SlideShare una empresa de Scribd logo
1 de 35
RAÍCES DE ECUACIONES 2010
RAÍCES DE ECUACIONES CONTENIDO Definición Métodos para la aproximación de soluciones 1. Método grafico  2. Cerrado o acotado : a) Bisección b) Falsa Posición 3. Abierto: c) Secante d) Newton-Raphson e) Punto Fijo
RAÍCES DE ECUACIONES DEFINICIÓN El objeto del cálculo de las raíces de una ecuación es determinar los valores de  x  para los que se cumple:  f ( x ) = 0  Su importancia radica en que si podemos determinar las raíces de una ecuación también podemos determinar máximos y mínimos, valores propios de matrices, resolver sistemas de ecuaciones lineales y diferenciales, etc...
RAÍCES DE ECUACIONES Para resolver ecuaciones no lineales existen varios métodos numéricos  que los podemos clasificar así: Método grafico   Cerrado o acotado:   (requiere de dos valores de x que encierren la raíz) ,[object Object],[object Object],Abierto:  ( requiere de uno o dos valores de x, pero no necesariamente encierran la raíz) ,[object Object],[object Object],[object Object]
RAÍCES DE ECUACIONES La mayoría de los métodos utilizados para el cálculo de las raíces de una ecuación son iterativos y se basan en modelos de aproximaciones sucesivas. Estos métodos trabajan del siguiente modo: a partir de una primera aproximación al valor de la raíz, determinamos una aproximación mejor aplicando una determinada regla de cálculo y así sucesivamente hasta que se determine el valor de la raíz con el grado de aproximación deseado.
MÉTODO GRAFICO Consiste en graficar una función y determinar visualmente donde corta el eje x. En  y= f(x), establece el valor  de x para el cual f(x)=0. x 1.  Si en un intervalo {a,b} cerrado se cumple que :  no existen raíces reales en el intervalo, pues y=f(x) no toca el eje x, por el contrario pueden encontrarse una o más raíces imaginarias.  f(a).f(b)>0 f(x) a b
MÉTODO GRAFICO 2.  Si en un intervalo {a,b} cerrado se cumple que :  Entonces existen dos raíces reales  f(a).f(b)>0 f(x) a b x
MÉTODO GRAFICO 3.  Si en un intervalo {a,b} cerrado se cumple que :  da la certeza de encontrar una sola raíz real en el intervalo.  f(a).f(b)<0 x f(x) a b
MÉTODO GRAFICO 4.  Si en un intervalo {a,b} cerrado se cumple que :  hay más de dos raíces.  f(a).f(b)<0 f(x) a b x
MÉTODO GRAFICO 5.  También puede existir una función  , para la que existe una raíz real doble en x=0 , que no es apreciable por el método gráfico,  pues la ecuación es tangente al eje x .  f(x) a b x
MÉTODO DE BISECCIÓN   Este método, también conocido como método de partición del intervalo, parte de una ecuación algebraica o trascendental  f ( x ) y un intervalo [ x i,  x s], tal que  f ( x i) y  f ( x s) tienen signos contrarios, es decir, tal que existe por lo menos una raíz en ese intervalo.
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
MÉTODO DE BISECCIÓN f(x) f(xi) f(xr) f(xs) xi xr xs xi=xr x
[object Object],[object Object],[object Object],[object Object],xi xs ,[object Object],Donde:  ∆x = longitud del intervalo  n= numero de iteraciones error
[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
MÉTODO DE BISECCIÓN 0,04304778 -2,7167E-09 2,8218E-09 -0,00037535 7,2379E-06 0,00038986 0,56738281 0,56713867 0,56689453 11 0,08613264 -1,4633E-07 4,5037E-07 -0,00037535 0,00038986 0,0011552 0,56738281 0,56689453 0,56640625 10 0,17211704 7,1518E-07 -4,336E-07 -0,00190536 -0,00037535 0,0011552 0,56835938 0,56738281 0,56640625 9 0,34364261 9,4577E-06 -2,2011E-06 -0,00496376 -0,00190536 0,0011552 0,5703125 0,56835938 0,56640625 8 0,68965517 -5,7341E-06 8,4131E-06 -0,00496376 0,0011552 0,00728282 0,5703125 0,56640625 0,5625 7 1,36986301 8,5257E-05 -3,615E-05 -0,01717584 -0,00496376 0,00728282 0,578125 0,5703125 0,5625 6 2,7027027 0,00071276 -0,00012509 -0,04149755 -0,01717584 0,00728282 0,59375 0,578125 0,5625 5 5,26315789 0,00372393 -0,00030222 -0,08973857 -0,04149755 0,00728282 0,625 0,59375 0,5625 4 11,1111111 -0,00065355 0,00077584 -0,08973857 0,00728282 0,10653066 0,625 0,5625 0,5 3 20 0,02491443 -0,00955991 -0,27763345 -0,08973857 0,10653066 0,75 0,625 0,5 2   0,17549781 -0,02957647 -0,63212056 -0,27763345 0,10653066 1 0,75 0,5 1 error f(xs).f(xr) f(xi).f(xr) f(xs) f(xr) f(xi) xs xr xi iter Ejemplo: Calcule la raíz de:
FALSA POSICIÓN Este método, como en el método de la bisección, parte de dos puntos que rodean a la raíz  f ( x ) = 0, es decir, dos puntos  x i y  x s tales que  f ( x i) f ( x s) < 0. La siguiente aproximación,  x r, se calcula como la intersección con el eje  X  de la recta que une ambos puntos empleando la ecuación  La asignación del nuevo intervalo de búsqueda se realiza como en el método de la bisección: entre ambos intervalos, [ x i, x r] y [ x r, x s], se toma aquel que cumpla  f ( xi ) f ( x r) < 0 ;  f ( xr ) f ( x s) < 0.
FALSA POSICIÓN Raíz falsa Raíz verdadera xi xr xs f(x)
FALSA POSICIÓN 0,00013025 1,6859E-14 -1,5324E-09 -1,172E-06 -1,4385E-08 0,10653066 0,56714404 0,5671433 0,5 4 0,01061207 1,1192E-10 -1,2485E-07 -9,5491E-05 -1,172E-06 0,10653066 0,56720422 0,56714404 0,5 3 0,86518885 7,4283E-07 -1,0173E-05 -0,00777908 -9,5491E-05 0,10653066 0,57211161 0,56720422 0,5 2   0,00491732 -0,00082871 -0,63212056 -0,00777908 0,10653066 1 0,57211161 0,5 1 error f(xs).f(xr) f(xi).f(xr) f(xs) f(xr) f(xi) xs xr xi iter Ejemplo: Calcule la raíz de:
MÉTODO DE   PUNTO FIJO Usando el concepto de replantear la forma original del problema: Si Tal que Tal que
MÉTODO DE   PUNTO FIJO Se pueden presentar cuatro situaciones al momento de buscar la raíz. 1. Que  y solución monotónicamente convergente  (mayor acercamiento a la raíz) f2(x) f1(x) f(x) x RAIZ xi
MÉTODO DE   PUNTO FIJO 2. Que  y  solución oscilatoriamente convergente  (mayor acercamiento de manera oscilatoria a la raíz) f2(x) f1(x) f(x) x RAIZ xi
MÉTODO DE   PUNTO FIJO 3. Que  y  solución monotónicamente divergente  (mayor alejamiento de la raíz) f2(x) f1(x) f(x) x RAIZ xi
MÉTODO DE PUNTO FIJO 4. Que  y  solución oscilatoriamente divergente  (mayor alejamiento de manera oscilatoria de la raíz) f2(x) f1(x) f(x) x RAIZ xi
MÉTODO DE PUNTO FIJO 0,02098221 -2,5837E-09 3,8279E-05 -6,7496E-05 0,56711886 0,56718636 14 0,03700515 -8,0326E-09 -6,7496E-05 0,00011901 0,56718636 0,56706735 13 0,06522085 -2,4973E-08 0,00011901 -0,00020984 0,56706735 0,5672772 12 0,11508432 -7,7639E-08 -0,00020984 0,00036998 0,5672772 0,56690721 11 0,20265386 -2,4138E-07 0,00036998 -0,00065242 0,56690721 0,56755963 10 0,35814989 -7,504E-07 -0,00065242 0,00115018 0,56755963 0,56640945 9 0,62893408 -2,3333E-06 0,00115018 -0,00202859 0,56640945 0,56843805 8 1,11694386 -7,2524E-06 -0,00202859 0,0035751 0,56843805 0,56486295 7 1,94468884 -2,2556E-05 0,0035751 -0,0063092 0,56486295 0,57117215 6 3,50646443 -7,008E-05 -0,0063092 0,01110752 0,57117215 0,56006463 5 5,94509212 -0,00021813 0,01110752 -0,01963847 0,56006463 0,57970309 4 11,2412032 -0,00067682 -0,01963847 0,03446388 0,57970309 0,54523921 3 17,5639365 -0,00211234 0,03446388 -0,06129145 0,54523921 0,60653066 2   -0,00652942 -0,06129145 0,10653066 0,60653066 0,5 1 error f(xi).f(x(i+1) f(x(i+1) f(xi) x(i+1) xi iter Ejemplo: Calcule la raíz de:
MÉTODO DE NEWTON – RAPHSON Es uno de los métodos mas usados en la ingeniería, por llegar al resultado del problema de forma mas rápida. Se basa en trazar rectas tangentes que “toman la forma” de la función por medio de su primera derivada. Se usa la proyección de la recta tangente para encontrar el valor aproximado de la raíz.
MÉTODO DE NEWTON – RAPHSON f(x) f(xi) f(xi+1) Xi+1 xi RAIZ
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
MÉTODO DE NEWTON – RAPHSON 0,14672871 4,4409E-15 0,56714329 -1,56714336 1,9648E-07 0,56714317 3 11,709291 1,9648E-07 0,56714317 -1,56761551 0,00130451 0,566311 2   0,00130451 0,566311 -1,60653066 0,10653066 0,5 1 error f(xi+1) x(i+1) f``(xi) f(xi) xi iter Ejemplo: Calcule la raíz de:
MÉTODO DE SECANTE   Este método, a diferencia del de bisección y regla falsa, casi nunca falla ya que solo requiere de 2 puntos al principio, y después el mismo método se va retroalimentando.  Lo que hace básicamente es ir tirando rectas secantes a la curva de la ecuación que se tiene originalmente, y va checando la intersección de esas rectas con el eje de las X para ver si es la raíz que se busca.
MÉTODO DE SECANTE   El método se define por: Como se puede ver, este método necesitará dos aproximaciones iniciales de la raíz para poder inducir una pendiente inicial.
MÉTODO DE SECANTE   X i-1 x i X i+1 f(xi-1) f(xi) A E B D C x
MÉTODO DE SECANTE   0,86518885 7,4283E-07 -1,0173E-05 -0,00777908 -9,5491E-05 0,10653066 0,57211161 0,56720422 0,5 3 74,7910687 7,4283E-07 -0,00082871 -9,5491E-05 -0,00777908 0,10653066 0,56720422 0,57211161 0,5 2   0,00491732 -0,06734022 -0,00777908 -0,63212056 0,10653066 0,57211161 1 0,5 1 error f(xi+1).f(xi) f(xi-1).f(xi) f(xi+1) f(xi) f(xi-1) x(i+1) xi x(i-1) iter Ejemplo: Calcule la raíz de:
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Más contenido relacionado

La actualidad más candente

Aplicaciones de la derivada
Aplicaciones de la derivadaAplicaciones de la derivada
Aplicaciones de la derivadaSofia Manriquez
 
Aplicaciones de la derivada-UNIDAD 5 CALCULO DIFERENCIAL
Aplicaciones de la derivada-UNIDAD 5 CALCULO DIFERENCIALAplicaciones de la derivada-UNIDAD 5 CALCULO DIFERENCIAL
Aplicaciones de la derivada-UNIDAD 5 CALCULO DIFERENCIALeleazarbautista35
 
Guía de estudio sistemas numéricos
Guía de estudio sistemas numéricosGuía de estudio sistemas numéricos
Guía de estudio sistemas numéricosSistemadeEstudiosMed
 
6.metodo de newton
6.metodo de newton6.metodo de newton
6.metodo de newtonrjvillon
 
Cap 4 relaciones y funciones
Cap 4 relaciones y funcionesCap 4 relaciones y funciones
Cap 4 relaciones y funcionesnivelacion008
 
Cálculo integral. Capítulo 2. Integrales inmediatas y cambio de variable
Cálculo integral. Capítulo 2. Integrales inmediatas y cambio de variableCálculo integral. Capítulo 2. Integrales inmediatas y cambio de variable
Cálculo integral. Capítulo 2. Integrales inmediatas y cambio de variablePablo García y Colomé
 
68806235 metodos-numericos
68806235 metodos-numericos68806235 metodos-numericos
68806235 metodos-numericosgralexander2011
 
Derivadas parciales
Derivadas parcialesDerivadas parciales
Derivadas parcialesvlado1884
 
Máximos y Mínimos de una función de varias variables
Máximos y Mínimos de una función de varias variablesMáximos y Mínimos de una función de varias variables
Máximos y Mínimos de una función de varias variableslobi7o
 
Tema II: Soluciones de Ecuaciones de Una Variable
Tema II: Soluciones de Ecuaciones de Una VariableTema II: Soluciones de Ecuaciones de Una Variable
Tema II: Soluciones de Ecuaciones de Una VariableSistemadeEstudiosMed
 
EXTREMADURA Selectividad MATEMÁTICAS CCSS sep 12
EXTREMADURA Selectividad MATEMÁTICAS CCSS sep 12EXTREMADURA Selectividad MATEMÁTICAS CCSS sep 12
EXTREMADURA Selectividad MATEMÁTICAS CCSS sep 12KALIUM academia
 
La parabola ejercicios y aplicaciones
La parabola ejercicios y aplicacionesLa parabola ejercicios y aplicaciones
La parabola ejercicios y aplicacionesElvis Espinoza
 

La actualidad más candente (18)

APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADAAPLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA
 
Aplicaciones de la derivada
Aplicaciones de la derivadaAplicaciones de la derivada
Aplicaciones de la derivada
 
Aplicaciones de la derivada-UNIDAD 5 CALCULO DIFERENCIAL
Aplicaciones de la derivada-UNIDAD 5 CALCULO DIFERENCIALAplicaciones de la derivada-UNIDAD 5 CALCULO DIFERENCIAL
Aplicaciones de la derivada-UNIDAD 5 CALCULO DIFERENCIAL
 
Guía de estudio sistemas numéricos
Guía de estudio sistemas numéricosGuía de estudio sistemas numéricos
Guía de estudio sistemas numéricos
 
6.metodo de newton
6.metodo de newton6.metodo de newton
6.metodo de newton
 
Tema 4 integración numérica
Tema 4 integración numéricaTema 4 integración numérica
Tema 4 integración numérica
 
Cap 4 relaciones y funciones
Cap 4 relaciones y funcionesCap 4 relaciones y funciones
Cap 4 relaciones y funciones
 
Cálculo integral. Capítulo 2. Integrales inmediatas y cambio de variable
Cálculo integral. Capítulo 2. Integrales inmediatas y cambio de variableCálculo integral. Capítulo 2. Integrales inmediatas y cambio de variable
Cálculo integral. Capítulo 2. Integrales inmediatas y cambio de variable
 
68806235 metodos-numericos
68806235 metodos-numericos68806235 metodos-numericos
68806235 metodos-numericos
 
Derivadas parciales
Derivadas parcialesDerivadas parciales
Derivadas parciales
 
Máximos y Mínimos de una función de varias variables
Máximos y Mínimos de una función de varias variablesMáximos y Mínimos de una función de varias variables
Máximos y Mínimos de una función de varias variables
 
CAPITULO 7.pdf
CAPITULO 7.pdfCAPITULO 7.pdf
CAPITULO 7.pdf
 
Extremos. Problemas de aplicación
Extremos. Problemas de aplicación Extremos. Problemas de aplicación
Extremos. Problemas de aplicación
 
Tema II: Soluciones de Ecuaciones de Una Variable
Tema II: Soluciones de Ecuaciones de Una VariableTema II: Soluciones de Ecuaciones de Una Variable
Tema II: Soluciones de Ecuaciones de Una Variable
 
EXTREMADURA Selectividad MATEMÁTICAS CCSS sep 12
EXTREMADURA Selectividad MATEMÁTICAS CCSS sep 12EXTREMADURA Selectividad MATEMÁTICAS CCSS sep 12
EXTREMADURA Selectividad MATEMÁTICAS CCSS sep 12
 
Funcion cuadratic a
Funcion cuadratic aFuncion cuadratic a
Funcion cuadratic a
 
La parabola ejercicios y aplicaciones
La parabola ejercicios y aplicacionesLa parabola ejercicios y aplicaciones
La parabola ejercicios y aplicaciones
 
Interpolacion
InterpolacionInterpolacion
Interpolacion
 

Similar a Metodosnumericos2 100720142006-phpapp02

Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2monica
 
Metodos numericos-3-1212530740013750-9
Metodos numericos-3-1212530740013750-9Metodos numericos-3-1212530740013750-9
Metodos numericos-3-1212530740013750-9Xavier Davias
 
2.2 Busqueda de una raiz - copia (1).pptx
2.2 Busqueda de una raiz - copia (1).pptx2.2 Busqueda de una raiz - copia (1).pptx
2.2 Busqueda de una raiz - copia (1).pptxCrisbelChvez
 
Guia de estudio 2 (tema 2 metodos numericos)
Guia de estudio 2 (tema 2 metodos numericos)Guia de estudio 2 (tema 2 metodos numericos)
Guia de estudio 2 (tema 2 metodos numericos)pedroperez683734
 
DERIVACION_INTEGRACION 1.pdf
DERIVACION_INTEGRACION 1.pdfDERIVACION_INTEGRACION 1.pdf
DERIVACION_INTEGRACION 1.pdfLpezPinIsaac
 
MÉTODOS NUMÉRICOS
MÉTODOS NUMÉRICOSMÉTODOS NUMÉRICOS
MÉTODOS NUMÉRICOSAnahi Daza
 
Diferenciacion integracion
Diferenciacion integracionDiferenciacion integracion
Diferenciacion integracionGean Ccama
 
Solución de ecuaciones no lineales
Solución de ecuaciones no linealesSolución de ecuaciones no lineales
Solución de ecuaciones no linealesSistemadeEstudiosMed
 
Oper.2305.m04.lectura.v1
Oper.2305.m04.lectura.v1Oper.2305.m04.lectura.v1
Oper.2305.m04.lectura.v1LUIS COAQUIRA
 
Método de Newton
Método de NewtonMétodo de Newton
Método de NewtonKike Prieto
 
Metodo del punto fijo y de newton rapshon
Metodo del punto fijo y de newton rapshonMetodo del punto fijo y de newton rapshon
Metodo del punto fijo y de newton rapshonIsmael Campos Alanis
 

Similar a Metodosnumericos2 100720142006-phpapp02 (20)

Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2
 
Metodos numericos-3-1212530740013750-9
Metodos numericos-3-1212530740013750-9Metodos numericos-3-1212530740013750-9
Metodos numericos-3-1212530740013750-9
 
Metodos cerrados
Metodos cerradosMetodos cerrados
Metodos cerrados
 
Practica4 newton-raph-resuelta
Practica4 newton-raph-resueltaPractica4 newton-raph-resuelta
Practica4 newton-raph-resuelta
 
2.2 Busqueda de una raiz - copia (1).pptx
2.2 Busqueda de una raiz - copia (1).pptx2.2 Busqueda de una raiz - copia (1).pptx
2.2 Busqueda de una raiz - copia (1).pptx
 
Guia de estudio 2 (tema 2 metodos numericos)
Guia de estudio 2 (tema 2 metodos numericos)Guia de estudio 2 (tema 2 metodos numericos)
Guia de estudio 2 (tema 2 metodos numericos)
 
Método del Gradiente
Método del GradienteMétodo del Gradiente
Método del Gradiente
 
DERIVACION_INTEGRACION 1.pdf
DERIVACION_INTEGRACION 1.pdfDERIVACION_INTEGRACION 1.pdf
DERIVACION_INTEGRACION 1.pdf
 
Unidad 1 tema 1.1 biseccion
Unidad 1 tema 1.1 biseccionUnidad 1 tema 1.1 biseccion
Unidad 1 tema 1.1 biseccion
 
MÉTODOS NUMÉRICOS
MÉTODOS NUMÉRICOSMÉTODOS NUMÉRICOS
MÉTODOS NUMÉRICOS
 
Método de Broyden
Método de BroydenMétodo de Broyden
Método de Broyden
 
Diferenciacion integracion
Diferenciacion integracionDiferenciacion integracion
Diferenciacion integracion
 
Solución de ecuaciones no lineales
Solución de ecuaciones no linealesSolución de ecuaciones no lineales
Solución de ecuaciones no lineales
 
Oper.2305.m04.lectura.v1
Oper.2305.m04.lectura.v1Oper.2305.m04.lectura.v1
Oper.2305.m04.lectura.v1
 
Punto Fijo
Punto FijoPunto Fijo
Punto Fijo
 
Métodos numéricos. Unidad 2.
Métodos numéricos. Unidad 2.Métodos numéricos. Unidad 2.
Métodos numéricos. Unidad 2.
 
Método de Newton
Método de NewtonMétodo de Newton
Método de Newton
 
Metodo del punto fijo y de newton rapshon
Metodo del punto fijo y de newton rapshonMetodo del punto fijo y de newton rapshon
Metodo del punto fijo y de newton rapshon
 
Biseccion
BiseccionBiseccion
Biseccion
 
Ceros resum
Ceros resumCeros resum
Ceros resum
 

Último

MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMarjorie Burga
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docxGLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docxAleParedes11
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para eventoDiegoMtsS
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSjlorentemartos
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arteRaquel Martín Contreras
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptELENA GALLARDO PAÚLS
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadAlejandrino Halire Ccahuana
 
EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.DaluiMonasterio
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdfgimenanahuel
 
Herramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfHerramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfMARIAPAULAMAHECHAMOR
 
cortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuacortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuaDANNYISAACCARVAJALGA
 
la unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscala unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscaeliseo91
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxAna Fernandez
 

Último (20)

Razonamiento Matemático 1. Deta del año 2020
Razonamiento Matemático 1. Deta del año 2020Razonamiento Matemático 1. Deta del año 2020
Razonamiento Matemático 1. Deta del año 2020
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docxGLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para evento
 
Unidad 3 | Teorías de la Comunicación | MCDI
Unidad 3 | Teorías de la Comunicación | MCDIUnidad 3 | Teorías de la Comunicación | MCDI
Unidad 3 | Teorías de la Comunicación | MCDI
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
 
Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arte
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
 
Power Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptxPower Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptx
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdad
 
EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf
 
Herramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfHerramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdf
 
cortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuacortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahua
 
la unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscala unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fisca
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docx
 

Metodosnumericos2 100720142006-phpapp02

  • 2. RAÍCES DE ECUACIONES CONTENIDO Definición Métodos para la aproximación de soluciones 1. Método grafico 2. Cerrado o acotado : a) Bisección b) Falsa Posición 3. Abierto: c) Secante d) Newton-Raphson e) Punto Fijo
  • 3. RAÍCES DE ECUACIONES DEFINICIÓN El objeto del cálculo de las raíces de una ecuación es determinar los valores de x para los que se cumple: f ( x ) = 0 Su importancia radica en que si podemos determinar las raíces de una ecuación también podemos determinar máximos y mínimos, valores propios de matrices, resolver sistemas de ecuaciones lineales y diferenciales, etc...
  • 4.
  • 5. RAÍCES DE ECUACIONES La mayoría de los métodos utilizados para el cálculo de las raíces de una ecuación son iterativos y se basan en modelos de aproximaciones sucesivas. Estos métodos trabajan del siguiente modo: a partir de una primera aproximación al valor de la raíz, determinamos una aproximación mejor aplicando una determinada regla de cálculo y así sucesivamente hasta que se determine el valor de la raíz con el grado de aproximación deseado.
  • 6. MÉTODO GRAFICO Consiste en graficar una función y determinar visualmente donde corta el eje x. En y= f(x), establece el valor de x para el cual f(x)=0. x 1. Si en un intervalo {a,b} cerrado se cumple que : no existen raíces reales en el intervalo, pues y=f(x) no toca el eje x, por el contrario pueden encontrarse una o más raíces imaginarias. f(a).f(b)>0 f(x) a b
  • 7. MÉTODO GRAFICO 2. Si en un intervalo {a,b} cerrado se cumple que : Entonces existen dos raíces reales f(a).f(b)>0 f(x) a b x
  • 8. MÉTODO GRAFICO 3. Si en un intervalo {a,b} cerrado se cumple que : da la certeza de encontrar una sola raíz real en el intervalo. f(a).f(b)<0 x f(x) a b
  • 9. MÉTODO GRAFICO 4. Si en un intervalo {a,b} cerrado se cumple que : hay más de dos raíces. f(a).f(b)<0 f(x) a b x
  • 10. MÉTODO GRAFICO 5. También puede existir una función , para la que existe una raíz real doble en x=0 , que no es apreciable por el método gráfico, pues la ecuación es tangente al eje x . f(x) a b x
  • 11. MÉTODO DE BISECCIÓN Este método, también conocido como método de partición del intervalo, parte de una ecuación algebraica o trascendental f ( x ) y un intervalo [ x i, x s], tal que f ( x i) y f ( x s) tienen signos contrarios, es decir, tal que existe por lo menos una raíz en ese intervalo.
  • 12.
  • 13. MÉTODO DE BISECCIÓN f(x) f(xi) f(xr) f(xs) xi xr xs xi=xr x
  • 14.
  • 15.
  • 16.
  • 17. MÉTODO DE BISECCIÓN 0,04304778 -2,7167E-09 2,8218E-09 -0,00037535 7,2379E-06 0,00038986 0,56738281 0,56713867 0,56689453 11 0,08613264 -1,4633E-07 4,5037E-07 -0,00037535 0,00038986 0,0011552 0,56738281 0,56689453 0,56640625 10 0,17211704 7,1518E-07 -4,336E-07 -0,00190536 -0,00037535 0,0011552 0,56835938 0,56738281 0,56640625 9 0,34364261 9,4577E-06 -2,2011E-06 -0,00496376 -0,00190536 0,0011552 0,5703125 0,56835938 0,56640625 8 0,68965517 -5,7341E-06 8,4131E-06 -0,00496376 0,0011552 0,00728282 0,5703125 0,56640625 0,5625 7 1,36986301 8,5257E-05 -3,615E-05 -0,01717584 -0,00496376 0,00728282 0,578125 0,5703125 0,5625 6 2,7027027 0,00071276 -0,00012509 -0,04149755 -0,01717584 0,00728282 0,59375 0,578125 0,5625 5 5,26315789 0,00372393 -0,00030222 -0,08973857 -0,04149755 0,00728282 0,625 0,59375 0,5625 4 11,1111111 -0,00065355 0,00077584 -0,08973857 0,00728282 0,10653066 0,625 0,5625 0,5 3 20 0,02491443 -0,00955991 -0,27763345 -0,08973857 0,10653066 0,75 0,625 0,5 2   0,17549781 -0,02957647 -0,63212056 -0,27763345 0,10653066 1 0,75 0,5 1 error f(xs).f(xr) f(xi).f(xr) f(xs) f(xr) f(xi) xs xr xi iter Ejemplo: Calcule la raíz de:
  • 18. FALSA POSICIÓN Este método, como en el método de la bisección, parte de dos puntos que rodean a la raíz f ( x ) = 0, es decir, dos puntos x i y x s tales que  f ( x i) f ( x s) < 0. La siguiente aproximación, x r, se calcula como la intersección con el eje X de la recta que une ambos puntos empleando la ecuación La asignación del nuevo intervalo de búsqueda se realiza como en el método de la bisección: entre ambos intervalos, [ x i, x r] y [ x r, x s], se toma aquel que cumpla f ( xi ) f ( x r) < 0 ; f ( xr ) f ( x s) < 0.
  • 19. FALSA POSICIÓN Raíz falsa Raíz verdadera xi xr xs f(x)
  • 20. FALSA POSICIÓN 0,00013025 1,6859E-14 -1,5324E-09 -1,172E-06 -1,4385E-08 0,10653066 0,56714404 0,5671433 0,5 4 0,01061207 1,1192E-10 -1,2485E-07 -9,5491E-05 -1,172E-06 0,10653066 0,56720422 0,56714404 0,5 3 0,86518885 7,4283E-07 -1,0173E-05 -0,00777908 -9,5491E-05 0,10653066 0,57211161 0,56720422 0,5 2   0,00491732 -0,00082871 -0,63212056 -0,00777908 0,10653066 1 0,57211161 0,5 1 error f(xs).f(xr) f(xi).f(xr) f(xs) f(xr) f(xi) xs xr xi iter Ejemplo: Calcule la raíz de:
  • 21. MÉTODO DE PUNTO FIJO Usando el concepto de replantear la forma original del problema: Si Tal que Tal que
  • 22. MÉTODO DE PUNTO FIJO Se pueden presentar cuatro situaciones al momento de buscar la raíz. 1. Que y solución monotónicamente convergente (mayor acercamiento a la raíz) f2(x) f1(x) f(x) x RAIZ xi
  • 23. MÉTODO DE PUNTO FIJO 2. Que y solución oscilatoriamente convergente (mayor acercamiento de manera oscilatoria a la raíz) f2(x) f1(x) f(x) x RAIZ xi
  • 24. MÉTODO DE PUNTO FIJO 3. Que y solución monotónicamente divergente (mayor alejamiento de la raíz) f2(x) f1(x) f(x) x RAIZ xi
  • 25. MÉTODO DE PUNTO FIJO 4. Que y solución oscilatoriamente divergente (mayor alejamiento de manera oscilatoria de la raíz) f2(x) f1(x) f(x) x RAIZ xi
  • 26. MÉTODO DE PUNTO FIJO 0,02098221 -2,5837E-09 3,8279E-05 -6,7496E-05 0,56711886 0,56718636 14 0,03700515 -8,0326E-09 -6,7496E-05 0,00011901 0,56718636 0,56706735 13 0,06522085 -2,4973E-08 0,00011901 -0,00020984 0,56706735 0,5672772 12 0,11508432 -7,7639E-08 -0,00020984 0,00036998 0,5672772 0,56690721 11 0,20265386 -2,4138E-07 0,00036998 -0,00065242 0,56690721 0,56755963 10 0,35814989 -7,504E-07 -0,00065242 0,00115018 0,56755963 0,56640945 9 0,62893408 -2,3333E-06 0,00115018 -0,00202859 0,56640945 0,56843805 8 1,11694386 -7,2524E-06 -0,00202859 0,0035751 0,56843805 0,56486295 7 1,94468884 -2,2556E-05 0,0035751 -0,0063092 0,56486295 0,57117215 6 3,50646443 -7,008E-05 -0,0063092 0,01110752 0,57117215 0,56006463 5 5,94509212 -0,00021813 0,01110752 -0,01963847 0,56006463 0,57970309 4 11,2412032 -0,00067682 -0,01963847 0,03446388 0,57970309 0,54523921 3 17,5639365 -0,00211234 0,03446388 -0,06129145 0,54523921 0,60653066 2   -0,00652942 -0,06129145 0,10653066 0,60653066 0,5 1 error f(xi).f(x(i+1) f(x(i+1) f(xi) x(i+1) xi iter Ejemplo: Calcule la raíz de:
  • 27. MÉTODO DE NEWTON – RAPHSON Es uno de los métodos mas usados en la ingeniería, por llegar al resultado del problema de forma mas rápida. Se basa en trazar rectas tangentes que “toman la forma” de la función por medio de su primera derivada. Se usa la proyección de la recta tangente para encontrar el valor aproximado de la raíz.
  • 28. MÉTODO DE NEWTON – RAPHSON f(x) f(xi) f(xi+1) Xi+1 xi RAIZ
  • 29.
  • 30. MÉTODO DE NEWTON – RAPHSON 0,14672871 4,4409E-15 0,56714329 -1,56714336 1,9648E-07 0,56714317 3 11,709291 1,9648E-07 0,56714317 -1,56761551 0,00130451 0,566311 2   0,00130451 0,566311 -1,60653066 0,10653066 0,5 1 error f(xi+1) x(i+1) f``(xi) f(xi) xi iter Ejemplo: Calcule la raíz de:
  • 31. MÉTODO DE SECANTE Este método, a diferencia del de bisección y regla falsa, casi nunca falla ya que solo requiere de 2 puntos al principio, y después el mismo método se va retroalimentando. Lo que hace básicamente es ir tirando rectas secantes a la curva de la ecuación que se tiene originalmente, y va checando la intersección de esas rectas con el eje de las X para ver si es la raíz que se busca.
  • 32. MÉTODO DE SECANTE El método se define por: Como se puede ver, este método necesitará dos aproximaciones iniciales de la raíz para poder inducir una pendiente inicial.
  • 33. MÉTODO DE SECANTE X i-1 x i X i+1 f(xi-1) f(xi) A E B D C x
  • 34. MÉTODO DE SECANTE 0,86518885 7,4283E-07 -1,0173E-05 -0,00777908 -9,5491E-05 0,10653066 0,57211161 0,56720422 0,5 3 74,7910687 7,4283E-07 -0,00082871 -9,5491E-05 -0,00777908 0,10653066 0,56720422 0,57211161 0,5 2   0,00491732 -0,06734022 -0,00777908 -0,63212056 0,10653066 0,57211161 1 0,5 1 error f(xi+1).f(xi) f(xi-1).f(xi) f(xi+1) f(xi) f(xi-1) x(i+1) xi x(i-1) iter Ejemplo: Calcule la raíz de:
  • 35.