
dispositivo que usa energía química, mecánica u
otra para proporcionar la diferencia de potencial
necesaria para corriente eléctrica.
Líneas de
transmisión
Batería Generador
eólico
Analogía de agua para FEM
Presión
baja
Bomba
Agua
Presión
alta
Válvula
Flujo
de agua
Constricción
Fuente de
FEM
Resistor
Potencial
alto
Potencial
bajo
Interruptor
E
R
I
+ -
La fuente de fem (bomba) proporciona el voltaje
(presión) para forzar electrones (agua) a través de
una resistencia eléctrica (constricción estrecha).
Símbolos de circuito eléctrico
Con frecuencia, los circuitos eléctricos contienen
uno o más resistores agrupados y unidos a una
fuente de energía, como una batería.
Con frecuencia se usan los siguientes símbolos:
+ - + -
- + - + -
Tierra Batería
-
+
Resistor
Resistencia eléctrica
Suponga que se aplica una diferencia de potencial constante
de 4 V a los extremos de barras geométricamente similares
de, por decir, acero, cobre y vidrio.
4 V 4 V 4 V
Acero Cobre Vidrio
Is Ic Ig
La corriente en el vidrio es mucho menor
para el acero o el hierro, lo que sugiere una
propiedad de los materiales llamada
resistencia eléctrica R.
Ley de Ohm
La ley de Ohm afirma que la corriente I a través de un
conductor dado es directamente proporcional a la
diferencia de potencial V entre sus puntos extremos.
La ley de Ohm permite definir la resistencia
R y escribir las siguientes formas de la ley:
; ;
V V
I V IR R
R I
  
V
I
Ohm
de
Ley 

Ejemplo 2. Cuando una batería de 3 V se
conecta a una luz, se observa una corriente
de 6 mA. ¿Cuál es la resistencia del filamento
de la luz?
Fuente de
FEM
R
I
+ -
V = 3 V
6 mA
3.0 V
0.006 A
V
R
I
 
R = 500 W
La unidad SI para la resistencia
eléctrica es el ohm, W:
1 V
1
1 A
W 
Amperímetro
Voltímetro Reóstato
Fuente de
FEM
Reóstato
A
Símbolos de circuito de laboratorio
V fem
-
+
Factores que afectan la resistencia
1. La longitud L del material. Los materiales
más largos tienen mayor resistencia.
1 W
L
2 W
2L
2. El área A de sección transversal del material. Las
áreas más grandes ofrecen MENOS resistencia.
2 W
A
1 W
2A
Factores que afectan R (Cont.)
3. La temperatura T del material. Las temperaturas
más altas resultan en resistencias más altas.
4. El tipo del material. El hierro tiene más
resistencia eléctrica que un conductor de
cobre geométricamente similar.
Ro
R > Ro
Ri > Rc
Cobre Hierro
Resistividad de un material
La resistividad r es una propiedad de un material
que determina su resistencia eléctrica R.
Al recordar que R es directamente
proporcional a la longitud L e inversamente
proporcional al área A, se puede escribir:
or
L RA
R
A L
r r
 
La unidad de resistividad es el ohm-metro (Wm)
Ejemplo 3. ¿Qué longitud L de alambre de
cobre se requiere para producir un resistor de
4 mW? Suponga que el diámetro del alambre
es 1 mm y que la resistividad r del cobre es
1.72 x 10-8 W.m .
2 2
(0.001 m)
4 4
D
A
 
  A = 7.85 x 10-7 m2
L
R
A
r

-7 2
-8
(0.004 )(7.85 x 10 m )
1.72 x 10 m
RA
L
r
W
 
W
L = 0.183 m
La longitud requerida es:
Coeficiente de temperatura
Para la mayoría de los materiales, la resistencia
R cambia en proporción a la resistencia inicial
Ro y al cambio en temperatura Dt.
0
R R t

D  D
Cambio en
resistencia:
El coeficiente de temperatura de la resistencia,  es
el cambio en resistencia por unidad de resistencia
por unidad de grado en cambio de temperatura.

D
D

C
1
:
es
Unidad
;
0 t
R
R

Ejemplo 4. La resistencia de un alambre de cobre
es 4.00 mW a 200C. ¿Cuál será su resistencia si se
calienta a 800C? Suponga que  = 0.004 /Co.
0 0
0 ; (0.004/C )(4 m )(60 C )
R R t R

D  D D  W
Ro = 4.00 mW; Dt = 80oC – 20oC = 60 Co
DR = 1.03 mW R = Ro + DR
R = 4.00 mW + 1.03 mW
R = 5.03 mW
Potencia eléctrica
La potencia eléctrica P es la tasa a la que se gasta la
energía eléctrica, o trabajo por unidad de tiempo.
V q
V
Para cargar C: Trabajo = qV
Sustituya q = It , entonces:
VIt
P
t
 P = VI
I
t
q
I
t
qV
t
Trabajo
P 

 e
Cálculo de potencia
Al usar la ley de Ohm, se puede encontrar la
potencia eléctrica a partir de cualquier par de los
siguientes parámetros: corriente I, voltaje V y
resistencia R.
Ley de Ohm: V = IR
2
2
; ;
V
P VI P I R P
R
  
Ejemplo 5. Una herramienta se clasifica en 9 A
cuando se usa con un circuito que proporciona 120 V.
¿Qué potencia se usa para operar esta herramienta?
P = VI = (120 V)(9 A) P = 1080 W
Ejemplo 6. Un calentador de 500 W extrae
una corriente de 10 A. ¿Cuál es la
resistencia?
R = 5.00 W
2
2 2
500 W
;
(10 A)
P
P I R R
I
  
Resumen de fórmulas
Q
I
t

1C
1 A
1 s

Corriente
eléctrica:
; ;
V V
I V IR R
R I
  
Ley de Ohm
ampere
1
volt
1
ohm
1
a
Resistenci 

Coeficiente de temperatura de la resistencia:
Resumen (Cont.)
or
L RA
R
A L
r r
 
2
2
; ;
V
P VI P I R P
R
  
0
R R t

D  D
Resistividad
de materiales:
Potencia
eléctrica P:

D
D

C
1
:
s
Unidade
;
0 t
R
R

CONCLUSIÓN: Capítulo 27
Corriente y resistencia

Más contenido relacionado

Similar a Tippens_fisica_7e_diapositivas_27.ppt

Ley de ohm y potencia eléctrica
Ley de ohm y potencia eléctricaLey de ohm y potencia eléctrica
Ley de ohm y potencia eléctricaAndrés De la Rosa
 
Corriente y resistencia. circuitos.
Corriente y resistencia. circuitos.Corriente y resistencia. circuitos.
Corriente y resistencia. circuitos.Gustavo Torres
 
Tippens fisica 7e_diapositivas_27
Tippens fisica 7e_diapositivas_27Tippens fisica 7e_diapositivas_27
Tippens fisica 7e_diapositivas_27Adrian De León
 
Fy Q1 Tema 9 Corriente Electrica
Fy Q1 Tema 9 Corriente ElectricaFy Q1 Tema 9 Corriente Electrica
Fy Q1 Tema 9 Corriente Electricaguest96950
 
Introduccion sobre resistencias
Introduccion sobre resistenciasIntroduccion sobre resistencias
Introduccion sobre resistenciaselectrohenry
 
La ley de Ohm
La ley de OhmLa ley de Ohm
La ley de OhmEli Diaz
 
Capitulo I - Calculos Eléctricos - OL rev01.pdf
Capitulo I  - Calculos Eléctricos - OL rev01.pdfCapitulo I  - Calculos Eléctricos - OL rev01.pdf
Capitulo I - Calculos Eléctricos - OL rev01.pdfDANIELCABRERA568978
 
Paper de difusión científica - Corriente Eléctrica
Paper de difusión científica - Corriente EléctricaPaper de difusión científica - Corriente Eléctrica
Paper de difusión científica - Corriente Eléctricaabelolivera2015
 
135259660-Corriente-y-Resistencia.docx
135259660-Corriente-y-Resistencia.docx135259660-Corriente-y-Resistencia.docx
135259660-Corriente-y-Resistencia.docxDavidPernia5
 
circuitos-elc3a9ctricos-mcgraw-hill_word-final.pdf
circuitos-elc3a9ctricos-mcgraw-hill_word-final.pdfcircuitos-elc3a9ctricos-mcgraw-hill_word-final.pdf
circuitos-elc3a9ctricos-mcgraw-hill_word-final.pdfcarlos966219
 
Resumen campo eléctrico y electricidad
Resumen campo eléctrico y electricidadResumen campo eléctrico y electricidad
Resumen campo eléctrico y electricidadArturo Blanco
 
Resistencia electrica Proyecto de Aula
Resistencia electrica Proyecto de AulaResistencia electrica Proyecto de Aula
Resistencia electrica Proyecto de AulaPollito Bryan
 
Corriente y resistencia. ing. carlos moreno (ESPOL)
Corriente y resistencia. ing. carlos moreno (ESPOL)Corriente y resistencia. ing. carlos moreno (ESPOL)
Corriente y resistencia. ing. carlos moreno (ESPOL)Francisco Rivas
 
MANUAL_DEL_SISTEMA_ELECTRICO_DE_LA_MOTOC.pdf
MANUAL_DEL_SISTEMA_ELECTRICO_DE_LA_MOTOC.pdfMANUAL_DEL_SISTEMA_ELECTRICO_DE_LA_MOTOC.pdf
MANUAL_DEL_SISTEMA_ELECTRICO_DE_LA_MOTOC.pdfPercyMejaCordero
 

Similar a Tippens_fisica_7e_diapositivas_27.ppt (20)

Ley de ohm y potencia eléctrica
Ley de ohm y potencia eléctricaLey de ohm y potencia eléctrica
Ley de ohm y potencia eléctrica
 
Corriente y resistencia. circuitos.
Corriente y resistencia. circuitos.Corriente y resistencia. circuitos.
Corriente y resistencia. circuitos.
 
Tippens fisica 7e_diapositivas_27
Tippens fisica 7e_diapositivas_27Tippens fisica 7e_diapositivas_27
Tippens fisica 7e_diapositivas_27
 
Tema i,ii y iii.
Tema i,ii y iii.Tema i,ii y iii.
Tema i,ii y iii.
 
Electricidad
ElectricidadElectricidad
Electricidad
 
Fy Q1 Tema 9 Corriente Electrica
Fy Q1 Tema 9 Corriente ElectricaFy Q1 Tema 9 Corriente Electrica
Fy Q1 Tema 9 Corriente Electrica
 
Introduccion sobre resistencias
Introduccion sobre resistenciasIntroduccion sobre resistencias
Introduccion sobre resistencias
 
La ley de Ohm
La ley de OhmLa ley de Ohm
La ley de Ohm
 
mou
moumou
mou
 
Capitulo I - Calculos Eléctricos - OL rev01.pdf
Capitulo I  - Calculos Eléctricos - OL rev01.pdfCapitulo I  - Calculos Eléctricos - OL rev01.pdf
Capitulo I - Calculos Eléctricos - OL rev01.pdf
 
S06.s2_Material.pptx
S06.s2_Material.pptxS06.s2_Material.pptx
S06.s2_Material.pptx
 
Paper de difusión científica - Corriente Eléctrica
Paper de difusión científica - Corriente EléctricaPaper de difusión científica - Corriente Eléctrica
Paper de difusión científica - Corriente Eléctrica
 
electrodinamica
electrodinamicaelectrodinamica
electrodinamica
 
135259660-Corriente-y-Resistencia.docx
135259660-Corriente-y-Resistencia.docx135259660-Corriente-y-Resistencia.docx
135259660-Corriente-y-Resistencia.docx
 
circuitos-elc3a9ctricos-mcgraw-hill_word-final.pdf
circuitos-elc3a9ctricos-mcgraw-hill_word-final.pdfcircuitos-elc3a9ctricos-mcgraw-hill_word-final.pdf
circuitos-elc3a9ctricos-mcgraw-hill_word-final.pdf
 
Resumen campo eléctrico y electricidad
Resumen campo eléctrico y electricidadResumen campo eléctrico y electricidad
Resumen campo eléctrico y electricidad
 
Resistencia electrica Proyecto de Aula
Resistencia electrica Proyecto de AulaResistencia electrica Proyecto de Aula
Resistencia electrica Proyecto de Aula
 
Corriente y resistencia. ing. carlos moreno (ESPOL)
Corriente y resistencia. ing. carlos moreno (ESPOL)Corriente y resistencia. ing. carlos moreno (ESPOL)
Corriente y resistencia. ing. carlos moreno (ESPOL)
 
MANUAL_DEL_SISTEMA_ELECTRICO_DE_LA_MOTOC.pdf
MANUAL_DEL_SISTEMA_ELECTRICO_DE_LA_MOTOC.pdfMANUAL_DEL_SISTEMA_ELECTRICO_DE_LA_MOTOC.pdf
MANUAL_DEL_SISTEMA_ELECTRICO_DE_LA_MOTOC.pdf
 
Fisica expo
Fisica expoFisica expo
Fisica expo
 

Último

Parámetros de Perforación y Voladura. para Plataformas
Parámetros de  Perforación y Voladura. para PlataformasParámetros de  Perforación y Voladura. para Plataformas
Parámetros de Perforación y Voladura. para PlataformasSegundo Silva Maguiña
 
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIACLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIAMayraOchoa35
 
Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCANDECE
 
Diagrama de flujo metalurgia del cobre..pptx
Diagrama de flujo metalurgia del cobre..pptxDiagrama de flujo metalurgia del cobre..pptx
Diagrama de flujo metalurgia del cobre..pptxHarryArmandoLazaroBa
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.ALEJANDROLEONGALICIA
 
Simbología de Soldadura, interpretacion y aplicacion en dibujo tecnico indus...
Simbología de Soldadura,  interpretacion y aplicacion en dibujo tecnico indus...Simbología de Soldadura,  interpretacion y aplicacion en dibujo tecnico indus...
Simbología de Soldadura, interpretacion y aplicacion en dibujo tecnico indus...esandoval7
 
produccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxproduccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxEtse9
 
Descubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundialDescubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundialyajhairatapia
 
Fe_C_Tratamientos termicos_uap _3_.ppt
Fe_C_Tratamientos termicos_uap   _3_.pptFe_C_Tratamientos termicos_uap   _3_.ppt
Fe_C_Tratamientos termicos_uap _3_.pptVitobailon
 
SEMANA 6 MEDIDAS DE TENDENCIA CENTRAL.pdf
SEMANA  6 MEDIDAS DE TENDENCIA CENTRAL.pdfSEMANA  6 MEDIDAS DE TENDENCIA CENTRAL.pdf
SEMANA 6 MEDIDAS DE TENDENCIA CENTRAL.pdffredyflores58
 
Fisiología del azufre en plantas S.S.pdf
Fisiología del azufre en plantas S.S.pdfFisiología del azufre en plantas S.S.pdf
Fisiología del azufre en plantas S.S.pdfJessLeonelVargasJimn
 
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBRQUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBRyanimarca23
 
Sistema de gestión de turnos para negocios
Sistema de gestión de turnos para negociosSistema de gestión de turnos para negocios
Sistema de gestión de turnos para negociosfranchescamassielmor
 
Como de produjo la penicilina de manera masiva en plena guerra mundial Biotec...
Como de produjo la penicilina de manera masiva en plena guerra mundial Biotec...Como de produjo la penicilina de manera masiva en plena guerra mundial Biotec...
Como de produjo la penicilina de manera masiva en plena guerra mundial Biotec...ssuser646243
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023ANDECE
 
Topografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasTopografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasSegundo Silva Maguiña
 
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptxAMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptxLuisvila35
 
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptxNayeliZarzosa1
 
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdfLEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdfAdelaHerrera9
 
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...humberto espejo
 

Último (20)

Parámetros de Perforación y Voladura. para Plataformas
Parámetros de  Perforación y Voladura. para PlataformasParámetros de  Perforación y Voladura. para Plataformas
Parámetros de Perforación y Voladura. para Plataformas
 
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIACLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIA
 
Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRC
 
Diagrama de flujo metalurgia del cobre..pptx
Diagrama de flujo metalurgia del cobre..pptxDiagrama de flujo metalurgia del cobre..pptx
Diagrama de flujo metalurgia del cobre..pptx
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.
 
Simbología de Soldadura, interpretacion y aplicacion en dibujo tecnico indus...
Simbología de Soldadura,  interpretacion y aplicacion en dibujo tecnico indus...Simbología de Soldadura,  interpretacion y aplicacion en dibujo tecnico indus...
Simbología de Soldadura, interpretacion y aplicacion en dibujo tecnico indus...
 
produccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxproduccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptx
 
Descubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundialDescubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundial
 
Fe_C_Tratamientos termicos_uap _3_.ppt
Fe_C_Tratamientos termicos_uap   _3_.pptFe_C_Tratamientos termicos_uap   _3_.ppt
Fe_C_Tratamientos termicos_uap _3_.ppt
 
SEMANA 6 MEDIDAS DE TENDENCIA CENTRAL.pdf
SEMANA  6 MEDIDAS DE TENDENCIA CENTRAL.pdfSEMANA  6 MEDIDAS DE TENDENCIA CENTRAL.pdf
SEMANA 6 MEDIDAS DE TENDENCIA CENTRAL.pdf
 
Fisiología del azufre en plantas S.S.pdf
Fisiología del azufre en plantas S.S.pdfFisiología del azufre en plantas S.S.pdf
Fisiología del azufre en plantas S.S.pdf
 
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBRQUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
QUIMICA ORGANICA I ENOLES Y ENAMINAS LIBR
 
Sistema de gestión de turnos para negocios
Sistema de gestión de turnos para negociosSistema de gestión de turnos para negocios
Sistema de gestión de turnos para negocios
 
Como de produjo la penicilina de manera masiva en plena guerra mundial Biotec...
Como de produjo la penicilina de manera masiva en plena guerra mundial Biotec...Como de produjo la penicilina de manera masiva en plena guerra mundial Biotec...
Como de produjo la penicilina de manera masiva en plena guerra mundial Biotec...
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
 
Topografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasTopografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la Ingenierías
 
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptxAMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
 
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
 
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdfLEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
 
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
594305198-OPCIONES-TARIFARIAS-Y-CONDICIONES-DE-APLICACION-DE-TARIFAS-A-USUARI...
 

Tippens_fisica_7e_diapositivas_27.ppt

  • 1. Capítulo 27. Corriente y resistencia Presentación PowerPoint de Paul E. Tippens, Profesor de Física Southern Polytechnic State University © 2007
  • 2. Objetivos: Después de completar este módulo deberá: • Definir corriente eléctrica y fuerza electromotriz. • Escribir y aplicar la ley de Ohm a circuitos que contengan resistencia y fem. • Definir la resistividad de un material y aplicar fórmulas para su cálculo. • Definir y aplicar el concepto de coeficiente de temperatura de la resistencia.
  • 3. Corriente eléctrica La corriente eléctrica I es la tasa del flujo de carga Q a través de una sección transversal A en una unidad de tiempo t. Q I t  1C 1 A 1 s  Un ampere A es la carga que fluye a la tasa de un coulomb por segundo. A + - Alambre +Q t
  • 4. Ejemplo 1. La corriente eléctrica en un alambre es de 6 A. ¿Cuántos electrones fluyen a través de un punto dado en un tiempo de 3 s? I = 6 A ; q I q It t   q = (6 A)(3 s) = 18 C Recuerde que: 1 e- = 1.6 x 10-19 C, luego convierta:   - 20 -19 1e 18 C 18 C 1,125 x 10 electrons 1.6 x 10 C         En 3 s: 1.12 x 1020 electrones
  • 5. Corriente convencional Imagine un capacitor cargado con Q = CV al que se permite descargarse. Flujo de electrones: La dirección de e- que fluye de – a +. Corriente convencional: El movimiento de +q de + a – tiene el mismo efecto. Los campos eléctricos y el potencial se definen en términos de +q, así que se supondrá corriente convencional (incluso si el flujo de electrones puede ser el flujo real). + + - - + - Flujo de electrones + - + - e- Flujo convencional +
  • 6. Fuerza electromotriz Una fuente de fuerza electromotriz (fem) es un dispositivo que usa energía química, mecánica u otra para proporcionar la diferencia de potencial necesaria para corriente eléctrica. Líneas de transmisión Batería Generador eólico
  • 7. Analogía de agua para FEM Presión baja Bomba Agua Presión alta Válvula Flujo de agua Constricción Fuente de FEM Resistor Potencial alto Potencial bajo Interruptor E R I + - La fuente de fem (bomba) proporciona el voltaje (presión) para forzar electrones (agua) a través de una resistencia eléctrica (constricción estrecha).
  • 8. Símbolos de circuito eléctrico Con frecuencia, los circuitos eléctricos contienen uno o más resistores agrupados y unidos a una fuente de energía, como una batería. Con frecuencia se usan los siguientes símbolos: + - + - - + - + - Tierra Batería - + Resistor
  • 9. Resistencia eléctrica Suponga que se aplica una diferencia de potencial constante de 4 V a los extremos de barras geométricamente similares de, por decir, acero, cobre y vidrio. 4 V 4 V 4 V Acero Cobre Vidrio Is Ic Ig La corriente en el vidrio es mucho menor para el acero o el hierro, lo que sugiere una propiedad de los materiales llamada resistencia eléctrica R.
  • 10. Ley de Ohm La ley de Ohm afirma que la corriente I a través de un conductor dado es directamente proporcional a la diferencia de potencial V entre sus puntos extremos. La ley de Ohm permite definir la resistencia R y escribir las siguientes formas de la ley: ; ; V V I V IR R R I    V I Ohm de Ley  
  • 11. Ejemplo 2. Cuando una batería de 3 V se conecta a una luz, se observa una corriente de 6 mA. ¿Cuál es la resistencia del filamento de la luz? Fuente de FEM R I + - V = 3 V 6 mA 3.0 V 0.006 A V R I   R = 500 W La unidad SI para la resistencia eléctrica es el ohm, W: 1 V 1 1 A W 
  • 13. Factores que afectan la resistencia 1. La longitud L del material. Los materiales más largos tienen mayor resistencia. 1 W L 2 W 2L 2. El área A de sección transversal del material. Las áreas más grandes ofrecen MENOS resistencia. 2 W A 1 W 2A
  • 14. Factores que afectan R (Cont.) 3. La temperatura T del material. Las temperaturas más altas resultan en resistencias más altas. 4. El tipo del material. El hierro tiene más resistencia eléctrica que un conductor de cobre geométricamente similar. Ro R > Ro Ri > Rc Cobre Hierro
  • 15. Resistividad de un material La resistividad r es una propiedad de un material que determina su resistencia eléctrica R. Al recordar que R es directamente proporcional a la longitud L e inversamente proporcional al área A, se puede escribir: or L RA R A L r r   La unidad de resistividad es el ohm-metro (Wm)
  • 16. Ejemplo 3. ¿Qué longitud L de alambre de cobre se requiere para producir un resistor de 4 mW? Suponga que el diámetro del alambre es 1 mm y que la resistividad r del cobre es 1.72 x 10-8 W.m . 2 2 (0.001 m) 4 4 D A     A = 7.85 x 10-7 m2 L R A r  -7 2 -8 (0.004 )(7.85 x 10 m ) 1.72 x 10 m RA L r W   W L = 0.183 m La longitud requerida es:
  • 17. Coeficiente de temperatura Para la mayoría de los materiales, la resistencia R cambia en proporción a la resistencia inicial Ro y al cambio en temperatura Dt. 0 R R t  D  D Cambio en resistencia: El coeficiente de temperatura de la resistencia,  es el cambio en resistencia por unidad de resistencia por unidad de grado en cambio de temperatura.  D D  C 1 : es Unidad ; 0 t R R 
  • 18. Ejemplo 4. La resistencia de un alambre de cobre es 4.00 mW a 200C. ¿Cuál será su resistencia si se calienta a 800C? Suponga que  = 0.004 /Co. 0 0 0 ; (0.004/C )(4 m )(60 C ) R R t R  D  D D  W Ro = 4.00 mW; Dt = 80oC – 20oC = 60 Co DR = 1.03 mW R = Ro + DR R = 4.00 mW + 1.03 mW R = 5.03 mW
  • 19. Potencia eléctrica La potencia eléctrica P es la tasa a la que se gasta la energía eléctrica, o trabajo por unidad de tiempo. V q V Para cargar C: Trabajo = qV Sustituya q = It , entonces: VIt P t  P = VI I t q I t qV t Trabajo P    e
  • 20. Cálculo de potencia Al usar la ley de Ohm, se puede encontrar la potencia eléctrica a partir de cualquier par de los siguientes parámetros: corriente I, voltaje V y resistencia R. Ley de Ohm: V = IR 2 2 ; ; V P VI P I R P R   
  • 21. Ejemplo 5. Una herramienta se clasifica en 9 A cuando se usa con un circuito que proporciona 120 V. ¿Qué potencia se usa para operar esta herramienta? P = VI = (120 V)(9 A) P = 1080 W Ejemplo 6. Un calentador de 500 W extrae una corriente de 10 A. ¿Cuál es la resistencia? R = 5.00 W 2 2 2 500 W ; (10 A) P P I R R I   
  • 22. Resumen de fórmulas Q I t  1C 1 A 1 s  Corriente eléctrica: ; ; V V I V IR R R I    Ley de Ohm ampere 1 volt 1 ohm 1 a Resistenci  
  • 23. Coeficiente de temperatura de la resistencia: Resumen (Cont.) or L RA R A L r r   2 2 ; ; V P VI P I R P R    0 R R t  D  D Resistividad de materiales: Potencia eléctrica P:  D D  C 1 : s Unidade ; 0 t R R 